华师大七年级下期中测试卷1-5章
华师大版七年级下册数学期中试卷1
华师大版七年级下册数学期中试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)下面四个等式的变形中正确的是( )A.由x+7=5﹣3x,得4x=2B.由4x+8=0,得x+2=0C.由x=4,得x=D.由4(x﹣1)=﹣2,得4x=﹣6 2.(3分)下列方程:①2x﹣=1;②=3;③x2﹣y2=4;④5(x+y)=7(x﹣y);⑤2x2=3;⑥x+=4,其中是二元一次方程的是( )A.①B.①③C.①④D.①②④⑥3.(3分)语句“x的与x的和不大于5”可以表示为( )A.+x≥5B.+x≤5C.≤5D.+x=54.(3分)已知是二元一次方程3x﹣my=5的一组解,则m的值为( )A.﹣2B.2C.﹣D.5.(3分)不等式组的整数解的个数是( )A.2B.3C.4D.56.(3分)小明在做解方程的题时,不小心将方程中的一个常数污染了看不清楚(式中用(【】)表示),被污染的方程是:2y﹣=y﹣(【】),怎么办呢?小明想了一想,便翻看了书后的答案,此方程的解是y=﹣,所以他很快补好了这个常数,并迅速地完成了作业.同学们,你们能补出这个常数吗?它应是( )A.1B.2C.3D.47.(3分)若方程组的解满足x+y>1,则k的取值范围是( )A.k>2B.k<2C.k>0D.k<08.(3分)把1400元的奖金按两种等次奖给22名学生,其中一等奖每人200元,二等奖每人50元,设获一等奖的学生有x人,则下列选项所列方程错误的是( )A.(200﹣50)x+50×22=1400B.50x+200(22﹣x)=1400C.200x+50(22﹣x)=1400D.+x=229.(3分)已知x=m+15,y=5﹣2m,若m>﹣3,则x与y的关系为( )A.x=y B.x>y C.x<y D.不能确定10.(3分)如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为( )A.35B.45C.55D.65二、填空题(每题3分,共15分)11.(3分)方程3x+1=7的根是 .12.(3分)已知|2x﹣4|+|x+2y﹣8|=0,则(x﹣y)2020= .13.(3分)如图所示,点C位于点A、B之间(不与A、B重合),点C表示1﹣2x,则x 的取值范围是.14.(3分)在实数范围内规定新运算“△”,其规则是:a△b=2a﹣b.已知不等式x△k≥1的解集在数轴上如图表示,则k的值是.15.(3分)在“五一节”期间,某商场对该商场商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买售价为80元/件的商品n件时,实际付款504元,则n= .三、解答题(本题8个小题,共75分)16.(8分)解方程:(1)x﹣8=﹣0.2x;(2)=﹣1.17.(9分)阅读小强同学数学作业本上的截图内容并完成任务:任务:(1)这种解方程组的方法称为 ;(2)利用此方法解方程组的过程中所体现的数学思想是 ;(请你填写正确选项)A.转化思想C.函数思想C.数形结合思想D.公理化思想(3)小强的解法正确吗? (填正确或不正确),如果不正确,请指出错在第 步.请选择恰当的解方程组的方法解该方程组.18.(9分)(1)当x取何值时,代数式与的值的差大于1?(2)解不等式组:(注意:用数轴确定不等式组的解集).19.(9分)小明解方程+1=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此得到方程的解为x=﹣1,试求a的值,并正确地求出原方程的解.20.(9分)已知,关于x,y的方程组的解为x、y.(1)x= ,y= (用含a的代数式表示);(2)若x、y互为相反数,求a的值;21.(10分)某中学七年级同学要在清明节到烈士陵园扫墓,计划制作418朵小白花.学生会主席小琳先做了2天,后来好朋友小雯也加入一起做了3天,最后比计划多制作32朵小白花.已知小雯每天比小琳少制作2朵小白花.请问:小琳、小雯平均每天分别能制作多少朵小白花?22.(10分)阅读下列材料,然后解答后面的问题.我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得,(x、y为正整数)∴则有0<x<6.又为正整数,则为正整数.由2与3互质,可知:x为3的倍数,从而x=3,代入.∴2x+3y=12的正整数解为问题:(1)请你写出方程2x+y=5的一组正整数解: ;(2)若为自然数,则满足条件的x值有 个;A、2B、3C、4D、5(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?23.(11分)学校“百变魔方“社团准备购买A,B两种魔方.已知购买2个A种魔方和6个B种魔方共需130元;购买3个A种魔方所需款数和购买4个B种魔方所需款数相同.(1)求A、B这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示设购买A种魔方m个,按活动一购买所需费用为w1元,按活动二购买所需费用为w2元.请根据以上信息,解决以下问题:①试用含m的代数式分别表示w1,w2.②试求当购买A种魔方多少个时,选择两种优惠活动同样实惠?③以A种魔方的个数说明选择哪种优惠活动购买魔方更实惠.参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
华师大版数学七年级下册期中考试试题及答案
华师大版数学七年级下册期中考试试卷第Ⅰ卷 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列有理数比较大小正确的是( ) A .10-<B .32->-C .01>D .12>2.下列说法正确的是( ) A .如果a b =,那么a c b c -=+ B .如果a b =,那么a c b c +=- C .如果a b =,那么ac bc = D .如果a b =,那么a b c c= 3.下列方程变形正确的是( ) A .由25x +=,得52x =+B .由23x =,得32x =C .由104x =,得4x = D .由45x =-,得54x =--4.若m n >,则下列不等式不一定成立的是( ) A .33m n +>+B .33m n -<-C .33m n > D .am an >5.不等式组213,1510520x x x x -<⎧⎪++⎨-≥⎪⎩的解集在数轴上表示为( )A .B .C .D .6.用加减法解方程组233,32 5 x y x y -=⎧⎨-=⎩①②时,下列步骤错误的是( )A .2(3)⨯-⨯-①②,消去yB .(3)2⨯-+⨯①②,消去xC .23⨯-⨯①②,消去yD .32⨯-⨯①②,消去x7.《九章算术》是中国传统数学著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”其大意是:“今有若干人共同出钱买鸡,如果每人出九钱,则多出十一钱;如果每人出六钱,则还少十六钱.问:共有多少人?”若设有x 个人共同出钱买鸡,根据题意,可列方程为( ) A .911616x x -=+ B .911616x x +=- C .916611x x +=+ D .916611x x +=-8.下面几对数值是方程组233,22x y x y +=⎧⎨-=-⎩的解的是( )A .1,0x y =⎧⎨=⎩B .1,2x y =⎧⎨=⎩C .0,1x y =⎧⎨=⎩D .2,1x y =⎧⎨=⎩9.关于x 的不等式412x -≥-的正整数解有( ) A .0个B .1个C .3个D .4个10.已知关于x ,y 的方程组35,4522x y ax by -=⎧⎨+=-⎩和234,8x y ax by +=-⎧⎨-=⎩有相同解,则a ,b 的值分别为( )A .2-,3B .2,3C .2-,3-D .2,3-第Ⅰ卷 非选择题(共90分)二、填空题(本大题共5小题,每小题3分,共15分)11.已知方程2340x y +-=,用含x 的代数式表示y 为:y =__________. 12.已知2x =是方程53mx m +=的解,则m 的值为___________. 13.“x 的2倍与3的和小于5”,可以用不等式表示为____________.14.右面的框图表示解方程320425x x +=-的过程,请写出移项的依据:___________.15.小敏通过观察发现,生活中很多产品的包装都是长方体,她从家里找了一个长方体包装盒,将其展开后,得到如图所示的示意图,根据示意图中的数据可得原长方体的体积为________3cm .三、解答题(本大题共8小题,共75分,解答应写出文字说明、证明过程或演算步骤) 16.解下列方程.(1)2(35)26x x -=+ (2)2(1)132x x+=+17.解下列方程组. (1)3218,231;x y x y +=⎧⎨-=-⎩①②(2)23,3520.x y x y -=⎧⎨+=⎩①②18.解下列不等式或不等式组. (1)解不等式52(21)x x +≥+;(2)解不等式组22, 5 1 2x x x x +>⎧⎪⎨+-≥⎪⎩①②,并将解集在数轴上表示出来.19.疫情期间,为了能够及时收治患者,武汉市政府决定建设“火神山”医院甲,乙两个工程队共同承担1000m 的排污管道建设任务,已知甲工程队每天可以完成100m ,乙工程队每天可以完成80m ,开始工作后,甲先工作一天,乙才开始工作,求乙加入后,还需几天才能完成这项工程?20.电动车是太原市民喜欢的交通工具之一,这使得太原市成为全国电动车保有量最高的城市之一.某电动车店以每辆1500元的价格购入某品牌电动车50辆,并以每辆1800元的价格销售,一段时间后,销售额已经超过这批电动车的进价,求此时至少已售出多少辆该品牌电动车?21.阅读下面的材料,并解决问题.解决某些数学问题时,运用整体思想,可化难为易,使计算简便.在解二元一次方程组时,也要注意这种思想的应用. 例如,解方程组2(2)4, 2 1 x x y x y ++=⎧⎨+=⎩①②时,可以用整体思想求解.解:把②代入②,得214x +⨯=,所以2x =. 把2x =代入②,得221y +=,解得12y =-. 所以方程组的解为2,1.2x y =⎧⎪⎨=-⎪⎩任务:请你参照上述方法,解方程组5670, 56930. 8x y x y y +-=⎧⎪⎨+++=⎪⎩①②22.综合与实践在学习了《7.4实践与探索》之后,小亮买了若干块完全相同的长方形拼图(图1),第一次他用2块图1的长方形拼出了图2所示的正方形,第二次他又用4块图1的长方形拼出了图3所示的正方形(中间留有一个正方形小洞,即阴影区域),经过测量,他发现图3的大正方形的边长为30cm.(1)请你帮小亮求出图1中长方形的长和宽;2500cm的正方形(中间留有一个正方形小洞),请(2)请你参照图3,用图1的长方形拼出一个面积为2画出你拼出的大正方形(要求画出两个).23.疫情期间,为减少交叉感染,催生了以智能技术为支撑的无接触服务.某快递公司准备购进A,B两种型号的智能机器人送快递.经市场调査发现,A型号机器人的单价比B型号机器人贵600元,3台B型号机器人比2台A型号机器人贵1200元.(1)求A,B两种型号机器人的单价各是多少元?(2)若该快递公司准备用不超过132000元购进A,B两种型号机器人共50台,请问该快递公司最多可购进A型号机器人多少台?参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分) 11.423x-;12.5;13.235x +<;14.方程两边都加上(或都减去)同一个数或同一个整式,方程的解不变;15.192三、解答题(本大题共8小题,共75分) 16.解:(1)去括号,得61026x x -=+, 移项,得62610x x -=+, 即416x =.两边同除以4,得4x =.(2)去分母,得4(1)36x x +=+, 去括号,得4436x x +=+, 移项,得4364x x -=-, 即2x =.17.解:(1)2⨯①,3⨯②,得6436, 69 3. x y x y +=⎧⎨-=-⎩③④②-②,得1339y =, 即3y =.把3y =代入②,得3618x +=, 解得4x =. 所以4,3.x y =⎧⎨=⎩(2)由②,得23x y =+,②将②代入②,得3(23)520y y ++=, 解得1y =.将1y =代入②,得23x =+, 即5x =. 所以5,1.x y =⎧⎨=⎩18.解:(1)去括号,得542x x +≥+, 移项、合并同类项,得33x -≥-, 两边同除以3-,得1x . (2)解不等式②,得2x >-. 解不等式②,得3x ≤. 不等式组的解集为23x -<≤. 不等式的解集在数轴上表示为:19.解:设还需x 天才能完成这项工程,则根据题意,得100(1)801000x x ++=,解这个方程,得5x =. 经检验,符合题意.答:乙加入后,还需5天才能完成这项工程.20.解:设至少已售出该品牌电动车a 辆,则根据题意,得1800150050a >⨯,解这个不等式,得2413a >.由题意可知,a 是正整数,所以a 最小取42.答:销售额超过这批电动车的进价时至少已售出该品牌电动车42辆. 21.解:由②得567x y +=,②把②代入②,得79308y ++=,解得23y =-. 把23y =-代入②,得256703x ⎛⎫+⨯--= ⎪⎝⎭, 解得115x =. 所以原方程组的解为11,52.3x y ⎧=⎪⎪⎨⎪=-⎪⎩22.解:(1)设图1中长方形的长为xcm ,宽为ycm , 根据题意,有2,30.x y x y =⎧⎨+=⎩解这个方程组,得20,10.x y =⎧⎨=⎩答:图1中长方形的长为20cm ,宽为10cm . (2)答案不唯一,例如答图1,答图2.23.解:(1)设A 型号机器人单价为x 元,B 型号机器人单价为y 元,根据题意,有600,321200.x y y x -=⎧⎨-=⎩解这个方程组,得3000,2400.x y =⎧⎨=⎩答:A ,B 两种型号机器人的单价分别是3000元,2400元. (2)设该快递公司购进A 型号机器人a 台,根据题意,有30002400(50)132000a a +-.a.解这个不等式,得20答:该快递公司最多可购进A型号机器人20台.。
华师大版七年级下册数学期中考试试题含答案
华师大版七年级下册数学期中考试试卷一、单选题1.若x =2是关于x 的方程12x +a =-1的解,则a 的值为()A .0B .2C .-2D .-62.根据等式性质,下列结论正确的是()A .如果22a b -=,那么a b =-B .如果22a b -=-,那么a b=-C .如果22a b =-,那么a b=D .如果122a b =,那么a b=3.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A .0个B .1个C .2个D .3个4.在如图所示的2018年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A .27B .51C .65D .725.若关于x ,y 的方程组24232x y x y m +=⎧⎨+=-+⎩的解满足32x y ->-,则m 的最小整数解为()A .﹣3B .﹣2C .﹣1D .06.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A .6折B .7折C .8折D .9折7.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为()A .7385y x y x =+⎧⎨=+⎩B .7385y x y x =+⎧⎨+=⎩C .7385y x y x =-⎧⎨+=⎩D .7385y x y x =-⎧⎨=+⎩8.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是()A .①②③B .①③C .②③D .①②9.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x 天相遇,可列方程为()A .9x 7x 1-=B .9x 7x 1++C .11x x 179+=D .11x x 179-=10.关于x 的不等式组x 15x 322x 2x a 3<+⎧-⎪⎪⎨+⎪+⎪⎩只有4个整数解,则a 的取值范围是()A .145a 3-≤≤-B .145a 3-≤<-C .145a 3-<≤-D .145a 3-<<-二、填空题11.方程210x -=的解是_______.12.若关于x 的方程5x ﹣1=2x +a 的解与方程4x +3=7的解相同,则a =_____.13.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x+y >0,则m 的取值范围是____.14.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm 的小正方形,则每个小长方形的面积为__________2mm.15.一列方程如下排列:1142x x -+=的解是2x =,2162x x -+=的解是3x =,3182x x -+=的解是4x =,……根据观察得到的规律,写出其中解是2020x =的方程_____。
华师七年级下期中测试卷
七年级下期中测试卷班级________姓名:________ 分数_______一、选择题(每小题3分,共30分)1.方程4x -1=3的解是( )A .x =1B .x =-1C .x =2D .x =-2 2.若x =-3是方程2(x -m )=6的解,则m 的值为( )A .6B .-6C .12D .-12 3.若不等式组的解集为-1≤x ≤3,则图中表示正确的是( )A BCD4.若a >b ,则下列不等式一定成立的是 ( )A. a -b <0B. 3a <3b C. -b >-a D. -1+a <-1+b 5. 若代数式-2x +3的值大于 -2,则x 的取值范围是( )A .x <25B .x >25C .x <52D .x <25- 6.不等式1-2x <5-21x 的负整数解有 ( ) A. 1个 B. 2个 C. 3个 D. 4个7. (12咸宁)不等式组x 1042x 0>-⎧⎨-≥⎩①②的解集在数轴上表示为( )8. 如右上左图,天平的两个盘内分别盛有51 g 、45 g 盐,问应该从盘A 内拿出多少盐放到盘B 内,才能使两者所盛盐的质量相等?答:( )A. 3gB. 4gC. 5gD. 6g9.8为 8cm ,则每一个小长方形的面积为 ( )A .8cm 2B .15cm 2C .16cm 2D .20cm 210. .如果不等式1>ax 的解集是ax 1<,则( ) A 、0≥a B 、0≤a C 、0>a D 、0<a 二、填空题(每小题3分,共30分)1. 当a = 时,代数式1-2a 与a -2的值相等.2. 由3x -2y -4=0, 得到用x 表示y 的式子为y = .3.在括号内填写一个二元一次方程,使所成方程组⎩⎨⎧=+)(125y x 的解是⎩⎨⎧-==21y x . 4. 已知y =kx +b ,当x =0时,y =2; 当x =2时,y =0. 则k -2b = .A B5.一件服装标价200元,以6折销售,可获利20%,这件服装的进价是 元. 6. 甲队有37人,乙队有23人,现在从乙队抽调x 人到甲队,使甲队人数正好是乙队人数的2倍,根据题意,列出方程是__________7、(12广州)不等式x ﹣1≤10的解集是 .8、(12镇江)二元一次方程组2x+y=82x y=0⎧⎨-⎩的解是 。
2022年华东师大版七年级数学下册期中试卷(参考答案)
2022年华东师大版七年级数学下册期中试卷(参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是()A.15B.15C.5 D.-52.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.443,82,153,244,…,其中第6个数为()A 37B3535D235.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是()A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°6.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .7.点()1,3M m m ++在y 轴上,则点M 的坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,28.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.已知三条不同的射线OA 、OB 、OC 有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB ,其中能确定OC 平分∠AOB 的有( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.3.在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值范围是_________________.4.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是________. 5.若方程组x y 73x 5y 3+=⎧⎨-=-⎩,则()()3x y 3x 5y +--的值是________. 5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解方程(1)35(2)2x x --= (2)212134x x +--=2.已知实数x 、y 满足2x+3y=1.(1)用含有x 的代数式表示y ;(2)若实数y 满足y >1,求x 的取值范围;(3)若实数x 、y 满足x >﹣1,y ≥﹣12,且2x ﹣3y=k ,求k 的取值范围.3.如图,四边形ABCD 中,AD ∥BC ,点E 在CD 上,EA ,EB 分别平分∠DAB 和∠CBA ,设AD =x ,BC =y 且(x ﹣3)2+|y ﹣4|=0.求AB 的长.4.如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.5.育人中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是 ______度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、D5、A6、A7、D8、A9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、10.3、-2≤m <34、55、24.6、2或-8三、解答题(本大题共6小题,共72分)1、(1)4x =;(2)25x = 2、(1)y=123x-;(2)x <﹣1;(3)﹣5<k ≤4.3、74、(1)与∠D 相等的角为∠DCG ,∠ECF ,∠B (2)155°(3)25°或155°5、(1)40% , 144;(2)补图见解析;(3)估计全校最喜欢踢毽子的学生人数约100人.6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
华师大版七年级下册数学期中考试试题带答案
华师大版七年级下册数学期中考试试卷一、选择题:(满分30分,每小题3分)下列各题都有A、B、C、D四个答案供选择,其中只有一个答案是正确的,请把你认为正确的答案前面的字母编号写在相应的题号下.1.(3分)下列方程中,是一元一次方程的是()A.+2=0B.3a+6=4a﹣8C.x2+2x=7D.2x﹣7=3y+12.(3分)方程3x+y=9在正整数范围内的解的个数是()A.1个B.2个C.3个D.有无数个3.(3分)下列方程中,解为x=4的是()A.2x+1=10B.﹣3x﹣8=5C.x+3=2x﹣2D.2(x﹣1)=6 4.(3分)若a<b,则下面错误的变形是()A.6a<6b B.a﹣3<b﹣3C.a+4<b+3D.﹣>﹣5.(3分)下列方程变形正确的是()A.由3﹣x=﹣2得x=3+2B.由3x=﹣5得x=﹣C.由y=0得y=4D.由4+x=6得x=6+46.(3分)不等式﹣3<x≤2的所有整数解的和是()A.0B.6C.﹣3D.37.(3分)方程组的解是()A.B.C.D.8.(3分)甲数的2倍比乙数大3,甲数的3倍比乙数的2倍小1,若设甲数为x,乙数为y,则根据题意可列出的方程组为()A.B.C.D.9.(3分)一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x,十位数字为y,所列方程组正确的是()A.B.C.D.10.(3分)如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56B.64C.72D.90二、填空题:(满分24分,每小题3分)11.(3分)若a>b,则ac2bc2.12.(3分)已知二元一次方程组的解是,则a﹣b的值是.13.(3分)若(x+y﹣3)2+5|x﹣y﹣1|=0,则y x=.14.(3分)若方程组的解也是方程3x+ky=10的一个解,则k=.15.(3分)关于x的方程(2﹣3a)x=1的解为负数,则a的取值范围是.16.(3分)不等式组的解集是.17.(3分)一玩具加工厂2011年用电3千万度,比2010年减少了5%,若设2010年用电x度,则可列方程为.18.(3分)一罐柠檬茶和一瓶1千克橙汁的价钱分别是5元和12元.如果小雪有100元,而她想买6瓶橙汁和若干罐柠檬茶,则她最多可以买罐柠檬茶.三、解答题:(本大题满分66分)19.(20分)解下列方程(组)或不等式(组)(1)2(2x+1)=1﹣5(x﹣2)(2)(3)(4).20.(6分)已知方程mx+ny=10,有两个解分别是和,求m﹣n的值.21.(7分)已知不等式5x﹣2<6x﹣1的最小正整数解是方程的解,试求a 的值.22.(7分)如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?23.(7分)去年,某学校积极组织捐款支援地震灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表.表中捐款2元和5元的人数不小心被墨水污染看不清楚,请你用所学方程的知识求出捐款2元和5元的人数.24.(9分)阅读下列解方程组的方法,然后回答问题.解方程组解:由①﹣②得2x+2y=2即x+y=1③×16得16x+16y=16④②﹣④得x=﹣1,从而可得y=2∴原方程组的解是.(1)请你仿上面的解法解方程组;(2)请大胆猜测关于x、y的方程组的解是什么?25.(10分)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台.三种家电的进价和售价如表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?价格进价(元/台)售价(元/台)种类电视机20002100冰箱24002500洗衣机16001700参考答案与试题解析一、选择题:(满分30分,每小题3分)下列各题都有A、B、C、D四个答案供选择,其中只有一个答案是正确的,请把你认为正确的答案前面的字母编号写在相应的题号下.1.(3分)(2016春•安岳县期中)下列方程中,是一元一次方程的是()A.+2=0B.3a+6=4a﹣8C.x2+2x=7D.2x﹣7=3y+1【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、分母中含有未知数,不是一元一次方程;B、符合一元一次方程的定义;C、未知数的最高次幂为2,不是一元一次方程;D、含有两个未知数,不是一元一次方程.故选B.【点评】判断一个方程是否为一元一次方程关键看它是否同时具备:(1)只含有一个未知数,且未知数的次数为1;(2)分母里不含有字母;具备这两个条件即为一元一次方程,否则不是.2.(3分)(2016春•沈丘县期末)方程3x+y=9在正整数范围内的解的个数是()A.1个B.2个C.3个D.有无数个【分析】由题意求方程的解且要使x,y都是正整数,将方程移项将x和y互相表示出来,在由题意要求x>0,y>0根据以上两个条件可夹出合适的x值从而代入方程得到相应的y 值.【解答】解:由题意求方程3x+y=9的解且要使x,y都是正整数,∴y=9﹣3x>0,∴x≤2,又∵x≥0且x为正整数,∴x值只能是x=1,2,代入方程得相应的y值为y=6,3.∴方程3x+y=9的解是:,;故选:B.【点评】本题是求不定方程的整数解,主要考查方程的移项,合并同类项,系数化为1等技能,先将方程做适当变形,确定其中一个未知数的取值范围,然后枚举出适合条件的所有整数值,再求出另一个未知数的值.3.(3分)(2016春•安岳县期中)下列方程中,解为x=4的是()A.2x+1=10B.﹣3x﹣8=5C.x+3=2x﹣2D.2(x﹣1)=6【分析】根据一元一次方程的解就是使方程的左右两边相等的未知数的值,把x=4代入各选项进行验证即可得解.【解答】解:A、左边=2×4﹣1=7,右边=10,左边≠右边,故本选项错误;B、左边=﹣3×4﹣8=﹣20,右边=5,左边≠右边,故本选项错误;C、左边=×4+3=5,右边=2×4﹣2=6,左边≠右边,故本选项错误;D、左边=2(4﹣1)=6,右边=6,左边=右边,故本选项正确.故选:D.【点评】本题考查了一元一次方程的解,数据方程解的定义,对各选项准确进行计算是解题的关键.4.(3分)(2016春•沈丘县期末)若a<b,则下面错误的变形是()A.6a<6b B.a﹣3<b﹣3C.a+4<b+3D.﹣>﹣【分析】根据不等式的性质,逐个进行判断,再选出即可.【解答】解:A、∵a<b,∴6a<6b,正确,不符合题意;B、∵a<b,∴a﹣3<b﹣3,正确,不符合题意;C、根据a<b不能判断a+4和b+3的大小,错误,符合题意;D、∵a<b,∴﹣>﹣,正确,不符合题意.故选C.【点评】本题考查了对不等式的基本性质的应用,注意:不等式的两边都乘以或除以同一个负数,不等号的方向要改变.5.(3分)(2016春•安岳县期中)下列方程变形正确的是()A.由3﹣x=﹣2得x=3+2B.由3x=﹣5得x=﹣C.由y=0得y=4D.由4+x=6得x=6+4【分析】根据等式的性质两边都加或都减同一个数或等式,结果不变,可判断A、D,根据等式的两边都乘或除以同一个部位0的数或整式,结果不变,可判断B、C.【解答】解;A、3﹣x=﹣2,x=3+2,故A正确;B、3x=﹣5,x=﹣,故B错误;C、=0,y=0,故C错误;D、4+x=6,x=2,故D错误;故选:A.【点评】本题考查了等式的性质,等式的性质两边都加或都减同一个数或等式,结果不变,根据等式的两边都乘或除以同一个部位0的数或整式,结果不变.6.(3分)(2014春•福清市校级期末)不等式﹣3<x≤2的所有整数解的和是()A.0B.6C.﹣3D.3【分析】首先求出不等式﹣3<x≤2的所有整数解,然后求它们的和.【解答】解:不等式﹣3<x≤2的所有整数解为:﹣2,﹣1,0,1,2,则﹣2﹣1+0+1+2=0,故选A.【点评】本题是一道较为简单的问题,利用数轴就能直观的理解题意,可借助数轴得出不等式﹣3<x≤2的所有整数解.7.(3分)(2016•闸北区二模)方程组的解是()A.B.C.D.【分析】本题解法有多种.可用加减消元法或代入消元法解方程组,解得x、y 的值;也可以将A、B、C、D四个选项的数值代入原方程检验,能使每个方程的左右两边相等的x、y的值即是方程的解.【解答】解:将方程组中4x﹣y=13乘以2,得8x﹣2y=26①,将方程①与方程3x+2y=7相加,得x=3.再将x=3代入4x﹣y=13中,得y=﹣1.故选B.【点评】这类题目的解题关键是掌握方程组解法中的加减消元法.8.(3分)(2016春•安岳县期中)甲数的2倍比乙数大3,甲数的3倍比乙数的2倍小1,若设甲数为x,乙数为y,则根据题意可列出的方程组为()A.B.C.D.【分析】根据甲数的2倍比乙数大3可得2x=y+3,甲数的3倍比乙数的2倍小1可得3x=2y﹣1,联立两个方程即可.【解答】解:设甲数为x,乙数为y,根据题意得:,故选:C.【点评】此题主要考查了二元一次方程组,关键是找出题目中的等量关系,列出方程.9.(3分)(2011•宁夏)一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x,十位数字为y,所列方程组正确的是()A.B.C.D.【分析】设这个两位数的个位数字为x,十位数字为y,则两位数可表示为10y+x,对调后的两位数为10x+y,根据题中的两个数字之和为8及对调后的等量关系可列出方程组,求解即可.【解答】解:设这个两位数的个位数字为x,十位数字为y,根据题意得:.故选B.【点评】本题考查了关于数字问题的二元一次方程组的应用,解题关键是要读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.10.(3分)(2015秋•鄂城区期末)如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56B.64C.72D.90【分析】由题意可知,三角形每条边上有3盆花,共计3×3﹣3盆花,正四边形每条边上有4盆花,共计4×4﹣4盆花,正五边形每条边上有5盆花,共计5×5﹣5盆花,…则正n变形每条边上有n盆花,共计n×n﹣n盆花,结合图形的个数解决问题.2﹣3盆花,【解答】解:∵第一个图形:三角形每条边上有3盆花,共计32﹣4盆花,第二个图形:正四边形每条边上有4盆花,共计42﹣5盆花,第三个图形:正五边形每条边上有5盆花,共计5…2﹣(n+2)盆花,第n个图形:正n+2边形每条边上有n盆花,共计(n+2)2﹣(8+2)=90盆.