2011年清华大学数学科学系和数学科学中心的推研笔试真题
清华大学2011年保送生考试试题
清华大学2011年保送生考试试题
导读:本文清华大学2011年保送生考试试题,仅供参考,如果能帮助到您,欢迎点评和分享。
2011年12月25日,清华大学进行了保送生考试,约1000名考生参加了清华保送生选拔,其中文理比例为1:9。
清华所有参加笔试的文科生都将参加面试,内容包括英语口语测试和综合面试两部分,其中英语口语测试是今年首增的项目。
清华大学的保送生考试结果会在元旦前后公布。
保送生考试分为两部分:笔试和面试。
笔试科目分别为上午进行的阅读与写作(含中、英文,所有考生内容相同),下午举行的数学(文理科试题不同)、自然科学(理科考生,包括物理、化学,比例约为7:3)、人文与社会(文科考生,内容涉及文学、历史、哲学、政治、经济、法律、社会地理等)。
中文写作:声音,并不都是音乐。
题材不限。
人文与社会科目:CPI、碳交易、鸳鸯蝴蝶派等15个名词解释。
论文写作:给出社会学家李强的一本著作中《社会分层与社会流动》的一个章节写论文,主题是当代中国的社会流动。
面试题的考察更灵活、宽泛。
面试题,多取材于当前的热点事件。
面试形式:清华文科保送生采取6个一组的群面形式,理科保送生3个考官对1个考生的个面形式。
为了治理交通拥堵,北京和上海采取了限制机动车数量的政策,但却采用了不同的制度设计,北京采取的是摇号购车,上海则是
对车牌号进行拍卖。
请考生对两种政策进行优劣分析。
用英语说出四大名著,并说出自己喜欢哪部名著及理由。
用英语说出“科学发展观”及“发展是硬道理”,并说出两者的区别。
2011考研数学一真题及答案解析
2011年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线234(1)(2)(3)(4)y x x x x =−−−−的拐点是( )(A) (1,0). (B) (2,0). (C) (3,0). (D) (4,0). (2) 设数列{}n a 单调减少,lim 0n n a →∞=,1(1,2,)nn kk S an ===∑ 无界,则幂级数1(1)nn n a x ∞=−∑的收敛域为( )(A) (1,1]−. (B) [1,1)−. (C) [0,2). (D) (0,2]. (3) 设函数()f x 具有二阶连续导数,且()0f x >,(0)0f '=,则函数()ln ()z f x f y =在点(0,0)处取得极小值的一个充分条件是( )(A) (0)1f >,(0)0f ''>. (B) (0)1f >,(0)0f ''<. (C) (0)1f <,(0)0f ''>. (D) (0)1f <,(0)0f ''<.(4) 设4ln sin I x dx π=⎰,40ln cot J x dx π=⎰,40ln cos K x dx π=⎰,则,,I J K 的大小关系是( )(A) I J K <<. (B) I K J <<. (C) J I K <<. (D) K J I <<.(5) 设A 为3阶矩阵,将A 的第2列加到第1列得矩阵B ,再交换B 的第2行与第3行得单位矩阵,记1100110001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2100001010P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A =( ) (A) 12PP . (B) 112P P −. (C) 21P P . (D) 121P P −.(6) 设1234(,,,)A αααα=是4阶矩阵,*A 为A 的伴随矩阵,若(1,0,1,0)T是方程组0Ax =的一个基础解系,则*0A x =的基础解系可为( )(A) 13,αα. (B) 12,αα. (C) 123,,ααα. (D) 234,,ααα.(7) 设1()F x ,2()F x 为两个分布函数,其相应的概率密度1()f x ,2()f x 是连续函数,则必为概率密度的是( )(A)12()()f x f x . (B)212()()f x F x .(C)12()()f x F x . (D)1221()()()()f x F x f x F x +.(8) 设随机变量X 与Y 相互独立,且()E X 与()E Y 存在,记{}max ,U X Y =,{}min ,V X Y =则()E UV =( )(A)()()E U E V ⋅. (B)()()E X E Y ⋅. (C)()()E U E Y ⋅. (D)()()E X E V ⋅.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 曲线0tan (0)4π=≤≤⎰xy tdt x 的弧长s = .(10) 微分方程cos xy y e x −'+=满足条件(0)0y =的解为y = .(11) 设函数2sin (,)1xytF x y dt t =+⎰,则222x y F x ==∂=∂ .(12) 设L 是柱面方程221x y +=与平面=+z x y 的交线,从z 轴正向往z 轴负向看去为逆时针方向,则曲线积分22L y xzdx xdy dz ++=⎰ .(13) 若二次曲面的方程22232224x y z axy xz yz +++++=,经过正交变换化为221144y z +=,则a = .(14) 设二维随机变量(),X Y 服从正态分布()22,;,;0N μμσσ,则()2E X Y = .三、解答题:15~23小题,共94分.请将解答写在答题纸...指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限110ln(1)lim()x e x x x−→+.(16)(本题满分9分)设函数(,())z f xy yg x =,其中函数f 具有二阶连续偏导数,函数()g x 可导且在1x =处取得极值(1)1g =,求211x y zx y==∂∂∂.(17)(本题满分10分)求方程arctan 0k x x −=不同实根的个数,其中k 为参数.(18)(本题满分10分)(Ⅰ)证明:对任意的正整数n ,都有111ln(1)1n n n<+<+ 成立. (Ⅱ)设111ln (1,2,)2n a n n n=+++−=,证明数列{}n a 收敛.(19)(本题满分11分)已知函数(,)f x y 具有二阶连续偏导数,且(1,)0f y =,(,1)0f x =,(,)Df x y dxdy a =⎰⎰,其中{}(,)|01,01D x y x y =≤≤≤≤,计算二重积分''(,)xy DI xy f x y dxdy =⎰⎰.(20)(本题满分11分)设向量组123(1,0,1)(0,1,1)(1,3,5)T T T ααα===,,,不能由向量组1(1,1,1)T β=,2(1,2,3)T β=,3(3,4,)T a β=线性表示.(I) 求a 的值;(II) 将123,,βββ由123,,ααα线性表示.(21)(本题满分11分)A 为三阶实对称矩阵,A 的秩为2,即()2r A =,且111100001111A −⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭.(I) 求A 的特征值与特征向量; (II) 求矩阵A . (22)(本题满分11分)设随机变量X 与Y且{}221P X Y ==.(I) 求二维随机变量(,)X Y 的概率分布; (II) 求Z XY =的概率分布; (III) 求X 与Y 的相关系数XY ρ.(23)(本题满分 11分) 设12,,,n X X X 为来自正态总体20(,)μσN 的简单随机样本,其中0μ已知,20σ>未知.X 和2S 分别表示样本均值和样本方差.(I) 求参数2σ的最大似然估计量2σ∧; (II) 计算2()E σ∧和2()D σ∧.2011年全国硕士研究生入学统一考试数学一试题答案一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1)【答案】(C).【解析】记1111,1,0y x y y '''=−==,2222(2),2(2),2,y x y x y '''=−=−= 32333(3),3(3),6(3),y x y x y x '''=−=−=− 432444(4),4(4),12(4),y x y x y x '''=−=−=− (3)()y x P x ''=−,其中(3)0P ≠,30x y =''=,在3x =两侧,二阶导数符号变化,故选(C).(2)【答案】(C).【解析】观察选项:(A),(B),(C),(D)四个选项的收敛半径均为1,幂级数收敛区间的中心在1x =处,故(A),(B)错误;因为{}n a 单调减少,lim 0n n a →∞=,所以0n a ≥,所以1nn a∞=∑为正项级数,将2x =代入幂级数得1nn a∞=∑,而已知S n =1nkk a=∑无界,故原幂级数在2x =处发散,(D)不正确.当0x =时,交错级数1(1)nn n a ∞=−∑满足莱布尼茨判别法收敛,故0x =时1(1)nn n a ∞=−∑收敛.故正确答案为(C).(3)【答案】(A). 【解析】(0,0)(0,0)|()ln ()|(0)ln (0)0zf x f y f f x∂''=⋅==∂, (0,0)(0,0)()|()|(0)0,()z f y f x f y f y '∂'=⋅==∂故(0)0f '=, 2(0,0)(0,0)2|()ln ()|(0)ln (0)0,zA f x f y f f x∂''''==⋅=⋅>∂22(0,0)(0,0)()[(0)]|()|0,()(0)z f y f B f x x y f y f ''∂'==⋅==∂∂222(0,0)(0,0)22()()[()][(0)]|()|(0)(0).()(0)z f y f y f y f C f x f f y f y f ''''∂−''''==⋅=−=∂ 又22[(0)]ln (0)0,AC B f f ''−=⋅>故(0)1,(0)0f f ''>>.(4)【答案】(B). 