同济大学数学系《高等数学》(第7版)(上册)笔记和课后习题(含考研真题)详解-函数与极限【圣才出品】
同济大学《高等数学》第七版上、下册问题详解(详解)
练习1-1
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
练习1-2
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
练习1-3
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全。
同济大学数学系《高等数学》(第7版)(上册)-课后习题详解-第三章 微分中值定理与导数的应用【圣才出
有且仅有三个实根,它们分别位于区间(1,2),(2,3),(3,4)
3 / 91
圣才电子书
十万种考研考证电子书、题库视频学习平 台
6.证明恒等式: 证:取函数 f(x)=arcsinx+arccosx,x∈[-1,1].因
所以 f(x)≡C.取 x=0,得
.因此
7.若方程 正根 x=x0,证明方程
即
,所以
(2)取函数
,因为函数 f(t)在[1,x]上连续,在(1,x)内可导,则由
拉格朗日中值定理知,至少存在一点 ξ∈(1,x),使
6 / 91
圣才电子书
十万种考研考证电子书、题库视频学习平
台
即
.又 1<ξ<x,所以 eξ>e,因此
即
ex>x·e.
12.证明方程 x5+x-1=0 只有一个正根. 证:取函数 f(x)=x5+x-1,f(x)在[0,1]上连续,
的正根. 证:取函
有一个 必有一个小于 x0
数
.f(x)在[0,x0]
上连续,在(0,x0)内可导,且 f(0)=f(x0)=0,由罗尔定理知至少存在一点
ξ∈(0,x0),使
,即方程
正根.
必有一个小于 x0 的
8.若函数 f(x)在(a,b)内具有二阶导数,且 f(x1)=f(x2)=f(x3),其中
4 / 91
圣才电子书
十万种考研考证电子书、题库视频学习平
台
a<x1<x2<x3<b.证明:在(x1,x3)内至少有一点 ξ,使得
.
证:根据题意知函数 f(x)在[x1,x2],[x2,x3]上连续,在(x1,x2),(x2,x3)内可导
且
,所以由罗尔定理知至少存在点 ξ1∈(x1,x2),
同济大学数学系《高等数学》(第7版)(上册)笔记和课后习题(3-4章)(圣才出品)
第3章微分中值定理与导数的应用3.1复习笔记一、微分中值定理1.罗尔定理(1)费马引理设函数f(x)在点x0的某邻域U(x0)内有定义,并且在x0处可导,如果对任意的x ∈U(x0),有f(x)≤f(x0)或f(x)≥(x0),则f′(x0)=0。
(2)罗尔定理如果函数f(x)满足:①在闭区间[a,b]上连续;②在开区间(a,b)内可导;③在区间端点处的函数值相等,即f(a)=f(b)。
则在(a,b)内至少有一点ξ(a<ξ<b),使得f′(ξ)=0。
2.拉格朗日中值定理(1)拉格朗日中值定理如果函数f(x)满足:①在闭区间[a,b]上连续;②在开区间(a,b)内可导,则在(a,b)内至少有一点ξ(a<ξ<b),有f(b)-f(a)=f′(ξ)(b-a)。
(2)拉格朗日中值定理的证明思路引进辅助函数φ(x)=f(x)-f(a)-(f(b)-f(a))(x-a)/(b-a),再利用罗尔定理,即可证得。
(3)有限增量公式f(x+Δx)-f(x)=f′(x+θΔx)·Δx(0<θ<1)或Δy=f′(x +θΔx)·Δx(0<θ<1)。
(4)定理如果函数f(x)在区间I上连续,I内可导且导数恒为零,则f(x)在区间I上是一个常数。
3.柯西中值定理如果函数f(x)及F(x)满足:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)对任一x∈(a,b),F′(x)≠0,则在(a,b)内至少有一点ξ,有[f(b)-f(a)]/[F(b)-F(a)]=f′(ξ)/F′(ξ)。
二、洛必达法则1.洛必达法则(1)x→a时,0/0的洛必达法则①当x→a时,函数f(x)及F(x)都趋于零;②在点a的某去心邻域内,f′(x)及F′(x)都存在且F′(x)≠0;③()()lim x a f x F x →''存在(或为无穷大),则()()()()lim lim x a x a f x f x F x F x →→'='(2)x→∞时,0/0的洛必达法则①当x→∞时,函数f(x)及F(x)都趋于零;②当|x|>N 时,f′(x)与F′(x)都存在,且F′(x)≠0;③()()limx f x F x →∞''存在(或为无穷大),则()()()()lim lim x x f x f x F x F x →∞→∞'='注:对于x→a 或x→∞时的未定式∞/∞,也有相应的洛必达法则。