则第8个图形中花盆的个数为(8+2)故选:D.【点评】本题主要考查归纳与总结的能力,关键在于根据题意总结归纳出花盆总数的变化规律.二、填空题:(满分24分,每小题3分)11.(3分)(2016春•安岳县期中)若a>b,则ac2≥bc2.2的符号,进而判断出不等式的方向即可.【分析】先判断出c【解答】解:∵何数的平方一定大于或等于02≥0∴c2>0时,ac2>bc2∴cc2=0时,则ac2=bc22≥bc2.∴若a>b,则ac【点评】不等式两边乘(或除以)同一个正数,不等号的方向不变;还要注意两边同乘以0时的情况.12.(3分)(2016春•安岳县期中)已知二元一次方程组的解是,则a﹣b的值是1.【分析】将x、y的值代入二元一次方程组,得到关于a、b的二元一次方程组,两式相减可得a﹣b.【解答】解:把代入中,得,两式相减,得2a﹣2b=2,即a﹣b=1,故答案为:1.【点评】此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.13.(3分)(2016春•安岳县期中)若(x+y﹣3)2+5|x﹣y﹣1|=0,则y x=1.【分析】根据几个非负数的和为零的性质得到,再利用加减消元法解方程x计算即可.组得到,然后把它们代入y2+5|x﹣y﹣1|=0,【解答】解:∵(x+y﹣3)∴,①+②得2x﹣4=0,解得x=2,①﹣②得2y﹣2=0,解得y=1,所以方程组的解为,x=12=1.所以y故答案为1.【点评】本题考查了解二元一次方程组:利用代入法或加减消元法把二元一次方程转化为一元一次方程求解.也考查了几个非负数的和为零的性质.14.(3分)(2010春•江都市期末)若方程组的解也是方程3x+ky=10的一个解,则k=﹣.【分析】由题意求得x,y的值,再代入3x+ky=10中,求得k的值.【解答】解:由题意得组,解得,代入3x+ky=10,得9﹣2k=10,解得k=﹣.故本题答案为:﹣.【点评】本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.15.(3分)(2016春•安岳县期中)关于x的方程(2﹣3a)x=1的解为负数,则a的取值范围是a>.【分析】根据题意可得x<0,将x化成关于a的一元一次方程,然后根据x的取值可求出a的取值.【解答】解:∵(2﹣3a)x=1∴x=又∵x<0∴2﹣3a<0∴a>【点评】此题考查的是一元一次方程的解法,将x用a来表示,根据x的取值范围可求出a 的取值.16.(3分)(2016春•安岳县期中)不等式组的解集是﹣2<x≤3.【分析】分别解出两不等式的解集再求其公共解.【解答】解:由(1)得:x>﹣2;由(2)得:x≤3,不等式组的解集是﹣2<x≤3.故填﹣2<x≤3.【点评】求不等式的解集须遵循以下原则:同大取较大,同小取较小.小大大小中间找,大大小小解不了.17.(3分)(2016春•安岳县期中)一玩具加工厂2011年用电3千万度,比2010年减少了5%,若设2010年用电x度,则可列方程为(1﹣5%)x=30000000.【分析】首先理解题意找出题中存在的等量关系:2010年的用电度数(1﹣5%)=2011年的用电度数,根据等量关系列方程即可.【解答】解:设2010年用电x度,根据等量关系列方程得:(1﹣5%)x=30000000.故答案为:(1﹣5%)x=30000000.【点评】此题考查了由实际问题抽象出一元一次方程的知识,解题的关键是理解“比2006年减少了5%”这一句话.18.(3分)(2016春•安岳县期中)一罐柠檬茶和一瓶1千克橙汁的价钱分别是5元和12元.如果小雪有100元,而她想买6瓶橙汁和若干罐柠檬茶,则她最多可以买5罐柠檬茶.【分析】根据买柠檬茶的钱数+买橙汁的钱数≤100据此,可列出不等式,进而求出即可.【解答】解:设她最多可以买x罐柠檬茶,根据题意得,5x+12×6≤100,解这个不等式,得x≤5,又由于买柠檬茶的罐数应为正整数,且最大,所以x=5答:她最多可以买5罐柠檬茶.故答案为:5.【点评】此题主要考查了一元一次不等式的应用,列不等式解决实际问题,可以参照列方程的基本思想,分析如何用代数式表示相关量,寻求已知量和未知量之间的关系,要注意题意中“至少”“不少于”等语句所隐含的不等关系,从实际问题中抽象出数量关系,从列出代数式到不等式,转化为纯数学问题求解.让同学们通过实践,体会不等式和方程同样是刻画现实世界数量关系的重要模型.三、解答题:(本大题满分66分)19.(20分)(2016春•安岳县期中)解下列方程(组)或不等式(组)(1)2(2x+1)=1﹣5(x﹣2)(2)(3)(4).【分析】(1)先去括号、移项、合并同类项、系数化为1,即可求解;(2)根据加减消元法先消去y,求出x,再代入计算即可求解;(3)根据加减消元法先消去z,得到关于x,y的方程组,解方程组求出x,y,再代入计算即可求解;(4)先求出不等式组中每个不等式的解集,再求出两个不等式的解集的公共部分即为所求.【解答】解:(1)2(2x+1)=1﹣5(x﹣2)4x+2=1﹣5x+10,4x+5x=1+10﹣2,9x=9,x=1;(2)①×2+②得5x=10,解得x=2,把x=2代入②得2+2y=﹣2,解得y=﹣2.故方程组的解为;(3),①×2+②得3x﹣y=13④,③﹣①得2x+y=﹣2⑤,则,解得,把代入①得z=﹣10.2.故方程组的解为;(4),解①得x<4,解②得x<﹣6.故不等式组的解集为x<﹣6.【点评】考查了解二元一次方程组,关键是熟练掌握代入法和加减法解二元一次方程组的一般步骤.同时考查了解三元一次方程组,关键是熟练掌握解三元一次方程组的一般步骤.考查了解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.同时考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.(6分)(2016春•安岳县期中)已知方程mx+ny=10,有两个解分别是和,求m﹣n的值.【分析】将x与y的两对值代入方程得到关于m与n的方程组,求出方程组的解得到m 与n的值,即可确定出m﹣n的值.【解答】解:将和代入方程mx+ny=10,得,解得:,则m﹣n=10﹣10=0.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.21.(7分)(2016春•安岳县期中)已知不等式5x﹣2<6x﹣1的最小正整数解是方程的解,试求a的值.【分析】首先解不等式确定不等式的最小整数解,然后代入方程,即可得到关于a的方程,求得a的值.【解答】解:∵5x﹣2<6x﹣1,∴x>﹣1,∴不等式5x﹣2<6x﹣1的最小正整数解为x=1,∵x=1是方程的解,∴a=﹣2.【点评】本题考查了不等式的解法和方程的解的定义,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.22.(7分)(2016春•安岳县期中)如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?【分析】本题可以通过看图找出两个等量关系:长方形的长+宽=50cm,长方形的长×2=长+宽×4,据此可以设未知数列方程组求解.【解答】解:设每块长方形的长是xcm,宽是ycm,根据题意得解得答:长是40cm,宽是10cm.【点评】二元一次方程组中的等量关系一般是通过分析题意得出的,但如果附有参考图,也可以从图中找.23.(7分)(2016春•安岳县期中)去年,某学校积极组织捐款支援地震灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表.表中捐款2元和5元的人数不小心被墨水污染看不清楚,请你用所学方程的知识求出捐款2元和5元的人数.【分析】设捐款2元和5元的学生人数分别为x人、y人,根据总人数是55人,捐款数是274元,列出方程组,求出方程组的解即可.【解答】解:设捐款2元和5元的学生人数分别为x人、y人,依题意得:,,解方程组,得,答:捐款2元的有4人,捐款5元的有38人.【点评】此题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组,本题的等量关系是总人数=1元的人数+2元的人数+5元的人数+10元的人数,总钱数=捐1元的总数+捐2元的总数+捐5元的总数+捐10元的总数.24.(9分)(2016春•安岳县期中)阅读下列解方程组的方法,然后回答问题.解方程组解:由①﹣②得2x+2y=2即x+y=1③×16得16x+16y=16④②﹣④得x=﹣1,从而可得y=2∴原方程组的解是.(1)请你仿上面的解法解方程组;(2)请大胆猜测关于x、y的方程组的解是什么?【分析】(1)对于方程组,先用①﹣②可得到x+y=1③,然后③与①或②组成方程组,运用加减消元法很快求出x、y,从而得到方程组的解;(2)和(1)一样,先把两个方程相减得到x+y=1,然后运用加减消元法可求出x、y,从而得到方程组的解.【解答】解:(1),①﹣②得2x+2y=2,即x+y=1③,①﹣③×2011得x=﹣1,把x=﹣1代入③得﹣1+y=1,解得y=2,所以原方程组的解为;(2).【点评】本题考查了解二元一次方程组:利用代入法或加减消元法把二元一次方程转化为一元一次方程求解.也考查了阅读理解能力.25.(10分)(2009•河南)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台.三种家电的进价和售价如表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?价格进价(元/台)售价(元/台)种类电视机20002100冰箱24002500洗衣机16001700【分析】(1)由题意可知:电视机的数量和冰箱的数量相同,则洗衣机的数量等于总台数减去2倍的电视机或洗衣机的数量,又知洗衣机数量不大于电视机数量的一半,则15﹣2x≤x;根据各个电器的单价以及数量,可列不等式2000x+2400x+1600(15﹣2x)≤32400;根据这两个不等式可以求得x的取值,根据x的取值可以确定有几种方案;(2)分别计算出方案一和方案二的家电销售的总额,分别将总额乘以13%,即可求得补贴农民的钱数.【解答】解:(1)设购进电视机、冰箱各x台,则洗衣机为(15﹣2x)台依题意得:解这个不等式组,得6≤x≤7∵x为正整数,∴x=6或7;方案1:购进电视机和冰箱各6台,洗衣机3台;方案2:购进电视机和冰箱各7台,洗衣机1台;(2)方案1需补贴:(6×2100+6×2500+3×1700)×13%=4251(元);方案2需补贴:(7×2100+7×2500+1×1700)×13%=4407(元);答:国家的财政收入最多需补贴农民4407元.【点评】对于方案设计的问题,首先考虑的是如何根据已知条件列出不等式,在所求得的取值范围中找出符合题意的值,得出可能产生的几种方案.。
华师大版七年级下册数学期中考试试卷及答案
华师大版七年级下册数学期中考试试题一、单选题1.下列方程,是一元一次方程的是()A .32x x-=B .2x y +=C .2210x x ++=D .11x x+=2.下列四则选项中,不一定成立的是()A .若x=y,则2x=x+yB .若ac=bc,则a=bC .若a=b,则a 2=b 2D .若x=y,则2x=2y3.若关于 x 的方程 23x a +=与 27x a +=的解相同,则 a 的值为()A .23-B .113C .113-D .234.下列方程变形中正确的是()A .由32a =,得32a =B .由233x x -=,得3x =C .由310.9x -=,得1030109x -=D .由232a b=+,得2312a b =+5.小明在解方程21133x x a -+=-去分母时,方程右边的﹣1没有乘3,因而求得的解为x =2,则原方程的解为()A .x =0B .x =﹣1C .x =2D .x =﹣26.关于x ,y 的二元一次方程2x+3y =20的非负整数解的个数为()A .2B .3C .4D .57.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则a b +的值是()A .﹣1B .1C .﹣5D .58.下列方程组中是二元一次方程组的是()A .12xy x y =⎧⎨+=⎩B .52313x y y x -=⎧⎪⎨+=⎪⎩C .20135x z x y +=⎧⎪⎨-=⎪⎩D .5723x x y=⎧⎪⎨+=⎪⎩9.由方程组43x m y m+=-⎧⎨-=⎩可得出x 与y 之间的关系是()A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-10.方程组1232008321244880x y x y +=⎧⎨+=⎩①②,x y +的值为是()A .0B .1C .1-D .211.关于x 的不等式组1x ax ⎧⎨⎩>>的解集为x >1,则a 的取值范围是()A .a≥1B .a >1C .a≤1D .a <112.若不等式组12x x k <≤⎧⎨>⎩无解,则k 的取值范围是()A .2k ≥B .1k <C .k 2≤D .12k ≤<13.若不等式组213x x a ->⎧⎨≤⎩的整数解共有三个,则a 的取值范围是().A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤14.已知xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则x :y :z 等于()A .3:2:1B .1:2:3C .4:5:3D .3:4:515.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为()A .449x y y x y x-=+⎧⎨-=+⎩B .449x y y x y x-=+⎧⎨-=-⎩C .449x y y x y x-=-⎧⎨-=+⎩D .449x y y x y x-=-⎧⎨-=-⎩16.小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km ?设他家到学校的路程是xkm ,则据题意列出的方程是()A .10515601260x x +=-B .10515601260x x -=+C .10515601260x x -=-D .+1051512x x =-17.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,44max =.按照这个规定,那么方程{},21max x x x -=+的解为()A .-1B .13-C .1D .-1或13-18.关于x 的不等式(1)3(1)a x a -<-的解都能使不等式5x a <-成立,则a 的取值范围是()A .2a =B .2a ≤C .12a <≤D .1a <或2a ≥二、填空题19.若关于x 的方程||1(2)21a a x ---=是一元一次方程,则=a ____________.20.关于x 的方程231x k +=的解是非负数,则k 的取值范围是___________.21.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为_____元.22.解方程组278ax by cx y +=⎧⎨-=⎩时,一学生把c 看错得22x y =-⎧⎨=⎩,已知方程组的正确解是32x y =⎧⎨=-⎩,则abc 值为__________.23.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______.24.关于x 、y 的二元一次方程组313x y mx y +=+⎧⎨+=⎩的解满足21x y +<,则m 的取值范围是_________.25.不等式组112251x x ⎧-≤⎪⎨⎪+>⎩的最大整数解是__________.26.把一些书分给几名同学,如果每人分3本,那么余8本,如果前面的每名同学分5本,那么最后一人分不到3本,那么这些书共有____本.27.如图,长方形ABCD 中有6个形状、大小相同的小长方形,根据图中所标尺寸,则小长方形的面积为_______.28.已知关于x 、y 的方程组343x y a x y a +=-⎧⎨-=⎩,其中﹣3≤a≤1,给出下列结论:①11x y =⎧⎨=⎩是方程组的解;②当a =﹣2时,x+y =0;③若y≤1,则1≤x≤4;④若S =3x ﹣y+2a ,则S 的最大值为11.其中正确的有_______.三、解答题29.(1)12223x x x -+-=-(2)34105642x y x y -=⎧⎨+=⎩(3)32823154x y y z x y z -=⎧⎪+=⎨⎪+-=-⎩(4)()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩①②(本小题把解集在数轴上表示出来)30.已知不等式5(x -2)+8<6(x -1)+7的最小整数解为方程2x -ax =4的解,求a 的值.31.一项工程,甲队单独完成需60天,乙队单独完成需75天.(1)若甲队单独做24天后两队再合作,求:甲乙两队再合作多少天才能把该工程完成;(2)在(1)的条件下,甲队每天的施工费用为5000元,乙队每天的施工费用为6000元,求完成此项工程需付给甲、乙两队共多少元?32.已知:23x y =⎧⎨=⎩和25x y =-⎧⎨=-⎩都是关于x 、y 的方程y kx b =+的解.(1)求k 、b 的值;(2)若不等式323x m x +>+的最大整数解是k ,求m 的取值范围.33.已知关于x y 、的方程组731x y m x y m +=--⎧⎨-=+⎩的解满足00x y ≤<,.(1)求m 的取值范围;(2)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >?34.为了加强建设“经济强、环境美、后劲足、群众富”的实力城镇,聚力脱贫攻坚,全面完成脱贫任务,某乡镇特制定一系列帮扶计划.现决定将A 、B 两种类型鱼苗共320箱运到某村养殖,其中A 种鱼苗比B 种鱼苗多80箱.(1)求A 种鱼苗和B 种鱼苗各多少箱?(2)现计划租用甲、乙两种货车共8辆,一次性将这批鱼苗全部运往同一目的地.已知甲种货车最多可装A 种鱼苗40箱和B 种鱼苗10箱,乙种货车最多可装A 种鱼苗和B 种鱼苗各20箱.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元,则安排甲、乙两种货车有哪几种不同的方案?并说明选择哪种方案可使运输费最少?最少运输费是多少元?参考答案1.A【分析】根据一元一次方程的定义即可得出答案.【详解】A:是一元一次方程,故A正确;B:有两个未知数,所以不是一元一次方程,故B错误;C:方程次数为2次,所以不是一元一次方程,故C错误;D:是分式方程,故D错误;故答案选择A.【点睛】本题考查的是一元一次方程的定义:只有一个未知数并且未知数的次数为1的整式方程. 2.B【分析】根据等式的性质逐项判断即可.【详解】=+,一定成立A.若x y=,两边同加x,等式不变,即2x x y=,两边同除以一个不为0的数,等式不变;因为不知c是否为0,所以a b=不一B.若ac bc定成立C.若a b=,两边同时平方,等式不变,即22a b=,一定成立D.若x y =,两边同乘以一个数(如2),等式不变,即22x y =,一定成立故答案为:B.3.B 【分析】先把a 看做常数,分别根据两个方程解出x 的值,再令两个x 的值相等即可得出答案.【详解】∵23x a +=∴32ax -=又∵27x a +=∴x=7-2a又23x a +=与27x a +=的解相同∴3722aa -=-解得:113a =故答案选择B.【点睛】本题考查的是解一元一次方程,难度适中,根据两个方程的解相同列出等式是解决本题的关键.4.D 【分析】根据等式的基本性质判断各选项即可.【详解】解:A 、由32a =,得23a =,故本选项错误;B 、由233x x -=,得3x =-,故本选项错误;C 、由310.9x -=,得103019x -=,故本选项错误;D 、由232a b=+,得2312a b =+,故本选项正确.故选:D .【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.5.A 【分析】已知小明在解方程去分母时,方程右边的﹣1这个项没有乘3,则所得的式子是:2x ﹣1=x+a ﹣1,把x =2代入方程即可得到一个关于a 的方程,求得a 的值,然后把a 的值代入原方程,解这个方程即可求得方程的解.【详解】解:根据题意,得:2x ﹣1=x+a ﹣1,把x =2代入这个方程,得:3=2+a ﹣1,解得:a =2,代入原方程,得:212133x x -+=-,去分母,得:2x ﹣1=x+2﹣3,移项、合并同类项,得:x =0,故选A .【点睛】此题考查了一元一次方程的解法以及方程的解的定义.熟练掌握解一元一次方程的方法和步骤是解题的关键.6.C 【解析】【分析】把x 作为已知数表示出y ,即可确定出非负整数解.【详解】方程2320x y +=解得:2023xy -=当1x =时,6y =当4x =时,4y =当7x =时,2y =当10x =时,0y =综上,二元一次方程的非负整数解的个数有4个故选:C.【点睛】本题考查了二元一次方程的特殊解的解法,掌握方程的解法是解题关键.7.A 【解析】【分析】把32x y =⎧⎨=-⎩代入方程组,可得关于a 、b 的方程组,继而根据二元一次方程组的解法即可求出答案.【详解】将32x y =⎧⎨=-⎩代入23ax by bx ay +=⎧⎨+=-⎩,可得:322323a b b a -=⎧⎨-=-⎩,两式相加:1a b +=-,故选A .【点睛】本题考查二元一次方程组的解,解题的关键是熟练运用二元一次方程组的解法.8.D 【解析】【分析】二元一次方程是指含有两个未知数,并且所含未知数的项的次数都是1的方程.两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组.【详解】A 选项中最高次数为2次,则不是;B 选项中第二个方程不是整式方程,则不是;C 选项中含有3个未知数,则不是;故选:D .【点睛】本题主要考查的就是二元一次方程组的定义问题.在解决定义问题的时候特别要注意所有方程都必须是整式方程,否则就不是二元一次方程组.9.B 【解析】【分析】根据题意由方程组消去m 即可得到y 与x 的关系式,进行判断即可.【详解】解:43x m y m +-⎧⎨-⎩=①=②,把②代入①得:x+y-3=-4,则x+y=-1.故选:B .【点睛】本题考查解二元一次方程组,注意掌握利用消元的思想,消元的方法有:代入消元法与加减消元法.10.D 【解析】【分析】先把两个二元一次方程相加,进而即可得到答案.【详解】1232008321244880x y x y +=⎧⎨+=⎩①②,由①+②得:444x+444y=888,∴x y +=2.故选D .【点睛】本题主要考查解二元一次方程,掌握等式的基本性质,是解题的关键.11.C 【解析】【分析】根据不等式组解集的确定法则:大大取大即可得出答案.【详解】解:∵不等式组的解集为x >1,根据大大取大可得:a≤1,故选C .【点睛】本题主要考查的是求不等式组的解集,属于基础题型.理解不等式组的解集与不等式的解之间的关系是解决这个问题的关键.12.A 【解析】【分析】由已知不等式组无解,确定出k 的范围即可.【详解】解:∵不等式组12x x k <≤⎧⎨>⎩无解,∴k 的范围为k≥2,故选:A .【点睛】此题考查了不等式组的解集,熟练掌握确定每个不等式的解集是解本题的关键.13.A 【解析】【分析】首先确定不等式组的解集,利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式2x-1>3,得:x >2,∵不等式组整数解共有三个,∴不等式组的整数解为3、4、5,则56a ≤<,故选A .【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a 的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.B【解析】【分析】由4520430x y zx y z-+⎧⎨+-⎩=①=②,①×3+②×2,得出x与y的关系式,①×4+②×5,得出x与z的关系式,从而算出xyz的比值即可.【详解】∵4520430x y zx y z-+⎧⎨+-⎩=①=②,∴①×3+②×2,得2x=y,①×4+②×5,得3x=z,∴x:y:z=x:2x:3x=1:2:3,故选B.【点睛】本题考查了三元一次方程组的解法,用含有x的代数式表示y与z是解此题的关键.15.D【解析】【分析】根据题设老师今年x岁,小红今年y岁,根据题意列出方程组解答即可.【详解】解:老师今年x岁,小红今年y岁,可得:449x y yx y x ì-=-ïïíï-=-ïî,故选:D.【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.16.A【解析】【分析】设他家到学校的路程是xkm ,将时间单位转化成小时,然后根据题意列方程即可.【详解】设他家到学校的路程是xkm ,∵10分钟=1060小时,5分钟=560小时,∴10+1560x =12x ﹣560.故选:A .【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.17.B【解析】【分析】利用题中的新定义化简已知方程,求解即可.【详解】解:当x x >-时0x >,{},max x x x -=,方程化简得21x x =+,解得1x =-(不符合题意,舍去)当x x <-时0x <,{},-max x x x -=,方程化简得-21x x =+,解得13x =-故选:B【点睛】此题考查了实数的运算,以及解一元一次方程,熟练掌握运算法则是解本题的关键.18.C【解析】【分析】根据关于x 的不等式(a-1)x <3(a-1)的解都能使不等式x <5-a 成立,列出关于a 的不等式,即可解答.【详解】解:∵关于x 的不等式(a-1)x <3(a-1)的解都能使不等式x <5-a 成立,∴a-1>0,即a >1,解不等式(a-1)x <3(a-1),得:x <3,则有:5-a≥3,解得:a≤2,则a 的取值范围是1<a≤2.故选:C .【点睛】本题考查了解一元一次不等式以及解一元一次不等式组,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式,不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数,不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数,不等号的方向改变.19.-2【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的整式方程叫做一元一次方程,它的一般形式是0ax b +=(a ,b 是常数且0a ≠).【详解】由一元一次方程的特点得:11a -=,20a -≠,解得:2a =-.故答案为:2a =-.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.20.13k ≤【解析】【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.【详解】解:解方程231x k +=得132kx -=∵方程的解是非负数∴1302k -≥解得13k ≤故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式.21.180【解析】【分析】根据“售价=进价×(1+利润率)”可以列出相应的方程,解方程即可.【详解】设这种商品每件的进价为x 元,根据题意得:x (1+20%)=270×0.8解得:x=180.故答案为180.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.22.﹣40【解析】【分析】将x =−2、y =2代入第1个方程,将x =3、y =−2代入两个方程可得关于a 、b 、c 的方程组,解之可得答案.【详解】解:由题意得:-2+223223148a b a b c =⎧⎪-=⎨⎪+=⎩,解得:45-2 abc=⎧⎪=⎨⎪=⎩,()=45-2=-40abc⨯⨯,故答案为:﹣40.【点睛】本题主要考查二元一次方程组的解的问题,解题的关键是理解相关概念,其中二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.23.3212 ab⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】方法一:利用关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩可得m、n的数值,代入关于a、b的方程组即可求解;方法二:根据方程组的特点可得方程组3()()=5 2()()6a b m a ba b n a b+--⎧⎨++-=⎩的解是12a ba b+=⎧⎨-=⎩,再利用加减消元法即可求出a,b.【详解】解:方法一,∵关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴将解12xy=⎧⎨=⎩代入方程组3526x myx ny-=⎧⎨+=⎩,可得m=﹣1,n=2,∴关于a、b的二元一次方程组()()()()3=526a b m a ba b n a b⎧+--⎪⎨++-=⎪⎩,整理为:42546a ba+=⎧⎨=⎩,解得:3212 ab⎧=⎪⎪⎨⎪=-⎪⎩.方法二:∵关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,∴方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是12a b a b +=⎧⎨-=⎩,解12a b a b +=⎧⎨-=⎩,得3212a b ⎧=⎪⎪⎨⎪=-⎪⎩,故答案为:3212a b ⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解、运用在此题体现明显.24.2m <-【解析】【分析】先解关于关于x ,y 的二元一次方程组313x y m x y +=+⎧⎨+=⎩的解集,其解集由a 表示;然后将其代入21x y +<,再来解关于a 的不等式即可.【详解】313x y m x y +=+⎧⎨+=⎩①②由①+②得4x+2y=4+m ,422m x y ++=,∴由21x y +<,得412m +<,解得:2m <-.故答案为2m <-.【点睛】考查解一元一次不等式,解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.25.1x =【解析】【分析】先解不等式组,再求整数解的最大值.【详解】112251x x ⎧-≤⎪⎨⎪+>⎩①②解不等式①,得32x ≤解不等式②,得2x >-故不等式组的解集是322x -<≤所以整数解是:-1,0,1最大是1故答案为1x =【点睛】考核知识点:求不等式组的最大整数值.解不等式组是关键.26.26【解析】【分析】设共有x 名学生,根据每人分3本,那么余8本,可得图书共有(3x +8)本,再由每名同学分5本,那么最后一人就分不到3本,可得出不等式,解出即可.【详解】解:设共有x 名学生,则图书共有(3x +8)本,由题意得,0<3x +8−5(x−1)<3,解得:5<x <6.5,∵x 为非负整数,∴x =6.∴书的数量为:3×6+8=26.故答案为26.【点睛】本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答时根据题意中的不相等关系建立不等式组是关键.27.20cm 2##20平方厘米【解析】【分析】设小长方形的长为xcm ,宽为163x -cm ,观察图形即可列出关于x 的一元一次方程,解之即可得出x 的值,即可求出结论.【详解】设小长方形的长为xcm ,宽为163x -cm ,由题意得:2×163x -+8=x+163x -,解得:x=10,所以163x -=2,∴小长方形的面积为20;故答案是:20cm 2.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.28.①②③④【解析】【分析】解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,逐一判断即可.【详解】343x y a x y a +=-⎧⎨-=⎩①②,①⨯3+②得:x+2y=3,把11x y =⎧⎨=⎩代入得1+2=3,即11x y =⎧⎨=⎩是方程组的解,故①正确a=-2时,366x y x y +=⎧⎨-=-⎩,整理的x+y=0,故②正确,若y≤1,32x -≤1,解得:x ≥1,∵x-y=3a ,∴x-32x -=3a ,由﹣3≤a≤1得:53x -≤≤,所以y≤1时,14x ≤≤,故③正确,∵343x y a x y a+=-⎧⎨-=⎩,∴2x=2+4a ,∵S=3x-y+2a=2x+3a+2a=9a+2,﹣3≤a≤1∴S 的最大值为9+2=11,故④正确,故答案为①②③④【点睛】本题考查了二元一次方程组的解,解一元一次不等式组.根据条件,求出x 、y 的表达式及x 、y 的取值范围是解题关键.29.(1)x =1;(2)62x y =⎧⎨=⎩;(3)211x y z =⎧⎪=-⎨⎪=⎩;(4)x≤1,见解析【解析】【分析】(1)首先去分母,然后移项合并同类项即可求解;(2)利用加减消元法进行求解,首先消去y ,然后将x 的值代入方程即可求解;(3)利用加减消元法进行求解,首先消去z ,然后将x 、y 的值代入方程即可求解;(4)首先解两个不等式,然后将不等式的解表示在数轴上即可.【详解】(1)去分母得:6x ﹣3x+3=12﹣2x ﹣4,移项合并得:5x =5,解得:x =1.