【解析】因为04x π<<时, 0sin cos 1cot x x x <<<<,又因ln x 是单调递增的函数,所以ln sin ln cos ln cot x x x <<. 故正确答案为(B). (5)【答案】 (D).【解析】由于将A 的第2列加到第1列得矩阵B ,故100110001A B ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 即1AP B =,11A BP −=.由于交换B 的第2行和第3行得单位矩阵,故100001010B E ⎛⎫⎪= ⎪ ⎪⎝⎭, 即2,P B E =故122B P P −==.因此,121A P P −=,故选(D).(6)【答案】(D).【解析】由于(1,0,1,0)T 是方程组0Ax =的一个基础解系,所以(1,0,1,0)0TA =,且()413r A =−=,即130αα+=,且0A =.由此可得*||A A A E O ==,即*1234(,,,)A O =αααα,这说明1234,,,αααα是*0A x =的解.由于()3r A =,130αα+=,所以234,,ααα线性无关.又由于()3r A =,所以*()1r A =,因此*0A x =的基础解系中含有413−=个线性无关的解向量.而234,,ααα线性无关,且为*0A x =的解,所以234,,ααα可作为*0A x =的基础解系,故选(D).(7)【答案】(D). 【解析】选项(D)1122()()()()f x F x f x F x dx +∞−∞⎡⎤+⎣⎦⎰2211()()()()F x dF x F x dF x +∞−∞⎡⎤=+⎣⎦⎰21()()d F x F x +∞−∞⎡⎤=⎣⎦⎰12()()|F x F x +∞−∞=1=. 所以1221()()f F x f F x +为概率密度.(8)【答案】(B).【解析】因为 {},,max ,,,X X Y U X Y Y X Y ≥⎧==⎨<⎩ {},,min ,,Y X Y V X Y X X Y ≥⎧==⎨<⎩.所以,UV XY =,于是()()E UV E XY = ()()E X E Y =.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)【答案】(ln 1+.【解析】选取x 为参数,则弧微元sec ds xdx ===所以440sec ln sec tan ln(1s xdx x x ππ==+=+⎰. (10)【答案】sin xy e x −=.【解析】由通解公式得(cos )dx dxx y e e x e dx C −−⎰⎰=⋅+⎰(cos )x e xdx C −=+⎰(sin )xe x C −=+.由于(0)0,y =故C =0.所以sin xy e x −=.(11)【答案】4. 【解析】2sin 1()F xy y x xy ∂=⋅∂+, 22222cos sin 2[1()]F y xy xy xy y x xy ∂−⋅=⋅∂+, 故2(0,2)2|4Fx∂=∂. (12)【答案】π.【解析】取22:0,1S x y z x y +−=+≤,取上侧,则由斯托克斯公式得,原式=22SS dydz dzdx dxdyydydz xdzdx dxdy x y z y xzx∂∂∂=++∂∂∂⎰⎰⎰⎰.因'',1, 1.x y z x y z z =+==由转换投影法得221[(1)(1)1]Sx y ydydz xdzdx dxdy y x dxdy +≤++=⋅−+−+⎰⎰⎰⎰.221(1)x y x y dxdy π+≤=−−+=⎰⎰221x y dxdy π+≤==⎰⎰.(13)【答案】1a =.【解析】由于二次型通过正交变换所得到的标准形前面的系数为二次型对应矩阵A 的特征值,故A 的特征值为0,1,4.二次型所对应的矩阵1131111a A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,由于310ii A λ===∏,故113101111a a a =⇒=.(14)【答案】()22μμσ+.【解析】根据题意,二维随机变量(),X Y 服从()22,;,;0N μμσσ.因为0xy ρ=,所以由二维正态分布的性质知随机变量,X Y 独立,所以2,X Y .从而有()()()()()()22222E XY E X E Y D Y E Y μμμσ⎡⎤==+=+⎣⎦. 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)【解析】110ln(1)lim[]x e x x x−→+0ln(1)1lim[1].1x x x x e e →+−−=2ln(1)limx x xx e →+−=22201()2lim x x x o x x x e→−+−=22201()2lim x x o x x e→−+=12e −=.(16)(本题满分9分) 【解析】[],()z f xy yg x =[][]12,(),()()zf xy yg x y f xy yg x yg x x∂'''=⋅+⋅∂ [][]211112,()(,())(,())()zf xy yg x y f xy yg x x f xy yg x g x x y∂'''''=++∂∂ []{}21222(),()()[,()][,()]()g x f xy yg x yg x f xy yg x x f xy yg x g x '''''''+⋅+⋅+. 因为()g x 在1x =可导,且为极值,所以(1)0g '=,则21111121|(1,1)(1,1)(1,1)x y d zf f f dxdy =='''''=++. (17)(本题满分10分)【解析】显然0x =为方程一个实根. 当0x ≠时,令(),arctan xf x k x=−()()22arctan 1arctan xx x f x x −+'=. 令()2arctan 1x g x x x R x =−∈+,()()()222222211220111x x x x g x x x x +−⋅'=−=>+++, 即(),0x R g x '∈>. 又因为()00g =,即当0x <时,()0g x <; 当0x >时,()0g x >. 当0x <时,()'0f x <;当0x >时,()'0f x >.所以当0x <时,()f x 单调递减,当0x >时,()f x 单调递增 又由()00lim lim1arctan x x xf x k k x→→=−=−,()lim lim arctan x x xf x k x→∞→∞=−=+∞, 所以当10k −<时,由零点定理可知()f x 在(,0)−∞,(0,)+∞内各有一个零点; 当10k −≥时,则()f x 在(,0)−∞,(0,)+∞内均无零点.综上所述,当1k >时,原方程有三个根.当1k ≤时,原方程有一个根.(18)(本题满分10分)【解析】(Ⅰ)设()()1ln 1,0,f x x x n ⎡⎤=+∈⎢⎥⎣⎦显然()f x 在10,n⎡⎤⎢⎥⎣⎦上满足拉格朗日的条件,()1111110ln 1ln1ln 1,0,1f f n n n n n ξξ⎛⎫⎛⎫⎛⎫⎛⎫−=+−=+=⋅∈ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭所以10,n ξ⎛⎫∈ ⎪⎝⎭时, 11111111101n n n nξ⋅<⋅<⋅+++,即:111111n n n ξ<⋅<++, 亦即:111ln 11n n n⎛⎫<+< ⎪+⎝⎭. 结论得证.(II )设111111ln ln 23nn k a n n n k==++++−=−∑. 先证数列{}n a 单调递减.()111111111ln 1ln ln ln 1111n n n n k k n a a n n k k n n n n ++==⎡⎤⎡⎤⎛⎫⎛⎫−=−+−−=+=−+ ⎪ ⎪⎢⎥⎢⎥+++⎝⎭⎝⎭⎣⎦⎣⎦∑∑,利用(I )的结论可以得到11ln(1)1n n <++,所以11ln 101n n ⎛⎫−+< ⎪+⎝⎭得到1n n a a +<,即数列{}n a 单调递减.再证数列{}n a 有下界.1111ln ln 1ln nnn k k a n n k k ==⎛⎫=−>+− ⎪⎝⎭∑∑,()11112341ln 1ln ln ln 1123nnk k k n n k k n ==++⎛⎫⎛⎫⎛⎫+==⋅⋅=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∏,()1111ln ln 1ln ln 1ln 0nnn k k a n n n n k k ==⎛⎫=−>+−>+−> ⎪⎝⎭∑∑.得到数列{}n a 有下界.利用单调递减数列且有下界得到{}n a 收敛.(19)(本题满分11分) 【解析】11''(,)xy I xdx yf x y dy =⎰⎰11'0(,)x xdx ydf x y =⎰⎰()()111'000,|,x x xdx yf x y f x y dy ⎡⎤'=−⎢⎥⎣⎦⎰⎰ ()11''0(,1)(,)x x xdx f x f x y dy =−⎰⎰.因为(,1)0f x =,所以'(,1)0x f x =.11'(,)xI xdx f x y dy =−⎰⎰11'0(,)x dy xf x y dx =−⎰⎰111000(,)|(,)dy xf x y f x y dx ⎡⎤=−−⎢⎥⎣⎦⎰⎰1100(1,)(,)dy f y f x y dx ⎡⎤=−−⎢⎥⎣⎦⎰⎰ Dfdxdy =⎰⎰a =.(20)(本题满分11分)【解析】(I)由于123,,ααα不能由123,,βββ线性表示,对123123(,,,,,)βββααα进行初等行变换:123123113101(,,,,,)12401313115a ⎛⎫ ⎪= ⎪⎪⎝⎭βββααα113101011112023014a ⎛⎫ ⎪→− ⎪ ⎪−⎝⎭113101011112005210a ⎛⎫ ⎪→− ⎪ ⎪−−⎝⎭. 