同济大学数学系《高等数学》(第7版)(上册)-课后习题详解-第二章 导数与微分【圣才出品】
第二章 导数与微分2.2 课后习题详解习题2-1 导数概念1.设物体绕定轴旋转,在时间间隔[0,t]上转过角度θ,从而转角θ是t的函数:θ=θ(t).如果旋转是匀速的,那么称为该物体旋转的角速度.如果旋转是非匀速的,应怎样确定该物体在时刻t 0的角速度?解:物体在时间间隔上的平均角速度在时刻t 0的角速度2.当物体的温度高于周围介质的温度时,物体就不断冷却.若物体的温度T 与时间t 的函数关系为T =T(t),应怎样确定该物体在时刻t 的冷却速度?解:物体在时间间隔上平均冷却速度[,]t t t +∆在时刻t 的冷却速度3.设某工厂生产x件产品的成本为函数C(x)称为成本函数,成本函数C(x)的导数在经济学中称为边际成本.试求(1)当生产100件产品时的边际成本;(2)生产第101件产品的成本,并与(1)中求得的边际成本作比较,说明边际成本的实际意义.即生产第101件产品的成本为79.9元,与(1)中求得的边际成本比较,可以看出边际成本的实际意义是近似表达产量达到x单位时再增加一个单位产品所需的成本.4.设f(x)=10x2,试按定义求.解:5.证明证:6.下列各题中均假定存在,按照导数定义观察下列极限,指出A表示什么:以下两题中给出了四个结论,从中选出一个正确的结论:7.设则f(x)在x=1处的( ).A.左、右导数都存在B.左导数存在,右导数不存在C.左导数不存在,右导数存在D.左、右导数都不存在【答案】B【解析】 故该函数左导数存在,右导数不存在.8.设f(x)可导,,则f(0)=0是F(x)在x=0处可导的( ).A.充分必要条件B .充分条件但非必要条件C .必要条件但非充分条件D .既非充分条件又非必要条件【答案】A 【解析】 当f(0)=0时,,反之当时,f(0)=0,为充分必要条件.9.求下列函数的导数:10.已知物体的运动规律为s =t 3m ,求这物体在t =2s 时的速度.解:11.如果f(x)为偶函数,且f '(0)存在,证明f '(0)=0.证:f(x)为偶函数,得.因为所以f '(0)=0.。
同济大学数学系《高等数学》(第7版)(上册)教材包含 笔记 课后习题 考研真题 函数与极限(圣才出品
(2)有界性
如果数列{xn}收敛,则数列{xn}一定有界。
①有界数列:存在正数 M,使得对于一切 xn 都满足不等式|xn|≤M。
②无界数列:不存在正数 M,使得对于一切 xn 都满足不等式|xn|≤M。
(3)保号性
如果
lim
n
xn
a
,且
a>0(或
a<0),则存在正整数
N>0,当
n>N
时,都有
xn>0
(4)初等函数
5 类基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数。
二、数列的极限
1.数列极限的定义
数列{xn}收敛于
a⇔
lim
n
xn
a
⇔∀ε>0,∃正整数
N,当
n>N
时,有|xn-a|<ε。
数列{xn}是发散⇔
lim
n
xn
不存在。
2.收敛数列的性质
(1)唯一性
如果数列{xn}收敛,则它的极限唯一。
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 1 章 函数与极限
1.1 复习笔记
一、映射与函数 1.函数 (1)函数的性质(见表 1-1)
表 1-1 函数的性质
(2)反函数与复合函数 ①反函数的特点 a.函数 f 和反函数 f-1 的单调性一致。 b.f 的图像和 f-1 的图像关于直线 y=x 对称。 ②复合函数 g 与 f 能构成复合函数 f°g 的条件是:f 的定义域与 g 的值域的交集不能为空集。 (3)函数的运算 设函数 f(x),g(x)的定义域为 Df,Dg,且定义域有交集为 D,则可定义这两个函
②如果数列{xn}有两个子数列收敛于不同的极限,则数列{xn}是发散的。
同济大学数学系《高等数学》(第7版)(上册)-课后习题(含考研真题)详解-第七章 微分方程【圣才出品
台
则
所以 y=3sinx-4cosx 是所给微分方程的解. (3)根据 y=x2ex,得
进而得
则
所以 y=x2ex 不是所给微分方程的解.