(2)①×3得:9x ﹣12y =30③②×2得:10x+12y =84④③+④得19x =114,x =6把x =6代入②,解得y =2原方程组的解是62x y =⎧⎨=⎩(3)②+③×3,得3x+17y =﹣11④,④﹣①,得19y =﹣19,解得,y =﹣1,将y =﹣1代入①,得x =2,将y =﹣1代入②,得z =1,故原方程组的解是211x y z =⎧⎪=-⎨⎪=⎩.(4)()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩①②,由①得,x≤1,由②得,x <4,故此不等式组的解集为:x≤1.在数轴上表示为:;【点睛】本题考查了解一元一次方程,二元一次方程组,三元一次方程组和一元一次不等式组,考查较细,消元思想和降次思想是解决多元方程和高次方程的关键.30.4【解析】【分析】先解出不等式5(x-2)+8<6(x-1)+7的解,再求出不等式的最小整数解,然后把不等式的最小整数解代入方程2x-ax=4即可求出答案【详解】解:解不等式得x>-3,所以最小整数解为x =-2.所以2×(-2)-a×(-2)=4,解得a =4.故答案为4.【点睛】本题考查一元一次不等式的解,解不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.31.(1)甲乙再合作20天才能把该工程完成;(2)完成此项工程需付给甲、乙两队共340000元.【解析】【分析】(1)设甲乙再合作x天才能把该工程完成,根据甲队完成的工作量+乙队完成的工作量=总工作量(单位1),即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总施工费用=甲队每天的施工费用×甲队工作的时间+乙队每天的施工费用×乙队工作的时间,即可求出结论.【详解】(1)设甲乙再合作x天才能把该工程完成,依题意,得:246075x x++=1,解得:x=20.答:甲乙再合作20天才能把该工程完成.(2)5000×(24+20)+6000×20=340000(元).答:完成此项工程需付给甲、乙两队共340000元.【点睛】此题考查一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.32.(1)k的值是2,b的值是﹣1;(2)0≤m<1.【解析】【分析】(1)把23xy=⎧⎨=⎩和25xy=-⎧⎨=-⎩代入y kx b=+,得到方程组,解方程组可得答案;(2)首先根据一元一次不等式的解法,可得x<3-m,然后根据不等式3+2x>m+3x的最大整数解是k,可得2<3-m≤3,据此求出m的取值范围即可.【详解】解:(1)∵23x y =⎧⎨=⎩和25x y =-⎧⎨=-⎩都是关于x 、y 的方程y =kx+b 的解,∴2325k b k b +=⎧⎨-+=-⎩①②,①-②得:48,k =2,k ∴=把2k =代入①得:1,b =-所以方程组的解是:21k b =⎧⎨=-⎩.∴k 的值是2,b 的值是﹣1.(2)∵3+2x >m+3x ,∴x <3﹣m ,∵不等式3+2x >m+3x 的最大整数解是k ,2k =,∴2<3﹣m≤3,∴m 的取值范围是:0≤m <1.【点睛】本题主要考查解二元一次方程组和一元一次不等式,解题的关键是掌握解二元一次方程组的能力,并根据不等式的整数解情况列出关于m 的不等式组.33.(1)23m -<≤;(2)m=−1.【解析】【分析】(1)先由二元一次方程组求得x 、y 的表达式,再由00x y ≤<,,解得m 的取值范围,再化简即可;(2)关键是把原不等式整理成(2m+1)x<2m+1,根据1x >两边都乘以2m+1不等号方向改变,得出2m+1<0.【详解】(1)方程组731x y m x y m +=--⎧⎨-=+⎩①②,①+②得2x=2m−6,∴x=m−3;①−②得2y=−4m−8,∴y=−2m−4,∵00x y ≤<,,∴30240m m -≤⎧⎨--<⎩③④,解得:23m -<≤;(2)(2m+1)x<2m+1,∵原不等式的解集是x>1,∴2m+1<0,∴m<12-,又∵23m -<≤∴122m -<<-,∵m 为整数,∴m=−1.【点睛】本题考查了二元一次方程组及一元一次不等式组的解法,有一定的综合性.掌握解二元一次方程组和一元一次不等式组的方法是解题关键.34.(1)A 种鱼苗有200箱,B 种鱼苗有120箱(2)3种方案(方案见解析),方案①运费最少,最少运费是29600元.【解析】【分析】(1)设A 种鱼苗有x 箱,B 种鱼苗有y 箱,利用A 、B 两种类型鱼苗共320箱,A 种鱼苗比B 种鱼苗多80箱,可列两个方程组成方程组,然后解方程组即可;(2)设租用甲种货车x 辆,利用甲乙货车装A 种鱼苗的数量和甲乙货车装B 种鱼苗的数量列不等式组,解不等式求出它的正整数解可得到运输方案,然后比较各方案的运输费即可.【详解】(1)设A 种鱼苗有x 箱,B 种鱼苗有y 箱,根据题意得320{80x y x y +=-=解得200{120x y ==,答∶A 种鱼苗有200箱,B 种鱼苗有120箱;(2)设租用甲种货车x辆,根据题意得()()1020812040208200x xx x⎧+-≥⎪⎨+-≥⎪⎩,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为∶方案甲车乙车运费①262⨯4000+6⨯3600=29600②353⨯4000+5⨯3600=30000③444⨯4000+4⨯3600=30400所以方案①运费最少,最少运费是29600元.【点睛】此题考查二元一次方程组的实际应用和一元一次不等式组的应用,解题关键在于列出方程组.。
华师大版七年级下册数学期中考试试题含答案
华师大版七年级下册数学期中考试试卷一、单选题1.下列四个式子中,是方程的是()A .2x =B .1a +C .23x -D .3 25+=2.下列各数中,是方程215x +=-的解的是()A .0B .2C .3-D .2-3.设,,x y c 是有理数,则下列判断错误的是()A .若x y =,则22x c y c +=+B .若x y =,则a cx a cy -=-C .若x y =,则=x yc cD .若23x y=,则32x y =4.若1x =-是关于x 的一元一次方程20ax +=的解,则a 的值是()A .-2B .-1C .1D .25.若代数式235x -和233x -的值相同,则x 的值是()A .9B .﹣32C .32D .836.若方程6323x x -=-的解与关于x 的方程6226k x -=+的解相同,则k 的值为().A .59B .59-C .95D .95-7.为减少雾霾天气对身体的伤害,班主任王老师在某网站为班上的每一位学生购买防雾霾口罩,每个防霾口罩的价格是15元,在结算时卖家说:“如果您再多买一个口罩就可以打九折,价钱会比现在便宜45元”,王老师说:“那好吧,我就再给自己买一个,谢谢.”根据两人的对话,判断王老师的班级学生人数应为()A .38B .39C .40D .418.二元一次方程3x+2y =15的正整数解的对数是()A .1对B .2对C .3对D .4对9.当1a =时,方程()10a x b -+=(其中x 是未知数,b 是已知数)()A .有且只有一个解B .无解C .有无限多个解D .无解或有无限多个解10.已知关于x ,y 的方程组25241x y ax y a +=-⎧⎨-=-⎩给出下列结论:①当1a =时,方程组的解也是21x y a +=+的解;②无论a 取何值x ,y 的值不可能是互为相反数;③x ,y 都为自然数的解有4对;④若28x y +=,则2a =.正确的有几个()A .1B .2C .3D .4二、填空题11.x 的3倍与y 的和等于5,用等式表示为_______.12.若2a -4与a +7互为相反数,则a =________.13.如果关于,x y 的二元一次方程组241x y kx y k -=⎧⎨+=+⎩的解,x y 满足3x y +=,则k 的值是__________.14.若关于x 的不等式20x m ->的负整数解为1,2,3---.则m 的取值范围是_________.15.“格子乘法”作为两个数相乘的一种计算方法最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”.如图1,计算4751⨯,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397.如图2,用“格子乘法”表示两个两位数相乘,则a 的值为____________.三、解答题16.解方程(1)3328x x +=-+(2)2151136x x +--=17.解方程组:34282151136x y x x x +=-+⎧⎪+-⎨-=⎪⎩18.不等式:()5332x x +<+,并把解集在数轴上表示出来.19.已知12x y =⎧⎨=⎩是关于,x y 的方程组14ax by bx ay -=-⎧⎨-=-⎩的一个解,求代数式()23a b a --的值.20.列方程解应用题:2021年3月28日10时,随着洛阳地铁1号线首发列车缓缓始离牡丹广场站,标志着洛阳地铁1号线正式开通运营,古都洛阳正式迈入“地铁时代”,成为中西部地区首个开通地铁的非省会城市.已知1号线采用按里程分段计价的票制,其中全程最高票价为5元,学生可享受半价.周日,七年级某班师生共36人从始发站“红山”乘地铁至终点站“杨湾”,感受“地铁速度”,其中学生均购半价票,单程共付车票费用105元.求他们购买全价票与半价票各多少张?21.要比较两个数,a b 的大小,有时可以通过比较-a b 与0的大小来解决:如果0a b ->,则a b >;如果0a b -=,则a b =;如果0a b -<,则a b <.(1)若223x a b =+,231y a b =+-,试比较,x y 的大小.(2)若224A m m =+-,232B m m =--,试比较A 与2B 的大小关系.22.为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?23.在数学课外小组活动中,老师提出了如下问题:如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式,求绝对值不等式|x|>a(a>0)和|x|<a(a>0)的解集.小明同学的探究过程如下:先从特殊情况入手,求|x|>2和|x|<2的解集.确定|x|>2的解集过程如下:先根据绝对值的几何定义,在数轴上找到到原点的距离大于2的所有点所表示的数,在数轴上确定范围如下:所以,|x|>2的解集是x>2或.再来确定|x|<2的解集:同样根据绝对值的几何定义,在数轴上找到到原点的距离小于2的所有点所表示的数,在数轴上确定范围如下:所以,|x|<2的解集为:.经过大量特殊实例的实验,小明得到绝对值不等式|x|>a(a>0)的解集为,|x|<a(a>0)的解集为.请你根据小明的探究过程及得出的结论,解决下列问题:(1)请将小明的探究过程补充完整;(2)求绝对值不等式2|x+1|-3<5的解集.参考答案1.A【分析】根据方程的定义:含有未知数的等式;判断即可.【详解】x=,属于方程,符合题意;解:A、2a+,不是等式,不属于方程,不符合题意;B、1x-,不是等式,不属于方程,不符合题意;C、23+=,没有未知数,不属于方程,不符合题意;D、3 25故选:A.【点睛】本题考查了方程的定义,解题的关键是熟练运用方程的定义,本题属于基础题型.2.C【分析】方程移项合并,把x系数化为1,求出解,即可做出判断.【详解】解:方程2x+1=−5,移项合并同类项得:2x=−6,解得:x=−3.故选:C.【点睛】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.C【分析】根据等式的性质一一判断即可.【详解】解:A、若x=y,则x+2c=y+2c,故A选项不符合题意;B、若x=y,则a﹣cx=a﹣cy,故B选项不符合题意;C、c=0时,等式不成立,故C选项符合题意;D 、若23x y=,则3x =2y ,故D 选项不符合题意;故选C .【点睛】此题考查等式的性质,解题的关键在于能够熟练掌握等式的性质.4.D 【分析】将1x =-代入方程,即可得出a 的值.【详解】将1x =-代入方程,得20a -+=∴2a =故选:D.【点睛】此题主要考查利用一元一次方程的解求参数的值,熟练掌握,即可解题.5.A 【分析】根据题意列出方程,求出方程的解即可得到x 的值.【详解】根据题意得:235x -=233x-,去分母得到:6x ﹣9=10x ﹣45,移项合并得:﹣4x =﹣36,解得:x =9.故选:A .【点睛】此题考查了解一元一次方程,以及代数式求值,熟练掌握方程的解法是解本题的关键.6.B 【详解】解方程6x-3=2-3x 得x=59,再由两个方程的解相同可得,6-2k=2×59+6,解得k=59-,故选B.7.B【分析】设王老师的班级学生人数x人.则依据“如果您再多买一个口罩就可以打九折,价钱会比现在便宜45元”列方程解答即可.【详解】解:设王老师的班级学生人数x人,根据题意,得:15x-15(x+1)×90%=45,解得:x=39.故选B.【点睛】本题考查了一元一次方程的应用.8.B【分析】将x=1,2,…,分别代入3x+2y=15,求出方程的正整数解的对数是多少即可.【详解】解:当x=1时,方程变形为3+2y=15,解得y=6;当x=3时,方程变形为9+2y=15,解得y=3;∴二元一次方程3x+2y=15的正整数解的对数是2对:16xy=⎧⎨=⎩和33xy=⎧⎨=⎩.故选:B.【点睛】此题主要考查了二元一次方程组的解,要熟练掌握,注意解中x与y必须为正整数.9.D【分析】根据一元一次方程的定义即可判断求解.【详解】解:当a=1时,b≠0时,方程为b=0,与b≠0矛盾,故无解;当a=1时,b=0时,方程为b=0,当x取任意值皆可,故有无数解,故选D.【点睛】此题主要考查一元一次方程的解,解题的关键是熟知方程解得含义.10.D 【分析】①根据消元法解二元一次方程组,然后将解代入方程x +y =2a +1即可求解;②根据消元法解二元一次方程组,用含有字母的式子表示x 、y ,再根据互为相反数的两个数相加为0即可求解;③根据试值法求二元一次方程x +y =3的自然数解即可得结论;④根据整体代入的方法即可求解.【详解】解:25241x y a x y a +=-⎧⎨-=-⎩,方程组上式-下式得366y a=-22y a ∴=-,将22y a =-代人方程组下式得21x a =+,∴方程组的解为2122x a y a=+⎧⎨=-⎩当1a =时30x y =⎧⎨=⎩,3x y +=,213a +=,∴①正确;②212230x y a a +=++-=≠ ,∴②正确;③3x y += 、x ,y 为自然数,03x y =⎧∴⎨=⎩或12x y =⎧⎨=⎩或21x y =⎧⎨=⎩或30x y =⎧⎨=⎩,∴有4对,∴③正确;④()2221228x y a a +=++-=,解得2a =,∴④正确.故选:D 【点睛】本题考查二元一次方程的解,二元一次方程组的解,解二元一次方程组,解题的关键是掌握二元一次方程的解,二元一次方程组的解,解二元一次方程组.11.35x y +=.【分析】先表示出x 的3倍再与y 求和即可写出等式.【详解】解:根据题意,得35x y +=,故答案为35x y +=.【点睛】读懂题意,抓住关键词,弄清运算的先后顺序是列出等式的关键.12.-1【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】解:∵2a -4与a +7互为相反数,∴2a-4+a+7=0,解得:a=-1,故答案为:-1.【点睛】此题考查了解一元一次方程,以及相反数的性质,熟练掌握运算法则是解本题的关键.13.4【分析】把方程组的两个方程相加,再把x +y =3代入即可求解.【详解】解:241x y k x y k -=⎧⎨+=+⎩①②,①+②得:3x +3y =2k +1,即3(x +y )=2k +1,∵x +y =3,∴3×3=2k +1,解得k =4.故答案为:4.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.14.86m -≤<-【分析】首先解不等式求得解集,然后根据不等式只有负整数解为-1,-2,-3,得到关于m 的不等式,求得m 的范围.【详解】解:∵2x -m >0,∴2x >m ,∴x >2m .∵不等式的负整数解只有-1,-2,-3则432m-≤<-,解得:86m -≤<-.故答案为:86m -≤<-.【点睛】此题考查了根据不等式解集的情况求参数的取值范围,根据x 的取值范围正确确定2m的范围是解题的关键.15.3【分析】根据“格子乘法”可得10(2a -2-a )+(-a +6-1)=4a ,解方程可得.【详解】解:根据题意可得10(2a -2-a )+(-a +6-1)=4a 解得a =3故答案为:3.【点睛】根据“格子乘法”分析图示,列出方程是关键.16.(1)x=1;(2)x=-3【分析】(1)通过移项,合并同类项,未知数系数化为1,即可求解;(2)通过去分母,移项,合并同类项,未知数系数化为1,即可求解.【详解】(1)3328x x +=-+,移项得:3283x x +=-,合并同类项得:55=x ,解得:x=1;(2)2151136x x +--=,去分母得:()()221516x x +--=,去括号得:42516x x +-+=,合并,移项得:3x -=,解得:x=-3.【点睛】本题主要考查解一元一次方程,熟练掌握解一元一次方程的基本步骤,是解题的关键.17.3234x y =-⎧⎪⎨=⎪⎩【分析】将原式化简整理为54836x y x +=⎧⎨-+=⎩①②,解方程②得到的结果代入①即可得到方程组的解.【详解】解:34282151136x y x x x +=-+⎧⎪+-⎨-=⎪⎩,原式整理为:54836x y x +=⎧⎨-+=⎩①②,解方程②得:3x =-,将3x =-代入①中得:1548y -+=解得234y =,则方程组的解为3234x y =-⎧⎪⎨=⎪⎩.【点睛】此题考查了解二元一次方程组,以及一元一次方程,利用了消元的思想,消元的方法有两种:代入消元法、加减消元法.18.32x <,见解析【分析】先解一元一次不等式,然后再数轴上表示出不等式的解集即可得到答案.【详解】解:去括号得,5363x x +<+,移项得,5363x x -<-,合并同类项得,23x <,系数化为1得,32x <.在数轴上表示为:【点睛】本题主要考查了解一元一次不等式,并在数轴上表示不等式的解集,解题的关键在于能够熟练掌握相关知识进行求解.19.-6【分析】将12x y =⎧⎨=⎩代入原方程组中得2124a b b a -=-⎧⎨-=-⎩①②,然后解方程求出a 、b ,然后求代数式的值即可.【详解】解:将12x y =⎧⎨=⎩代入原方程组中得2124a b b a -=-⎧⎨-=-⎩①②将①变形为2-1a b =③代入②:-4+2-4b b =,解得2b =,代入③得3a =∴()2222333236a b a --=--=-()【点睛】本题主要考查了解二元一次方程组,代数式求解,解题的关键在于能够熟练掌握解二元一次方程组的方法.20.购买全价票6张,半价票30张.【分析】可设购买全价票x 张,半价票y 张,根据题意列二元一次方程组求解即可.【详解】解:购买全价票x 张,半价票y 张,根据题意得:36551052x y x y +=⎧⎪⎨+=⎪⎩解得:630x y =⎧⎨=⎩答:购买全价票6张,半价票30张.【点睛】本题考查了二元一次方程组的实际应用,设出变量,根据题意列出二元一次方程组是解题的关键.21.(1)x y >;(2)当 0m >时,20A B ->,所以2A B >;当0m =时,2A B =;当 0m <时,2A B<【分析】(1)用x y -,得到的结果与0比较大小即可得到答案;(2)先算出2B ,然后算出2A B -得到的结果与0比较大小即可得到答案.【详解】解:(1)∵223x a b =+,23-1y a b =+∴()222233-11x y a b a b a -=+-+=+∵20a ≥∴2110a +≥>即0x y ->.∴x y >.(2)∵232B m m =--∴22264B m m =--∵224A m m =+-∴()222242647AB m m m m m -=+----=,当0m >时,20A B ->,所以2A B >,当0m =时,20A B -=,所以2A B =,当0m <时,20A B -<,所以2A B <.【点睛】本题主要考查了利用作差法比较大小,解题的关键在于能够根据题意进行计算.22.(1)乙种树每棵200元,丙种树每棵300元(2)甲种树600棵,乙种树300棵,丙种树100棵(3)201棵【详解】解:(1)已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,∴乙种树每棵200元,丙种树每棵32×200=300(元).(2)设购买乙种树x 棵,则购买甲种树2x 棵,丙种树(1000-3x )棵.根据题意:200·2x +200x +300(1000-3x )=210000,解得x =300.∴2x =600,1000-3x =100,答:能购买甲种树600棵,乙种树300棵,丙种树100棵.(3)设购买丙种树y 棵,则甲、乙两种树共(1000-y )棵,根据题意得:200(1000-y )+300y ≤210000+10120,解得:y ≤201.2.∵y 为正整数,∴y 最大为201.答:丙种树最多可以购买201棵.(1)利用已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,即可求出乙、丙两种树每棵钱数.(2)设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000-3x)棵,利用(1)中所求树木价格以及现计划用210000元资金购买这三种树共1000棵,得出等式方程,求出即可.(3)设购买丙种树y棵,则甲、乙两种树共(1000-y)棵,根据题意列不等式,求出即可23.29.(1)x<-2;图见解析;-2<x<2;x>a或x<-a;-a<x<a;(2)-5<x<3【分析】(1)根据题意即可得;(2)将2|x+1|的数字因数2化为1后,根据以上结论即可得.【详解】(1)①x<-2②③-2<x<2④x>a或x<-a⑤-a<x<a故答案为:x<-2,,-2<x<2,x>a或x<-a,-a<x <a(2)∵2|x+1|-3<5∴2|x+1|<8∴|x+1|<4∴-4<x+1<4∴-5<x<3∴原绝对值不等式的解集是-5<x<3【点睛】本题考查了一元一次不等式的解法、绝对值的性质;熟练掌握一元一次不等式的解法是解决问题的关键.。
华师大版七年级下册数学期中考试试题及答案
华师大版七年级下册数学期中考试试卷一、单选题1.下列方程中,是一元一次方程的是()A .43x +B .0a b +=C .21275x x -=D .370x -=2.下列方程中,解为x =2的方程是()A .2(x+1)=6B .5x ﹣3=1C .223x =D .3x+6=03.下列等式的变形错误的是()A .若a b =,则33a b -=-B .若a b =,则33a b =--C .若ax bx =,则a b=D .若2x =,则22x x =4.若x >y ,则下列不等式成立的是()A .x -1<y -1B .x+5>y+5C .-2x >-2yD .2x <y 25.把方程0.150.710.30.02x x--=分母化为整数,正确的是()A .11570132xx --=B .101570132x x --=C .10157132xx --=D .10 1.57132x x --=6.不等式240x -≥的解集在数轴上表示为()A .B .C .D .7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A .6折B .7折C .8折D .9折8.如果2150x y x y -+++-=,则x 、y 的值分别是()A .10x y =-⎧⎨=⎩B .14x y =⎧⎨=⎩C .32x y =⎧⎨=⎩D .23x y =⎧⎨=⎩9.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是()A .8374x y y x -=⎧⎨-=⎩B .8374y x y x -=⎧⎨-=-⎩C .8374x y y x -=⎧⎨-=-⎩D .8374y x y x -=⎧⎨-=⎩10.若不等式组213x x a ->⎧⎨≤⎩的整数解共有三个,则a 的取值范围是().A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤二、填空题11.若1x =-是方程32ax x +=的解.则a 的值是_________.12.若关于y 的方程32y k -=与32y y +=的解相同,则k 的值为______.13.已知三元一次方程组345x y y z x z +=⎧⎪+=⎨⎪+=⎩,则x y z ++=________.14.不等式42564x x -≥⎧⎨+>⎩解集是______.15.已知关于x ,y 的方程组4375x y mx y m +=⎧⎨-=-⎩的解满足等式2x +y =8,则m 的值是__.16.已知不等式组2145x x x m ->+⎧⎨>⎩无解,则m 的取值范围是________.三、解答题17.解方程:()()44329x x --=-18.解方程:131142x x +--=-(要求步骤完整)19.解方程组:43524x y x y +=⎧⎨-=⎩.20.解不等式121123y y +--≥,并把解集在数轴上表示出来.21.解不等式组42(1)411223x x x x --<⎧⎪-+⎨≤⎪⎩,并求出它的整数解.22.已知关于x 、y 的方程组33957x y a x y a +=+⎧⎨-=+⎩的解均为非负数,(1)求a 的取值范围;(2)化简:241a a +--23.已知关于x ,y 的方程组2331x y ax by -=⎧⎨+=-⎩和2333211ax by x y +=⎧⎨+=⎩的解相同,求(3a+b )2020的值.24.在抗击新冠肺炎疫情期间,某社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.求每次购买的酒精和消毒液分别是多少瓶?25.请阅读求绝对值不等式3x <和3x >的解集过程.对于绝对值不等式3x <,从图1的数轴上看:大于3-而小于3的绝对值是是小于3的,所以3x <的解集为33x -<<;对于绝对值不等式3x >,从图2的数轴上看:小于3-而大于3的绝对值是是大于3的,所以3x >的解集为3x <-或3x >.已知关于x、y的二元一次方程组245472x y mx y m-=-⎧⎨+=-+⎩的解满足3x y+≤,其中m是负整数,求m的值.26.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中购进电饭煲和电压锅各多少台?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的56,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?参考答案1.D【分析】只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.根据一元一次方程的定义逐个判断即可.解:A .不是方程,故本选项不符合题意;B .是二元一次方程,不是一元一次方程,故本选项不符合题意;C .是一元二次方程,不是一元一次方程,故本选项不符合题意;D .是一元一次方程,故本选项符合题意;故选:D .2.A 【分析】把x=2代入各个方程,看左右两边是否相等即可.【详解】A .把x =2代入方程2(x+1)=6得:左边=6,右边=6,左边=右边,所以x =2是方程2(x+1)=6的解,故本选项符合题意;B .把x =2代入方程5x ﹣3=1得:左边=7,右边=1,左边≠右边,所以x =2不是方程5x ﹣3=1的解,故本选项不符合题意;C .把x =2代入方程23x =2得:左边=43,右边=2,左边≠右边,所以x =2不是方程23x =2的解,故本选项不符合题意;D .把x =2代入方程3x+6=0得:左边=12,右边=0,左边≠右边,所以x =2不是方程3x+6=0的解,故本选项不符合题意;故选:A .3.C 【分析】利用等式的性质对每个等式进行变形即可找出答案.【详解】解:A 、利用等式性质1,两边都减去3,得到a-3=b-3,所以A 成立;B 、利用等式性质2,两边都除以-3,得到33a b =--,所以B 成立;C 、因为x 必须不为0,所以C 不成立;D 、利用等式性质2,两边都乘x ,得到x 2=2x ,所以D 成立;故选:C .4.B根据不等式的性质逐个判断即可.【详解】A 、∵x >y ,∴x -1>y -1,故本选项不符合题意;B 、∵x >y ,∴x+5>y+5,故本选项符合题意;C 、∵x >y ,∴-2x ﹤-2y ,故本选项不符合题意;D 、∵x >y ,∴2x >y2,故本选项不符合题意;故选:B .5.B 【分析】根据分数的基本性质,分子分母同时乘使它们化为整数的数即可.【详解】解:0.150.710.30.02x x --=,方程左边第一项,分子分母同时乘10,第二项分子分母同时乘100得,101570132xx --=,故选:B .【点睛】本题考查了方程的化简,解题关键是根据分数的基本性质对每个含分母的式子分别变形.6.C 【分析】先正确求得解集,后准确在数轴表示即可.【详解】∵240x -≥,∴x≥2,数轴表示为,【点睛】本题考查了不等式的解集,解集的数轴表示,熟练掌握不等式的解法和数轴表示法是解题的关键.7.B 【解析】【分析】设可打x 折,根据售价=标价×打折率和利润=售价-进价=进价×利润率列出不等式求解即可.【详解】解:设可打x 折,则有1200x÷10-800≥800×5%,解得:x≥7,即最多打7折.故选:B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.8.C 【解析】【分析】根据非负数的性质得关于x 、y 的二元一次方程组,再解方程组即可求出x 、y 的值.【详解】解:∵2150x y x y -+++-=,∴21050x y x y -+=⎧⎨+-=⎩,解此方程组得:32x y =⎧⎨=⎩.故选:C .此题考查的知识点是解二元一次方程组,关键是根据非负数的性质得关于x 、y 的二元一次方程组.9.A 【解析】【分析】直接根据题意列出二元一次方程组即可.【详解】解:根据题意,得:8374x y y x -=⎧⎨-=⎩,故选:A .【点睛】本题考查二元一次方程组的应用,读懂题意,找到等量关系是解答的关键.10.A 【解析】【分析】首先确定不等式组的解集,利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式2x-1>3,得:x >2,∵不等式组整数解共有三个,∴不等式组的整数解为3、4、5,则56a ≤<,故选A .【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a 的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.5-【解析】把x 的值代入方程计算即可求出a 的值.【详解】解:把1x =-代入方程得:32a --=,解得:5a =-,故答案为:5-.【点睛】本题考查了一元一次方程的解以及解一元一次方程,方程的解即为能使方程左右两边相等的未知数的值.12.7【解析】【分析】先解32y y +=得到y 的值,把y 的值代入到32y k -=得到关于k 的方程,再解方程即可.【详解】解:解32y y +=得3y =代入到32y k -=得332k ⨯-=,解得7k =.故答案为:7.【点睛】此题考查方程的解,解一元一次方程,理解两个方程的解相同的含义是解题的关键.13.6【解析】【分析】方程组中三个方程左右两边相加,变形即可得到x+y+z 的值.【详解】解:345x y y z x z +=⎧⎪+=⎨⎪+=⎩①②③,①+②+③,得2x+2y+2z =12,∴x+y+z =6,故答案为:6.【点睛】此题考查了解三元一次方程组,本题的技巧为将三个方程相加.14.122x -<≤-【解析】【分析】分别解不等式组中的两个不等式,再取解集的公共部分即可得到答案.【详解】解:42564x x -≥⎧⎨+>⎩①②由①得:21x -≥,1,2x ∴≤-由②得:x >2,-所以不等式组的解集是:122x -<≤-.故答案为:122x -<≤-.【点睛】本题考查的是不等式组的解法,掌握解不等式组的方法与步骤是解题的关键.15.-6【解析】【分析】根据加减消元法,用含m 的式子表示出x 和与y 的值,将其代入2x+y =8即可求得m 的值.【详解】解:4375x y m x y m +=⎧⎨-=-⎩①②①+②,得5x =10m ﹣5,解得x =2m ﹣1,把x =2m ﹣1代入②,得2m ﹣1﹣y =7m ﹣5,解得y=4﹣5m,把x=2m﹣1,y=4﹣5m代入方程2x+y=8,得2(2m﹣1)+4﹣5m=8解得m=﹣6.故答案为:﹣6.【点睛】本题考查了二元一次方程的解、二元一次方程组的解,熟悉二元一次方程的解、二元一次方程组的解是解题的关键.16.m≥-3【解析】【分析】先求出每个不等式的解集,再根据已知得出关于a的不等式,求出不等式的解集即可.【详解】解:2145x xx m->+⎧⎨>⎩①②,∵不等式①的解集是x<−3,不等式②的解集是x>m,又∵不等式组2145x xx m->+⎧⎨>⎩无解,∴m≥−3,故答案为:m≥−3.