当5a =时,1231231(,,)2(,,,)3r r ββββββα=≠=,此时,1α不能由123,,βββ线性表示,故123,,ααα不能由123,,βββ线性表示.(II)对123123(,,,,,)αααβββ进行初等行变换:123123101113(,,,,,)013124115135⎛⎫ ⎪= ⎪ ⎪⎝⎭αααβββ101113013124014022⎛⎫ ⎪→ ⎪ ⎪⎝⎭101113013124001102⎛⎫ ⎪→ ⎪ ⎪−−⎝⎭ 1002150104210001102⎛⎫ ⎪→ ⎪ ⎪−−⎝⎭, 故112324βααα=+−,2122βαα=+,31235102βααα=+−.(21)(本题满分11分)【解析】(I)由于111100001111A −⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,设()()121,0,1,1,0,1T T αα=−=,则()()1212,,A αααα=−,即1122,A A αααα=−=,而120,0αα≠≠,知A 的特征值为121,1λλ=−=,对应的特征向量分别为()1110k k α≠,()2220k k α≠.由于()2r A =,故0A =,所以30λ=.由于A 是三阶实对称矩阵,故不同特征值对应的特征向量相互正交,设30λ=对应的特征向量为()3123,,Tx x x α=,则13230,0,T T⎧=⎨=⎩αααα即13130,0x x x x −=⎧⎨+=⎩. 解此方程组,得()30,1,0Tα=,故30λ=对应的特征向量为()3330k k α≠.(II) 由于不同特征值对应的特征向量已经正交,只需单位化:))()3121231231,0,1,1,0,1,0,1,0T T Tαααβββααα==−====. 令()123,,Q βββ=,则110TQ AQ −⎛⎫⎪=Λ= ⎪ ⎪⎝⎭, TA Q Q =Λ22122001102201022⎛−⎛⎫⎪ ⎪−⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪⎪ ⎪⎪⎝⎭⎪ ⎪− ⎪⎪⎝⎭ ⎪⎝⎭220012200000002210001022⎛−⎛⎫− ⎪ ⎪⎛⎫⎪ ⎪ ⎪==⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭.(22)(本题满分11分)【解析】(I)因为{}221P X Y==,所以{}{}222210≠=−==P X Y P X Y.即{}{}{}0,10,11,00P X Y P X Y P X Y==−=======.利用边缘概率和联合概率的关系得到{}{}{}{}1 0,000,10,13P X Y P X P X Y P X Y====−==−−===;{}{}{}11,110,13P X Y P Y P X Y==−==−−==−=;{}{}{}11,110,13P X Y P Y P X Y====−===.即,X Y的概率分布为(II)Z的所有可能取值为1,0,1−.{}{}111,13P Z P X Y=−===−=.{}{}111,13P Z P X Y=====.{}{}{}101113P Z P Z P Z==−=−=−=.Z XY=的概率分布为(III)因为XY Cov XY E XY E X E Y ρ−⋅==其中()()1111010333E XY E Z ==−⋅+⋅+⋅=,()1111010333E Y =−⋅+⋅+⋅=.所以()()()0−⋅=E XY E X E Y ,即X ,Y 的相关系数0ρ=XY . (23)(本题满分 11分)【解析】因为总体X 服从正态分布,故设X 的概率密度为202()2()x f x μσ−−=,x −∞<<+∞.(I) 似然函数22002211()()22222211()(;)](2)ni i i x nnnx i i i L f x eμμσσσσπσ=−−−−−==∑===∏∏;取对数:222021()ln ()ln(2)22ni i x n L μσπσσ=−=−−∑; 求导:22022221()ln ()()22()ni i x d L nd μσσσσ=−=−+∑2202211[()]2()nii x μσσ==−−∑.令22ln ()0()d L d σσ=,解得22011()n i i x n σμ==−∑. 2σ的最大似然估计量为02211()ni i X n σμ∧==−∑.(II) 方法1:20~(,)μσi X N ,令20~(0,)i i Y X N μσ=−,则2211n i i Y n σ=∧=∑.2212221()()()()[()]n i i i i i E E Y E Y D Y E Y n σσ=∧===+=∑.2222212221111()()()()n i n i i D D Y D Y Y Y D Y n nnσ∧===+++=∑442244112{()[()]}(3)σσσ=−=−=i i E Y E Y n n n. 方法2:20~(,)μσi X N ,则~(0,1)i X N μσ−,得到()2201~ni i X Y n μχσ=−⎛⎫= ⎪⎝⎭∑,即()2201ni i Y X σμ==−∑.()()222222011111()n i i E E X E Y E Y n n n n n μσσσσσ=∧⎛⎫⎡⎤=−===⋅= ⎪⎢⎥⎣⎦⎝⎭∑.()()22444022222111112()2n i i D D X D Y D Y n nn n n n μσσσσσ=∧⎛⎫⎡⎤=−===⋅= ⎪⎢⎥⎣⎦⎝⎭∑.。
2011考研数学(一二三)真题(含答案)
(B) 1,2 .
(C) 1,2,3 . (D) 2 ,3,4 .
【解析】由 x 0 的基础解系只有一个知 r(A) 3 ,所以 r( A) 1,
f
(0),
B
2z xy
|(0,0)
f
(x)
f ( y) f (y)
|(0,0)
[
f (0)]2 f (0)
0,
C
2z y2
|(0,0)
f
(x)
f
( y) f
(y) [ f f 2(y)
( y)]2
|(0,0)
f (0) [ f (0)]2 f (0)
较强。
观察选项:(A),(B),(C),(D)四个选项的收敛半径均为 1,幂级数收敛区间的中心在 x 1 处,
故(A),(B)错误;
因为
an
单调减少,lim n
an
0 ,所以 an
0 ,所以
n1
an
为正项级数,将
x
2 代入幂级数得
n1
an
,
n
而已知 Sn ak 无界,故原幂级数在 x 2 处发散,(D)不正确. k 1
2011 年全国硕士研究生入学 统一考试
数学(一、二、三) 试题及解析
山东考研辅导专家 苏老师
1
2011 年全国硕士研究生入学统一考试
数学(一)试题
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每题给出的四个选项中,只有一个选项符合题目要 求,请将所选项前的字母填在答.题.纸.指定位置上.
2
清华、北大2011-2015年自主招生面试真题汇总
清华、北大2011-2015年自主招生面试真题汇总2016年自主招生即将来临,考生和家长需要着手准备了。
除了报名申请材料之外,自主招生最重要的环节就是笔试和面试部分。
下面中国自主招生网小编汇总了清华大学、北京大学2011-2015年部分面试题,供报考2016自主招生的考生们参考。
清华大学清华大学2015年自主招生面试部分真题1.假设给你一次穿越的机会,你最希望穿越到什么时候?做什么人?干什么?2.清华大学的校训是什么?你是如何理解的?如果你被清华大学录取,你如何去践行这一校训?自强不息,厚德载物自强不息厚德载物——清华大学校训解释:来源于《周易》的两句话:一句是“天行健,君子以自强不息”(乾卦);一句是“地势坤,君子以厚德载物”(坤卦)。
民国时期,梁启超在清华大学任教时,曾给当时的清华学子作了《论君子》的演讲,他在演讲中希望清华学子们都能继承中华传统美德,并引用了《易经》上的“自强不息”“厚德载物”等话语来激励清华学子。
此后,清华人便把“自强不息,厚德载物”8个字写进了清华校规,后来又逐渐演变成为清华校训。
“天行健,君子以自强不息”“地势坤,君子以厚德载物”两句意谓:天(即自然)的运动刚强劲健,相应于此,君子处世,应像天一样,自我力求进步,刚毅坚卓,发愤图强,永不停息;大地的气势厚实和顺,君子应增厚美德,容载万物。
译为:君子应该像天宇一样运行不息,即使颠沛流离,也不屈不挠;如果你是君子,接物度量要像大地一样,没有任何东西不能承载。
3.如果你是班长,如何组织一次关于雷锋精神的班级活动?活动内容,请向班里同学发表一段两分钟的“学雷锋”活动动员演讲。
4.“是休学创业,还是毕业后创业。
”老师同学们:上午好!51年前的今天,毛主席亲笔题词,号召全国人民“向雷锋同志学习”。
从此,“学习雷锋好榜样”的歌曲响彻中国大地,雷锋的精神影响了一代又一代中国人,并且也影响到全世界。
因此,每年的3月5日,就被确定为学习雷锋纪念日。
2011年全国硕士研究生入学统一考试数学(一)真题及答案解析
f (0) f (0)
f (0) 0 , zxx
x0
f (0) ln
f (0) ,
y0
y0
z
yy
x0
f (0)
f (0) f (0) ( f (0))2 f 2 (0)
f (0) .
y0
要使得函数 z f (x)ln f ( y) 在点(0,0)处取得极小值,仅需
f (0) ln f (0) 0 , f (0) ln f (0) f (0) 0 ,
0
0
5.【答案】
【解】由初等矩阵与初等变换的关系知
AP1
B
,P2 B
E
,所以
A
BP11
P2
P 1 1 1
P2 P11
,
故选 D.
6.【答案】D
【解】由 x 0 的基础解系只有一个知 r( A) 3 ,所以 r( A) 1,又由 A A A E 0 知,
1,2 ,3,4 都是 x 0 的解,且 x 0 的极大线生无关组就是其基础解系,又
0
2
2
.
13.【答案】 1
【解】本题等价于将二次型 f (x, y, z) x2 3y2 z2 2axy 2xz 2 yz 经正交变换后化为
了 f y12 4z12 .由正交变换的特点可知,该二次型的特征值为1, 4, 0 .