(4)根据
,得
,进而得
则
所以
是所给微分方程的解.
3.在下列各题中,验证所给二元方程所确定的函数为所给微分方程的解:
2 / 126
圣才电子书
十万种考研考证电子书、题库视频学习平
台
解:(1)在方程 x2-xy+y2=C 两端对 x 求导,得
即
所以所给二元方程所确定的函数是微分方程的解.
(2)在方程 y=ln(xy)两端对 x 求导,得
即(xy-x)y′-y=0,再在上式两端对 x 求导,得
即 给微分方程的解.
.所以所给二元方程所确定的函数是所
,即 tany·tanx=±C1,所以原方程的通解为
tany·tanx=C
(6)原方程分离变量,得 10-ydy=10xdx,两端积分得
可写成 (7)原方程为
. 分离变量得
两端积分得
或写成
,即
,
所以原方程的通解为
(ex+1)(ey-1)=C
(8)原方程分离变量,得
两端积分得
即 ln|sinysinx|=lnC1,或写成 sinysinx=±C1,所以原方程的通解为 sinysinx=C. (9)原方程分离变量,得(y+1)2dy=-x3dx.两端积分得
圣才电子书
十万种考研考证电子书、题库视频学习平 台
第七章 微分方程
7.2 课后习题详解
习题 7-1 微分方程的基本概念
1.试说出下列各微分方程的阶数:
解:(1)一阶;(2)二阶;(3)三阶;(4)一阶;(5)二阶;(6)一阶. 2.指出下列各题中的函数是否为所给微分方程的解:
同济大学数学系《高等数学》(第7版)(上册)笔记和课后习题(含考研真题)详解(第10章)【圣才出品】
3 / 143
圣才电子书 十万种考研考证电子书、题库视频学习平台
该体积为所求二重积分的值,有等式
这就是把二重积分化为先对 y,后对 x 的二次积分的公式.上面公式也可以写成
f (x, y)d
,作乘积
并作和
如果当各小闭区域的直径中的最大值 A→0 时,这和的极限总存在,且与闭区域 D 的分
法及点
的取法无关,则称此极限为函数 f(x,y)在闭区域 D 上的二重积分,记作
,即
其中f(x,y)称为被积函数,f(x,y)dσ称为被积表达式,dσ称为面积元素,x 与 y 称为
积分变量,D 称为积分区域,
圣才电子书
十万种考研考证电子书、题库视频学习平台
图 10-1-2
注:积分区域 D 既不是 X 型区域,又不是 Y 型区域时,可以把 D 分成几部分,使每个
部分是 X 型区域或 Y 型区域.
2.利用极坐标计算二重积分
设积分区域 D 可以用不等式
来表示(图
10-1-3),其中函数φ1(θ)、φ2(θ)在区间[α,β]上连续,则极坐标系中的二重积分化为二
在 D 上至少存在一点 ,使得
.
2 / 143
圣才电子书 十万种考研考证电子书、题库视频学习平台
二、二重积分的计算法
1.利用直角坐标计算二重积分
(1)X 型区域
设积分区域 D 用不等式
其中函数
在区间[a,b]上连续.