【点睛】本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据找不等式的解集和已知得出关于m的不等式组.17.1x=-【解析】【分析】先去括号,再移项,合并同类项,最后未知数系数化为“1”即可解方程.【详解】()()44329x x--=-,去括号得:4412182x x -+=-,移项得:4218124x x -+=--,合并同类项得:22x -=,未知数系数化为“1”得:1x =-.【点睛】本题考查解一元一次方程.掌握解一元一次方程的步骤是解答本题的关键.18.15x =-【解析】【分析】方程去分母,去括号,移项合并,将x 系数化为1,即可求出解.【详解】解:去分母得:()()41231x x -+=--去括号得:4162x x --=-+移项合并得:51x =-解得:15x =-.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.19.21x y =⎧⎨=-⎩【解析】【分析】方程组利用加减消元法求出解即可.【详解】解:43524x y x y +=⎧⎨-=⎩①②,①﹣②×4得:11y =﹣11,即y =﹣1,把y =﹣1代入②得:x =2,则方程组的解为21x y =⎧⎨=-⎩.【点睛】此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法的运用.20.1y ≤-,数轴表示见解析【解析】【分析】去分母、去括号、移项、合并同类项,然后系数化成1即可求解,再在数轴上表示出解集.【详解】解:121123y y +--≥,去分母得:()()316221y y +-≥-,去括号得:33642y y +-≥-,移项合并得:1y ≤-.数轴表示如下:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能求出不等式的解集是解此题的关键,难度适中.21.﹣5≤x <1,整数解为﹣5、﹣4、﹣3、﹣2、﹣1、0【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出其整数解.【详解】解:解不等式4x ﹣2(x ﹣1)<4,得:x <1,解不等式12x -≤123x +,得:5x ≥-,则不等式组的解集为51x -≤<,∴不等式组的整数解为﹣5、﹣4、﹣3、﹣2、﹣1、0.【点睛】本题考查了解一元一次不等式组及不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(1)21a -≤≤-;(2)33a +【解析】【分析】(1)先利用加减消元法求出方程组的解,然后利用方程组的解均为非负数建立一个关于a 的不等式组,解不等式组即可求出a 的取值范围;(2)利用(1)中a 的取值范围,可判断24,1a a +-的正负,然后利用绝对值的性质去掉绝对值符号,然后合并同类项即可.【详解】(1)33957x y a x y a +=+⎧⎨-=+⎩①②①+②得,4816x a =+,解得24x a =+③,将③代回②中得,2457a y a +-=+,解得33y a =--∴方程组的解为2433x a y a =+⎧⎨=--⎩.∵关于x 、y 的方程组33957x y a x y a +=+⎧⎨-=+⎩的解均为非负数,∴240330x a y a =+≥⎧⎨=--≥⎩,解得21a -≤≤-;(2)∵21a -≤≤-,240,10a a ∴+≥-<,∴24124(1)24133a a a a a a a +--=+--=+-+=+.【点睛】本题主要考查解二元一次方程组和一元一次不等式组,绝对值的性质,掌握加减消元法和一元一次不等式的解法,绝对值的性质是解题的关键.23.25ab=-⎧⎨=⎩,1.【解析】【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a,b的两个方程联立,组成新的方程组,求出x和y的值,再代入含有a,b的两个方程中,解关于a,b的方程组即可得出a,b的值,代入(3a+b)2020计算即可.【详解】解:由题意可得233 3211 x yx y-=⎧⎨+=⎩,解得31 xy=⎧⎨=⎩,将31xy=⎧⎨=⎩代入1233ax byax by+=-⎧⎨+=⎩得31633a ba b+=-⎧⎨+=⎩,解得25ab=-⎧⎨=⎩,∴(3a+b)2020=(﹣6+5)2020=1.【点睛】本题考查了二元一次方程组的解,解答此题的关键是根据两方程组有相同的解得到关于x、y的方程组,求出x、y的值,再将x、y的值代入含a、b的方程组即可求出a、b的值,即可求出代数式的值.24.每次购买酒精20瓶,消毒液30瓶【解析】【分析】设每次购买酒精x瓶,消毒液y瓶,根据总价=单价×数量,结合两次购买所需费用,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设每次购买酒精x瓶,消毒液y瓶,依题意得:()()10535010130%5120%260x y x y +=⎧⎨⨯-+⨯-=⎩,解得:2030x y =⎧⎨=⎩,答:每次购买酒精20瓶,消毒液30瓶.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.-4或-3或-2或-1.【解析】【分析】根据题意由3x y +≤得出-3≤x+y≤3,解二元一次方程组,得出x+y=-m-1,得到不等式组-3≤-m-1≤3,求出m 值,结合m 为负整数即可得出结果.【详解】解:∵3x y +≤,∴-3≤x+y≤3,解245 472x y m x y m -=-⎧⎨+=-+⎩①②,①+②得:3x+3y=-3m-3,∴x+y=-m-1,则-3≤-m-1≤3,解得:-4≤m≤2,又m 是负整数,∴m 的值为-4或-3或-2或-1.【点睛】本题考查了解一元一次不等式组和绝对值的意义,能正确去掉绝对值符号是解此题的关键.26.(1)橱具店购进电饭煲20台,电压锅10台;(2)三种方案:①购买电饭煲23台,电压锅27台;②购买电饭煲24台,电压锅26台;③购买电饭煲25台,电压锅25台.(3)购进电饭煲、电压锅各25台厨具店赚钱最多.【解析】【分析】(1)设橱具店购进电饭煲x 台,电压锅y 台,根据图表中的数据列出关于x 、y 的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;(2)设购买电饭煲a 台,则购买电压锅(50-a )台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的56”列不等式组求解即可;(3)结合(2)中的数据进行计算.【详解】(1)设橱具店购进电饭煲x 台,电压锅y 台,依题意得x 302001605600y x y +=⎧⎨+=⎩,解得x=20y=10⎧⎨⎩,答:橱具店购进电饭煲20台,电压锅10台;(2)设购买电饭煲a 台,则购买电压锅(50﹣a )台,依题意得200+16050-a)90005(50)6a a a ≤⎧⎪⎨≥-⎪⎩(,解得22811≤a≤25.又∵a 为正整数,∴a 可取23,24,25.故有三种方案:①购买电饭煲23台,电压锅27台;②购买电饭煲24台,电压锅26台;③购买电饭煲25台,电压锅25台.(3)设橱具店赚钱数额为W 元,当a=23时,W=23×50+27×40=2230;当a=24时,W=24×50+26×40=2240;当a=25时,W=25×50+25×40=2250;综上所述,当a=25时,W 最大,此时购进电饭煲、电压锅各25台.【点睛】本题考查一元一次不等式组和二元一次方程组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.。
华师大七年级下期中测试题
华师大七年级下期中测试题班级________ 姓名_________一、填空(20×2分=40分)1、x x a x a 5154323+-是_____次三项式,各项的次数分别是____,______,_____。
2、)36()32(2222xy y x y x y x --+=____________。
3、=•32a a _____;=26)(a ______;=32)(b a ______;=÷26a a _______。
4、015101010⨯⨯-=______;5、(a -b )(a +b )=______;(x +1)(x -1)=________;6、(x +2)2=______;7、水由氢原子和氧原子组成,其中氢原子的直径约为0.0000000001米,用科学计数法表示为______________;8、小明的身高约为1.69米,那个数精确到_____位,将那个数精确到十分位是_______;9、小明在一个小正方体的六个面上分别标了1、2、3、4、5、6六个数字,随意地掷出小正方体,则P(掷出地数字小于7)=________;10、用3cm ,8cm ,____cm 长的三根小木棒能摆成一个三角形。
二、判定(8×2分=16分)1、336)2(a a = ()2、x x x =÷44 ()3、532x x x =•- ()4、633)(m m = ()5、百分之一米(即10-6米)确实是1微米。
()6、“任意掷出一枚平均的硬币,正面朝上”那个事件的概率是1。
()7、同位角相等。
()8、用“5cm ,6cm ,10cm ”长的三根木条,能摆成一个三角形。
()三、选择(10×3分=30分)1、 下面的运算正确的是()A.633101010=+ B.3331021010⨯=• C.505101010=÷D.2226)3(q p pq -=- 2、 如图,不能推出a ∥b 的条件是()A.∠1=∠3B. ∠2=∠4 C ∠2=∠3. D. ∠2+∠3=180° 12 a4 3 bc3、4)2(xy -的运算结果是()A.-2x 4y 4B. 8x 4y 4C.16x 4y 4D. 16xy 44、式子:20022002)21(2•=() A.1; B.-1; C.0; D.20025、一个游戏的中将率是1%,小花买100张奖券,下列说法正确的是()A.一定会中奖B.一定不中奖C.中奖的可能性大D.中奖的可能性小6、王刚设计了一个转盘游戏:随意转动转盘,使指针最后落在红色区域的概率为1/3,假如他将转盘等分成12份,则红色区域应占的份数是()A.1;B.3C.4D.67、(=-2)(y x ()A.22y x -B.22y x +C.xy y x 222--D.xy y x 222-+ 8、如图中,方砖除颜色的外完全相同,小老鼠在方砖上自由走动,最终停留在白色方砖上的概率是()A.4B.1/4C.5/9 D4/99、在△ABC 中,已知∠A =100°,∠B=∠C,则∠C 的度数是()A. 40°B. 80°C. 30°D. 60°10、如图,做配紫色游戏时,游戏者获胜的概率是()C.1/5D.1/6红四、运算(12×3分=36分)1、(3mn-m+2n )-(-3m+4mn)2、32)21()21(-•-3、()21()21(7x x -÷- 4、255)()(a a -•-5、)31()31(0-÷6、)432(52+-x x x7、)108()102(54⨯•⨯8、(2x +y )(x -y )9、(x +1)2-(x +1)(x -1)10、108×11211、)23(2222z y xy y x --12、)(21)32(22rh rh h r πππ÷+- 五、填空(15×1分=15分)1b① 假如∠2=∠3.,那么______∥______,理由是_____________________。
华师大版七年级下学期数学《期中考试试题》含答案解析
华 东 师 大 版 七 年 级 下 学 期期 中 测 试 卷一、选择题1.方程2x -1=3x +2的解为( ) A. x =1 B. x =-1C. x =3D. x =-32.如果35x =是关于x 的方程50x m -=的解,那么m 的值为( ) A. 3 B. 13C. 3-D. 13-3.在解方程1135x x -=-时,去分母后正确的是( )A. 513(1)x x =--B. 1(31)x x =--C. 5153(1)x x =--D. 533(1)x x =--4.下列各组值中,是方程3x+5=8的解的是( )A. 21x y =-⎧⎨=⎩B. 21x y =⎧⎨=⎩C. 12x y =⎧⎨=⎩D. 05x y =⎧⎨=-⎩5.已知 11x y =-=⎧⎨⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m -n 的值是( ) A. 1B. -2C. 3D. -46.同时适合方程2x+y=5和3x+2y=8的解是( ) A. 12x y =⎧⎨=⎩B. 21x y =⎧⎨=⎩C. 31x y =⎧⎨=⎩ D. 31x y ==-⎧⎨⎩7. 不等式﹣2x<4的解集是 【 】 A. x>﹣2B. x<﹣2C. x>2D. x<28.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A. 1313x x -<⎧⎨+<⎩B. 1313x x -<⎧⎨+>⎩C. 1313x x ->⎧⎨+>⎩D. 1313x x ->⎧⎨+<⎩9.如果不等式3x-m ≤0的正整数解是1,2,3,那么m 的取值范围是( ) A. m >9B. m <12C. 912m ≤<D. 912m <≤10.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为( )A. 5210,58x y x y +=⎧⎨+=⎩B. 2,258x y x y +=⎧⎨+=⎩C. 528,2510x y x y +=⎧⎨+=⎩D. 5210,258x y x y +=⎧⎨+=⎩二、填空题11.若关于的方程ax+3x=2的解是x=1,则a 的值为________. 12.若关于x ,y 的二元一次方程组2121x y k x y k +=-⎧⎨+=+⎩的解互为相反数,则k 的值为________.13.若关于x 的不等式()2121m x m +<+的解集是x >1,则m 的取值范围是________.14.如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB 上的数是3,BC 上的数是7,CD 上的数是12,则AD 上的数是__________.15.已知a b c 、、满足:2302340a b c a b c -+=⎧⎨-+=⎩,则a ∶b ∶c 等于_______.三、解答题16.解方程3157146x x ---= 17.解方程组:23723x y x y +=⎧⎨=-+⎩18.关于x y 、的方程组251x y ax by -=⎧⎨+=-⎩和321122x y ax by +=⎧⎨+=⎩的解相同,求a 、b 的值.19.解不等式组()41710753x x x x +≤+⎧⎪⎨--⎪⎩<并写出该不等式组的所有非负整数解. 20.一种口服液有大盒、小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶.求大盒、小盒每盒各装多少瓶?21.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A ,B 两种型号的设备,经过市场调查,购买一台A 型设备比购买一台B 型设备多花费2万元,购买2台A 型设备比购买3台B 型设备少花费6万元.(1)购买一台A 型设备、购买一台B 型设备各需要多少万元;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案. 22.阅读下列材料:解答“已知2,1,0x y x y -=><且,试确定x y +的取值范围”有如下解法: 解:∵2x y -=,∴x=y+2,又∵1x >,∴21y +>,即1y >- 又0y <,∴10y -<<.…① 同理得:12x <<.…② 由①+②得1102,y x -+<+<+ ∴x y +的取值范围是02x y <+<. 请按照上述方法,完成下列问题 : 已知关于x y 、的方程组325233x y a x y a -=-⎧⎨+=+⎩的解都是正数.(1)求a的取值范围;(2)已知4,a b -=且2b <,求+a b 的取值范围; (3) 已知a b m -=(m 是大于0的常数),且11,22b a b ≤+求的最大值.(用m 含的式子表示) 23.小明家需要用钢管做防盗窗,按设计要求,其中需要长为0.8米的钢管100根,还需要长为2.5米的钢管32根,两种长度的钢管粗细必须相同;并要求这些用料不能是焊接而成的.经市场调查,钢材市场中符合这种规格的钢管每根长均为6米.(1)试问:把一根长为6米的钢管进行裁剪,有下面几种方法, 请完成填空(余料作废).方法①:只裁成为0.8米的用料时,最多可裁7根;方法②:先裁下1根2.5米长的用料,余下部分最多能裁成为0.8米长的用料 根; 方法③:先裁下2根2.5米长的用料,余下部分最多能裁成为0.8米长的用料1 根.(2)分别用(1)中的方法②和方法③各裁剪多少根6米长的钢管,才能刚好得到所需要的相应数量的材料;(3)试探究:除(2)中方案外,在(1)中还有哪两种方法联合,所需要6米长的钢管与(2)中根数相同.答案与解析一、选择题1.方程2x -1=3x +2的解为( ) A. x =1 B. x =-1C. x =3D. x =-3【答案】D 【解析】试题分析:首先进行移项可得:2x -3x=2+1,合并同类项可得:-x=3,解得:x=-3. 考点:解一元一次方程 2.如果35x =是关于x 的方程50x m -=的解,那么m 的值为( ) A. 3B. 13C. 3-D. 13-【答案】A 【解析】试题分析:将x=35代入等式可得:5×35-m=0,解得:m=3,故选A . 3.在解方程1135x x -=-时,去分母后正确的是( )A. 513(1)x x =--B. 1(31)x x =--C. 5153(1)x x =--D. 533(1)x x =--【答案】C 【解析】 【分析】两边同乘以15去分母即可得出答案.【详解】两边同乘以15去分母,得5153(1)x x =-- 故选:C .【点睛】本题考查了解一元一次方程的步骤:去分母,掌握去分母的方法是解题关键. 4.下列各组值中,是方程3x+5=8的解的是( )A. 21x y =-⎧⎨=⎩B. 21x y =⎧⎨=⎩C. 12x y =⎧⎨=⎩D. 05x y =⎧⎨=-⎩【答案】C 【解析】 【分析】将四个答案逐一代入,能使方程成立的即为方程的解.【详解】A,代入原方程:-2⨯3+5=-1,故此项错误;B,代入原方程:2⨯3+5=11,故此项错误;C,代入原方程:1⨯3+5=8,故此项正确;D,代入原方程:0⨯3+5=5,故此项错误;【点睛】本题考查二元一次方程的解,理解掌握方程的解的定义是解答关键.5.已知11xy=-=⎧⎨⎩是二元一次方程组321x y mnx y+=⎧⎨-=⎩的解,则m-n的值是()A. 1B. -2C. 3D. -4 【答案】A【解析】【分析】将11xy=-=⎧⎨⎩代入方程组321x y mnx y+=⎧⎨-=⎩中,求出m,n的值,从而求出m-n的值.【详解】将11xy=-=⎧⎨⎩代入方程组321x y mnx y+=⎧⎨-=⎩中,得32,11,mn-+=⎧⎨--=⎩解得1,2. mn=-⎧⎨=-⎩∴m-n=1.故选A.【点睛】本题主要考查方程组的解,熟练掌握二元一次方程组的解的定义是解题的关键.6.同时适合方程2x+y=5和3x+2y=8的解是()A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.31xy=⎧⎨=⎩D.31xy==-⎧⎨⎩【答案】B【解析】【分析】根据题意列出方程组,先用加减消元法,再用代入消元法求出方程组的解即可或把四个选项的答案依次代入方程组,运用排除法进行选择.【详解】解:方法一:把各个选项的答案依次代入,只有B答案适合方程组;方法二:由题意,得25,328x y x y +=⎧⎨+⎩①=,② ①×2-②得,x=2, 代入①得,2×2+y=5,y=1 故原方程组的解为2,1.x y =⎧⎨=⎩故选:B .【点睛】本题比较简单,考查的是方程组的解的定义以及解二元一次方程组的代入消元法和加减消元法. 7. 不等式﹣2x<4的解集是 【 】 A. x>﹣2 B. x<﹣2C. x>2D. x<2【答案】A 【解析】【详解】解:根据不等式的基本性质解得:x>﹣2,故选A .8.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A. 1313x x -<⎧⎨+<⎩B. 1313x x -<⎧⎨+>⎩C. 1313x x ->⎧⎨+>⎩D. 1313x x ->⎧⎨+<⎩【答案】B 【解析】分析:先根据在数轴上表示不等式解集的方法得出该不等式组的解集,再找出符合条件的不等式组即可. 详解:A 、此不等式组的解集为x <2,不符合题意; B 、此不等式组解集为2<x <4,符合题意; C 、此不等式组解集为x >4,不符合题意; D 、此不等式组的无解,不符合题意; 故选B .点睛:本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.9.如果不等式3x-m ≤0的正整数解是1,2,3,那么m 的取值范围是( ) A. m >9B. m <12C. 912m ≤<D. 912m <≤【分析】解不等式得出x ≤3m ,由不等式的正整数解为1、2、3知3≤3m<4,解之可得答案. 【详解】解不等式3x−m ≤0,得:x ≤3m,∵不等式的正整数解为1,2,3, ∴3≤3m<4, 解得:9≤m <12, 故选:C .【点睛】本题主要考查一元一次不等式组的整数解,根据正整数解的情况得出关于m 的不等式组是解题的关键.10.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为( )A. 5210,58x y x y +=⎧⎨+=⎩B. 2,258x y x y +=⎧⎨+=⎩ C. 528,2510x y x y +=⎧⎨+=⎩D. 5210,258x y x y +=⎧⎨+=⎩ 【答案】D 【解析】 分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组. 【详解】解:根据题意得:5210258x y x y +=⎧⎨+=⎩,故选D .【点睛】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.二、填空题11.若关于的方程ax+3x=2的解是x=1,则a 的值为________.【分析】根据方程的解为x=1,将x=1代入方程即可求出a 的值. 【详解】解:将x=1代入方程得:a+3=2, 解得:a=-1.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 12.若关于x ,y 的二元一次方程组2121x y k x y k +=-⎧⎨+=+⎩的解互为相反数,则k 的值为________.【答案】0 【解析】 【分析】方程组两方程相加表示出x+y ,根据x+y=0求出k 的值即可.【详解】解:2121,x y k x y k +-⎧⎨++⎩=,①=②①+②,得3(x+y )=2k ,解得:x+y=23k . 由题意得:x+y=0, 可得23k=0, 解得:k=0, 故答案为:0.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 13.若关于x 的不等式()2121m x m +<+的解集是x >1,则m 的取值范围是________. 【答案】12m <- 【解析】 【分析】本题是关于x 的不等式,应先只把x 看成未知数,求得x 的解集,再根据数轴上的解集,来求得m 的取值范围.【详解】解:∵不等式()2121m x m +<+的解集为x >1, ∴2m+1<0, ∴12m <-. 【点睛】解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.14.如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB 上的数是3,BC 上的数是7,CD 上的数是12,则AD 上的数是__________.【答案】8 【解析】 【分析】根据题意首先设A 端点数为x ,B 点为y ,则C 点为:7﹣y ,D 点为:z ,得出x +y =3①,C 点为:7﹣y ,z +7﹣y =12,而得出x +z 的值.【详解】设A 端点数为x ,B 点为y ,则C 点为:7﹣y ,D 点为:z ,根据题意可得:x +y =3①,C 点为:7﹣y ,故z +7﹣y =12②,故①+②得:x +y +z +7﹣y =12+3,故x +z =8,即AD 上的数是:8. 故答案为8.【点睛】本题考查了方程组的应用,注意利用整体思想求出x +z 的值是解题的关键. 15.已知a b c 、、满足:2302340a b c a b c -+=⎧⎨-+=⎩,则a ∶b ∶c 等于_______.【答案】1∶2∶1 【解析】 【分析】把c 看成已知数,解关于a,b 的二元一次方程,从而可求a ∶b ∶c.【详解】解:2302340a b c a b c -+=⎧⎨-+=⎩,①②, 所以①×2-②,得b=2c .将b=2c 代入①,得a-4c+3c=0,∴a=c.∴a ∶b ∶c=c ∶2c ∶c=1∶2∶1.【点睛】将其中一个未知数看成已知数,解方程即可.三、解答题16.解方程3157146x x ---= 【答案】x =﹣1【解析】【分析】 首先去分母,然后移项合并系数,即可解得x .【详解】方程两边同时乘以12得:3(3x ﹣1)﹣2(5x ﹣7)=12,去括号得:9 x ﹣3﹣10x +14=12,移项得:9x ﹣10x =12﹣14+3,合并同类项得:﹣x =1,系数化为1得:x =﹣1.【点睛】本题主要考查解一元一次方程的知识点,解题时要注意,移项时要变号,本题比较基础. 17.解方程组:23723x y x y +=⎧⎨=-+⎩ 【答案】51x y =⎧⎨=-⎩【解析】【分析】直接利用代入法解二元一次方程组即可.【详解】23723x y x y +=⋯⎧⎨=-+⋯⎩①② 将②代入①,得()22337.y y -++=解得 1.y =-将 1y =- 代入②,得x =5 ,∴原方程组的解为51x y =⎧⎨=-⎩. 【点睛】本题考查了利用代入法解二元一次方程组,主要考查学生的计算能力.18.关于x y 、的方程组251x y ax by -=⎧⎨+=-⎩和321122x y ax by +=⎧⎨+=⎩的解相同,求a 、b 的值. 【答案】14a b =⎧⎨=-⎩【解析】【分析】根据两方程组的解相同,取出不含未知量的两个方程重组方程组求解代入即可.【详解】解:解方程组 253211x y x y -=⎧⎨+=⎩, 得 31x y =⎧⎨=⎩ , 上面方程组的解也是 122ax by ax by +=-⎧⎨+=⎩的解, 代入,得3162a b a b +=-⎧⎨+=⎩ , 解这个方程组,得 14a b =⎧⎨=-⎩. 【点睛】此题考查二元一次方程组的解,用已知求未知,主要是熟练掌握解方程组.19.解不等式组()41710753x x x x +≤+⎧⎪⎨--⎪⎩<并写出该不等式组的所有非负整数解. 【答案】0、1、2、3【解析】【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出所有非负整数解.【详解】()41710753x x x x ⎧+≤+⎪⎨--⎪⎩①<② 解不等式①,得2x ≥-,解不等式②,得4x <,∴不等式组的解集为24x -≤< ,∴该不等式组的非负整数解为0、1、2、3.【点睛】本题考查了一元一次不等式组的整数解的应用,关键是能根据不等式的解集找出不等式组的解集. 20.一种口服液有大盒、小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶.求大盒、小盒每盒各装多少瓶?【答案】大盒装20瓶,小盒装12瓶.【解析】【分析】设大盒每盒装x 瓶,小盒每盒装y 瓶,根据等量关系:3大盒4小盒共108瓶;2大盒3小盒共76瓶,列出方程组求解即可.【详解】解:设大盒每盒装x 瓶,小盒每盒装y 瓶.依题意得:3x 4y 1082x 3y 76+=⎧+=⎨⎩, 解此方程组,得{x 20y 12==.答:大盒每盒装20瓶,小盒每盒装12瓶.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程组求解.21.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A ,B 两种型号的设备,经过市场调查,购买一台A 型设备比购买一台B 型设备多花费2万元,购买2台A 型设备比购买3台B 型设备少花费6万元.(1)购买一台A 型设备、购买一台B 型设备各需要多少万元;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.【答案】(1)购买一台A 型设备需要12万元,购买一台B 型设备需要10万元;(2)三种购买方案,即A型设备0台,B 型设备10台;或A 型设备1台,B 型设备9台;或A 型设备2台,B 型设备8台【解析】【分析】(1)购买A 型的价格是a 万元,购买B 型的设备b 万元,根据购买一台A 型号设备比购买一台B 型号设备多2万元,购买2台A 型设备比购买3台B 型号设备少6万元,可列方程组求解.(2)设购买A 型号设备x 台,则B 型为(10-x )台,根据使治污公司购买污水处理设备的资金不超过105万元,进而得出不等式;【详解】解:(1)设:购买一台A 型设备需要a 万元 ,购买一台B 型设备需要b 万元.根据题意列方程组得:2,263.a b a b -=⎧⎨+=⎩解方程组得:12,10.a b =⎧⎨=⎩答:购买一台A 型设备需要12万元 ,购买一台B 型设备需要10万元 ;(2) 设购买A 型设备 x 台,则购买B 型设备 (10-x )台,根据题意可得:()121010105.x x +-≤解不等式得: 2.5.x ≤因为 x 为正整数,所以 x 可以取值 0 、 1 或 2.所以根据题意可以有三种购买方案,即A 型设备 0 台,B 型设备 10 台;或A 型设备 1 台,B 型设备 9 台;或A 型设备 2 台,B 型设备 8 台.【点睛】本题考查了一元一次不等式的应用,根据购买一台A 型号设备比购买一台B 型号设备多2万元,购买2台A 型设备比购买3台B 型号设备少6万元和根据使治污公司购买污水处理设备的资金不超过105万元,等量关系和不等量关系分别列出方程组和不等式求解.22.阅读下列材料:解答“已知2,1,0x y x y -=><且,试确定x y +的取值范围”有如下解法:解:∵2x y -=,∴x=y+2,又∵1x >,∴21y +>,即1y >-又0y <,∴10y -<<.…①同理得:12x <<.…②由①+②得1102,y x -+<+<+∴x y +的取值范围是02x y <+<.请按照上述方法,完成下列问题 :已知关于x y 、的方程组325233x y a x y a -=-⎧⎨+=+⎩的解都是正数. (1)求a 的取值范围;(2)已知4,a b -=且2b <,求+a b 的取值范围;(3) 已知a b m -=(m 是大于0的常数),且11,22b a b ≤+求的最大值.(用m 含的式子表示) 【答案】(1)1a >;(2)28a b -<+<(3)522m + 【解析】【分析】(1)先把a 当作已知求出x 、y 的值,再根据x 、y 的取值范围得到关于a 的一元一次不等式组,求出a 的取值范围即可;(2)根据阅读材料所给的解题过程,分别求得a 、b 的取值范围,然后再来求a+b 的取值范围; (3)根据(1)的解题过程求得a 、b 取值范围;结合限制性条件得出结论即可. 【详解】解:(1)解这个方程组的解为12x a y a =-⎧⎨=+⎩由题意,得1020a a ->⎧⎨+>⎩则原不等式组的解集为a >1;(2)∵a-b=4,a >1,∴a=b+4>1,∴b >-3,∴a+b >-2,又∵a+b=2b+4,b <2,∴a+b <8.故-2<a+b <8;(3)∵a-b=m ,∴a=b+m .由∵b ≤1,11522()2222a b b m b m ∴+=+++ ∴最大值为522m +【点睛】本题考查了一元一次不等式组的应用,解答本题的关键是仔细阅读材料,理解解题过程.23.小明家需要用钢管做防盗窗,按设计要求,其中需要长为0.8米的钢管100根,还需要长为2.5米的钢管32根,两种长度的钢管粗细必须相同;并要求这些用料不能是焊接而成的.经市场调查,钢材市场中符合这种规格的钢管每根长均为6米.(1)试问:把一根长为6米的钢管进行裁剪,有下面几种方法,请完成填空(余料作废).方法①:只裁成为0.8米的用料时,最多可裁7根;方法②:先裁下1根2.5米长的用料,余下部分最多能裁成为0.8米长的用料根;方法③:先裁下2根2.5米长的用料,余下部分最多能裁成为0.8米长的用料1 根.(2)分别用(1)中的方法②和方法③各裁剪多少根6米长的钢管,才能刚好得到所需要的相应数量的材料;(3)试探究:除(2)中方案外,在(1)中还有哪两种方法联合,所需要6米长的钢管与(2)中根数相同.【答案】(1)4;(2)24;4;(3)方法①与方法③联合【解析】【分析】(1)由总数÷每份数=份数就可以直接得出结论;(2)设用方法②剪x根,方法③裁剪y根6m长的钢管,就有x+2y=32,4x+y=100,由此方程构成方程组求出其解即可.(3)分别设方法①裁剪m根,方法③裁剪n根6m长的钢管和设方法①裁剪a根,方法②裁剪b根6m长的钢管,建立方程组求出其解即可.【详解】(1)(6-2.5)÷0.8=4…0.3,最多裁成0.8米长的用料4根,故答案为:4;(2)设用方法②剪x根,方法③裁剪y根6m长的钢管,由题意,得232, 4100, x yx y+=⎧⎨+=⎩解得:24,4. xy=⎧⎨=⎩答:用方法②剪24根,方法③裁剪4根6m长的钢管;(3)设方法①裁剪m根,方法③裁剪n根6m长的钢管,由题意,得7100, 232,m nn+=⎧⎨=⎩解得:1216 mn=⎧⎨=⎩∴m+n=2824428x y+=+=,m n x y∴+=+设方法①裁剪a根,方法②裁剪b根6m长的钢管,由题意,得74100,32,a bb+=⎧⎨=⎩解得:4,32,ab=-⎧⎨=⎩无意义,∴方法①与方法③联合,所需要6m长的钢管与(2)中根数相同.【点睛】本题考查了二元一次方程组的应用,二元一次方程组的解法的运用,解答时根据每份数×份数=总数建立方程是关键,注意分类讨论思想的运用.。