1 a 1
该二次型的矩阵为
A
a
3
1 ,可知 A a2 2a 1 0 ,因此 a 1 。
an
单调减少,
lim
n
an
0 ,说明级数
an
n 1
1n
收敛,可知幂级数
an
n 1
x 1n
2011年研究生入学考试数学真题
2011年全国硕士研究生入学统一考试管理类专业学位联考英语试题Section I Use of EnglishDirections:Read the following text. Choose the best word(s) for each numbered blank and mark [A], [B], [C] or [D] on ANSWER SHEET. (10 points)The Internet affords anonymity to its users, a blessing to privacy and freedom of speech. But that very anonymity is also behind the explosion of cyber-crime that has 1 across the Web.Can privacy be preserved 2 bringing safety and security to a world that seems increasingly 3 ?Last month, Howard Schmidt, the nation’s cyber-czar, offered the federal government a 4 to make the Web a safer place—a “voluntary trusted identity” system that would be the high-tech 5 of a physical key, a fingerprint and a photo ID card, all rolled 6 one. The system might use a smart identity card, or a digital credential 7 to a specific computer, and would authenticate users at a range of online services.The idea is to 8 a federation of private online identity systems. User could 9 which system to join, and only registered users whose identities have been authenticated could navigate those systems. The approach contrasts with one that would require an Internet driver’s license 10 by the government.Google and Microsoft are among companies that already have these “single sign-on” systems that make it possible for users to 11 just once but use many different services.12 , the approach would create a “walled garden” in cyberspace, with safe “neighborhoods” and bright “streetlights” to establish a sense of a 13 community.Mr. Schmidt described it as a “voluntary ecosystem” in which “individuals and organizations can complete online transactions with 14 , trusting the identities of each other and the identities of the infrastructure 15 which the transaction runs.”Still, the administration’s plan has 16 privacy rights activists. Some applaud the approach; others are concerned. It seems clear that such a scheme is an initiative push toward what would 17 be a compulsoryInternet “driver’ s license” mentality.The plan has also been greeted with 18 by some computer security experts, who worry that the “voluntary ecosystem” envisioned by Mr. Schmidt would still leave much of the Internet 19 . They argue that all Internet users should be 20 to register and identify themselves, in the same way that drivers must be licensed to drive on public roads.1.[A]swept[B]skipped[C]walked[D]ridden2.[A]for[B]within[C]while[D]though3.[A]careless[B]lawless[C]pointless[D]helpless4.[A]reason[B]reminder[C]compromise[D]proposal5.[A]information[B]interference[C]entertainment[D]equivalent6.[A]by[B]into[C]from[D]over7.[A]linked[B]directed[C]chained[D]compared8.[A]dismiss[B]discover[C]create[D]improve9.[A]recall[B]suggest[C]select[D]realize10.[A]released[B]issued[C]distributed[D]delivered11.[A]carry on [B]linger on[C]set in [D]log in12.[A]In vain[B]In effect[C]In return [D]In contrast13.[A]trusted[B]modernized[C]thriving[D]competing14.[A]caution[B]delight[C]confidence[D]patience15.[A]on[B]after[C]beyond[D]across16.[A]divided[B]disappointed[C]protected[D]united17.[A]frequently[B]incidentally[C]occasionally[D]eventually18.[A]skepticism[B]tolerance[C]indifference [D]enthusiasm19.[A]manageable[B]defendable[C]vulnerable[D]invisible20.[A]invited[B]appointed[C]allowed[D]forcedSection Ⅱ Reading ComprehensionPart ADirections:Read the following four texts. Answer the questions after each text by choosing [A], [B], [C] or [D]. Mark your answers on ANSWER SHEET. (40 points)Text 1Ruth Simmons joined Goldman Sachs’s board as an outside director in January 2000; a year later she became president of Brown University. For the rest of the decade she apparently managed both roles without attracting much criticism. But by the end of 2009 Ms. Simmons was under fire for having sat on Goldman’s compensation committee; how could she have let those enormous bonus payouts pass unremarked? By February the next year Ms. Simmons had left the board. The position was just taking up too much time, she said.Outside directors are supposed to serve as helpful, yet less biased, advisers on a firm’s board. Having made their wealth and their reputations elsewhere, they presumably have enough independence to disagree with the chief executive’s proposals. If the sky, and the share price, is falling, outside directors should be able to give advice based on having weathered their own crises.The researchers from Ohio University used a database hat covered more than 10,000 firms and more than 64,000 different directors between 1989 and 2004. Then they simply checked which directors stayed from one proxy statement to the next. The most likely reason for departing a board was age, so the researchers concentrated on those “surprise” disappearances by directors under the age of 70. They found that after a surprise departure, the probability that the company will subsequently have to restate earnings increased by nearly 20%. The likelihood of being named in a federal class-action lawsuit also increases, and the stock is likely to perform worse. The effect tended to be larger for larger firms. Although a correlation between them leaving and subsequent bad performance at the firm is suggestive, it does not mean that such directors are always jumping off a sinking ship. Often they “trade up,” leaving riskier, smaller firms for larger and more stable firms.But the researchers believe that outside directors have an easier time of avoiding a blow to their reputations if they leave a firm before bad news breaks, even if a review of history shows they were on the board at the time any wrongdoing occurred. Firms who want to keep their outside directors through tough times may have to create incentives. Otherwise outside directors will follow the example of Ms. Simmons, once again very popular on campus.21. According to Paragraph 1, Ms. Simmons was criticized for______.[A] gaining excessive profits[B] failing to fulfill her duty[C] refusing to make compromises[D] leaving the board in tough times22. We learn from Paragraph 2 that outside directors are supposed to be______.[A] generous investors[B] unbiased executives[C] share price forecasters[D] independent advisers23. According to the researchers from Ohio University, after an outside director’s surprise departure, the firm is likely to______.[A] become more stable[B] report increased earnings[C] do less well in the stock market[D] perform worse in lawsuits24. It can be inferred from the last paragraph that outside directors______.[A] may stay for the attractive offers from the firm[B] have often had records of wrongdoings in the firm[C] are accustomed to stress-free work in the firm[D] will decline incentives from the firm25. The author’s attitude toward the role of outside directors is______.[A] permissive[B] positive[C] scornful[D] criticalText 2Whatever happened to the death of newspapers? A year ago the end seemed near. The recession threatened to remove the advertising and readers that had not already fled to the internet. Newspapers like the San Francisco Chronicle were chronicling their own doom. America’s Federal Trade Commission launched a round of talks about how to save newspapers. Should they become charitable corporations? Should the state subsidize them? It will hold another meeting soon. But the discussions now seem out of date.In much of the world there is little sign of crisis. German and Brazilian papers have shrugged off the recession. Even American newspapers, which inhabit the most troubled corner of the global industry, have not only survived but often returned to profit. Not the 20% profit margins that were routine a few years ago, but profit all the same.It has not been much fun. Many papers stayed afloat by pushing journalists overboard. The American Society of News Editors reckons that 13,500 newsroom jobs have gone since 2007. Readers are paying more for slimmer products. Some papers even had the nerve to refuse delivery to distant suburbs. Yet these desperate measures have proved the right ones and, sadly for many journalists, they can be pushed further.Newspapers are becoming more balanced businesses, with a healthier mix of revenues from readers and advertisers. American papers have long been highly unusual in their reliance on ads. Fully 87% of their revenues came from advertising in 2008, according to the Organization for Economic Cooperation & Development (OECD). In Japan the proportion is 35%. Not surprisingly, Japanese newspapers are much more stable.The whirlwind that swept through newsrooms harmed everybody, but much of the damage has been concentrated in areas where newspaper are least distinctive. Car and film reviewers have gone. So have science and general business reporters. Foreign bureaus have been savagely cut off. Newspapers are less complete as a result. But completeness is no longer a virtue in the newspaper business.26. By saying “Newspapers like … their own doom” (Lines 2-3, Para. 1), the author indicates that newspapers______.[A] neglected the sign of crisis[B] failed to get state subsidies[C] were not charitable corporations[D] were in a desperate situation27. Some newspapers refused delivery to distant suburbs probably because______.