来表示(图 10-1-1),
图 10-1-1 计算步骤: ①求截面面积 过区间[a,b]上任一点 x 且平行于 yOz 面的平面截曲顶柱体所得截面的面积为
同济大学数学系《高等数学》(第7版)(上册)-复习笔记-第三章 微分中值定理与导数的应用【圣才出品】
圣才电子书
十万种考研考证电子书、题库视频学习平
台
设 f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,则:
若在(a,b)内
,则 f(x)在[a,b]上的图形是凹的;
②若在(a,b)内
,则 f(x)在[a,b]上的图形是凸的.
(4)拐点
设 y=f(x)在区间 I 上连续,x0 是 I 内的点.如果曲线 y=f(x)在经过点(x0,f(x0))
台
7.带有佩亚诺余项的麦克劳林公式
8.带有拉格朗日余项的麦克劳林公式
9.近似公式
10.误差估计式
11.几个常用的泰勒公式 (1)
(2)
(3)
(4)
9 / 18
. .
. .
圣才电子书
十万种考研考证电子书、题库视频学习平 台
四、函数的单调性与曲线的凹凸性
1.函数单调性的判定方法
(3)对任一
,
2 / 18
圣才电子书
十万种考研考证电子书、题库视频学习平
则在(a,b)内至少有一点
台
,有
二、洛必达法则 1.未定式 如果当
(或
)时,函数 f(x)与 F(x)都趋于零或都趋于
无穷大,则极限
可能存在、也可能不存在.通常称这种极限为未定式,并
分别简记为 或 . 2.洛必达法则
③洛必达法则可以和其他求极限方法结合使用,可以应用等价无穷小或重要极限.
【例】求极限
.
解:
④当
不存在时(等于无穷大的情况除外),
仍可能存在.
lim 【例】求极限
x sin x
x
x.
解: lim x
同济大学数学系《高等数学》(第7版)(上册)-课后习题(含考研真题)详解-第五章 定积分【圣才出品】
5.2 课后习题详解习题5-1 定积分的概念与性质1.利用定积分定义计算由抛物线y =x 2+1,两直线x =a 、x =b (b >a )及x 轴所围成的图形的面积.解:因为函数f(x)=x 2+1在区间[a ,b]上连续,所以函数可积,为计算方便,不妨把[a ,b]分成n 等份,则分点为每个小区间长度为取ξi 为小区间的右端点x i ,则当n→∞时,上式极限为即为所求图形的面积.2.利用定积分定义计算下列积分:解:因为被积函数在积分区间上连续,所以把积分区间分成n等份,并取ξi为小区间的右端点,得到(1)(2)3.利用定积分的几何意义,证明下列等式:证:(1)根据定积分的几何意义,定积分表示由直线y=2x、x=1及x轴围成的图形的面积,该图形是底边长为1、高为2的三角形,因此面积为1,即(2)根据定积分的几何意义,定积分表示的是由曲线以及x轴、y轴围成的在第I象限内的图形面积,即单位圆的四分之一的图形,因此有(3)因为函数y=sinx在区间[0,π]上非负,在区间[-π,0]上非正.根据定积分的几何意义,定积分表示曲线y=sinx(x∈[0,π])与x轴所围成的图形D1的面积减去曲线y=sinx(x∈[-π,0])与x轴所围成的图形D2的面积,显然图形D1与D2的面积是相等的,所以有(4)因为函数y=cosx在区间上非负.根据定积分的几何意义,定积分表示曲线与x轴和y轴所围成的图形D1的面积加上曲线与x轴和y轴所围成的图形D2的面积,而图形D1的面积和图形D2的面积显然相等,所以有4.利用定积分的几何意义,求下列积分:解:(1)根据定积分的几何意义,表示的是由直线y=x,x=t以及x轴所围成的直角三角形面积,该直角三角形的两条直角边的长均为t,因此面积为因此有(2)根据定积分的几何意义,表示的是由直线x=-2,x=4以及x轴所围成的梯形的面积,该梯形的两底长分别为梯形的高为4-(-2)=6,因此面积为21.因此有(3)根据定积分的几何意义,表示的是由折线y=|x|和直线x=-1,x=2以及x轴所围成的图形的面积.