华师大版七年级下册数学期中考试试题含答案
华师大版七年级下册数学期中考试试卷一、单选题1.方程38x +=解为()A .5B .10C .12D .152.利用加减消元法解方程组3416,5614.x y x y +=⎧⎨-=⎩①②下列做法正确的是()A .要消去y ,可以将23①②⨯+⨯B .要消去x ,可以将()35⨯+⨯-①②C .要消去y ,可以将53⨯+⨯①②D .要消去x ,可以将()53⨯-+⨯①②3.不等式3x+2≥5的解集是()A .x≥1B .x≥73C .x≤1D .x≤﹣14.下列过程中,变形正确的是()A .由23x =得23x =B .由11132x x---=得()()21131x x --=-C .由12x -=得21x =-D .由()312x -+=得332x --=5.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是()A .3201036x y x y -=⎧⎨+=⎩B .3201036x y x y +=⎧⎨+=⎩C .3201036y x x y -=⎧⎨+=⎩D .3102036x y x y +=⎧⎨+=⎩6.若x=-3是方程2()6x m -=的解,则m 的值是()A .6B .-6C .12D .-127.不等式x+1≥2x ﹣1的解集在数轴上表示为()A .B .C .D .8.关于y 的方程ay -2=4与2y -5=-1的解相同,则a 的值为()A .2B .3C .4D .2-9.若m >n ,则下列不等式正确的是()A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n10.小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x 、y 分钟,则列出的二元一次方程组是()A .1x y {3200x 70y 3350+=+=B .x y 20{70x 200y 3350+=+=C .1x y {370x 200y 3350+=+=D .x y 20{200x 70y 3350+=+=二、填空题11.不等式812x ->的解集是______.12.已知x ,y 满足方程组2524x y x y +=⎧⎨+=⎩,则x ﹣y 的值=__________.13.有一个密码系统,其原理如下面的框图所示:当输出为10时,则输入的x =___________.14.小刚解出了方程组332x y x y -=⎧⎨+=∆⎩的解为4x y =⎧⎨=⎩.因不小心滴上了两滴墨水,刚好盖住了方程组和解中的两个数,则∆、W 分别为___________.15.若不等式211133x ax +-+>的解集是53x <,则a 的值为___________.16.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为26,请写出符合条件的所有x 的值_____.三、解答题17.(1)32126x x---=(2)0.10.30.020.0110.20.03x x -+-=.18.解方程组:(1)10216x y x y +=⎧⎨+=⎩(2)33814x y x y -=⎧⎨-=⎩19.(1)求不等式126x -<的所有负整数解;(2)解不等式:()()13211223x x --≥,并在数轴上把解集表示出来.20.已知42x y =⎧⎨=⎩与13x y =-⎧⎨=-⎩都满足等式y kx b =+.(1)求k 与b 的值;(2)求当5x =时,y 的值.21.如图,在数轴上,点A 、B 分别表示数1、23x -+.(1)求x 的取值范围;(2)试比较2x -+与23x -+的大小.22.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?23.已知关于x 、y 的二元一次方程组3x my 52x ny 6-=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,求关于a 、b 的二元一次方程组3()()52()()6a b m a b a b n a b +--=⎧⎨++-=⎩的解.24.某公司用火车和汽车运输两批物资,具体运输情况如下表所示:所用火车车皮数量(节)所用汽车数量(辆)运输物资总量(吨)第一批25130第二批43218试问每节火车车皮和每辆汽车平均各装物资多少吨?参考答案1.A【分析】直接进行移项解方程即可得到答案.【详解】解:∵38x+=∴83x=-解得5x=故选A.【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握基本知识进行求解. 2.D【分析】利用加减消元法判断即可.【详解】解:利用加减消元法解方程组34165614x yx y+=⎧⎨-=⎩①②,要消元y,可以将①×3+②×2;要消去x,可以将①×(-5)+②×3,故选D.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.A【详解】分析:根据一元一次不等式的解法即可求出答案.详解:3x+2≥5,3x≥3,∴x≥1.故选A.点睛:本题考查了一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.4.D【分析】根据等式的性质进行计算并作出正确的选择即可.【详解】A、在等式2x=3的两边同时除以2得到:x=32,故本选项错误;B、在等式x11x132---=的两边同时乘以6得到:2(x-1)-6=3(1-x),故本选项错误;C、在等式x-1=2的两边同时加上1得到x=3,故本选项错误;D、由-3(x+1)=2得到:-3x-3=2,故本选项正确;故选D.【点睛】本题考查了等式的性质.性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.5.B【详解】分析:根据等量关系“一本练习本和一支水笔的单价合计为3元”,“20本练习本的总价+10支水笔的总价=36”,列方程组求解即可.详解:设练习本每本为x元,水笔每支为y元,根据单价的等量关系可得方程为x+y=3,根据总价36得到的方程为20x+10y=36,所以可列方程为:3 201036 x yx y+⎧⎨+⎩==,故选B.点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.6.B【分析】把x=-3,代入方程得到一个关于m的方程,即可求解.【详解】解:把x=-3代入方程得:2(-3-m)=6,解得:m=-6.故选:B.【点睛】本题考查了方程的解的定义,理解定义是关键.7.B【分析】先求出不等式的解集,再根据不等式解集的表示方法,可得答案.【详解】移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:.故选B.【点睛】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.B【分析】求出第二个方程的解得到y的值,代入第一个方程即可求出a的值.【详解】解:由2y-5=-1,得到y=2,将y=2代入ay-2=4中,得:2a-2=4,解得:a=3.故选B.【点睛】此题考查了同解方程,同解方程即为两方程的解相同.9.B【分析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【详解】A、将m>n两边都减2得:m﹣2>n﹣2,此选项错误;B、将m>n两边都除以4得:m n44>,此选项正确;C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以﹣8,得:﹣8m<﹣8n,此选项错误,故选B.【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.10.D【详解】解:由他骑自行车和步行的时间分别为x、y分钟,根据关键语句“到学校共用时20分钟”可得方程:x+y=20,根据关键语句“骑自行车的平均速度是200米/分,步行的平均速度是70米/分.他家离学校的距离是3350米”可得方程:200x+70y=3350,两个方程组合可得方程组:x y20{200x70y3350+=+=.故选D.11.10x>【分析】按照去分母、移项、合并同类项的步骤求解即可.【详解】解:原不等式去分母得82x ->,移项得82x >+,合并同类项得10x >.故答案为:10x >.【点睛】题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.12.-1【分析】根据加减消元法,直接可求出x-y 的值.【详解】解:2524x y x y +=⎧⎨+=⎩①②②-①得:x-y=-1.故答案为-1.【点睛】此题主要考查了二元一次方程组的解法的应用,合理选择加减消元法求解即可,比较简单.13.2【分析】根据框图得出方程2x +6=10,解方程.即可【详解】解:由题意得:2x +6=10,解得:x =2,∴当输出为10时,则输入的x =2.故答案为:2.【点睛】本题考查一元一次方程的应用,读懂框图,正确列出方程是解答的关键.14.17,9【分析】把4x =代入33x y -=中求出y ,再把x ,y 代入另外一个不等式计算即可;【详解】将4x =代入33x y -=,∴123y -=,∴9y =,将4x =,9y =代入2x y +=△中,∴8917=+=V ;故答案是:17,9.【点睛】本题主要考查了二元一次方程组的求解,准确计算是解题的关键.15.5【分析】本题不等式211133x ax +-+>的解集是53x <,求得x 的解集,再根据解集即可求得a 的值.【详解】解:211133x ax +-+>,2131x ax ++>-,25x ax ->-,(2)5a x ->-∵不等式211133x ax +-+>的解集是53x <,∴20a -<,∴23a -=-,解得:5a =,故答案为:5.【点睛】此题考查了解一元一次不等式,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.16.2,8【解析】试题分析:根据输出结果,由运算程序求出所有x 的值即可.解:根据题意得:3x+2=26,解得:x=8;根据题意得:3x+2=8,解得:x=2,则所有正数x 的值为2,8.故答案为2,8.考点:有理数的混合运算.17.(1)174x =;(2)17x =-【分析】(1)先去分母,再解一元一次方程;(2)先把分母化成整数,在解一元一次方程;【详解】(1)32126x x---=,()3326x x --+=,3926x x --+=,417x =,174x =;(2)0.10.30.020.0110.20.03x x -+-=,321123x x -+-=,()()336221x x --=+,39642x x --=+,17x =-;【点睛】本题主要考查了一元一次方程的求解,准确计算是解题的关键.18.(1)64x y =⎧⎨=⎩;(2)21x y =⎧⎨=-⎩.【分析】(1)利用加减消元法,②-①即可求解;(2)利用加减消元法,由①×3-②求解即可.【详解】解:(1)10216x y x y +=⎧⎨+=⎩①②,②-①得:6x =,把6x =代入①得:4y =,方程缉的解为64x y =⎧⎨=⎩(2)33814x y x y -=⎧⎨-=⎩①②,①×3-②得:55y =-,即1y =-,将1y =-,①得:2x =,方程组的解为21x y =⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组,解二元一次方程组要利用消元的思想,消元的方法有:代入消元和加减消元.19.(1)2-、1-;(2)12x ≤,图见解析【分析】(1)先移项,合并同类项,把x 的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x 的系数化为1即可.【详解】解:(1)移项,得261x -<-,合并同类,得25x -<,系数化为1,得52x >-,故其所有负整数解为2-、1-;(2)去分母,得()()212921x x -≥-,去括号,得24189x x -≥-,移项,得41892x x --≥--,含并同类项,得2211x -≥-,系数化为1,得12x ≤,数轴如图:.【点睛】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.20.(1)1k =,2b =-;(2)3y =【分析】(1)将42x y =⎧⎨=⎩和13x y =-⎧⎨=-⎩分别代入y kx b =+,得到关于k 、b 的二元一次方程组,求解即可;(2)由(1)得2y x =-,将5x =代入,即可求得y 得值.【详解】解:(1)将42x y =⎧⎨=⎩和13x y =-⎧⎨=-⎩分别代入y kx b =+,得243k b k b =+⎧⎨-=-+⎩①②解得1k =,2b =-.(2)由(1)和2y x =-.将5x =代入2y x =-,得3y =.【点睛】本题考查了二元一次方程组的解法,以及求代数式的值,是基础知识要熟练掌握.21.(1)1x <;(2)223x x -+-+<【分析】(1)根据数轴上的点表示的数右边的总比左边的大,可得不等式,根据解不等式,可得答案;(2)根据作差法,即2(23)1x x x -+--+=-,根据(1)中x 得取值范围判断差的正负即可.【详解】解:(1)由数轴上的点表示的数右边的总比左边的大,得231x -+>,解得1x <;(2)2(23)1x x x -+--+=-,由1x <,得10x -<,∴2(23)0x x -+--+<∴223x x -+-+<.【点睛】本题考查了一元一次不等式,解题的关键运用作差法比较代数式的大小.22.(1)该店5月份购进甲种水果100千克,购进乙种水果50千克.(2)需要支付这两种水果的货款最少应是1500元.【分析】(1)设该店5月份购进甲种水果x 千克,购进乙种水果y 千克,根据总价=单价×购进数量,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a 千克,需要支付的货款为w 元,则购进乙种水果(120﹣a )千克,根据总价=单价×购进数量,即可得出w 关于a 的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再利用一次函数的性质即可解决最值问题【详解】(1)设该店5月份购进甲种水果x 千克,购进乙种水果y 千克,根据题意得:818170010201700300x y x y +=⎧⎨+=+⎩,解得:10050x y =⎧⎨=⎩,答:该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a 千克,需要支付的货款为w 元,则购进乙种水果(120﹣a )千克,根据题意得:w=10a+20(120﹣a )=﹣10a+2400,∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a ),解得:a≤90,∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500,∴月份该店需要支付这两种水果的货款最少应是1500元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,弄清题意,找准等量关系列出方程组,找出各数量间的关系列出函数解析式是解题的关键.23.3212 ab⎧=⎪⎪⎨⎪=-⎪⎩【分析】对比两个方程组,可得a+b就是第一个方程组中的x,即a+b=1,同理:a﹣b=2,可得方程组解出即可.【详解】∵关于x、y的二元一次方程组3x my52x ny6-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴关于a.b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩满足12a ba b+=⎧⎨-=⎩,解得:3212 ab⎧=⎪⎪⎨⎪=-⎪⎩.∴关于a.b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩的解是3212ab⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查解二元一次方程组,通过对比得出以a、b为未知数的方程组是解题关键. 24.每节火车车皮装物资50吨,每辆汽车装物资6吨.【分析】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得25130 43218x yx y+=⎧⎨+=⎩,求解即可;【详解】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得25130 43218 x yx y+=⎧⎨+=⎩,∴506xy=⎧⎨=⎩,∴每节火车车皮装物资50吨,每辆汽车装物资6吨.【点睛】本题考查二元一次方程组的应用,能够根据题意列出准确的方程组,并用加减消元法解方程组是关键.。
华师大版七年级下学期数学《期中考试题》附答案
华 东 师 大 版 七 年 级 下 学 期期 中 测 试 卷一、选择题(每小题3分,共24分)1. 下列方程中,是一元一次方程的是( ) A. ()232x x x x +-=+ B. ()40x x +-=C. 1x y +=D.10x y+= 2. 方程3221x x +=-的解为( ) A. 3x =- B. 1x =- C. 1x =D. 3x =3. 不等式12x ->的解集是( )A. 1x >B. 2x >C. 3x >D. 3x <4. 下列三条线段不能构成三角形的是( ) A. 4cm 、2cm 、5cm B. 3cm 、3cm 、5cm C. 2cm 、4cm 、3cmD. 2cm 、2cm 、6cm5. 下列图形具有稳定性的是( ) A. 正方形B. 矩形C. 平行四边形D. 直角三角形6. 已知24{328a b a b +=+=,则a+b 等于( )A. 2B.83C. 3D. 17. 正多边形的一个内角等于144°,则该多边形的边数是( ) A. 10B. 9C. 12D. 88. 如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有( )A 4种B. 5种C. 6种D. 7种二、填空题(每小题3分,共18分)9. 已知410x y --=,用含x 的代数式来表示y 为____________. 10. 将一副三角板,按如图方式叠放,那么α∠的度数是______.11. 如图,ABC 是等边三角形,点P 是ABC 内一点.APC △按顺时针方向旋转后与AP B '△重合,则旋转中心是_____,最小旋转角等于___°12. 一个两位数,个位数字与十位数字之和为12,如果交换个位数字与十位数字的位置,所得新数比原数大36,则原两位数为_________.13. 如图,将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,使圆上的点A 从原点运动至数轴上的点B ,则点B 表示的数是_______.14. 如图,A 、B 、C 分别是线段111A B B C C A 、、的中点,若111A B C △的面积是14,那么△ABC 的面积是________.三、解答题(共10小题,共78分)15. 解方程:()()552120x x ---= 16. 解方程:211011412x x x ++-=-. 17. 在y kx b =+中,当1x =时,4y =,当2x =时,10y =,求k 和b 的值. 18. 已知三角形两边a=3,b=7,第三边是c .(1)第三边c的取值范围是.(2)若第三边c的长为偶数,则c的值为.(3)若a<b<c,则c的取值范围是.19. 如图,已知△ABC是直角三角形,DE⊥AC于点E,DF⊥BC于点F.(1)请简述图①变换为图②的过程;(2)若AD=3,DB=4,则△ADE与△BDF 的面积之和为________. 20. 为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如表所示:(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?21. 一个正多边形中,一个内角的度数是它相邻的一个外角的度数的3倍.(1)求这个多边形的每一个外角的度数;(2)求这个多边形的边数.22. 如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A)23. 甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案.在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费,已知小红在同一商场累计购物x 元,其中200.x >(1)当300x =时,小红在甲商场需花费_______元,在乙商场需花费________元; (2)分别用含x 的代数式表示小红在甲、乙商场的实际花费;(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少. 24. 如图1,∠MON=90°,点A 、B 分别OM 、ON 上运动(不与点O 重合).(1)若BC 是∠ABN 的平分线,BC 的反向延长线与∠BAO 的平分线交于点D , ①若∠BAO=60°,则∠D=______°;②猜想:∠D 的度数是否随A 、B 的移动发生变化?并说明理由; (2)若∠ABC=13∠ABN ,∠BAD=13∠BAO ,则∠D=________°; (3)若将“∠MON=90°”改为“∠MON=()0180αα︒︒<<”,1ABC ABN n∠=∠, 1BAD BAO n∠=∠,其余条件不变,则∠D=________°(用含n 、α的代数式表示).答案与解析一、选择题(每小题3分,共24分)1. 下列方程中,是一元一次方程的是( ) A. ()232x x x x +-=+ B. ()40x x +-=C. 1x y +=D.10x y+= 【答案】A 【解析】 【分析】根据一元一次方程的定义逐个分析即可得出结论.【详解】A 、()232x x x x +-=+化简后为x-3=2x ,是一元一次方程;B 、化简后是4=0,不是方程;C 、不是一元一次方程;D 、不是一元一次方程; 故选A .2. 方程3221x x +=-的解为( ) A. 3x =- B. 1x =-C. 1x =D. 3x =【答案】A 【解析】 【分析】方程移项合并,把x 系数化为1,即可求出解. 【详解】方程移项合并得:x=-3, 故选A .【点睛】考查了解一元一次方程,解方程移项时注意要变号. 3. 不等式12x ->的解集是( ) A. 1x > B. 2x >C. 3x >D. 3x <【答案】C 【解析】 分析:先求出题中所给不等式的解集,再把所得结果与各选项对比即可得出结论. 详解:解不等式:12x ->, 移项得:21x >+,即3x >. 故选C.点睛:知道“解一元一次不等式的一般步骤”是解答本题的关键. 4. 下列三条线段不能构成三角形的是( ) A. 4cm 、2cm 、5cm B. 3cm 、3cm 、5cm C. 2cm 、4cm 、3cm D. 2cm 、2cm 、6cm【答案】D 【解析】 【分析】根据三角形的三边关系定理:两条较小的边的和大于最大的边,即可判断.【详解】A 、2+4>5,能构成三角形;B 、3+3>5,能构成三角形;C 、2+3>4,能构成三角形;D 、2+2<6,不能构成三角形. 故选D .考点:三角形的三边关系定理 5. 下列图形具有稳定性的是( ) A. 正方形 B. 矩形C. 平行四边形D. 直角三角形【答案】D 【解析】试题分析:直角三角形具有稳定性.故选D . 考点:1.三角形的稳定性;2.多边形.6. 已知24{328a b a b +=+=,则a+b 等于( ) A. 2 B.83C. 3D. 1【答案】C 【解析】 【分析】 详解】24,{328,a b a b +=+=①②由①+②得4a+4b=12,∴a+b=3,故选C.7. 正多边形的一个内角等于144°,则该多边形的边数是()A. 10B. 9C. 12D. 8【答案】A【解析】【分析】根据正多边形的每个内角相等,可得正多边形的内角和,再根据多边形的内角和公式,可得答案.【详解】设正多边形是n边形,由题意得(n-2)×180°=144°n,解得n=10,故选A.【点睛】本题考查了多边形的内角与外角,熟练掌握正多边形的内角相等以及多边形的内角和公式是解题的关键.8. 如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有()A. 4种B. 5种C. 6种D. 7种【答案】B【解析】分析:根据轴对称的定义及题意要求画出所有图案后即可得出答案:得到的不同图案有:共5个.故选B.二、填空题(每小题3分,共18分)9. 已知410x y --=,用含x 的代数式来表示y 为____________. 【答案】41y x =- 【解析】 【分析】把y 当作未知数,解关于y 的方程即可. 【详解】解:410x y --=, ∴-y=-4x+1, ∴41y x =-.故答案为:41y x =-.【点睛】本题考查了解一元一次方程的应用,关键是理解题意,含x 的代数式表示y 可理解为把x 当作已知数,把y 当作未知数,求出关于y 的方程的解,题型较好,但是一道比较容易出错的题目. 10. 将一副三角板,按如图方式叠放,那么α∠的度数是______.【答案】105° 【解析】 【分析】在Rt ABC 中90ACB ∠=,60A ∠=,而在Rt DCB △中,45DCB =∠,所以可以求出45ACD ∠=,利用三角形的外角性质可以得到AOD A ACD ∠=∠+∠,即可求解; 【详解】在Rt ABC 中90ACB ∠=,60A ∠=在Rt DCB △中,45DCB =∠∴ 45ACD ∠=∴ 6045105AOD A ACD ∠=∠+∠=+=即105α∠=故答案是:105.【点睛】本题主要考查角度的和差计算以及三角形的外角性质,熟练掌握三角形的外角性质是求解本题的关键.11. 如图,ABC 是等边三角形,点P 是ABC 内一点.APC △按顺时针方向旋转后与AP B △重合,则旋转中心是_____,最小旋转角等于___°【答案】 (1). A (2). 300° 【解析】 【分析】【详解】试题分析:关键是分清旋转中心,旋转方向,根据图形的特征求旋转角. 试题解析:根据旋转的性质可知,△APC 沿逆时针方向旋转后与△AP′B 重合, 则旋转中心是A ,最小旋转角等于360°-60°=300°.考点:1.旋转的性质;2.等边三角形的性质.12. 一个两位数,个位数字与十位数字之和为12,如果交换个位数字与十位数字的位置,所得新数比原数大36,则原两位数为_________. 【答案】48 【解析】 【分析】设原来的两位数的十位数字是a ,个位数字是b ,根据等量关系“个位数字与十位数字之和为12 ”、“交换个位与十位数字,则所得新数比原数大36”列出方程组并求解即可得. 【详解】设原来的两位数的十位数字是a ,个位数字是b ,由题意得a+b=1210a+b 36=10b+a ⎧⎨+⎩, 解得:48a b =⎧⎨=⎩,则原两位数为48, 故答案为48.【点睛】本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.13. 如图,将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,使圆上的点A 从原点运动至数轴上的点B ,则点B 表示的数是_______.【答案】-π 【解析】 【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点即可解答. 【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周, ∴OA 之间的距离为圆的周长=π,A 点在原点的左边. ∴A 点对应的数是-π. ∴点B 表示的数是-π 故答案为-π.【点睛】此题考查了数轴,关键是熟悉数轴的特点及圆的周长公式.14. 如图,A 、B 、C 分别是线段111A B B C C A 、、的中点,若111A B C △的面积是14,那么△ABC 的面积是________.【答案】2【解析】【分析】连接AB 1,BC 1,CA 1,设△ABC 的面积为S ,根据等底等高的三角形的面积相等求出△ABB 1,△A 1AB 1的面积,从而求出△A 1BB 1的面积为2S ,同理可求△B 1CC 1的面积,△A 1AC 1的面积,然后相加即可得到111A B C △的面积,再根据111A B C △的面积为14即可求得答案.【详解】如图,连接AB 1,BC 1,CA 1,设△ABC 的面积为S ,∵A 、B 分别是线段A 1B ,B 1C 的中点,∴1ABB ABC SS S ==,111A AB ABB S S S ==, ∴111112A BB A AB ABB S SS S S S =+=+=, 同理:11112S 2S B CC A AC S S ==,,∴111111111 7A B C A BB B CC A AC ABC SS S S S S =+++=, ∵111 14A B C S =,∴S=2,即△ABC 的面积为2,故答案为2.【点睛】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线把三角形进行分割是解题的关键.三、解答题(共10小题,共78分)15. 解方程:()()552120x x ---=【答案】x=7.【解析】【分析】按去括号、移项、合并同类项、系数化为1的步骤进行求解即可.【详解】去括号,得5x-25-24+2x=0,移项,得5x+2x=25+24,合并同类项,得7x=49,系数化为1,得x=7.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键. 16. 解方程:211011412x x x ++-=-. 【答案】2x =【解析】试题分析:先去分母,再去括号,最后移项合并同类项,化系数为1,从而得到方程的解.试题解析:6x +3-12=12x -10x -1,4x =8,x =2.17. 在y kx b =+中,当1x =时,4y =,当2x =时,10y =,求k 和b 的值.【答案】k=6,b=-2【解析】分析:把已知,x y 的值代入y kx b =+得到关于k b ,的方程组,解得k b ,的值.详解:当1x =时,4y =,当2x =时,10y =4.210k b k b +=⎧⎨+=⎩ 解得:62.k b =⎧⎨=-⎩点睛:考查待定系数法求一次函数解析式,是一种常见的方法,将,x y 的值代入,建立二元一次方程组,解方程即可.18. 已知三角形的两边a=3,b=7,第三边是c .(1)第三边c 的取值范围是 .(2)若第三边c 的长为偶数,则c 的值为 .(3)若a <b <c ,则c 的取值范围是 .【答案】(1)4<c <10;(2)c 取6或8;(3)7<c <10【解析】【分析】(1)根据第三边的取值范围是大于两边之差,而小于两边之和求解;(2)首先根据三角形的三边关系:第三边>两边之差4,而<两边之和10,再根据c为偶数解答即可;(3)首先根据三角形的三边关系:第三边>两边之差4,而<两边之和10,根据a<b<c即可得c的取值范围.【详解】解:(1)根据三角形三边关系可得4<c<10,(2)根据三角形三边关系可得4<c<10,因为第三边c的长为偶数,所以c取6或8;(3)根据三角形三边关系可得4<c<10,∵a<b<c,∴7<c<10.,故答案为4<c<10;6或8;7<c<10.【点睛】此题考查了三角形的三边关系,注意第三边的条件.19. 如图,已知△ABC是直角三角形,DE⊥AC于点E,DF⊥BC于点F.(1)请简述图①变换为图②的过程;(2)若AD=3,DB=4,则△ADE与△BDF的面积之和为________.【答案】(1)图①可以通过图形的变换得到图②,即把△ADE绕点D逆时针旋转90°得到△DA′F;(2)6. 【解析】【分析】(1)由题意可知∠EDF=90°,则图①可以通过图形的变换得到图②,即把△ADE绕点D逆时针旋转90°得到△DA′F;(2)由∠EDF=90°,可得∠ADE+∠FDB=90°,则有∠A′DB=90°,继而根据三角形面积公式进行计算即可. 【详解】(1)∵∠C=90°,∠DEF=90°,∠DFC=90°,∴四边形CEDF是矩形,∴∠EDF=90°,观察图形的变换可知DE=DF,∴图①可以通过图形的变换得到图②,即把△ADE绕点D逆时针旋转90°得到△DA′F;(2)∵图①可以通过图形的变换得到图②,即把△ADE绕点D逆时针旋转90°得到△DA′F,∴A′D=AD=3,∠A′DF=∠ADE,∵∠EDF=90°,∴∠ADE+∠FDB=90°,∴∠A′DF+∠FDB=90°,即∠A′DB=90°,∴△ADE与△BDF的面积之和S=S△A′DB =12×3×4=6,故答案为6.【点睛】本题考查了旋转的性质,三角形的面积等,熟练掌握旋转的性质“对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角等于旋转角”是解题的关键.20. 