[A] readers threatened to pay less[B] newspapers wanted to reduce costs[C] journalists reported little about these areas[D] subscribers complained about slimmer products28. Compared with their American counterparts, Japanese newspapers are much more stable because they______.[A] have more sources of revenue[B] have more balanced newsrooms[C] are less dependent on advertising[D] are less affected by readership29. What can be inferred from the last paragraph about the current newspaper business? ______.[A] Distinctiveness is an essential feature of newspapers.[B] Completeness is to blame for the failure of newspaper.[C] Foreign bureaus play a crucial role in the newspaper business.[D] Readers have lost their interest in car and film reviews.30. The most appropriate title for this text would be______.[A] American Newspapers: Struggling for Survival[B] American Newspapers: Gone with the Wind[C] American Newspapers: A Thriving Business[D] American Newspapers: A Hopeless StoryText 3We tend to think of the decades immediately following World War II as a time of prosperity and growth, with soldiers returning home by the millions, going off to college on the G. I. Bill and lining up at the marriage bureaus.But when it came to their houses, it was a time of common sense and a belief that less could truly be more. During the Depression and the war, Americans had learned to live with less, and that restraint, in combination with the postwar confidence in the future, made small, efficient housing positively stylish.Economic condition was only a stimulus for the trend toward efficient living. The phrase “less is more” was actually first popularized by a German, the architect Ludwig Mies van der Rohe, who like other people associatedwith the Bauhaus, a school of design, emigrated to the United States before World War II and took up posts at American architecture schools. These designers came to exert enormous influence on the course of American architecture, but none more so than Mies.Mies’s signature phrase means that less decoration, properly organized, has more impact than a lot. Elegance, he believed, did not derive from abundance. Like other modern architects, he employed metal, glass and laminated wood-materials that we take for granted today but that in the 1940s symbolized the future. Mies’s sophisticated presentation masked the fact that the spaces he designed were small and efficient, rather than big and often empty.The apartments in the elegant towers Mies built on Chicago’s Lake Shore Drive, for example, were smaller—two-bedroom units under 1,000 square feet—than those in their older neighbors along the city’s Gold Coast. But they were popular because of their airy glass walls, the views they afforded and the elegance of the buildings’ details and proportions, the architectural equivalent of the abstract art so popular at the time.The trend toward “less” was not entirely foreign. In the 1930s Frank Lloyd Wright started building more modest and efficient houses—usually around 1,200 square feet—than the spreading two-story ones he had designed in the 1890s and the early 20th century.The “Case Study Houses” commissioned from talented modern architects by California Arts & Architecture magazine between 1945 and 1962 were yet another homegrown influence on the “less is more” trend. Aesthetic effect came from the landscape, new materials and forthright detailing. In his Case Study House, Ralph Rapson may have mispredicted just now how the mechanical revolution would impact everyday life—few American families acquired helicopters, though most eventually got clothes dryers—but his belief that self-sufficiency was both desirable and inevitable was widely shared.31. The postwar American housing style largely reflected the Americans’______.[A] prosperity and growth[B] efficiency and practicality[C] restraint and confidence[D] pride and faithfulness32. Which of the following can be inferred from Paragraph 3 about the Bauhaus?[A] It was founded by Ludwig Mies van der Rohe.[B] Its designing concept was affected by World War II.[C] Most American architects used to be associated with it.[D] It had a great influence upon American architecture.33. Mies held that elegance of architectural design______.[A] was related to large space[B] was identified with emptiness[C] was not reliant on abundant decoration[D] was not associated with efficiency34. What is true about the apartments Mies built Chicago’s Lake Shore Drive?[A] They ignored details and proportions.[B] They were built with materials popular at that time.[C] They were more spacious than neighboring buildings.[D] They shared some characteristics of abstract art.35. What can we learn about the design of the “Case Study Houses”?[A] Mechanical devices were widely used.[B] Natural scenes were taken into account[C] Details were sacrificed for the overall effect.[D] Eco-friendly materials were employed.Text 4Will the European Union make it? The question would have sounded strange not long ago. Now even the project’s greatest cheerleaders talk of a continent facing a “Bermuda triangle” of debt, population decline and lower growth.As well as those chronic problems, the EU face an acute crisis in its economic core, the 16 countries that use the single currency. Markets have lost faith that the euro zone’s economies, weaker or stronger, will one day converge thanks to the discipline of sharing a single currency, which denies uncompetitive members the quick fix of devaluation.Yet the debate about how to save Europe’s single currency from disintegration is stuck. It is stuck because the euro zone’s dominant powers, France and Germany, agree on the need for greater harmonization within the euro zone, but disagree about what to harmonise.Germany thinks the euro must be saved by stricter rules on borrowing spending and competitiveness, backed by quasi-automatic sanctions for governments that do not obey. These might include threats to freeze EU funds for poorer regions and EU mega-projects, and even the suspension of a country’s voting rights in EU ministerial councils. It insists that economic co-ordination should involve all 27 members of the EU club, among whom there is a small majority for free-market liberalism and economic rigour; in the inner core alone, Germany fears, a small majority favour French interference.A “southern” camp headed by France wants something different: “European economic government” within an inner core of euro-zone members. Translated, that means politicians intervening in monetary policy and a system of redistribution from richer to poorer members, via cheaper borrowing for governments through common Eurobonds or complete fiscal transfers. Finally, figures close to the French government have murmured, euro-zone members should agree to some fiscal and social harmonization: e.g., curbing competition in corporate-tax rates or labour costs.It is too soon to write off the EU. It remains the world’s largest trading block. At its best, the European project is remarkably liberal: built around a single market of 27 rich and poor countries, its internal borders are far more open to goods, capital and labour than any comparable trading area. It is an ambitious attempt to blunt the sharpest edges of globalization, and make capitalism benign.36. The EU is faced with so many problems that______.[A] it has more or less lost faith in markets[B] even its supporters begin to feel concerned -[C] some of its member countries plan to abandon euro[D] it intends to deny the possibility of devaluation37. The debate over the EU’s single currency is stuck because the dominant powers______.[A] are competing for the leading position[B] are busy handling their own crises[C] fail to reach an agreement on harmonization[D] disagree on the steps towards disintegration38. To solve the euro problem, Germany proposed that______.[A] EU funds for poor regions be increased[B] stricter regulations be imposed[C] only core members be involved in economic co-ordination[D] voting rights of the EU members be guaranteed39. The French proposal of handling the crisis implies that ______.[A] poor countries are more likely to get funds[B] strict monetary policy will be applied to poor countries[C] loans will be readily available to rich countries[D] rich countries will basically control Eurobonds40. Regarding the future of the EU, the author seems to feel ______.