该图形由两个等腰直角三角形组成,一个由直线y=-x,x=-1和x轴所围成,其直角边长为1,面积为另一个由直线y=x,x=2和x轴所围成,其直角边长为2,面积为2.因此(4)根据定积分的几何意义,表示的是由上半圆周以及x轴所围成的半圆的面积,因此有5.设a<b,问a、b取什么值时,积分取得最大值?解:根据定积分几何意义,表示的是由y=x-x2,x=a,x=b,以及x轴所围成的图形在x轴上方部分的面积减去x轴下方部分面积.因此如果下方部分面积为0,上方部分面积为最大时,的值最大,即当a=0,b=1时,积分取得最大值.6.已知试用抛物线法公式求出ln2的近似值(取n=10,计算时取4位小数).解:计算y i并列表表5-2-1按抛物线法公式,求得7.设求解:(1)(2)(3)(4)8.水利工程中要计算拦水闸门所受的水压力.已知闸门上水的压强p与水深h存在函数关系,且有p=9.8h(kN/m2).若闸门高H=3m,宽L=2m,求水面与闸门顶相齐时闸门所受的水压力P.解:在区间[0,3]上插入n-1个分点,取ξi∈[h i-1,h i],并记Δh i=h i-h i-1,得到闸门所受水压力的近似值为根据定积分的定义可知闸门所受的水压力为因为被积函数连续,而连续函数是可积的,因此积分值与积分区间的分法和ξi的取法无关.为方便计算,对区间[0,3]进行n等分,并取ξi为小区间的端点所以。
同济大学数学系《高等数学》(第7版)(上册)笔记和课后习题(含考研真题)详解-第四章 不定积分【圣才
第四章 不定积分4.1 复习笔记一、不定积分的概念与性质1.原函数与不定积分的概念(1)原函数①定义如果在区间I 上,可导函数的导函数为,即对任意一,都有,则函数就称为在区间I 上的一个原函数.②原函数存在定理如果函数在区间I 上连续,则在区间I 上存在可导函数使对任一都有即连续函数一定有原函数.③注意两点a .如果有一个原函数,则就有无限多个原函数.b .若和都是的原函数,则()Fx ()x φ()f x(C 0为某个常数)(2)不定积分在区间I 上,函数的带有任意常数项的原函数称为(或)在区间I上的不定积分,记作,其中称为积分号,称为被积函数,称为被积表达式,x称为积分变量.2.基本积分表3.不定积分的性质(1)性质1设函数的原函数存在,则注:性质1对于有限个函数都是成立的.(2)性质2设函数的原函数存在,k为非零常数,则二、换元积分法1.第一类换元法设具有原函数,可导,则有换元公式()[()]()[()]u x f x x dx f u du ϕϕϕ='=⎰⎰2.第二类换元法设是单调的可导函数,并且又设具有原函数,则有换元公式1()()[[()]()]t x f x dx f t t dtψψψ-='=⎰⎰其中的反函数.三、分部积分法1.分部积分法设函数具有连续导数,则两个函数乘积的导数公式为移项,得对这个等式两边求不定积分,得称为分部积分公式.注:2.运用分部积分法需注意(1)v 要容易求得;(2)要比容易积出;(3)遵循“反对幂指三”原则.①“反对幂指三”定义“反对幂指三”分别指反三角函数、对数函数、幂函数、指数函数和三角函数.②“反对幂指三”原则“反对幂指三”原则是指在用分部积分法计算积分时,若出现上面相关函数,把被积表达式按照“反对幂指三”的积分次序,排在前面的看成“u”,排在后面的看成“dv”.【例】3.常见函数的不定积分四、有理函数的积分1.有理函数的积分(1)相关概念①有理函数 两个多项式的商称为有理函数.②有理分式 有理函数又称有理分式.③真分式 当P(x)的次数小于Q(x)的次数时,称这有理函数为真分式.④假分式 当P(x)的次数大于Q(x)的次数时,称这有理函数为假分式.(2)真分式的分解对于真分式,如果分母可分解为两个多项式的乘积且Q 1(x)与Q 2(x)没有公因式,则它可分拆成两个真分式之和。
(NEW)同济大学数学系《高等数学》(第7版)(上册)配套题库【考研真题+课后习题+章节题库+模拟试题】
图1
【答案】C
【解析】函数 在
内连续,观察知,函数 在除去点
外处处二阶可导.如图1所示,虽然 不存在,但在点 两侧
异号,因此
是
的拐点.