为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如表所示:(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?【答案】(1)商场购进甲种节能灯40只,购进乙种节能灯60只;(2)商场共计获利1300元.【解析】【分析】(1)仔细审题,找到等量关系:甲、乙两种节能灯共100只,购进两种节能灯共计3300元,设出未知数,列方程组求解即可;(2)然后根据利润=售价-进价,可求解.【详解】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意得:30x35y3300x y100+=⎧+=⎨⎩,解得:{x 40y 60==, 答:商场购进甲种节能灯40只,购进乙种节能灯60只;(2)40×(40-30)+60×(50-35)=1300(元),答:商场共计获利1300元.【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组求解.21. 一个正多边形中,一个内角的度数是它相邻的一个外角的度数的3倍.(1)求这个多边形的每一个外角的度数;(2)求这个多边形的边数.【答案】(1)45°;(2)8.【解析】【分析】(1)根据相邻的内角和外角互补结合已知条件即可求得答案;(2)根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角的个数,即多边形的边数.【详解】(1)180×131+=45°, 答:这个多边形的每一个外角的度数为45°;(2)360°÷45°=8,答:这个多边形的边数为8.【点睛】本题考查了多边形的内角与外角.根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.22. 如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)再在图中画出△ABC 的高CD ;(3)在图中能使S △PBC =S △ABC 的格点P 的个数有 个(点P 异于A )【答案】(1)见解析;(2)见解析;(3)4.【解析】【分析】整体分析:(1)根据平移的要求画出△A´B´C´;(2)延长AB,过点C作AB延长线的垂线段;(3)过点A作BC的平行线,这条平行线上的格点数(异于点A)即为结果.【详解】(1)如图所示(2)如图所示.(3)如图,过点A作BC的平行线,这条平行线上的格点数除点A外有4个,所以能使S△ABC=S△PBC的格点P的个数有4个,故答案为4.23. 甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案.在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费,已知x>小红在同一商场累计购物x元,其中200.x 时,小红在甲商场需花费_______元,在乙商场需花费________元;(1)当300(2)分别用含x的代数式表示小红在甲、乙商场的实际花费;(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少.【答案】(1)280,270;(2)在甲商场所花费用为(0.8x+40)元;在乙商场所花费用为(0.85x+15)元;(3)见解析. 【解析】【分析】(1)在甲商场累计购物超过200元,超出200元的部分按80%收费,则多出的100元按80%收费,于是得到小红在甲商场所花费用为200+(300-200)×80%;在乙商场累计购物超过100元,超出100元的部分按85%收费,则多出的200元按85%收费,于是得到小红在乙商场所花费用为100+(300-100)×80%;(2)与(1)的思路一样,用x代替300即可;(3)讨论:当0.8x+40>0.85x+15时,小红在乙商场购物的实际花费少;当0.8x+40=0.85x+15时,小红在甲乙商场购物的实际花费一样;当0.8x+40<0.85x+15时,小红在甲商场购物的实际花费少,然后分别解不等式或方程确定x的范围或值即可.【详解】(1)当x=300时,小红在甲商场所花费用为200+(300-200)×80%=280(元);在乙商场所花费用为100+(300-100)×85%=270(元),故答案为280,270;(2)x>200,小红在甲商场所花费用为200+(x-200)×80%=(0.8x+40)元;在乙商场所花费用为100+(x-100)×85%=(0.85x+15)元;(3)当0.8x+40>0.85x+15时,解得x<500,所以当200<x<500时,小红在乙商场购物的实际花费少;当0.8x+40=0.85x+15时,解得x=500,所以当x=500时,小红在甲乙商场购物的实际花费一样;当0.8x+40<0.85x+15时,解得x>500,所以当x>500时,小红在甲商场购物的实际花费少.【点睛】本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.24. 如图1,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).(1)若BC是∠ABN的平分线,BC的反向延长线与∠BAO的平分线交于点D,①若∠BAO=60°,则∠D=______°;②猜想:∠D 的度数是否随A 、B 的移动发生变化?并说明理由;(2)若∠ABC=13∠ABN ,∠BAD=13∠BAO ,则∠D=________°; (3)若将“∠MON=90°”改为“∠MON=()0180αα︒︒<<”,1ABC ABN n∠=∠, 1BAD BAO n∠=∠,其余条件不变,则∠D=________°(用含n 、α的代数式表示).【答案】(1)①45;②∠D 的度数不变,理由见解析;(2)30;(3)n α. 【解析】【分析】(1)①先求出∠ABN=150°,再根据角平分线得出∠CBA=12∠ABN=75°、∠BAD=12∠BAO=30°,最后由外角性质可得∠D 度数; ②设∠BAD=α,利用外角性质和角平分线性质求得∠ABC=45°+α,利用∠D=∠ABC-∠BAD 可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,根据∠D=∠ABC-∠BAD 可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ、∠ABC=n α+β,由∠D=∠ABC-∠BAD 得出答案.【详解】(1)①∵∠BAO=60°、∠MON=90°,∴∠ABN=150°,∵BC 平分∠ABN 、AD 平分∠BAO ,∴∠CBA=12∠ABN=75°,∠BAD=12∠BAO=30°, ∴∠D=∠CBA-∠BAD=45°,故答案为45;②∠D 的度数不变.理由是:设∠BAD=α,∵AD 平分∠BAO ,∴∠BAO =2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC 平分∠ABN ,∴∠ABC=45°+α,∴∠D=∠ABC-∠BAD=45°+α-α=45°;(2)设∠BAD=α,∵∠BAD=13∠BAO , ∴∠BAO=3α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+3α,∵∠ABC=13∠ABN , ∴∠ABC=30°+α,∴∠D=∠ABC-∠BAD=30°+α-α=30°,故答案为30;(3)设∠BAD=β,∵∠BAD=1n∠BAO , ∴∠BAO=nβ,∵∠AOB=α°,∴∠ABN=∠AOB+∠BAO=α+nβ,∵∠ABC=1n ∠ABN , ∴∠ABC=nα+β, ∴∠D=∠ABC-∠BAD=n α+β-β=n α, 故答案为nα.【点睛】本题主要考查角平分线和外角的性质,熟练掌握三角形的外角性质和角平分线的性质是解题的关键.。
华师大版七年级下册数学期中考试试题及答案
华师大版七年级下册数学期中考试试卷一、单选题1.下列方程是一元一次方程的是()A .0x =B .23x y -=C .231x x +=D .12x=2.若a b >,则下列结论不一定成立的是()A .a c b c +>+B .22ac bc >C .22a b -<-D .a m b m->-3.把方程1136x x +-=去分母,下列变形正确的是()A .()211x x -+=B .()216x x -+=C .211x x -+=D .216x x -+=4.下列关系式中不含1x =-这个解的是()A . 211x +=-B .211x +>-C .213x -+≥D .213x --≤5.下列各组数值中,哪个是方程 26x y +=的解()A .12x y =⎧⎨=⎩B .13x y =-⎧⎨=⎩C .41x y =⎧⎨=⎩D .22x y =-⎧⎨=⎩6.关于x 的方程26kx x =+与213x -=的解相同,则k 的值为()A .3B .4C .5D .67.不等式组213113x x -<⎧⎪⎨-≤⎪⎩的整数解有()A .3个B .4个C .5个D .6个8.由方程组54a m b m +=-⎧⎨-=⎩,可得a 与b 之间的关系是()A .1a b +=B .1a b +=-C .9a b +=D .9a b +=-9.若不等式组2425x a x b +>⎧⎨-<⎩的解集是02x <<,则 a b +的值是()A .1B .2C .3D .410.如图,把一个长为26cm ,宽为14cm 的长方形分成五块,其中两个大长方形和两个大正方形分别相同,则中间小正方形的边长为()A .4B .5C .6D .7二、填空题11.已知关于x 的方程326x a +=的解是x a =-,则a 的值是___________.12.已知方程3260x y --=,用含x 的代数式表示y ,则y =________.13.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是_____.14.一个工程队原定在10天内至少要挖土3600m ,前两天一共完成了3120m ,由于工程调整工期,需要提前两天完成挖土任务,则以后的几天内每天至少要挖土__________3m .15.有一个三位数,将最左边的数字移到最右边,则它比原来的数小45,又知原来的三位数的百位上的数的9倍比十位上的数与个位上的数组成的两位数小3,则原来的数是______.三、解答题16.解方程3142125x x -+=-.17.解下列方程组:(1)3229y xx y =-⎧⎨+=-⎩(2)27838100x y x y -=⎧⎨--=⎩18.解不等式组:()()2211282x x x x ⎧+>⎪⎨-≥--⎪⎩19.已知关于x ,y 的二元一次方程组1012px my qx ny -=⎧⎨+=⎩的解是24x y =⎧⎨=⎩试求关于a ,b 的二元一次方程组()()()()1012p a b m a b q a b n a b ⎧+--=⎪⎨++-=⎪⎩的解.20.已知关于x y 、的方程组3{26x y x y a-=+=的解满足不等式3x y +<,求实数a 的取值范围.21.某货运公司要运输两批货物,需使用水陆两类交通工具.具体运输情况如下表所示:所用汽车数量/辆所用轮船数量/艘运输货物总量/吨第一批5120030第二批3240018请你根据以上信息,计算每辆汽车和每艘轮船平均各装货物多少吨.22.(1)(阅读理解)“a ”的几何意义是:数a 在数轴上对应的点到原点的距离,所以“2a ≥”可理解为:数a 在数轴上对应的点到原点的距离不小于2,则:①“2a <”可理解为;②请列举两个符号不同的整数,使不等式“||2a >”成立,列举的a 的值为和.我们定义:形如“||x m ≤,||x m ≥,||x m <,||x m >”(m 为非负数)的不等式叫做绝对值不等式,能使一个绝对值不等式成立的所有未知数的值称为绝对值不等式的解集.(2)(理解应用)根据绝对值的几何意义可以解一些绝对值不等式.由上图可以得出:绝对值不等式1x >的解集是1x <-或1x >,绝对值不等式3x ≤的解集是33x -≤≤.则:①不等式4x ≥的解集是.②不等式1||22x <的解集是.(3)(拓展应用)解不等式134x x ++->,并画图说明.23.水是生命之源,“节约用水,人人有责”.为了加强公民的节水意识,合理利用水资源,某市居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水及阶梯计费价格表的部分信息(注:水费按月份结算,3m 表示立方米)价目表(水费按月结算)每户每月用水量(3m )自来水销售价格(元3/m )污水处理价格(元3/m )不超出36m 的部分a0.80超出36m 不超出310m 的部分b0.80超出310m 的部分7.200.80(注:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用).已知小齐家2021年一月份用水37m ,交水费23元,二月份用水39m ,交水费33元.(1)请你根据以上信息,求表中a ,b 的值;(2)若小齐家七、八月份共用水320m ,其中七月份的用水量低于八月份的用水量,共缴水费79元,则小齐家七、八月份的用水量各是多少?参考答案1.A 【分析】根据一元一次方程的定义,含有1个未知数,且未知数的次数是1的方程,据此即可判断.【详解】选项A 、该方程是一元一次方程,故本选项符合题意;选项B 、该方程中含有2个未知数,不是一元一次方程,故本选项不符合题意;选项C 、该方程未知数项的最高次数是2,不是一元一次方程,故本选项不符合题意;选项D 、该方程不是整式方程,故本选项不符合题意.故选A .【点睛】本题考查了一元一次方程的定义,能熟记一元一次方程的定义的内容是解此题的关键.2.B 【分析】根据不等式的性质分别进行判断,即可得出结论.【详解】解:∵a b >,A 、根据不等式的基本性质1,得a c b c +>+,故此结论成立,不符合题意;B 、当0c =时,22ac bc =,故此结论不一定成立,符合题意;C 、根据不等式的基本性质3,得22a b-<-,故此结论成立,不符合题意;D 、根据不等式的基本性质1,得a m b m ->-,故此结论成立,不符合题意.故选:B .【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.3.B 【分析】方程1136x x +-=去分母时,方程两端同乘各分母的最小公倍数6即可.【详解】解:去分母得:2x -(x +1)=6,去括号得:2x-x-1=6.故选B.【点睛】本题考查了解一元一次方程,去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.4.B【分析】把x=-1代入各个代数式,满足关系式成立时,它就是该关系式的解.【详解】解:当x=-1时,2x+1=-1,-2x+1=3≥3,-2x-1=1≤3,所以x=-1满足选项A、C、D,因为-1不大于-1,所以x=-1不满足B.故选:B.【点睛】本题考查了等式、不等式的解及解的判断方法.理解“≥”“≤”是关键.5.C【分析】本题较简单,只要用代入法把x,y的值一一代入,根据解的定义判断即可.【详解】解:A、将12xy=⎧⎨=⎩代入方程 26x y+=,得:左边=1+4=5≠右边,故此选项不是方程的解,不符合题意;B、将13xy=-⎧⎨=⎩代入方程 26x y+=,得左边=-1+6=5≠右边,故此选项不是方程的解,不符合题意;C、将41xy=⎧⎨=⎩代入方程 26x y+=,得左边=4+2=6=右边,故此选项是方程的解,符合题意;D、将22xy=-⎧⎨=⎩代入方程 26x y+=,得左边=−2+4=2≠右边,故此选项不是方程的解,不符合题意.故选:C .【点睛】此题考查了二元一次方程的解,解题关键掌握二元一次方程的解的定义及判断方法.6.C 【分析】先解方程213x -=,再把解代入26kx x =+,再次解方程可得.【详解】解:解方程213x -=得,x=2,把x=2代入方程26kx x =+得,2k=4+6,解得:k=5.故选:C .【点睛】理解方程的解和解一元一次方程是关键.7.C 【分析】先根据一元一次不等式组的解法求出x 的取值范围,然后找出整数解的个数.【详解】解:213113x x -<⎧⎪⎨-≤⎪⎩①②解①得:x <2,解②x ≥-3,则不等式组的解集为:-3≤x <2,整数解为:-3,-2,-1,0,1,共5个.故选:C .【点睛】此题考查了是一元一次不等式组的整数解,解答本题的关键是根据x 的取值范围,得出x 的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.B 【分析】把原方程组化为54a m b m +=-⎧⎨-=⎩①②,由①+②即可求解.【详解】由54a m b m +=-⎧⎨-=⎩可得54a m b m +=-⎧⎨-=⎩①②,①+②得,1a b +=-.故选B .【点睛】本题考查了二元一次方程组的解法,利用整体思想是解决问题的关键.9.A 【分析】先分别用a 、b 表示出各不等式的解集,然后根据题中已知的解集,进行比对,从而得出两个方程,解答即可求出a 、b ,由此即可求解.【详解】24{25x a x b +->①<②,∵由①得,x >4-2a ;由②得,x <52b+,∵不等式组24{25x a x b +-><的解是0<x <2,∴此不等式组的解集为:4-2a <x <52b+,∴4-2a =0,52b+=2,解得a =2,b =-1,∴a +b =1.故选A .【点睛】本题考查了根据不等式组的解集的情况求参数,熟练掌握不等式组的解法是解题的关键.10.C 【分析】可以设大正方形的边长为x cm ,设小正方形的边长为y cm ,根据大长方形的长为26cm ,宽为14cm 可以得到一个方程组,解得y ,即可得小正方形的边长.【详解】解:设大正方形的边长为x cm ,设小正方形的边长为y cm ,根据题意得:()22614x y x x y +=⎧⎨+-=⎩,解得:106x y =⎧⎨=⎩,故小正方形的边长为6cm .故选:C .【点睛】本题考查了二元一次方程组的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.11.-6【分析】根据方程的解的概念将x a =-代入原方程,然后求解.【详解】解:∵关于x 的方程326x a +=的解是x a =-,∴326a a -+=,解得:6a =-故答案为:-6.【点睛】本题考查方程的解及解一元一次方程,掌握概念准确代入计算是解题关键.12.362x -【分析】把含y 的项放到方程左边,移项,化系数为1,求y 即可【详解】解:3260x y --=263y x -=-632xy -=-,即362x y -=故答案为:362x -【点睛】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项、系数化1就可用含y 的式子表示x 的形式.13.a ≤2.【分析】分别求解两个不等式,当不等式“大大小小”时不等式组无解,【详解】解:21322x a x a >+⋯⋯=⎧⎨<-⋯⋯=⎩①②∴不等式组的解集是a 2x 3a 2+<<-∵不等式组无解,即a 23a 2+≥-,解得:a 2≤【点睛】本题考查了求不等式组的解集和不等式组无解的情况,属于简单题,熟悉无解的含义是解题关键.14.80【分析】设以后几天内,平均每天要挖掘xm 3土方,根据题意可知原定在10天,已经干了两天,还要求提前2天,即为要6天至少挖掘(600-120)m 3的土方,根据题意可得不等式,解不等式即可.【详解】设平均每天挖土xm 3,由题意得:(10﹣2﹣2)x ≥600﹣120,解得:x ≥80.答:平均每天至少挖土80m 3.故答案为:80.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出不等关系,正确列出不等式,注意本题中提前两天完成任务,故实际挖土时间只有8天.15.439【分析】设原来数的百位数为x ,十位数与个位数组成的两位数为y .由题意得可得方程组100451093x y y x x y +-=+⎧⎨+=⎩①②,解方程组求得x =4,y =39,由此即可得原来的三位数为439.【详解】设原来数的百位数为x ,十位数与个位数组成的两位数为y .由题意得:100451093x y y x x y +-=+⎧⎨+=⎩①②把②代入①可得:100x +9x +3-45=10+x109x -42=90x +30+x18x =72x =4把x =4代入②可得:y =39即:原来的三位数为439.故答案为:439.【点睛】本题考查了二元一次方程组的应用,正确列出方程组100451093x y y x x y +-=+⎧⎨+=⎩①②是解决问题的关键.16.x =﹣17.【分析】解一元一次方程,先去分母,然后去括号,移项,合并同类项,最后系数化1.【详解】解:去分母得:5(3x ﹣1)=2(4x +2)﹣10去括号得:15x ﹣5=8x +4﹣10移项得:15x ﹣8x =4﹣10+5合并同类项得:7x =﹣1系数化为得:x =﹣17.【点睛】本题考查解一元一次方程,掌握计算步骤,正确计算是解题关键.17.(1)57x y =⎧⎨=-⎩;(2) 1.20.8x y =⎧⎨=-⎩【分析】(1)利用代入消元法解方程组即可;(2)利用加减消元法解方程组即可.【详解】解:()13229y x x y =-⎧⎨+=-⎩①②把①代入②得,()2329x x +-=-,解得,5x =③.把③代入①得,7y =-,所以原方程组的解为57x y =⎧⎨=-⎩;()227838100x y x y -=⎧⎨--=⎩①②由①3⨯-②2⨯,得54y -=,解得,0.8y =-,把0.8y =-代入①得, 1.2x =,所以原方程组的解是 1.20.8x y =⎧⎨=-⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.42x -<≤-【分析】分别求出两个一元一次不等式的解集,即可确定不等式组的解集.【详解】()()22,1128,2x x x x ⎧+>⎪⎨-≥--⎪⎩①②解不等式①得,4x >-,解不等式②得,2x -≤.把不等式①和②的解集在数轴上表示为:所以原不等式组的解集为42x -<≤-.【点睛】本题考查了一元一次不等式组的解法,先求出每个不等式的解,然后求出共同的解,即为不等式组的解.19.31a b =⎧⎨=-⎩【分析】根据二元一次方程组的解的定义可设a b x +=,a b y -=,则可得出24a b a b +=⎧⎨-=⎩,解此方程组后即可求解.【详解】解:设a b x +=,a b y -=,则由1012px my qx ny -=⎧⎨+=⎩的解是24x y =⎧⎨=⎩可知,24a b a b +=⎧⎨-=⎩,解得31a b =⎧⎨=-⎩.所以原方程组的解为31a b =⎧⎨=-⎩.【点睛】本题考查了二元一次方程组的解的定义及解二元一次方程组,熟练掌握解二元一次方程组的方法是解题的关键.20.1a <【详解】解:两式相加得,363x a =+解得21x a =+将21x a =+代入,求得:22y a =-∵3x y +<∴21223a a ++-<即44a <,∴1a <21.每辆汽车和每艘轮船平均各装货物 6吨和 20000吨【分析】设每辆汽车平均装货物 x 吨,每艘轮船平均装货物 y 吨,根据“5辆汽车和1艘轮船的运输货物总量为20030吨及3辆汽车和2艘轮船的运输货物总量为40018吨”列出方程组,解方程组即可求解.【详解】设每辆汽车平均装货物 x 吨,每艘轮船平均装货物 y 吨,根据题意得:520030,3240018,x y x y +=⎧⎨+=⎩解得:6,20000.x y =⎧⎨=⎩答:每辆汽车和每艘轮船平均各装货物 6吨和 20000吨.【点睛】本题考查了二元一次方程组是应用,根据题意正确列出二元一次方程组是解决问题的关键.22.(1)①数a 在数轴上对应的点到原点的距离小于2;②-3;3;(2)①4x ≤-或4x ≥;②44x -<<;(3)1x <-或3x >,见解析【分析】(1)①类比题目所给的信息即可解答;②写出符合题意的两个整数即可(答案不唯一);(2)①类比题目中的解题方法即可解答;②类比题目中的解题方法即可解答;(3)根据绝对值的几何意义可知,不等式134x x ++->的解集,就是数轴上表示数x 的点到表示1-与3的点的距离之大于4的所有x 的值,由此即可确定不等式134x x ++->的解集.【详解】()1①由题意可得,“2a <”可理解为数a 在数轴上对应的点到原点的距离小于2.故答案为:数a 在数轴上对应的点到原点的距离小于2.②使不等式“||2a >”成立的整数为3-,3(答案不唯一,合理即可).故答案为:3-,3.()2①不等式4x ≥的解集是4x ≤-或4x ≥.故答案为:4x ≤-或4x ≥.②不等式1||22x <的解集是44x -<<.故答案为:44x -<<.()3根据绝对值的几何意义可知,不等式134x x ++->的解集就是数轴上表示数x 的点,到表示1-与3的点的距离之和大于4的所有x 的值,如下图所示,可知不等式134x x ++->的解集是1x <-或3x >.【点睛】本题考查了绝对值的几何意义,利用数形结合是解决本题的关键.23.(1) 2.204.20a b =⎧⎨=⎩;(2)小齐家七月份的用水量为39m ,八月份的用水量为311m 【分析】(1)根据“一月份用水37m ,交水费23元,二月份用水39m ,交水费33元”列出关于a 、b 的方程组求解即可得出答案;(2)设小齐家七月份的用水量为3m x ,则八月份的用水量为()320m x -,根据题意先得出x 的范围,再分06x <≤,610x <<两种情况根据“水费=自来水费用+污水处理费用”即可求出答案.【详解】解:()1由题意得,()()()()60.800.8023,60.8030.8033,a b a b ⎧+++=⎪⎨+++=⎪⎩解得 2.20,4.20.a b =⎧⎨=⎩()2设小齐家七月份的用水量为3m x ,则八月份的用水量为()320m x -.因为20x x <-,所以 10x <,即七月份的用水量低于310m .①当06x <≤时,缴费总量为:()2.206 2.204 4.2020107.20200.8079x x +⨯+⨯+--⨯+⨯=,解得,3965x =>不合题意,舍去.②当610x <<时,缴费总量为:()()6 2.206 4.206 2.204 4.2020107.20200.8079x x +-⨯+⨯+⨯+-⨯-⨯+⨯=解得,9x =,此时2011x -=,符合题意.答:小齐家七月份的用水量为39m ,八月份的用水量为311m .【点睛】本题考查了二元一次方程组的应用,读懂题意找到等量关系式是解题的关键.。
2022-2023学年华师大版七年级下数学期中试卷(含解析)
2022-2023学年初中七年级下数学期中试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:130 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1. 下列各式中,是一元一次方程的是 A.B.C.D.2. 下列运算正确的是 ( )A.B.C.D.3. 已知是二元一次方程的解,则( )A.B.C.D.4. 已知,为任意实数,则下列不等关系中,正确的是( )A.B.()2x +3−1=x +34y −23−5x +6=0x 27x +(−3=3x −2)23⋅2=6a 3a 2a 62⋅4=8x 3x 5x 83x ⋅3=9x 4x 45⋅5=10x 7y 7y 14{x =−2y =1x +3ky =4k =13−3122a >bc ac >bca −c >b −ca +c <b +cC.D.5. 下列运用等式的性质,变形不一定正确的是( )A.若=,则=B.若=,则C.若=,则=D.若=,则=6. 不等式的解集在数轴上表示正确的是( )A.B.C.D.7. 某商场把一双钉鞋按标价的八折出售,仍可获利.若该双钉鞋的进价为元,则标价为( )A.元B.元C.元D.元8. 若满足不等式的最大整数解为,最小整数解为,则为( )A.B.C.D.a +c <b +ca >bc 2c 2x y x +6y +6x y =x a y bx y ax ayx y 6−x 6−yx +2≥320%10014516518015020<5−2(2+2x)<50a b a +b −15−16−17−189. 如图,在 中, , ,点从点出发以每秒的速度向点运动,点从点同时出发以每秒 的速度向点运动,其中一个动点到达端点时,另一个动点也随之停止运动,当时,点、点运动的时间是( )A.秒B.秒C.秒D.秒10. 一家手机商店的某品牌手机原价元,先提价,再降价出售.现价和原价相比,结论是( )A.价格相同B.原价高C.现价高D.无法比较11. 若正方形的边长增加,它的面积就增加,则正方形的边长原来是 A.B.C.D.12. 不等式组的解集为( )A.B.C.D.无解卷II (非选择题)△ABC AB =20cm AC =12cm P B 3cm A Q A 2cm C AP =AQ P Q 43.532.548001101103cm 39cm ()8cm6cm5cm10cm{8x +5>9x +6,2x −1<7−1<x <4x <−1x <4二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )13. 若是一元一次方程,则等于________.14. 定义新运算:对于任意实数,,都与,若的值小于,请列出不等式是________.15. 已知,且,则的取值范围是________.16. 如图所示,甲从点以的速度,乙从点以的速度,同时沿着边长为的正方形按…的方向行走.当乙第一次追上甲时,在正方形的________边上.(用大写字母表示)17. 定义一种运算法则“”如下:例如:,若,则的取值范围是________.18. 不等式组,的解集是,则________.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )19. 解方程:.20. 解方程组:21. 解不等式组:并把解集在数轴上表示出来.22. 若关于,的二元一次方程组和有相同的解,求的值.(m −2)=6x |2m−3|m a b a ⊗b =a(a +b)−13⊗x 122x −y =4y ≤3x A 66m/min B 76m/min 100m A →B →C →D →A ⊗a ⊗b ={a(a >b),b(a ≤b).1⊗2=2(−3x +5)⊗11=11x {x −3<a x +1≥0−1≤x <4a =1−=x −12x +23{2x −3y =4,7x +6y =25. 2x −1<3,−≤1,2x −135x +12x y {2x +5y =−26,ax −by =−4{3x −5y =36,bx +ay =−8(2a +b)201023. 一个长方体合金底固长、宽、高,现要压成新的长方体,其底固为边长的正方形,求新长方体的高.24. 已知关于,的方程组的解是一对正数,求的取值范围.25. 对,定义一种新运算,规定:(其中,均为非零常数).例如:,.已知,.①求,的值;②关于的不等式组求的取值范围;当时,对任意有理数,都成立,请直接写出,满足的关系式. 26. 某市教育局计划购买台阅卷扫描仪,有,两种型号可供选择,其中型号功能多一点.已知购买型号台和型号台共需要万元;购买型号台和型号台共需要万元.求,两种型号扫描仪的单价;若购买阅卷扫描仪的费用不超过万元.请你通过计算说明,共有几种购买方案?在的购买方案中,教育局想多购买功能多一点的阅卷扫描仪,应选择哪一方案?806010040x y {x +y =3a +9,x −y =5a −1a x y F F (x,y)=(3x −y)(mx +ny)m n F (1,1)=2m +2n F (−1,0)=3m (1)F (1,−1)=−8F (1,2)=13m n a {F (a,3a +1)>−95,F (5a,2−3a)≥340.a (2)≠x 2y 2F (x,y)=F (y,x)x y m n 27A B B A 3B 227A 5B 343(1)A B (2)137(3)(2)参考答案与试题解析2022-2023学年初中七年级下数学期中试卷一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1.【答案】D【考点】一元一次方程的定义【解析】只含有一个未知数(元),并且未知数的指数是(次)的方程叫做一元一次方程,它的一般形式是,是常数且.【解答】解:、是代数式,不是方程,不是一元一次方程;、含有两个未知数,不是一元一次方程;、未知数的最高次幂为,不是一元一次方程;、符合一元一次方程的定义.故选.2.【答案】B【考点】解一元一次方程【解析】直接利用单项式乘以单项式运算法则求出即可.【解答】解:.,故此选项错误;.,故此选项正确;.,故此选项错误;.,故此选项错误;故选:.3.1ax +b =0(a b a ≠0)A B C 2D D A 3⋅2=6a 3a 2a 5B 2⋅4=8x 3x 5x 8C 3x ⋅3=9x 4x 5D 5⋅5=25y 7y 7y 14B【答案】D【考点】二元一次方程的解【解析】把二元一次方程的解代入方程,再求出的值即可.【解答】解:是二元一次方程的解,代入得:,解得:.故选.4.【答案】B【考点】不等式的性质【解析】根据不等式的基本性质对各选项分析判断后利用排除法求解.【解答】解:,不等式两边都乘以,当时,不等号的方向改变,原变形错误,故不符合题意;,不等式两边都减去,不等号的方向不变,原变形正确,故符合题意;,不等式两边都加上,不等号的方向不变,原变形错误,故不符合题意;.不等式的两边都乘以,当时,变为等式,原变形错误,故不符合题意.故选.5.