[A] pessimistic[B] desperate[C] conceited[D] hopefulPart BDirections:Read the following text and answer the questions by finding information from the right column that corresponds to each of the marked details given in the left column. There are two extra choices in the right column. Mark your answers on ANSWER SHEET 1. (10 points)Leading doctors today weigh in on the debate over the government's role in promoting public health by demanding that ministers impose "fat taxes" on unhealthy food and introduce cigarette-style warnings to children about the dangers of a poor diet.The demands follow comments made last week by the health secretary, Andrew Lansley, who insisted the government could not force people to make healthy choices and promised to free business from public health regulations.But senior medical figures want to stop fast-food outlets opening near schools, restrict advertising of products high in fat, salt or sugar, and limit sponsorship of sports events by fast-food producers such as McDonald's.They argue that government action is necessary to curb Britain's addiction to unhealthy food and help halt spiraling rates of obesity, diabetes and heart disease. Professor Terence Stephenson, president of the Royal College of Paediatrics and Child Health, said that the consumption of unhealthy food should be seen to be just as damaging as smoking or excessive drinking."Thirty years ago, it would have been inconceivable to have imagined a ban on smoking in the workplace or in pubs, and yet that is what we have now. Are we willing to be just as courageous in respect of obesity? I would suggest that we should be," said the leader of the UK's children's doctors.Lansley has alarmed health campaigners by suggesting he wants industry rather than government to take the lead. He said that manufacturers of crisps and candies could play a central role in the Change4Life campaign, the centrepiece of government efforts to boost healthy eating and fitness. He has also criticized the celebrity chef Jamie Oliver’s high-profile attempt to improve school lunches in England as an example of how "lecturing" people was not the best way to change their behaviour.Stephenson suggested potential restrictions could include banning TV advertisements for foods high in fat, salt or sugar before 9 pm and limiting them on billboards or in cinemas. "If we were really bold, we might even begin to think of high-calories fast food in the same way as cigarettes—by setting strict limits on advertising, product placement and sponsorship of sports events," he said.Such a move could affect firms such as McDonald’s, which sponsors the youth coaching scheme run by the Football Association. Fast-food chains should also stop offering “inducements” such as toys, cute animals and mobile phone credit to lure young customers, Stephenson said.Professor Dinesh Bhugra, president of the Royal College of Psychiatrists, said: “If children are taught about the impact that food has on their growth, and that some things can harm, at least information is available up front.”He also urged councils to impose “fast-food-free zones” around schools and hospitals—areas within which takeaways cannot open.A Department of Health spokesperson said: “We need to create a new vision for public health where all of society works together to get healthy and live longer. This includes creating a new ‘responsibility deal’ with business, built on social responsibility, not state regulation. Later this year, we will publish a white paper setting out exactly how we will achieve this.”The food industry will be alarmed that such senior doctors back such radical moves, especially the call to use some of the tough tactics that have been deployed against smoking over the last decade.Section ⅢTranslation46. Directions:Translate the following text from English into Chinese. write your translation on the ANSWER SHEET. (15 points)Who would have thought that, globally, the IT industry produces about the same volume of greenhouse gases as the world’s airlines do—roughly 2 percent of all CO2 emissions?Many everyday tasks take a surprising toll on the environment. A Google search can leak between 0.2 and 7.0 grams of CO2 depending on how many attempts are needed to get the “right” answer. To deliver results to its users quickly, then, Google has to maintain vast data centres around the world, packed with powerful computers. While producing large quantities of CO2, these computers emit a great deal of heat, so the centres need to be well air-conditioned, which uses even more energy.However, Google and other big tech providers monitor their efficiency closely and make improvements. Monitoring is the first step on the road to reduction, but there is much to be done, and not just by big companies.Section IV WritingPart A47. Directions:Suppose your cousin Li Ming has just been admitted to a university. Write him/her a letter to1) congratulate him/her, and2) give him/her suggestions on how to get prepared for university life.You should write about 100 words on ANSWER SHEET 2.Do not sign your own name at the end of the letter. Use “Zhang Wei” instead.Do not write the address. (10 points)Part B48. Directions:Write a short essay based on the following chart.in your writing, you should1)interpret the chart and2)give your commentsYou should write at least 150 wordsWrite your essay on the ANSWER SHEET. (15points)试题答案Section ⅠUse of English1. A2. C3. B4. D5. D6. B7. A8. C9. C 10. B 11. D 12. B 13. A 14. C 15. A 16. A 17.D 18. A 19.C 20. DSection ⅡReading ComprehensionPart A21. B 22. D 23. C 24. A 25. B 26. D 27. B 28. C 29. A 30. A 31. C 32. D 33. C 34. D35. B 36. B 37. C 38. B 39. A 40. DPart B41. E 42. D 43. C 44. B 45. GSection ⅢTranslation略Section IV WritingPart A略Part B略。
2011年清华自主招生数学试题和答案解析
2011年高水平大学自主招生选拔学业能力测试数学注意事项:1. 答卷前,考试务必将自己的姓名、准考证号填写在答题卡上。
2. 将答案写在答题卡上,写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题3分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设复数z 满足|z|<1且15|z+|2z=,则|z |=( ) A 45 B 34 C 23 D 12解析:设|z |a bi =+代入15|z+|2z =整理得22221174a b a b ++=+,又|z |<1,所以2214a b +=,|z |=12=(2)在正四棱锥P-ABCD 中,M 、N 分别为PA 、PB 的中点,且侧面与底面所成二面角的正切.则异面直线DM 与AN 所成角的余弦值为( ) A13 B 16 C 18 D 112解析:设2AB =,容易算出2PB =,以底面中心为原点建立空间坐标系,1111(1,1,0),(1,1,0),(,,(,,222222D A M N ------,由1cos 6|DM AN ||DM ||AN |θ⋅==⋅uuu u r uuu ruuuu r uuu r (3)过点(1,1)-的直线l 与曲线3221y x x x =--+相切,且(1,1)-不是切点,则直线l 的斜率是( )A 2B 1C 1-D 2-解析:32221(),()322y x x x f x f x x x '=--+==--,设切点(),()t f t ,()()()y f t f t x t '-=-,把(1,1)-代入且1t ≠-得到1t =,所以2k =-(4)若23A B π+=,则22cos cos A B +的最小值和最大值分别为( )A.312-, B.1322,C.11D.112, 解析:2222211cos cos cos cos ()1cos(2)323A B A A A ππ+=+-=++,选B (5)如图,1O e 和2O e 外切于点C ,1O e ,2O e 又都和O e 内切,切点分别为,A B . 设AOB ACB αβ∠=∠=,,则( ) A cos sin02αβ+= B sin cos02αβ-=C sin 2sin 0βα+=D sin 2sin 0βα-= 解析:连接12O O 过点C ,设12CAO CBO ∠=∠∠=∠,,12O C O C 、,则+1+2=+21+22=βαπ∠∠∠∠,即2=βαπ-,只有D 是错的。
2011考研数学真题和答案详解
2010年全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:0s inlim1xxx→=1lim1xxex→∞⎛⎫+=⎪⎝⎭函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学 考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学 考试内容多元函数的概念 二元函数的几何意义二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及p级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解xe .sin x .c o s x .ln (1)x +及(1)x α+的麦克劳林(Maclaurin )展开式.六、常微分方程与差分方程 考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法. 3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念. 6.了解一阶常系数线性差分方程的求解方法. 7.会用微分方程求解简单的经济应用问题.线 性 代 数一、行列式 考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵 考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤-∞<<∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布()P λ及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布. 4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为()0xef x x λλ-⎧=⎨≤⎩若x >0若5.会求随机变量函数的分布.三、多维随机变量及其分布 考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布221212(,;,;)N u u σσρ,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩2分布t分布F 分布 分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为 2211()1n i i S X X n ==--∑2.了解产生2χ变量、t 变量和F 变量的典型模式;了解标准正态分布、2χ分布、t 分布和F 分布得上侧α分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。
北京清华大学研究生入学考试数学真题
北京清华大学研究生入学考试数学真题(正文开始)研究生入学考试数学真题一、选择题1. 设函数 f(x) = 2x^2 - 3x + 1,求 f(-1) 的值。
2. 已知集合 A = {1, 2, 3, 4, 5, 6},B = {3, 4, 5},C = {2, 4},求A ∩(B ∪ C) 的结果。
3. 若a ≠ 0,且 a^2 + 1 = 3a,求 a 的值。
4. 设 AB 是一条半径为 r 的圆上一条弧,若 A、B两点之间的弧度为2π/3,则弧长 AB 等于多少?5. 已知等差数列 {an} 的前 n 项和为 Sn = 3n^2 + 2n,求 a1 的值。
二、填空题1. 若 a:b = 2:3,b:c = 4:5,则 a:c = ______。
2. 设函数 f(x) = 3x^2 + 4x - 1,求 f'(2) 的值。
3. 若函数 f(x) = mx + 3 在点 (1, 5) 处的切线方程为 y = 2x - 1,求 m 的值。
4. 设 A = {1, 2, 3, 4},集合 A 的幂集的大小为 ______。
5. 若二次函数 y = ax^2 + bx + c 的图像与 x 轴交于两个点 (-1, 0) 和(3, 0),求 a、b、c 的值。
三、计算题1. 已知等差数列 {an} 的通项公式为 an = 3n - 5,求 n = 10 时,数列的和 Sn 的值。
2. 若 a^n = b,且 log(a) 3 = 2,求 log(b) 27 的值。
3. 已知三角形 ABC 的边长分别为 a = 4,b = 7,c = 9,若角 A 的余弦值为 cos(A) = 1/3,求三角形的面积 S。
4. 已知函数 f(x) = ax^2 + 6x + 9 在闭区间 [1, 3] 上的最大值为 16,求 a 的值。
5. 某小组共有 n 个成员,若要将成员分为两个小组,每个小组至少有一个人且每个小组的人数不超过10 人,求满足条件的分组方法总数。
2011年研究生入学统一考试数学二试题及解析
2011年全国硕士研究生入学统一考试数学二试题及解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在答题纸指定位置上.1、已知当0x →时,函数()3sin sin 3f x x x =-与k cx 等价无穷小,则(A )1,4k c == (B )1,4k c ==- (C ) 3,4k c == (D )3,4k c ==- 【分析】本题考查等价无穷小的有关知识.可以利用罗必达法则或泰勒公式完成。
【详解】法一:由题设知 13sin sin 33cos 3cos 31=lim=limkk x x x xx xcxkcx-→→--233sin 9sin 33cos 27cos 3=lim=lim(1)(1)(2)k k x x x x x x k k cxk k k cx--→→-+-+---324=lim(1)(2)k x k k k cx-→--从而(1)(2)243k k k c k --=⎧⎨=⎩,故3,4k c ==。
从而应选(C )。
法二:333333(3)()3(())(3())4()3!3!xx f x x o x x o x x o x =-+--+=+所以3,4k c ==。
,从而应选(C )。
2、已知()f x 在0x =处可导,且(0)0f =,则233()2()limx x f x f x x→-=(A )2'(0)f - (B )'(0)f - (C ) '(0)f (D )0【分析】本题考查导数的定义。
通过适当变形,凑出()f x 在0x =点导数定义形式求解。
【详解】23223333()2()()(0)()(0)limlim[2]x x x f x f x x f x x f f x f xxx→→---=-()22333()(0)()(0)lim2lim'0x x x f x x f f x f f xx→→--=-=-故应选(B )。
2011考研数学真题+答案
2 z 所以 xy
f1 (1,1) f11 (1,1) f12 (1,1) .
(17)(本题满分 10 分) 求方程 k arctan x x 0 不同实根的个数,其中 k 为参数. 解:令 f ( x) k arctan x x ,则 f ( x) 是 (, ) 上的奇函数,且
2011 年 • 第 3 页
郝海龙:考研数学复习大全·配套光盘·2011 年数学试题答案和评分参考
1 1 ln n (n 1, 2,) ,证明数列 {an } 收敛. 2 n 解: (I)根据拉格朗日中值定理,存在 (n, n 1) ,使得 1 1 1 1 1 1 ln(1 ) ln(n 1) ln n ,所以 ln(1 ) . n n 1 n n 1 1 (II)当 n 1 时,由(I)知 an1 an ln(1 ) 0 , n 1 n 1 1 1 1 且 an 1 ln n ln(1 1) ln(1 ) ln(1 ) ln n 2 n 2 n ln(1 n) ln n 0 ,所以数列 {an } 单调下降且有下界,故 {an } 收敛.