A点处二阶导数为0,且A点两侧 异号,根据拐点的定义知,A 点为曲线的拐点.B点处虽然二阶导数也为0,但是B点两侧 都是大 于0,因此,B点不是拐点.
2.设函数 具有二阶导数, ( ).[数一 2014研]
A.
,则当 充分大时,下列正确的有( ).[数三
B.
C.
D.
【答案】A
【解析】因为
,即
,
,所以
, ,当 时,有
,取 ,则知
.
6.设
,则当 时,若
是比 高阶
的无穷小,则下列选项中错误的是( ). [数三 2014研]
A. B.
C. D.
目 录
第一部分 考研真题 第一章 函数与极限 第二章 导数与微分 第三章 微分中值定理与导数的应用 第四章 不定积分 第五章 定积分 第六章 定积分的应用 第七章 微分方程
第二部分 课后习题 第一章 函数与极限 习题1-1 映射与函数 习题1-2 数列的极限 习题1-3 函数的极限 习题1-4 无穷小与无穷大 习题1-5 极限运算法则
【答案】1
【解析】在方程
两端关于x求导,得
将x=0代入方程
将
代入
,得
. ,得
则
【答案】 【解析】因为
,
,所以
所以
7.曲线
上对应于t=1的点处的法线方程为 ______.
[数二2013研]
【答案】
【解析】由题中函数表达式得,曲线上对应于t=1的点处的切线斜 率为
高等数学同济第七版上册课后习题答案
高等数学同济第七版上册课后习题答案【注意:以下是根据题目需求给出的格式,仅供参考。
具体格式请根据实际情况自行调整。
】第一章函数与极限1.1 函数的概念与性质1.(1)解:设函数f(x) = x^2 + 3x - 2,则有:f(-1) = (-1)^2 + 3(-1) - 2 = 4 - 3 - 2 = -11.(2)解:设函数g(x) = 2x - 1,则有:g(3) = 2(3) - 1 = 6 - 1 = 51.(3)解:将x = 3代入f(x) = x^2 + g(x)中,得:f(3) = 3^2 + g(3) = 9 + 5 = 141.(4)解:由f(x) = 2x + g(2)可得:g(2) = f(x) - 2x = 2x + g(x) - 2x = g(x)1.(5)解:f(g(-1)) = f(2(-1) - 1) = f(-3) = (-3)^2 + 3(-3) - 2 = 9 - 9 - 2 = -21.(6)解:海伦公式中,设a = BC = 3,b = AC = 4,c = AB = 5,则有:p = (a + b + c) / 2 = 6S = √[p(p-a)(p-b)(p-c)] = √[6(6-3)(6-4)(6-5)] = √[6(3)(2)(1)] = √[36] = 62.极限与连续性2.(1)解:根据极限的定义,当x趋于2时,有:lim(x->2)(x^2 + 3x - 2) = 2^2 + 3(2) - 2 = 4 + 6 - 2 = 82.(2)解:根据极限的性质,当x趋于2时,有:lim(x->2)(2x - 1) = 2(2) - 1 = 4 - 1 = 32.(3)解:由题意得,当x趋于3时,有:lim(x->3)(x^2 + 2x) = 3^2 + 2(3) = 9 + 6 = 152.(4)解:在x = 2处,f(x)不连续。
同济大学数学系《高等数学》(第7版)(上册)配套题库【考研真题精选+章节题库】
目 录第一部分 考研真题精选第1章 函数与极限第2章 导数与微分第3章 微分中值定理与导数的应用第4章 不定积分第5章 定积分第6章 定积分的应用第7章 微分方程第二部分 章节题库第1章 函数与极限第2章 导数与微分第3章 微分中值定理与导数的应用第4章 不定积分第5章 定积分第6章 定积分的应用第7章 微分方程第一部分 考研真题精选第1章 函数与极限一、选择题1若,则f(x)第二类间断点的个数为( )。