【答案】B【考点】等式的性质【解析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或k ∵{x =−2y =1x +3ky =4∴−2+3k ×1=4k =2D A c c <0A B c B C c C D c 2c =0D B除以)同一个不为数(或字母),等式仍成立.【解答】、若=,则=是正确的,不符合题意;、若=,则=是正确的,不符合题意;、若=,当时,则,原来的计算是错误,符合题意;、若=,则=是正确的,不符合题意.6.【答案】D【考点】解一元一次不等式在数轴上表示不等式的解集【解析】根据解一元一次不等式基本步骤:移项、合并同类项可得.【解答】解:原不等式可化为,解得.故选.7.【答案】D【考点】一元一次方程的应用——打折销售问题【解析】本题考查了一元一次方程的应用.【解答】解:设标价为元,由题意,得,解得:.即标价为元.故选.8.【答案】0A x y x +6y +6B x y ax ay C x y ≠0a ≠b ≠0≠x a y b D x y 6−x 6−y x ≥3−2x ≥1D x 80%x −100=100×20%x =150150DC【考点】解一元一次不等式一元一次不等式的整数解【解析】根据不等式可以求得的取值范围,从而可以得到、的值,进而求得的值.【解答】解:∵,解得,,∵不等式的最大整数解为,最小整数解为,∴,,∴.故选.9.【答案】A【考点】一元一次方程的应用——其他问题【解析】设运动时间为t 秒时,AP=AQ ,根据点P 、Q 的出发点及速度,即可得出关于t 的一元一次方程,解之即可得出结论.【解答】解:设运动时间为秒时,,根据题意得:,解得:.故选.10.【答案】B【考点】列代数式求值20<5−2(2+2x)<50x a b a +b 20<5−2(2+2x)<50−<x <−49419420<5−2(2+2x)<50a b a =−5b =−12a +b =(−5)+(−12)=−17C t AP =AQ 20−3t =2t t =4A【解析】由一部手机原价元,先提价原来的,这时把手机原价看成单位““,再降价出售,这时把降价后的价格看成单位““,所以现价可求出,再与原价比较即可.【解答】解:一部手机原价元,先提价,价格为,再降价,价格为,∴现价为(元).∵,故原价高.故选.11.【答案】C【考点】一元一次方程的应用——面积问题【解析】试题分析:原来正方形的边长为,则,解得:【解答】此题暂无解答12.【答案】B【考点】解一元一次不等式组【解析】分别求出每一个不等式的解集,确定不等式组的解集,问题可解.【解答】解:解①得:,解②得:,48001101110148001104800×(1+)1101104800×(1+)×(1−)1101104800×(1+)×(1−)=47521101104752<4800B x −=39(x +3)2x 2x =5{8x +5>9x +6,①2x −1<7,②x <−1x <4所以不等式组的解集为:.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )13.【答案】【考点】一元一次方程的定义【解析】根据一元一次方程的定义可得:,且,再解即可.【解答】解:由题意得:,且,解得:.故答案为:.14.【答案】【考点】由实际问题抽象出一元一次不等式【解析】根据题目所给的运算法则列不等式.【解答】解:由题意得,.故答案为:.15.【答案】【考点】解一元一次不等式x <−1B 1|2m −3|=1m −2≠0|2m −3|=1m −2≠0m =113(3+x)−1<123(3+x)−1<123(3+x)−1<12x ≤72先根据已知得出不等式,再求出不等式的解集即可.【解答】解:由得,代入,得,解得.故答案为:.16.【答案】【考点】一元一次方程的应用——工程进度问题一元一次方程的应用——其他问题【解析】设乙第一次追上甲用了,则有乙行走的路程等于甲行走的路程加上,根据其相等关系列方程得=,求出相遇时间;再由相遇时间确定乙的位置.【解答】设乙第一次追上甲用了,根据题意得:=,解得=,此时乙所在位置为:=,=(圈)…,∴乙在距离点处,即在边上.17.【答案】【考点】定义新符号解一元一次不等式组【解析】由新定义得出,解之可得.2x −y =4y =2x −4y ≤32x −4≤3x ≤72x ≤72ADx min 100×3m 76x 66x +100×3x min 76x 66x +100×3x 3076×302280(m)2280÷(100×4)3280(m)B 280m AD x ≥−2−3x +5≤11解:由题意,得:,解得:.故答案为:.18.【答案】【考点】解一元一次不等式组【解析】【解答】解:解得,解得,∴不等式组的解集为,∵不等式组的解集为,∴.故答案为:.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )19.【答案】解:去分母,得,移项,得,合并同类项,得,系数化为,得.【考点】解一元一次方程【解析】方程去分母,去括号,移项合并,把系数化为,即可求出解.【解答】解:去分母,得,移项,得,合并同类项,得,系数化为,得.−3x +5≤11x ≥−2x ≥−21x −3<a x <a +3x +1≥0x ≥−1−1≤x <a +3−1≤x <4a =116−3x +3=2x +4−3x −2x =4−6−3−5x =−51x =1x 16−3x +3=2x +4−3x −2x =4−6−3−5x =−51x =120.【答案】解:将①,得,③③②得,解得,把代入①,得,所以原方程组的解为【考点】加减消元法解二元一次方程组【解析】暂无【解答】解:将①,得,③③②得,解得,把代入①,得,所以原方程组的解为21.【答案】解:解不等式①得: ,解不等式②得:,在数轴上表示为:∴不等式组的解集为.【考点】{2x −3y =4,①7x +6y =25,②×24x −6y =8+11x =33x =3x =3y =23{x =3,y =.23{2x −3y =4,①7x +6y =25,②×24x −6y =8+11x =33x =3x =3y =23{x =3,y =.23 2x −1<3,①−≤1,②2x −135x +12x <2x ≥−1−1≤x <2在数轴上表示不等式的解集解一元一次不等式组【解析】此题暂无解析【解答】解:解不等式①得: ,解不等式②得:,在数轴上表示为:∴不等式组的解集为.22.【答案】解:由题意可知将,得,解得.将代入①,得.∴将分别代入得将,得,⑤将,得,.将代入③,得,∴∴【考点】二元一次方程组的解同解方程组【解析】联立不含与的方程求出与的值,代入求出与的值,即可求出所求式子的值.【解答】2x −1<3,①−≤1,②2x −135x +12x <2x ≥−1−1≤x <2{2x +5y =−26,①3x −5y =36,②①+②5x =10x =2x =2y =−6{x =2,y =−6.{x =2,y =−6{ax −by =−4,bx +ay =−8{2a +6b =−4,③2b −6a =−8,④③×36a +18b =−12④+⑤20b =−20b =−1b =−1a =1{a =1,b =−1,==1.(2a +b)2010(2−1)2010a b x y a b 2x +5y =−26,①解:由题意可知将,得,解得.将代入①,得.∴将分别代入得将,得,⑤将,得,.将代入③,得,∴∴23.【答案】解:设新长方体的高为,则根据题意得,,解得,答:新长方体的高为.【考点】一元一次方程的应用——其他问题【解析】本体考查了长方体的体积,一元一次方程的应用.【解答】解:设新长方体的高为,则根据题意得,,解得,答:新长方体的高为.24.【答案】解:①②得:,,①②得:,;∵关于,的方程组的解是一对正数,∴且,解得:.{2x +5y =−26,①3x −5y =36,②①+②5x =10x =2x =2y =−6{x =2,y =−6.{x =2,y =−6{ax −by =−4,bx +ay =−8{2a +6b =−4,③2b −6a =−8,④③×36a +18b =−12④+⑤20b =−20b =−1b =−1a =1{a =1,b =−1,==1.(2a +b)2010(2−1)2010x 40×40x =80×60×100x =300300x 40×40x =80×60×100x =300300{x +y =3a +9①,x −y =5a −1②,+2x =8a +8x =4a +4−2y =−2a +10y =−a +5x y {x +y =3a +9,x −y =5a −14a +4>0−a +5>0−1<a <5解一元一次不等式组二元一次方程组的解【解析】把当作已知数求出方程组的解,根据已知得出不等式组,求出不等式组的解集即可.【解答】解:①②得:,,①②得:,;∵关于,的方程组的解是一对正数,∴且,解得:.25.【答案】解:①根据题意得:,即;,即,解得:,;②根据题意得:,,.由解不等式①得:,解不等式②得:,故的取值范围为:..由,得,整理得:,∵当时,对任意有理数,都成立,∴,即.【考点】定义新符号加减消元法解二元一次方程组a {x +y =3a +9①,x −y =5a −1②,+2x =8a +8x =4a +4−2y =−2a +10y =−a +5x y {x +y =3a +9,x −y =5a −14a +4>0−a +5>0−1<a <5(1)F (1,−1)=(m −n)(3×1+1)=−8m −n =−2F (1,2)=(m +2n)(3×1−2)=13m +2n =13m =3n =5F (x,y)=(3x +5y)(3x −y)F (a,3a +1)=(3a +15a +5)(3a −3a −1)=−18a −5F (5a,2−3a)=(15a +10−15a)(15a −2+3a)=180a −20{−18a −5>−95,①180a −20≥340,②a <5a ≥2a 2≤a <5(2)n =−3m F (x,y)=F (y,x)(mx +ny)(3x −y)=(my +nx)(3y −x)(−)(3m +n)=0x 2y 2≠x 2y 2F (x,y)=F (y,x)x y 3m +n =0n =−3m【解答】解:①根据题意得:,即;,即,解得:,;②根据题意得:,,.由解不等式①得:,解不等式②得:,故的取值范围为:..由,得,整理得:,∵当时,对任意有理数,都成立,∴,即.26.【答案】解:设型号扫描仪的单价是万元,型号扫描仪的单价是万元.根据题意,得 解得答:型号扫描仪的单价是万元,型号扫描仪的单价是万元.设购买型号扫描仪台,则购买型号扫描仪台.根据题意,得,解得∵取正整数,且,∴可以取,,∴共有种购买方案,方案一:购买台型号扫描仪,台型号扫描仪;方案二:购买台型号扫描仪,台型号扫描仪;方案三:购买台型号扫描仪,台型号扫描仪.∵型号扫描仪功能多一点,要多买,就要少买型号扫描仪,∴选择方案一,购买台型号扫描仪,台型号扫描仪.【考点】二元一次方程组的应用——销售问题(1)F (1,−1)=(m −n)(3×1+1)=−8m −n =−2F (1,2)=(m +2n)(3×1−2)=13m +2n =13m =3n =5F (x,y)=(3x +5y)(3x −y)F (a,3a +1)=(3a +15a +5)(3a −3a −1)=−18a −5F (5a,2−3a)=(15a +10−15a)(15a −2+3a)=180a −20{−18a −5>−95,①180a −20≥340,②a <5a ≥2a 2≤a <5(2)n =−3m F (x,y)=F (y,x)(mx +ny)(3x −y)=(my +nx)(3y −x)(−)(3m +n)=0x 2y 2≠x 2y 2F (x,y)=F (y,x)x y 3m +n =0n =−3m (1)A x B y {3x +2y =27,5x +3y =43,{x =5,y =6,A 5B 6(2)A m B (27−m)5m +6(27−m)≤13725≤m.m m ≤27m 252627.325A 2B 26A 1B 27A 0B (3)B A 25A 2B一元一次不等式的实际应用一元一次不等式的运用【解析】此题暂无解析【解答】解:设型号扫描仪的单价是万元,型号扫描仪的单价是万元.根据题意,得 解得答:型号扫描仪的单价是万元,型号扫描仪的单价是万元.设购买型号扫描仪台,则购买型号扫描仪台.根据题意,得,解得∵取正整数,且,∴可以取,,∴共有种购买方案,方案一:购买台型号扫描仪,台型号扫描仪;方案二:购买台型号扫描仪,台型号扫描仪;方案三:购买台型号扫描仪,台型号扫描仪.∵型号扫描仪功能多一点,要多买,就要少买型号扫描仪,∴选择方案一,购买台型号扫描仪,台型号扫描仪.(1)A x B y {3x +2y =27,5x +3y =43,{x =5,y =6,A 5B 6(2)A m B (27−m)5m +6(27−m)≤13725≤m.m m ≤27m 252627.325A 2B 26A 1B 27A 0B (3)B A 25A 2B。
2022-2023学年华师大版七年级下数学期中试卷(含解析)
2022-2023学年初中七年级下数学期中试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 若=,则以下式子不一定正确的是( )A.=B.C.=D.=2. 下列叙述:①是非负数则;②“减去不大于”可表示为; ③“的倒数超过”可表示为;④“,两数的平方和为正数”可表示为.其中正确的个数是( )A.个B.个C.个D.个3. 方程的正整数解有( )A.组B.组C.组D.组4. 下列变形中,正确的是A.由得B.由得a b ac bc=a d b da +cb +ca −cb −ca a ≥0a 2102−10<2a 2x 10>101x ab +>0a 2b 212343x +2y =171234( )2x >−x +12x −x >12−x <3−x >3−2C.由得D.由得5. 在“十•一”黄金周期间,某超市推出如下购物优惠方案:一次性购物在元(不含元)以内时,不享受优惠;一次性购物在元(含元)以上,元(不含元)以内时,一律享受九折的优惠;一次性购物在元(含元)以上时,一律享受八折的优惠.王茜在本超市两次购物分别付款元,元.如果王茜改成在本超市一次性购买与上两次完全相同的商品,则应付款( )A.元B.元或元C.元D.元或元6. 若,为有理数,且,则( )A.B.C.D.7. 已知关于,二元一次方程组,且,满足,则的值为() A.B.C.D.8. 下列说法中,错误的是( )A.不等式有两个正整数解B.是不等式的一个解C.不等式的解集是D.不等式的整数解有无数个−3x ≥−6x ≤22x ≥3x ≥23(1)100100(2)100100300300(3)30030080252332316332288288316a b −2ab +2+4b +4=0a 2b 2a +3b =84−4−8x y {3x −y =3a−4x +5y =a x y x −2y =0a 2−405x <3−22x −1<0−3x >9x >−3x <10 2x +y =79. 由方程组,可以得到的值等于( )A.B.C.D.10. 下列说法不正确的是( )A.是不等式的一个解B.是不等式的一个解集C.与的解集不相同D.与的解集相同卷II (非选择题)二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 已知是关于的一元一次不等式,则________.12. 如果不等式只有个正整数解,那么的取值范围是________.13. 不等式的正整数解是________.14. 方程组的解是________.15. 如图,函数和的图象相交于点,则关于的不等式的最小整数解为_________.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )2x +y =72y +z =82z +x =9x +y +z 891011x =−2−2x >1x =−2−2x >1x −7>2x +8x <15x <−3−7x >212(m +4)+6>0x |m|−3x m =x <a 3a 3(x −1)≥5(x −3)+6{x +y =−7,2x −y =1y =2x y =ax +b A (m,3)x 2x >ax +b16. 解下列方程:(1)(2)17. 解方程组:18. 解下列不等式组,并把解集表示在下面的数轴上.19. 若关于,的二元一次方程组和有相同的解,求的值.20. 解方程.21. 如图,在平面直角坐标系中,点,在坐标轴上,其中,满足:.求,两点的坐标;将线段平移到,点的对应点为,点的坐标.22. 若,互为相反数,,互为倒数,=,求的值.23. 某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本个,乙种笔记本个,共用元;且买甲种笔记本个比买乙种笔记本个少花元.求甲、乙两种笔记本的单价各是多少元?若本次购进甲种笔记本的数量比乙种笔记本的数量的倍还少个,且购进两种笔记本的总数量不{4x +5y =11,2x −y =2.(1) x −2(x −3)≥5,<+1.x −345x 6(2) 3x −5<2x ,≥2x +1.x −12x y {2x +5y =−26,ax −by =−4{3x −5y =36,bx +ay =−8(2a +b)2010|4x +2|=x −1A B A (0,a)B (b,0)|2a −b −1|+=0a +2b −8−−−−−−−−√(1)A B (2)AB CD A C (−2,−2)D a b c d |m |2a +b +−3cd m 22010110302010(1)(2)210少于本,总金额不超过元.请你设计出本次购进甲、乙两种笔记本的所有方案.参考答案与试题解析2022-2023学年初中七年级下数学期中试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】B【考点】等式的性质【解析】根据等式的基本性质逐一判断即可得.【解答】、如果=,那么=,一定成立,故这个选项不符合题意;、如果=,那么分式没有意义,等式不一定成立,故这个选项符合题意;、如果=,那么=,一定成立,故这个选项不符合题意;、如果=,那么=,一定成立,故这个选项不符合题意;2.【答案】C【考点】不等式的定义由实际问题抽象出一元一次不等式【解析】根据非负数大于或等于;“不大于”就是“小于或等于”;正数就是大于零的数.【解答】解:①非负数是大于等于零的实数,即.故①正确;②“减去不大于”可表示为;故②错误;③“的倒数超过”就是“③“的倒数大于”,可表示为.故③正确;④“,两数的平方和为正数”,即“;④“,两数的平方和大于零”,可表示为.故④正确.综上所述,正确的说法有个.80320A a b ac bc B d 0C a b a +c b +c D a b a −c b −c 0a ≥0a 2102−10≤2a 2x 10x 10>101x a b a b +>0a 2b 23C故选.3.【答案】C【考点】二元一次方程的解【解析】把方程化为用一个未知数表示成另一个未知数的形式,再根据、均为正整数求解即可.【解答】解:方程可化为,∵、均为正整数,∴且为的倍数,当时,,当时,,当时,,∴方程的正整数解为,,,故选:.4.【答案】C【考点】不等式的性质【解析】利用不等式的基本性质,逐一判断即可.【解答】解:,不等式的两边都减,得,故错误;,不等式的两边都减,得,故错误;,不等式的两边都除,得,故正确;,不等式的两边都除,得,故错误.故选.5.【答案】C x y 2x +3y =17x =17−2y 3x y 17−2y >03y =1x =5y =4x =3y =7x =13x +2y =17{x =5y =1{x =3y =4{x =1y =7C A x 2x −x >−2x +1A B 2−x <3−2B C −3x ≤2CD 2x ≥32D CD【考点】一元一次方程的应用——打折销售问题【解析】设第二次付款元的商品的标价为元,根据题意列出方程=或=,求得=或,所以两次购所购商品原价分别为元或元,实际应付款为元或元.【解答】解:设第二次付款元的商品的标价为元,根据题意,得或,解得或,则两次所购商品总价为元或元,所以,,所以应付款元或元.故选.6.【答案】D【考点】完全平方公式非负数的性质:偶次方【解析】此题暂无解析【解答】解:由题意得,∴,,∴,∴.故选.7.【答案】C【考点】二元一次方程组的解加减消元法解二元一次方程组252x 0.9x 2520.8x 252x 280315360395288316252x 0.9x =2520.8x =252x =280315360395360×0.8=288395×0.8=316288316D (a −b +(b +2=0)2)2a −b =0b +2=0a =b =−2a +3b =−2+3×(−2)=−8D【解析】把方程组中的两个方程相加,得出,得出有关的方程,即可解答.【解答】解:①②得:,,,.故选8.【答案】C【考点】不等式的解集【解析】根据不等式的性质,可得不等式的解集.【解答】解:、不等式有两个正整数解,,故正确;、是不等式的一个解,故正确;、不等式的解集是,故符合题意;、不等式的整数解有无数个,故正确;故选:.9.【答案】A【考点】解三元一次方程组【解析】先观察方程的系数特点,将三个方程的左右两边分别相加,可得,即可求得的值.【解答】x −2y =4a a {5x −7y =3a ①,−4x +5y =a ②+x −2y =4a ∵x −2y =0∴4a =0∴a =0C.A x <312A B −22x −1<0B C −3x >9x <−3C D x <10D C 3x +3y +3z =24x +y +z 2x +y =7①解:已知,①+②+③得:,∴.故选.10.【答案】B【考点】不等式的解集解一元一次不等式【解析】利用不等式解与解集的定义判断即可.【解答】解:,解不等式,解得,故是不等式的一个解,故正确,不符合题意;,是不等式的一个解,故不正确,符合题意;,解不等式,解得,与的解集不相同,故正确,不符合题意;,解不等式,解得,与的解集相同,故正确,不符合题意.故选.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】【考点】一元一次不等式的定义【解析】此题暂无解析【解答】2x +y =7①2y +z =8②2z +x =9③3x +3y +3z =24x +y +z =8A A −2x >1x <−12x =−2−2x >1A B x =−2−2x >1B C x −7>2x +8x <−15x −7>2x +8x <15C D −7x >21x <−3x <−3−7x >21D B 4解:由一元一次不等式的定义可得解得.故答案为:.12.【答案】【考点】一元一次不等式的整数解【解析】此题暂无解析【解答】解:不等式的正整数解只有个,则正整数解是:,故.故答案为:.13.【答案】,,【考点】一元一次不等式的整数解【解析】先求出不等式的解集,在取值范围内可以找到正整数解.【解答】,,,∴所以不等式的正整数解为:,,.14.【答案】{m +4≠0,|m|−3=1,m =443<a ≤431,2,33<a ≤43<a ≤41233(x −1)≥5(x −3)+63x −3≥5x −15+63x −5x ≥−15+6+3−2x ≥−6x ≤33(x −1)≥5(x −3)+6123【考点】加减消元法解二元一次方程组【解析】利用加减法消元法解方程组即可.【解答】解: ①②,得,解得 .把代入①,得.所以方程组的解为 故答案为:15.【答案】【考点】待定系数法求一次函数解析式一次函数的图象一元一次不等式的整数解【解析】此题暂无解析【解答】解:∵函数过点,∴,解得:,∴,不等式是指的图象在图象的上方,∴不等式的解集为,则最小整数解为.故答案为:.{x =−2,y =−5{x +y =−7,①2x −y =1,②+3x =−6x =−2x =−2y =−5{x =−2,y =−5.{x =−2,y =−5.2y =2x A(m,3)2m =3m =32A(,3)32∵2x >ax +b y =2x y =ax +b 2x >ax +b x >3222三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.【答案】(1);(2)【考点】解一元一次方程【解析】(1)方程去括号,移项合并,把系数化为,即可求出解;(2)方程去分母,去括号,移项合并,把系数化为,即可求出解;【解答】(1)解:去括号得:移项得:合并同类项得:系数化为得:解:去括号得:移项得:合并同类项得:系数化为得:17.【答案】解: ②,得③,①③,得 ,解得.把代入②,得,解得.综上可得【考点】加减消元法解二元一次方程组x =−13y =−52x 1x 12(3−x)=−4(x +5)6−2x =−4x −20−2x +4x =−20−62x =−261x =−13(2−1=−1)−15=3(4y −5)2y −134y −5510y −5−15=12y −1510y −12y =−15+5+15−2y =51y =−52{4x +5y =11①,2x −y =2②,×510x −5y =10+14x =21x =32x =322×−y =232y =1 x =,32y =1.无【解答】解: ②,得③,①③,得 ,解得.把代入②,得,解得.综上可得18.【答案】解:解不等式,化简得:,解得:;解不等式,化简得:,解得:.分别把不等式的解集表示在数轴上,如图所示,由图可知,不等式组的解集为.解不等式,化简得:,解得:;解不等式,化简得,,解得:.分别把不等式的解集表示在数轴上,如图所示,由图可知,不等式组的解集为.【考点】在数轴上表示不等式的解集解一元一次不等式组{4x +5y =11①,2x −y =2②,×510x −5y =10+14x =21x =32x =322×−y =232y =1 x =,32y =1.(1)x −2(x −3)≥5x −2x +6≥5x ≤1<+1x −345x 63x −9≤10x +12x >−3–3<x ≤1(2)3x −5<2x 3x −2x <5x <5≥2x +1x −12x −1≥4x +2x ≤−1x ≤−1此题暂无解析【解答】解:解不等式,化简得:,解得:;解不等式,化简得:,解得:.分别把不等式的解集表示在数轴上,如图所示,由图可知,不等式组的解集为.解不等式,化简得:,解得:;解不等式,化简得,,解得:.分别把不等式的解集表示在数轴上,如图所示,由图可知,不等式组的解集为.19.【答案】解:由题意可知将,得,解得.将代入①,得.∴将分别代入得将,得,⑤将,得,.将代入③,得,∴∴(1)x −2(x −3)≥5x −2x +6≥5x ≤1<+1x −345x 63x −9≤10x +12x >−3–3<x ≤1(2)3x −5<2x 3x −2x <5x <5≥2x +1x −12x −1≥4x +2x ≤−1x ≤−1{2x +5y =−26,①3x −5y =36,②①+②5x =10x =2x =2y =−6{x =2,y =−6.{x =2,y =−6{ax −by =−4,bx +ay =−8{2a +6b =−4,③2b −6a =−8,④③×36a +18b =−12④+⑤20b =−20b =−1b =−1a =1{a =1,b =−1,==1.(2a +b)2010(2−1)2010二元一次方程组的解同解方程组【解析】联立不含与的方程求出与的值,代入求出与的值,即可求出所求式子的值.【解答】解:由题意可知将,得,解得.将代入①,得.∴将分别代入得将,得,⑤将,得,.将代入③,得,∴∴20.【答案】解:或,解得或.又因为,即,所以原方程无解.【考点】含绝对值符号的一元一次方程【解析】根据绝对值的性质可得:或,分别解出即可.【解答】解:或,解得或.又因为,a b x y a b {2x +5y =−26,①3x −5y =36,②①+②5x =10x =2x =2y =−6{x =2,y =−6.{x =2,y =−6{ax −by =−4,bx +ay =−8{2a +6b =−4,③2b −6a =−8,④③×36a +18b =−12④+⑤20b =−20b =−1b =−1a =1{a =1,b =−1,==1.(2a +b)2010(2−1)20104x +2=x −14x +2=−(x −1)x =−1x =−15x −1≥0x ≥14x +2=x +14x +2=−(x −1)4x +2=x −14x +2=−(x −1)x =−1x =−15x −1≥0所以原方程无解.21.【答案】解:∵,又,∴解得,.点先向左平移个单位长度,再向下平移个单位长度,得到;则先向左平移个单位长度,再向下平移个单位长度,得到,即.【考点】非负数的性质:绝对值非负数的性质:算术平方根二元一次方程组的解点的坐标坐标与图形变化-平移【解析】(1)利用非负数的性质即可解决问题;根据,得出平移的规律,再根据这个规律求出的坐标.【解答】解:∵,又,∴解得,.点先向左平移个单位长度,再向下平移个单位长度,得到;则先向左平移个单位长度,再向下平移个单位长度,得到,即.22.【答案】∵、互为相反数,,=,∴=,=,=,∴===.(1)|2a −b −1|+=0a +2b −8−−−−−−−−√∵|2a −b −1|≥0,≥0a +2b −8−−−−−−−−√{2a −b −1=0,a +2b −8=0,{a =2,b =3,∴A (0,2)B (3,0)(2)A(0,2)24C(−2,−2)B(3,0)24D(3−2,0−4)D(1,−4)A C D (1)|2a −b −1|+=0a +2b −8−−−−−−−−√∵|2a −b −1|≥0,≥0a +2b −8−−−−−−−−√{2a −b −1=0,a +2b −8=0,{a =2,b =3,∴A (0,2)B (3,0)(2)A(0,2)24C(−2,−2)B(3,0)24D(3−2,0−4)D(1,−4)a b c |m |2a +b 0cd 4m 24a +b +−3cdm 30+7−3×14+4−36有理数的混合运算【解析】此题暂无解析【解答】此题暂无解答23.【答案】解:设甲种笔记本的单价是元,乙种笔记本的单价是元.根据题意可得解这个方程组得答:甲种笔记本的单价是元,乙种笔记本的单价是元.设本次购买乙种笔记本个,则甲种笔记本个.根据题意可得,解这个不等式得,,解这个不等式得.因为为正整数,所以的值为:或.故本次购进甲笔记本个、乙笔记本个;或购进甲笔记本个、乙笔记本个.【考点】二元一次方程组的应用——销售问题一元一次不等式组的应用【解析】(1)关键描述语是:买甲种笔记本个,乙种笔记本个,共用元;且买甲种笔记本个比买乙种笔记本个少花元;设甲种笔记本的单价是元,乙种笔记本的单价是元,列方程组解,的值即可;(2)关键描述语是:本次购进甲种笔记本的数量比乙种笔记本的数量的倍还少个,且购进两种笔记本的总数量不少于本,总金额不超过元;设本次购买乙种笔记本个,则甲种笔记本个;可得,,求得的整数值范围.【解答】解:设甲种笔记本的单价是元,乙种笔记本的单价是元.根据题意可得解这个方程组得答:甲种笔记本的单价是元,乙种笔记本的单价是元.(1)x y {20x +10y =110,30x +10=20y,{ x =3,y =5.35(2)m (2m −10)m +(2m −10)≥80m ≥303(2m −10)+5m ≤320m ≤31911m m 3031503052312010110302010x y x y 21080320m (2m −10)m +(2m −10)≥803(2m −10)+5m ≤320m (1)x y {20x +10y =110,30x +10=20y,{ x =3,y =5.35(2)(2m −10)设本次购买乙种笔记本个,则甲种笔记本个.根据题意可得,解这个不等式得, ,解这个不等式得.因为为正整数,所以的值为:或.故本次购进甲笔记本个、乙笔记本个;或购进甲笔记本个、乙笔记本个.(2)m (2m −10)m +(2m −10)≥80m ≥303(2m −10)+5m ≤320m ≤31911m m 303150305231。
2022-2023学年华师大版七年级下数学期中试卷(含解析)