(A) P1P2 (B) P11P2 (C) P2 P1
*
(D)
(D) P2 P11
T
(6) 设 A (1,2 ,3 ,4 ) 是 4 阶矩阵, A 为 A 的伴随矩阵.若 (1, 0,1, 0) 是方程组 Ax 0
* 的一个基础解系, 则 A x 0 的基础解系可为
(D) (D)
(A) (B) f (0) 1, f (0) 0 (D) f (0) 1, f (0) 0
(4) 设 I 4 ln sin xdx , J 4 ln cot xdx , K 4 ln cos xdx , 则 I , J , K 的大小关系为 (B)
2011年清华自主招生联盟笔试试题、
1、2011年清华自主招生联盟模拟试题(语文)声明:内容由上海交通大学出版社提供,选自《全国重点大学自主招生试题与模拟预测试卷丛书》A 0.90B 0.95C 0.95D 0.94E 0.942、清华大学保送生暨自主招生北京冬令营数学笔试试题(2006年12月30日)1.求()xe f x x=的单调区间及极值.2.设正三角形1T 边长为a ,1n T +是n T 的中点三角形,n A 为n T 除去1n T +后剩下三个三角形内切圆面积之和.求1limnkn k A→∞=∑.3.已知某音响设备由五个部件组成,A 电视机,B 影碟机,C 线路,D 左声道和E 右声道,其中每个部件工作的概率如下图所示.能听到声音,当且仅当A 与B 中有一工作,C 工作,D 与E 中有一工作;且若D 和E 同时工作则有立体声效果.求:(1)能听到立体声效果的概率; (2)听不到声音的概率.4.(1)求三直线60x y +=,12y x =,0y =所围成三角形上的整点个数; (2)求方程组21260y x y x x y <⎧⎪⎪>⎨⎪+=⎪⎩的整数解个数.5.已知(1,1)A --,△ABC 是正三角形,且B 、C 在双曲线1(0)xy x =>一支上. (1)求证B 、C 关于直线y x =对称; (2)求△ABC 的周长.6.对于集合2M R ⊆,称M 为开集,当且仅当0P M ∀∈,0r ∃>,使得 20{}P R PP r M ∈<⊆.判断集合{(,)4250}x y x y +->与{(,)0,0}x y x y ≥>是否为开集,并证明你的结论.3、五校合作自主选拔通用基础测试说明一、考试科目文科:语文、数学、英语、人文与社会(含历史,政治,地理)理科:语文、数学、英语、自然科学(含物理,化学)二、考试形式与试卷结构每科考试时间90分钟,分值100分。
考试采用闭卷、笔试形式。
清华数学科学系推免笔试题
清华数学科学系推免笔试题
清华数学科学系推免院系简介
二十世纪90年代末,数学系又迎来了一个新的发展机遇。
1999年系名更改为数学科学系,以更好的反映本系教学和研究对数学科学的涵盖。
近年来,学校加大了对数学学科发展的投入,大大改善了办公、教学、科研等硬件环境,良好的激励机制创造了浓厚的学术氛围,而从海内外引进的各学科领域的优秀人才也为清华数学的发展注入了新的活力。
目前,数学系已形成一支实力雄厚的教师队伍。
全系教师共计77人,其中正教授42人,副教授32人,讲师3人。
教师中拥有长江特聘教授3人,国家杰出青年基金获得者9人,国家“百千万人才工程”3人,入选教育部(跨)新世纪人才计划5人,校百人计划4人,教育部创新研究团队1个。
经过几代人的不断努力,清华数学系已成为国内几个最具实力的数学系之一。
继1981年获得计算数学专业博士点,1984年获得应用数学专业博士点,1998年获得基础数学专业博士点之后,2000年获得数学一级学科博士学位授予权,2011年获得统计学一级学科博士学位授予权。
清华数学科学系推免笔试题
以上就是清华数学科学系推免笔试试题,希望能对各位考研的同学有所帮助。
2011年数学二真题解析
【解析】由通解公式得
y edx ( ex cos x edxdx C)
ex ( cos xdx C)
ex (sin x C) .
由于 y(0) 0, 故 C =0.所以 y ex sin x .
(11)【解析】选取 x 为参数,则弧微元 ds 1 y2 dx 1 tan2 xdx sec xdx
x0
xa
ax x0
a1
ax a x0
a1 x0
所以 3 a 0 即 a 3 .
又因为 0 lim x
x ln(1 t2 )dt
0
xa
ln(1 x2 )
lim
x
axa1
2x
lim
x
1 x2 a(a 1)x
a2
2 a(a 1)
x3a
lim
x
1
x2
所以 3 a 2 ,即 a 1,综合得1 a 3 .
(15) (本题满分 10 分)
【解析】如果 a 0 时, lim
x ln(1 t2 )dt
0
lim xa
x ln(1 t2 )dt ,
x
xa
x
0
显然与已知矛盾,故 a 0 .
当 a 0 时,又因为 lim
x ln(1 t2 )dt
0
lim
ln(1
x2 )
lim
x2
lim 1 x3a 0 .
g(x) f2xy, yg(x) yg(x) f12[xy, yg(x)] x f22[xy, yg(x)]g(x).
因为 g(x) 在 x 1 可导,且为极值,所以 g(1) 0 ,则
d2z dxdy
|x1
y 1
2011年考研数学(一)真题(含答案解析)
11 年全国硕士研究生入学统一考试数学(一)试题 20 2011 一、选择题 1.曲线 y = ( x − 1)( x − 2) 2 ( x − 3) 2 ( x − 4) 2 拐点 A(1,0) B(2,0) C(3,0) D(4,0)
n k =1 n k =1
2 设数列 {an }单调递减, lim an = 0, S n =
an = 1 + 1 / 2 + … +
′′ ( x, y )dxdy = ∫ xdx ∫ yf xy ′′ ( x, y )dy I = ∫∫ xyf xy
0 0
1
1
D
∫
19.解:
1
0
′′ ( x, y )dy = ∫ ydf x′( x, y ) = y f xy ′ ( x, y ) 1 ′ yf xy 0 − ∫ f x ( x, y ) dy ,
∫
π 4
0
4 4 ln sin xdx , J = ∫ ln cot xdx , K = ∫ ln cos xdx 则I、J、K的大小关系是
π
π
0
0
A I<J<K B I<K<J C J<I<K D K<J<I 5.设 A 为 3 阶矩阵,将 A 的第二列加到第一列得矩阵 B,再交换 B 的第二行与第一行得单
显然 g ( 0 ) = 0 , 因为 g ′( t ) = 2 t arctan t > 0 , 所以 g ( t ) > g ( 0 ) = 0 (当 t > 0 ),
k −1 −
k − 1 > 0 , 极小值 − k arctan k − 1 > 0,
2011年考研数学一真题完整打印版
2011年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,1、 曲线432)4()3()2)(1(----=x x x x x y 的拐点是( ) A (1,0) B (2,0) C (3,0) D (4,0)2、设数列{}n a 单调减少,且0lim =∞→n n a 。
∑==ni in aS 1无界,则幂级数n n nx a)1(1-∑∞=的收敛域为( )A ]11-(B )11[-C )20[ D ]20(3、 设函数)(x f 具有二阶连续的导数,且0)(>x f .0)0(='f 。
则函数)()(ln y f x f z =在点)0,0(处取得极小值的一个充分条件是( ) A 0)0(1)0(>''>f f B 0)0(1)0(<''>f f C 0)0(1)0(>''<f f D 0)0(1)0(<''<f f4、设⎰=4sin ln πxdx I ⎰=40c o t ln πxdx J ⎰=40c o s ln πxdx K ,则 K J I的大小关系是( )A K J I <<B J K I <<C K I J <<D I J K <<5、设A 为3阶矩阵,把A 的第二列加到第一列得到矩阵B ,再交换B 的第二行与第3行得到单位阵E ,记⎪⎪⎪⎭⎫ ⎝⎛=1000110011P ,⎪⎪⎪⎭⎫ ⎝⎛=010*******P ,则A=( )A 21P PB 211P P - C 12P P D 112P P - 6、设)(4321αααα=A 是4阶矩阵,*A 为A 的伴随矩阵。
若T )0,1,0,1(是0=Ax 的一个基础解系,则0*=x A 的基础解系可为( )A31αα B 21αα C 321ααα D 432ααα7、设)()(21x F x F 为两个分布函数,且连续函数)()(21x f x f 为相应的概率密度,则必为概率密度的是( )A )()(21x f x fB )()(212x F x fC )()(21x F x fD )()(21x F x f +)()(12x F x f 8、设随机变量Y X ,相互独立,且EY EX ,都存在,记{}Y X U ,max ={}Y X V ,min =,则=E U V ( )A EV EU ⋅B EY EX ⋅C EY EU ⋅D EV EX ⋅二、填空题:9—14小题,每小题4分,共24分,请将答案写在答题纸指定的位置上。
2011年全国硕士研究生入学统一考试数学一试题及答案详解
2011年全国硕士研究生入学统一考试数学一试题及答案详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)曲线234(1)(2)(3)(4)y x x x x =−−−−的一个拐点是( ) (A )(1,0) (B )(2,0) (C )(3,0) (D )(4,0) 【答案】应选(C ) 【详解】由凹凸性定义(2)设数列{}n a 单调减少,1lim 0,(1,2,)n n n kn k a S a n →∞====∑L 无界,则幂级数1(1)nkkk a x =−∑的收敛域是( )(A )(1,1]− (B )[1,1)− (C )[0,2) (D )(0,2] 【答案】应选(C ) 【详解】根据级数1kk a∞=∑发散,可知1kk k a x∞=∑在1x =发散,1x =−收敛,所以可判断收敛半径为1R =(3)设函数()f x 具有二阶连续导数,且()0,(0)0,f x f ′>= 则函数()ln ()z f x f y =在点(0,0)处取得极小值的一个充分条件是( )(A )(0)1,(0)0f f ′′>> (B )(0)1,(0)0f f ′′>< (C )(0)1,(0)0f f ′′<> (D )(0)1,(0)0f f ′′<< 【答案】应选(A )【详解】根据()ln ()0()()0()x yz f x f y f x f y z f y ′==⎧⎪′⎨==⎪⎩, 22()()ln (),[()()(())]()xx yy f x z f x f y z f y f y f y f y ′′′′′==− 对于(0,0),(0,0)(0)ln (0)xx z f f ′′=,(0,0)(0)yy z f ′′= 根据题意可判断(0)1,(0)0f f ′′>>(4)设4440ln sin ,ln cot ,ln cos I xdx J xdx K xdx πππ===∫∫∫,则,,I J K 的大小关系是(A )I J K << (B )I K J << (C )J I K << (D )K J I << 【答案】应选(B ) 【详解】在区间[0,4π上,sin cos cot ,ln x x x x <<是增函数,所以ln sin ln cos ln cot ,x x x <<由定积分比较大小的性质可知,应选(B ) (5)设A 为三阶矩阵,将A 的第二列加到第一列得到矩阵B ,再交换B 的第二行与第三行得到单位矩阵,记121 0 0 1 0 01 1 0,0 0 10 0 10 1 0P P ⎛⎞⎛⎞⎜⎟⎜⎟==⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠,则A=( )(A) 12PP ; (B) 112P P −; (C) 21P P ; (D) 121P P −. 【答案】应选(D).【详解】由初等变换及初等矩阵的性质易知21P AP E =,从而1112121A P P P P −−−==,答案应选(D).(6)设1234(,,,)A αααα=,若(1,0,1,0)T是方程0AX =的一个基础解系,则*0A X =的基础解系可为( )(A)12,αα; (B) 13,αα; (C) 123,,ααα; (D) 234,,ααα.【答案】应选(D).【详解】由(1,0,1,0)T 是方程0AX =的一个基础解系,知()3r A =,从而*()1,0r A A ==,于是*0A A A E ==,即1234,,,αααα为*0A X =的解.由130αα+=,知13,αα线性相关,由()3r A =,知234,,ααα线性无关,又*()1r A =,从而234,,ααα为*0A X =的基础解系,故应选(D).(7)设12(),()F x F x 为两个分布函数,其相应的概率密度12(),()f x f x 是连续函数,则必为概率密度的是( )(A )12()()f x f x (B )212()()f x F x (C )12()()f x F x (D )1221()()()()f x F x f x F x + 【答案】应选(D).【详解】由概率密度的性质知,概率密度必须满足()1f x dx +∞−∞=∫,故由题知[]12211212()()()()()()()()1f x F x f x F x dx dF x F x F x F x +∞+∞+∞−∞−∞−∞+===∫∫ 故选择D.(8)设随机变量X 与Y 相互独立,且EX 与EY 存在.记max{,}U X Y =,min{,}V X Y =则EUV 等于( )(A )EU EV ×(B )EX EY ×(C )EU EY ×(D )EX EV × 【答案】应选(B).【详解】由题易知,当X Y <时,,U Y V X ==;当X Y >时,,U X V Y ==;当X Y =时, ,U Y V X ==;则都有EUV EXY EXEY ==,故选择B.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9)曲线0tan (0)4xy tdt x π=≤≤∫的弧长s =【答案】1)+【详解】1)s ==+(10)微分方程'cos xy y e x −+=满足条件(0)0y =的解为y =【答案】sin x e x −【详解】11(cos )(sin )dx dx x xy e C e xe dx e C x −−−∫∫=+=+∫,由于(0)0y =,所以sin x y e x −=(11)设函数2sin (,)1xytF x y dt t=+∫,则20,22x y F x ==∂=∂【答案】2【详解】2sin()1()F xy y x xy ∂=∂+,20,222sin(2)()214x y x F d x x dx x===∂==∂+(12)设L 是柱面方程221x y +=与平面z x y =+的交线,从z 轴正向往z 轴负向看去为逆时针方向,则曲线积分22Ly xzdx xdy dz ++=ò 【答案】2π【详解】由斯托克斯公式。
清华大学微积分考试真题1
像 是 C 2 , C 2 关 于 原 点 对 称 的 图 像 为 C 3 , 则C 3 对 应 的 函 数 解 析 式 是 _________________. 10.试写出一个从 [0,1] 到(0,1)的一一对应映射. 三、不等式 11.1)试证明 Cauchy 不等式: ai (i = 1, 2,L n), bi (i = 1, 2, L n) 为两组实数,求证:
2.设 A, B 均是非空有界数集,定义 A+B = {x +y | x ∈ A, y ∈ B} 。证明: (1) inf( A + B ) = inf A + inf B ; (2) sup( A + B ) = sup A + sup B
证明:仅证(1) ; (2)的证法类似于(1) 。 设 a = inf A, b = inf B , 由 确 界 的 定 义 , ∀x ∈ A, y ∈ B 均 有 x ≥ a, y ≥ b , 因 此
1 1 > 0 ,因此 y = 2 有下界。 2 x x 1 1 1 ,得到 yG = 2 = 4G > G ,因此 y = 2 无上界。 x xG 2 G 1 1 1 ≤ 2 ,此时 y = 2 有界。 2 x δ x
∀G > 0 ,取 xG =
2) δ > 0 ,当 x ∈ ( −∞, −δ ] U [δ , +∞ ) 时,有 0 <
(4) 已知函数 y = f ( x ) 存在反函数,那么与函数 y = f ( x ) 的反函数图像关于原点对称 的图像所对应的函数表达式为 (5)函数 f ( x) = .
x−3 3 , ( x ≠ ) ,若 y = f ( x + 1) 的图像是 C1 ,它关于直线 y=x 对称图 2x − 3 2
清华大学往年考试试卷真题
清华大学往年考试试卷真题清华大学是中国顶尖的高等学府之一,其考试试卷真题通常包含多个学科领域,以下是一个模拟的清华大学往年考试试卷真题的示例:清华大学数学分析考试试卷一、选择题(每题2分,共20分)1. 下列函数中,哪一个不是连续函数?A. f(x) = x^2B. f(x) = sin(x)C. f(x) = |x|D. f(x) = 1/x2. 函数f(x) = x^3 - 2x + 1在x=1处的导数是:A. 2B. 0C. -2D. 43. 积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 1...(此处省略其他选择题)二、填空题(每题3分,共15分)1. 函数f(x) = 3x^2 + 2x - 1的极值点是_________。
2. 若f(x) = e^x,那么f'(x) = __________。
3. 函数y = ln(x)的定义域是_________。
...(此处省略其他填空题)三、简答题(每题10分,共30分)1. 证明函数f(x) = x^3在R上是单调递增的。
2. 解释什么是泰勒级数,并给出e^x的泰勒级数展开式。
3. 计算定积分∫(1, e) (x + 1/x) dx。
四、解答题(每题15分,共30分)1. 已知函数f(x) = x^2 - 4x + 4,求其在区间[0, 3]上的最小值。
2. 给定函数g(x) = sin(x) + cos(x),求其在x=π/4处的导数,并解释其几何意义。
3. 解析下列微分方程:dy/dx = x^2 - y^2,初始条件为y(0) = 1。
五、附加题(10分)1. 讨论函数f(x) = x^3 - 6x^2 + 11x - 6在实数域R上的零点。
注意事项:- 请在答题纸上作答,不要在试卷上直接书写。
- 请保持答题纸整洁,字迹清晰。
- 选择题请用2B铅笔涂黑,填空题和解答题请用黑色签字笔书写。
祝考试顺利!请注意,以上内容仅为模拟示例,并非真实的清华大学考试试卷真题。
全国硕士研究生入学统一考试数学一真题2011年_真题(含答案与解析)-交互
全国硕士研究生入学统一考试数学一真题2011年(总分150, 做题时间180分钟)一、选择题:1-8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上。
1.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:C2.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:C3.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:A4.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:B5.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:D6.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:D7.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:D8.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:B二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上。
9.SSS_FILL该题您未回答:х该问题分值: 4答案:SSS_FILL该题您未回答:х该问题分值: 4答案:11.SSS_FILL该题您未回答:х该问题分值: 4答案:412.SSS_FILL该题您未回答:х该问题分值: 4答案:13.SSS_FILL该题您未回答:х该问题分值: 4答案:SSS_FILL该题您未回答:х该问题分值: 4答案:三、解答题:15-23小题,共94分。
请将解答写在答题纸指定的位置上,解答应写出文字说明、证明过程或演算步骤。
15.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 10答案:16.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 9答案:17.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 10答案:18.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 10答案:19.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 11答案:SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5.5答案:SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5.5答案:SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5.5答案:SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5.5答案:SSS_TEXT_QUSTI该题您未回答:х该问题分值: 3.XX667答案:SSS_TEXT_QUSTI该题您未回答:х该问题分值: 3.XX667答案:SSS_TEXT_QUSTI该题您未回答:х该问题分值: 3.XX667答案:SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5.5答案:SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5.5答案:1。