2022-2023学年初中七年级下数学期中试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下列各方程中,是一元一次方程的是( )A.B.C.D.2. 若方程是二元一次方程,则,的值分别为( )A.,B.,C.,D.,3. 下列方程变形中的移项正确的是( )A.从得B.从得C.从得D.从得4. 已知是一元一次方程的解,则的值为( )A.B.C.x +y =1x −1=03xy =4=13x 3=3+4x m−2y n+1m n 2−1−3030315x =x −35x −x =−37+x =3x =3+72x +3−x =72x +x =7−32x −3=x +62x +x =6+3x =3ax −6=0a −223D.5. 方程的解是=( )A.B.C.D.6. 关于的方程与方程的解相同,则的值为( )A.B.C.D.7. “今有鸡兔同笼,上有头,下有足,问鸡兔各几何?”设鸡有只,兔有只,则下列方程组中正确的是( )A.B.C.D. 8. 下列组数值,哪个是二元一次方程的解?( )A.B. −3+++⋯+=1x 3x 15x 35x 2019×2021x 20212020202110102021201910102021x 3x +2m =−1x +2=2x +1m 2−21−12474x y {x −y =242x +4y =74{x −y =244x +2y =74{x +y =242x +4y =74{x +y =244x +2y =7442x +3y =5{x =0,y =35{x =1,y =1C. D.9. 种饮料比种饮料的单价少元,小峰买了瓶种饮料和瓶种饮料,一共花了元,如果设种饮料单价为元/瓶,那么下面所列方程正确的是( )A.B.C.D.10. 已知是关于,的二元一次方程组的解,则的值为( )A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 在中,用含的代数式表示,可得________.12. 若代数式与的值互为相反数,则的值为________.13. 小颖家有长度相等而粗细不同的两支蜡烛,其中一支可燃小时,另一支可燃小时.某天晚上突遇停电,同时点燃这两根蜡烛,来电后将这两支蜡烛同时吹灭,余下两根蜡烛的长度中,一支是另一支的倍,则停电________小时.14.如图,在边长为的大正方形中剪去一个边长为的小正方形,再将图中的阴影部分剪拼成一个长方形,如图.这个拼成的长方形的长为,宽为.则图中部分的面积是________.{x =2,y =−3{x =4,y =1A B 12A 3B 13B x 2(x −1)+3x =132(x +1)+3x =132x +3(x +1)=132x +3(x −1)=13x y a +b −5−1373x +2y =4x y 4x −13x −6x 453(1)a b (2)3020(2)II15. 、 两地相距千米,甲、乙两车从地出发前往地,同向而行,到达地后停留在那里.乙车比甲车早出发小时,已知甲车的速度为千米时,乙车的速度为千米时,若乙车再经过小时两车相距千米,则的值是________.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16. 解下列方程(组).;.17. 甲、乙两人同时解方程组 时,甲看错了方程①中的,解得 乙看错了②中的,解得 求原方程组的正确解.18. 已知 是关于的方程 的解,则 ________.19. 为庆祝中华人民共和国成立周年,某学校准备购买如图所示的,两种党旗和国旗.已知购买个种党旗和国旗和个种党旗和国旗共需元,购买个种党旗和国旗比个种党旗和国旗少花元.求,两种党旗和国旗的单价.结合老师们的需求,学校决定购买, 两种党旗和国旗共 个(其中种党旗和国旗不超过个周年国庆期间某商店有两种优惠活动,如图所示.请根据以上信息回答:购买种党旗和国旗多少个时选择活动一和活动二购买所需费用相同.A B 450A B B 190/60/x 30x (1)−2=x −x +13x −12(2){2x −y =53x +4y =2{ax +by =15,①4x =by −2,②a {x =−3,y =−1,b {x =5,y =4,x =−1x 5x −a =−2a =70A B 2A 5B 2001A 1B 5(1)A B (2)A B 100A 50).70A 20%10%20. 一商场开展“五一”促销活动,将甲种商品降价,乙种商品降价销售.已知甲、乙两种商品的原销售单价之和为元,某顾客在活动期间购买甲、乙两种商品各一件,共付元.问甲、乙两种商品的原销售单价各是多少元?21. 若关于,的二元一次方程组 的解也是二元一次方程的解,求的值. 22. 解方程组:23. 已知辆型车和辆型车载满货物一次可运货吨;用辆型车和辆型车载满货物一次可运货吨.根据以上信息,解答下列问题:辆型车和辆车型车都载满货物一次可分别运货多少吨?某物流公司现有吨货物,计划同时租用型车辆,型车辆,要求每辆车都载满货物,且恰好一次运完.请求出所有租车方案.在的条件下,若型车每辆需租金元次,型车每辆需租金元次.请选出最省钱的租车方案,并求出最少租车费.20%10%600500x y {x +y =5k ①,x −y =9k ②4x +5y =36k (1){x =y +1,2x −y =3.(2) −=1,x 2y +132x −3y =2.2A 1B 111A 2B 13(1)1A 1B (2)32A a B b (3)(2)A 80/B 100/参考答案与试题解析2022-2023学年初中七年级下数学期中试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】B【考点】一元一次方程的定义【解析】此题暂无解析【解答】解:,含有两个未知数,故不是一元一次方程;,是一元一次方程;,含有两个未知数,故不是一元一次方程;,不是整式方程.故选.2.【答案】C【考点】二元一次方程的定义【解析】由二元一次方程的定义可知,,从而可求得、的值.【解答】解:∵方程是二元一次方程,∴,.解得;,.故选;.3.【答案】A x +y =1BC 3xy =4D =13x B m −2=1n +1=1m n 3=3+4x m−2y n+1m −2=1n +1=1m =3n =0CA【考点】等式的性质解一元一次方程【解析】各方程变形得到结果,即可做出判断.【解答】解:、方程移项得,故选项正确;、方程移项得,故选项错误;、方程移项得,故选项错误;、方程移项得,故选项错误.故选:.4.【答案】B【考点】一元一次方程的解【解析】本题主要考查了一元一次方程的解.【解答】解:将代入方程中,可得,解得,故选.5.【答案】B【考点】解一元一次方程【解析】方程利用拆项法化简,计算即可求出解.【解答】A 5x =x −35x −x =−3B 7+x =3x =3−7C 2x +3−x =72x −x =7−3D 2x −3=x +62x −x =6+3A x =33a −6=0a =2B +++⋯+)x1111方程整理得:=,即=,化简得:=,即=,解得:,经检验是分式方程的解,6.【答案】B【考点】同解方程一元一次方程的解【解析】此题暂无解析【解答】解:解方程 可得 ,将 代入 ,得:,解得: .故选.7.【答案】C【考点】由实际问题抽象出二元一次方程组【解析】设鸡为只,兔为只,根据题意可得,鸡兔同笼,共有个头,有只脚,据此列方程组求解.【解答】解:设鸡为只,兔为只,(+++⋯+)x 11×313×515×712019×20211(1−+−+⋯+−)x 1213131512019120211(1−)x 12120211x 202020212x =20211010x =20211010x +2=2x +1x =1x =13x +2m =−13+2m =−1m =−2B x y 2474x y由题意得,.故选.8.【答案】B【考点】二元一次方程的解【解析】此题暂无解析【解答】解:,将代入方程得,故不是方程的解;,将代入方程得,故是方程的解;,将代入方程得,故不是方程的解;,将代入方程得,故不是方程的解;故选.9.【答案】A【考点】由实际问题抽象出一元一次方程【解析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买饮料的钱+买饮料的钱=总印数元,明确了等量关系再列方程就不那么难了.【解答】解:由题意得,种饮料单价为元/瓶,则种饮料单价为元.根据小峰买了瓶种饮料和瓶种饮料,一共花了元,可列方程为.故选.10.{x +y =242x +4y =74C A {x =0,y =350+3×=≠535952x +3y =5B {x =1,y =12×1+3×1=52x +3y =5C {x =2,y =−32×2+3×(−3)=−5≠52x +3y =5D {x =4,y =12×4+3×1=11≠52x +3y =5B A B 13B x A (x −1)2A 3B 132(x −1)+3x =13A【答案】B【考点】二元一次方程组的解【解析】将与的值代入原方程组即可求出答案.【解答】将代入方程组,得,①+②,得=,即=,所以=.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】【考点】解二元一次方程【解析】本题是将二元一次方程变形,用一个未知数表示另一个未知数,可先移项,再系数化为即可.【解答】解:由已知方程移项得到,方程两边同时除以得到.12.【答案】【考点】x y 3a +3b −33(a +b)−3a +b −1y =4−3x 213x +2y =42y =4−3x 2y =4−3x 21相反数解一元一次方程【解析】根据互为相反数的两数之和为可列出方程,解出即可.【解答】解:由题意可得方程:,解得,故答案为:.13.【答案】【考点】一元一次方程的应用——其他问题【解析】本题考查了一元一次方程的应用,解题关键是找到题意中的等量关系,设停电小时,根据题意可得:,解方程即可求得答案.【解答】解:设停电小时,根据题意可得:,,,解得:.故答案为:.14.【答案】【考点】二元一次方程组的应用——几何问题【解析】0(4x −1)+(3x −6)=0x =114011x 1−x =153×(1−x)14x 1−x =153×(1−x)14=5−x 512−3x 420−4x =60−15x 11x =40x =40114011100b根据在边长为的大正方形中剪去一个边长为的小正方形,以及长方形的长为,宽为,得出,,进而得出,的长,即可得出答案.【解答】解:根据题意得出:解得:故图中部分的面积是:.故答案为:.15.【答案】或或【考点】一元一次方程的应用——路程问题【解析】【解答】解:提示:①当乙车在甲车前面时,由题意,得,解得;②当甲车追上在乙车前面时,由题意,得,解得;③当甲车到达地时,由题意,得,解得.故答案为:或或.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.【答案】解:去分母得,移项、合并同类项得,系数化为得:.,得:a b 3020a +b =30a −b =20AB BC {a +b =30,a −b =20,{a =25,b =5,(2)II AB ⋅BC =5×20=10010013660(x +1)−90x =30x =190x −60(x +1)=30x =3B 60(x +1)+30=450x =6136(1)2x +2−12=6x −3x +3−x =131x =−13(2){2x −y =5①3x +4y =2②①×4+②,,把代入得,所以该方程组的解为.【考点】加减消元法解二元一次方程组解一元一次方程【解析】此题暂无解析【解答】解:去分母得,移项、合并同类项得,系数化为得:.,得:,,把代入得,所以该方程组的解为.17.【答案】解:根据题意,可得解得∴①②得:,解得,③将③代入①,可得:,解得,∴原方程组的正确解是【考点】二元一次方程组的解【解析】此题暂无解析11x =22x =2x =2①y =−1{x =2y =−1(1)2x +2−12=6x −3x +3−x =131x =−13(2){2x −y =5①3x +4y =2②①×4+②11x =22x =2x =2①y =−1{x =2y =−1{5a +4b =15,−12=−b −2,{a =−5,b =10,{−5x +10y =15,①4x =10y −2,②+−x =13x =−13−5×(−13)+10y =15y =−5{x =−13,y =−5.【解答】解:根据题意,可得 解得∴ ①②得:,解得,③将③代入①,可得:,解得,∴原方程组的正确解是18.【答案】【考点】解一元一次方程一元一次方程的解【解析】本题考查了一元一次方程的解,解一元一次方程,熟练掌握一元一次方程的解,解一元一次方程的步骤是解题关键,根据一元一次方程的解,解一元一次方程,即可求得答案.【解答】解:因为是方程的解,代入可得:,,,解得:.故答案为.19.【答案】解:设种党旗和国旗的单价为元/个,则种党旗和国旗的单价为 元/个,根据题意得 ,解得 ,所以 ,答:种党旗和国旗的单价为元 个,种党旗和国旗的单价为元/个.设购买个种党旗和国旗时,选择活动一和活动二购买所需费用相同,根据题意得 ,解得 ,答:购买种党旗和国旗个时选择活动一和活动二购买所需费用相同.【考点】{5a +4b =15,−12=−b −2,{a =−5,b =10,{−5x +10y =15,①4x =10y −2,②+−x =13x =−13−5×(−13)+10y =15y =−5{x =−13,y =−5.−3x =−15x −a =−25×(−1)−a =−2−a =−2+5−a =3a =−3−3(1)B x A (x −5)2(x −5)+5x =200x =30x −5=25A 25/B 30(2)m A 0.7×25m +0.5×30×(100−m)=25m +30(100−m −m)m =40A 40一元一次方程的应用——其他问题【解析】此题暂无解析【解答】解:设种党旗和国旗的单价为元/个,则种党旗和国旗的单价为 元/个,根据题意得 ,解得 ,所以 ,答:种党旗和国旗的单价为元 个,种党旗和国旗的单价为元/个.设购买个种党旗和国旗时,选择活动一和活动二购买所需费用相同,根据题意得 ,解得 ,答:购买种党旗和国旗个时选择活动一和活动二购买所需费用相同.20.【答案】解:设甲种商品的原销售单价为元,乙种商品的原销售单价为元,根据题意可得,解得:答:甲种商品的原销售单价为元,乙种商品的原销售单价为元.【考点】二元一次方程组的应用——销售问题【解析】先设甲原单价元,乙原单价元,再根据题意列出二元一次方程组,解出方程组的解即可解答.【解答】解:设甲种商品的原销售单价为元,乙种商品的原销售单价为元,根据题意可得,解得:答:甲种商品的原销售单价为元,乙种商品的原销售单价为元.21.【答案】解:①②得:.解得:.将代入①得:.(1)B x A (x −5)2(x −5)+5x =200x =30x −5=25A 25/B 30(2)m A 0.7×25m +0.5×30×(100−m)=25m +30(100−m −m)m =40A 40x y {x +y =600,80%x +90%y =500,{x =400,y =200.400200x y x y {x +y =600,80%x +90%y =500,{x =400,y =200.400200+2x =14k x =7k x =7k 7k +y =5k y =−2k解得:.∴方程组的解为将代入得:,解得.【考点】二元一次方程组的解二元一次方程的解【解析】暂无【解答】解:①②得:.解得:.将代入①得:.解得:.∴方程组的解为将代入得:,解得.22.【答案】解:解得得,将代入得,.解原方程组得得得y =−2k {x =7k,y =−2k,{x =7k,y =−2k4x +5y =364×7k +5×(−2k)=36k =2+2x =14k x =7k x =7k 7k +y =5k y =−2k {x =7k,y =−2k,{x =7k,y =−2k4x +5y =364×7k +5×(−2k)=36k =2(1){x =y +1,①2x −y =3.②①×22x =2y +2③③−②y =1y =1①x =2∴{x =2y =1(2) −=1x 2y +132x −3y =2{3x −2y −2=6①2x −3y =2②①×26x −4y =16③②×36x −9y =6④③−④得,即.将代入得【考点】加减消元法解二元一次方程组【解析】此题暂无解析【解答】解:解得得,将代入得,.解原方程组得得得得,即.将代入得23.【答案】解:设每辆型车装满货物一次可以运货吨、型车装满货物一次可以运货吨.依题意列方程组得解得答:辆型车装满货物一次可运吨,辆型车装满货物一次可运吨.结合题意和得,∴,,都是正整数,∴或答:有两种租车方案:方案一:型车辆,型车辆;方案二:型车辆,型车辆.型车每辆需租金元次,型车每辆需租金元次,∴方案一需租金:(元),③−④5y =10y =2y =2①x =4∴{x =4,y =2.(1){x =y +1,①2x −y =3.②①×22x =2y +2③③−②y =1y =1①x =2∴{x =2y =1(2) −=1x 2y +132x −3y =2{3x −2y −2=6①2x −3y =2②①×26x −4y =16③②×36x −9y =6④③−④5y =10y =2y =2①x =4∴{x =4,y =2.(1)A x B y {2x +y =11,x +2y =13,{x =3,y =5.1A 31B 5(2)(1)3a +5b =32a =32−5b 3∵a b {a =1,b =9{a =4,b =4.A 1B 9A 4B 4(3)∵A 80/B 100/1×80+9×100=980方案二需租金:(元),,∴最省钱的租车方案是方案二:型车辆,型车辆,最少租车费为元.【考点】由实际问题抽象出二元一次方程组由实际问题抽象出二元一次方程【解析】111【解答】解:设每辆型车装满货物一次可以运货吨、型车装满货物一次可以运货吨.依题意列方程组得解得答:辆型车装满货物一次可运吨,辆型车装满货物一次可运吨.结合题意和得,∴,,都是正整数,∴或答:有两种租车方案:方案一:型车辆,型车辆;方案二:型车辆,型车辆.型车每辆需租金元次,型车每辆需租金元次,∴方案一需租金:(元),方案二需租金:(元),,∴最省钱的租车方案是方案二:型车辆,型车辆,最少租车费为元.4×80+4×100=720∵980>720A 4B 4720(1)A x B y {2x +y =11,x +2y =13,{x =3,y =5.1A 31B 5(2)(1)3a +5b =32a =32−5b 3∵a b {a =1,b =9{a =4,b =4.A 1B 9A 4B 4(3)∵A 80/B 100/1×80+9×100=9804×80+4×100=720∵980>720A 4B 4720。
华师大七年级下期中期考试试卷
射洪文升初级中学校七年级下半期考试数 学 试 卷Ⅰ卷一、选择题(51分,每题3分)1、下列方程是一元一次方程的有 ( ) ①、21312x x -=- ②、0=x ③、12=x④、4=xy A 、1个 B 、2个 C 、3个 D 、4个2、二元一次方程组⎩⎨⎧+==+13y x y x 的解是( )A 、⎩⎨⎧==21y xB 、⎩⎨⎧==12y xC 、⎩⎨⎧=-=12y xD 、⎩⎨⎧-==21y x3、如果不等式1>ax 的解集是ax 1<,则( ) A 、0≥a B 、0≤a C 、0>a D 、0<a4、不等式组⎩⎨⎧<->12x x 的解集在数轴上的表示是( )5.使不等式x-5>4x -1成立的值中最大的整数是 ( )A 、0B 、-2C 、-1D 、26.已知方程组⎩⎨⎧=++=+kyx k y x 32253,x 与y 的值之和等于2,则k 的值为( ) A 、4 B 、-4 C 、3 D 、-3 A 、 C 、 — B 、 D 、7、 已知a >b ,则下列不等式中不正确的是( )A 、 4a >4bB 、-a +4>-b +4 C. -4a <-4b D 、 a -4>b -48、不等式组⎩⎨⎧<-<32x x 的解集是( )A 、x<3B 、x<-2C 、-2<x<3D 、无解9、 方程x+y=7的正整数解的对数是( )A 、 5B 、7C 、6D 、无数对10、 已知b <a,要使am <bm,则 ( )A 、m<0B 、 m=0C 、 m >0D 、m 为任意数11、 下列说法中不正确的是 ( )A 、小于3的任何一个数都是不等式2x-3<5的解B 、x<3是不等式2x-3<5的解集C 、大于4的数不是不等式235x -≤的解D 、不大于4的所有有理数都是不等式2x-3≤5 的解12、 若不等式组⎩⎨⎧>-+>-0504a x x a 无解,则a 的取值范围是 ( ) A 、a >1 B 、a<1 C 、 a=1 D 、a ≤113.若关于x 的方程()()053122=+++-x k x k 是一元一次方程,则k 的值是( )A 、2B 、21C 、-2D 、-21 14.已知⎩⎨⎧==21y x 和⎩⎨⎧=-=01y x 是方程1=-by ax 的解,则a 、b 的值为 ( ) A 、1,1-=-=b a B 、1,1=-=b a C 、1,0-==b a D 、0,1=-=b a15.不等式143<x 的非负整数解是 ( ) A 、无数个 B 、 1 C 、 0、1 D 、1、216.若代数式152-a 的值不小于-3 ,那么a 的取值范围是 ( ) A 、a ≤-5 B 、a ≥-5 C 、 a ≤5 D 、 a ≥517.受季节影响,某种商品每件按原售价降价10%后,又降了a 元,现在件售价为b 元。
华师大版初一数学下册期中水平测试 含答案
华师大七年级下学期期中水平测试数学试卷时间100分钟 满分120分题号 一 二 三 总分 分数一、选择题(每题3分,共30分)1、下列四个式子中,是方程的是( )A 、3+2=5B 、1x =C 、230x -<D 、222a ab b ++2、在下列方程组中,不是二元一次方程组的是( )A 、3634x y x y -=⎧⎨+=⎩B 、264212x y x y -=⎧⎨+=⎩C 、34x y y z +=⎧⎨+=⎩D 、325657x y x y +=⎧⎨+=⎩3、在下列方程的变形中,错误的是( )A 、由43x -=得34x =- B 、由20x =得0x = C 、由23x =-得32x =- D 、由1124x =得12x =4、下列不等式一定成立的是( )A 、54a a >B 、23x x +<+C 、2a a ->-D 、42a a>5、对于方程5112232x x-+-=,去分母后得到的方程是( ) A 、51212x x --=+B 、5163(12)x x --=+C 、2(51)63(12)x x --=+D 、2(51)123(12)x x --=+6、不等式360x -+>的正整数解有( )A 、1个B 、2个C 、3个D 、无数多个 7、若a b >,且c 为有理数,则下列各式正确的是( ) A 、ac bc > B 、ac bc < C 、22ac bc < D 、22ac bc ≥8、某班学生参加运土劳动,一部分学生抬土,另一部分学生挑土。
已知全班共用箩筐59个,扁担36根,求抬土、挑土的学生各多少人?如果设抬土的学生x 人,挑土的学生y 人,则可得方程组( )A 、2()592362y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩B 、2592362x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩C 、2592236x y x y ⎧+=⎪⎨⎪+=⎩D 、259236x y x y +=⎧⎨+=⎩9、某班学生分组,若每组7人,则有2人分不到组里;若每组8人,则最后一组差4人,若设计划分x 组,则可列方程为( )A 、7284x x +=-B 、7284x x -=+C 、7284x x +=+D 、7284x x -=-10、如果(1)1a x a +<+的解集是1x >,那么a 的取值范围是( ) A 、0a < B 、1a <- C 、1a >- D 、a 是任意有理数 二、填空题(每题3分,共30分)11、若347a b x y 与332b a x y +-是同类项,则a = ,b = . 12、当x = 时,代数式45x -与39x -的值互为相反数13、已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -= .14、已知方程1825x y -=,用含y 的代数式表示x ,那么x = .15、轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/小时,水速为2千米/时,则A 港和B 港相距 千米.16、若不等式组121x a x a >+⎧⎨<-⎩无解,则a 的取值范围是_________.17、不等式2x-1<6的所有正整数解之和为_________. 18、已知a+b=3,2b-c=2,则2a+c=_________.19、若关于x 的方程kx-1=2x 的解为正数,则k 的取值范围是_________.20、不等式组204060x x x +>⎧⎪-≥⎨⎪-≤⎩的解集是_______.三、解答题(7个小题,共60分) 21、(10分)解方程(1)2(2)3(41)9(1)x x x ---=- (2)121146x x -+-=22.(10分)解方程组(1)8423x yx y+=⎧⎪⎨+=⎪⎩(2)1225224x y zx y zx y++=⎧⎪++=⎨⎪=⎩23、(10分)解不等式(组),并把(2)的解集在数轴上表示出来.(1)2132x x-<+;(2)21381x xx x<+⎧⎨+≥-⎩.24、(6分)已知关于x的方程3(2)x m x+=-的解是正数,求m的取值范围.25、(8分)m为何值时,方程组3523518x y mx y m-=⎧⎨+=-⎩的解互为相反数?求这个方程组的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师大版科学七年级(下)期中练习卷(土壤不考)班级:姓名:一:选择题(每题1.5分,共45分)1.冬天里教室里人很多,时间一长往往在玻璃窗的玻璃表面覆盖一层水,这是水的哪个过程造成的()A、蒸发B、凝固C、液化D、凝华2.下列关于空气的说法中,错误的是()A.工业上利用氧气和氮气的沸点不同,从液态空气中分离出氧气的过程属于物理变化B.空气是一种十分重要的天然资源C.若大量有害物质进入空气中,仅靠大自然的自净能力,大气还能保持洁净D.按体积分数计,空气中约含有氮气78%、氧气21%、他气体和杂质1%3.地球上的淡水资源主要存在于()A、冰川B、地下水C、河流D、湖泊4.在科学实验中,所需药品取用都有一定的工具,取用块状固体药品,通常用()A、镊子B、药匙C、纸槽D、用手拿5.奉化滕头村被联合国环境规划署授予“全球500佳”的称号,其主要发展模式为( )A.先进的信息技术 B.发达的现代工业C.生态型农业D.繁荣的商业6.水是植物体的重要组成成分,在植物体中含水量最多的部位是()A、茎B、叶C、顶芽D、风干的种子7.某同学在使用天平时,发现天平指针偏向右边,他应如何调节天平使天平平衡()A、调节游码B、调节右边螺旋向右C、调节左边螺旋向外D、增加砝码8.市场上买来的无水酒精是否含有水分,可用下列哪种物质检验()A、水合硫酸铜B、白色硫酸铜粉未C、水合氯化钴D、以上都可以用9.下列变化中水变成别的物质的过程是()A、水结成冰B、水电解C、水变成水蒸汽D、水温度升高10.下列物质不是溶液的是()A、蔗糖水B、生理盐水C、牛奶D、碘酒11.用吸管能将瓶中的饮料吸进嘴里,这是因为()A、嘴对饮料有向上的作用力B、嘴对饮料有吸引力C、嘴对饮料的吸力大于饮料的重力D、嘴吸掉了吸管中的部分空气,饮料在大气压的作用下进入嘴里12.2008年2月2日是第12个世界湿地日。
杭州西溪国家湿地公园位于杭州市区西部,距西湖仅5公里,占地约10平方公里,是目前国内唯一的集城市湿地、农耕湿地、文化湿地于一体的首个国家湿地生态系统。
下列有关叙述正确的是( )A.该湿地中的细菌和真菌属于分解者B.该湿地的生产者是浮游植物和浮游动物C.生活在该湿地中的所有藻类构成了一个生物群落13.水电解时阳极产生的气体是:()A、氧气B、氢气C、水蒸汽D、无法确定14.下列物质中,属于光合作用原料的是()A、氢气B、二氧化碳C、氮气D、氧气15.科技人员向农民建议:在利用温室生产作物时,向温室中施放适量二气化碳,可以提高作物的产量,这主要是因为()A、二氧化碳可使害虫窒息而死,从而有效地防止植物病害虫B、二氧化碳不支持燃烧,施放二氧化碳可避免火灾C、二氧化碳能跟水反应,施放二氧化碳可控制温室中的温度D、绿色植物的光合作用需要二氧化碳,二氧化碳可作气体肥料,促进植物的生长。
16.臭氧能吸收太阳辐射中的紫外线,使地球上的人和动物免爱紫外线的伤害,臭氧存在于大气的()A、对流层B、平流层C、中间层D、电离层17.在空气中氧气含量的测定实验装置中,燃烧匙里最好放置下列物质中的()A、木炭B、硫黄C、红磷D、铁丝18.下列四项基本操作中,正确的是()19.施用农药“DDT”的地区,虽然只占陆地面积的一小部分,可是远在南极的动物体内也发现了DDT,这种现象说明( )A.DDT挥发性极强B.这些南极动物可能是从施药地区迁去的C.人类活动对环境的影响有许多是全球性的D.考察队把DDT带到南极20.从液态空气中分离氮气和氧气,利用了它们的()A、颜色不同B、沸点不同C、凝固D、密度不同21.常常把冬虫夏草与人参、鹿茸列为三大补品。
它是由昆虫和真菌联合而生。
虫草(一种真菌)于冬季前后侵入在土壤中越冬的虫草蝙蝠蛾的幼虫体内,吸收幼虫的养分而发展菌丝,待菌丝充满虫体时虫即僵死,此时虫体内部组织被破坏,仅残留外皮。
到了夏季,从死虫的头顶或口中长出有柄的菌座,露出土面,似直立的小草,故名夏草。
夏草属于生态系统成分中的( )A.生产者B.消费者C.分解者D.非生命物质22.区别空气、氧气、二氧化碳的最简单的方法是()A、用带火星的木条B、用点燃的木条C、用澄清的石灰水D、用紫色的石蕊试液23、有关燃烧、缓慢氧化、自燃的说法错识的是()A、都会发光、发热B、都是与氧气发生反应C、都会放出热量D、它们的现象各不相同24.下列对空气的描述不正确的是()A、空气是有质量的B、空气中的成分以氮气和氧气为主C 、空气的成分是固定不变D 、稀有气体是空气中化学性质最稳定的成分之一25.如图是冰的熔化曲线,下面有关该图线的说法中,错误的是( )A 、AB 段呈固态,吸收热量温度升高B 、BC 段呈固态,吸收热量温度不变C 、CD 段呈液态,吸收热量,温度升高D 、BC 段是冰的熔化过程。
26.夏天,人在水中游泳上岸后觉得冷,这是因为( )A 、水中温度高B 、人身上的水蒸发需要吸热C 、人的错觉D 、岸上的温度低于水温27、40℃时,10克水最多能溶解2g 物质A ,60℃时50克水最多能溶解15g 物质B ,问哪种物质溶解度大( )A 、A 比B 大 B 、A 比B 小C 、A 和B 一样大D 、无法比较28.200C 时36克食盐加入100克水中,刚好形成饱和溶液,400C 时63.3克硝酸钾加入100克水中刚好形成饱和溶液,则食盐和硝酸钾的溶解度是( )A 、食盐溶解度大B 、硝酸钾溶解度大C 、一样大D 、无法比较29、下表是三种气体的密度(00C 、标准大气压下)和溶解度(200C 、101千帕条件),实验室要收集氯化氢气体,可采用的方法是( )C 、排水法D 、既可用向上排空气法,又可用排水法30.环境问题已经成为制约社会发展和进步的严重问题。
下列说法中正确的是( )①温室效应导致全球气候变暖 ②绿色植物的光合作用是大气的一种自净过程 ③汽车排放的尾气是造成城市空气污染的主要因素之一 ④ 酸雨、臭氧层破坏等与空气污染有关A .②③B .③④C .①②③D . ①②③④二:简答题(每空1分,共26分)31.人体排出、散发水分的途径主要有 、呼吸、排汗三种,为了保证身体健康,人每天必须至少补充 升的水分。
32.右图为某森林生态系统的食物网。
据图回答:(1) 该生态系统中共有 条食物链;(2) 该生态系统中的狐属于 级消费者;(3) 若该生态系统中的鹰、蛇、狐等受到保护,则的数量会减少。
(4) 作为一个生态系统,其组成成分中还应添加分解者和 。
(5) 食物网把生态系统中能量的流动和 紧密地联系起来;能量流动的特点是 、 。
时间033.可燃性气体在点燃前必须 ,氢气燃烧发出 火焰。
34.炒菜时油锅着火,最简单的灭火方法是 ,其目的是消除燃烧必备的三个条件中的 ;草原着火时,在火场周围把草割成防火道的目的是 。
35.① 生活在一块稻田上的所有生物 ② 某一池塘中的全部鱼类 ③ 肺炎患者肺部的肺炎双球菌 ④ 一根枯木及枯木上所有生物。
上述组合中,属于种群的是 ,属于群落的是 ,属于生态系统的是 。
(填序号)36.1654年5月8日,德国马德堡市市长奥托·格里克,把两个直径30多厘米的空心铜半球紧贴一起,用抽气机抽出球内的空气,然后用两队马向相反的方向拉两个半球,16匹马拼命的拉才拉开,这是由于 造成的,该实验就是著名的 实验。
37.地球的大气层中 的含量增高,会产生 效应,使地球气温 ,科学家预言这将使人类生存环境恶化。
那么,大气层中的该气体的主要来源是矿物燃料的燃烧,而自然界“消耗”该气体的主要过程是 。
38.通常把 叫做干冰,干冰在101千帕、零下78.50C 时能直接 变成气体而没有液体留下,同时吸收大量的热.因此,干冰可用作制冷剂。
39.200C 把20克食盐放入50克水中充分搅拌,所得溶液溶质是 ,溶液质量是 克。
(200C 时食盐的溶解度是36克)三、实验探究题(每空2分,共34分)40.某同学实验室制取氧气的装置如图所示:(1) 请指出装置中的一处错误 ;(2) 写出制取氧气的文字表达式 。
41.如图是在某一个生态系统中,在一定的时间内A 、B 、C 三个种群数量的变化曲线,其中A 是自养生物。
请分析回答:(1) 在这个生态系统中,A 、B 、C 三种生物的能量流动方向可能是 。
(2) B 和C 的关系是 。
(3) 如果B 生物被大量捕杀,该生态系统就会受到破坏,从而使生态系统的 能力受到影响。
42.如图所示,把细木条作为横梁,在它的中间穿一个孔,固定在支架上。
然后分别将两个装满二氧化碳的气球封口后挂在细木条的两端。
调节它们的位置使得细木条保持水平。
此时分别在图A 、B 位置剪同样长的口子,(假设气球不缩小,保持原来的形状)试问:(1) 细木条还能在水平位置平衡吗?如不平衡,哪一端下倾?(2) 解释原因:43.盛有石灰水的容器敞开放置一段时间后,容器壁上常会形成一层白色物质,其原因是 ;若要除去这种白色物质,可以用稀盐酸冲洗,原因是 。
(原因都用文字表达式表示)左端 右端44.某同学用右图装置测定空气中氧气的体积分数。
请你填写有关空格,并与同学交流。
⑴写出红磷燃烧的化学方程式为⑵待该物质熄灭并冷却后,打开弹簧夹观察到的现象是_______________;由此得出的结论是。
⑶实验后发现测定出的空气中氧气的体积分数低于l/5,这可能的原因是(任写一种)?。
⑷若⑶实验后发现测定出的空气中氧气的体积分数大于l/5,这可能的原因是(任写一种)? _____________________________________ 。
⑸由本实验还可以推测氮气的性质有(任写一种):_____ .。
⑹若将红磷换成碳粉,该实验能否获得成功? (填能或否)理由是。
如果不能,你认为应该如何改进?。
四、计算题(45题7分,46题8分)45、在20℃时某物质的不饱和溶液50g,平均分成两等份。
一份中加入0.7g该物质,另一份蒸发掉5g水,结果两份溶液都达饱和。
那么该物质在此温度下的溶解度为多少克?某固体混合物中含有硝酸钾和不溶性杂质、把它们加入一定量的水中充分溶解,其结果如下表:硝酸钾的溶解度见下表:求:1)所加水的质量;2)该固体混合物中硝酸钾的质量。