[数二、数三2020研] A.1B.2C.3D.4【答案】C【解析】由f(x)表达式知,间断点有x=0,±1,2。
因为存在,故x=0为可去间断点;因,故x=1为第2类间断点;因,故x=-1为第2类间断点;因,故x=2为第2类间断点;综上,共有3个第二类间断点,故应选C项。
2当x→0时,若x-tanx与x k是同阶无穷小,则k=( )。
[数一2019研]A.1B.2C.3D.4【答案】Ctanx在x=0处的泰勒展开式为:tanx=x+(1/3)x3+o(x3),因此当x→0时有x-【解析】tanx~-(1/3)x3,即x-tanx与-(1/3)x3是x→0时的等价无穷小,进一步可得x-tanx与x3是同阶无穷小,所以k=3,故选C。
3已知方程x5-5x+k=0有3个不同的实根,则k的取值范围( )。
[数三2019研] A.(-∞,-4)B.(4,+∞)C.{-4,4}D.(-4,4)【答案】D【解析】方程x5-5x+k=0有3个不同实根等价于曲线y=x5-5x与直线y=-k有3个不同的交点,因此研究曲线y=x5-5x的曲线特点即可。
令f(x)=x5-5x,则f(x)在R上连续,且f′(x)=5x4-5,再令f′(x)=0,得x=±1,通过分析f′(x)在稳定点x=±1左右两侧的符号,可知当x∈(-∞,-1)时,f′(x)>0,f(x)单调递增;当x∈(-1,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Df,即
.
5 / 120
圣才电子书
(4)函数的运算
十万种考研考证电子书、题库视频学习平台
设函数 f(x),g(x)的定义域依次为
,则可以定
义这两个函数的下列运算
(5)初等函数 ①5 类基本初等函数
②初等函数定义 由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用 一个式子表示的函数,称为初等函数.
3 / 120
圣才电子书
③周期性
十万种考研考证电子书、题库视频学习平台
a.定义 f (x + T ) = f (x) (T 为正数).
b.最小正周期 函数所有周期中最小的周期称为最小正周期.
④奇偶性
f(x)的定义域关于原点对称,则:
a.偶函数 f(-x)=f(x),图形关于 y 轴对称.
,
其中 y 称为元素 x(在映射 f 下)的像,并记作 f (x) ,即
,而元素 x 称为
元素 y(在映射 f 下)的一个原像;集合 X 称为映射 f 的定义域,记作
,即
;
X 中 所 有 元 素 的 像 所 组 成 的 集 合 称 为 映 射 f 的 值 域 , 记 作 Rf 或 f (x) , 即
函数值 f(x)的全体所构成的集合称为函数 f 的值域,记作 Rf 或 f (D) ,即
③相同函数所具备的的特点 a.定义域相同; b.对应法则也相同. ④函数的表示方法 表格法、图形法、解析法(公式法). (2)函数的性质 ①有界性
a.上界:若存在 K1,对任意 x Î I 有 f (x) £ K1 ,则称函数 f (x) 在I上有上界,而 K1 称为函数 f (x) 在I上的一个上界.
c.f 的图像和 f-1 的图像关于直线 y=x 对称,如图 1-1-1 所示.
4 / 120
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 1-1-1
③复合函数
a.复合函数定义
设 函 数 y = f(u) 的 定 义 域 为
, 函 数 u = g(x) 的 定 义 域 为
组成的复合映射中,g 的值域 Rg 必须包含在
2 / 120
圣才电子书
①函数的定义
十万种考研考证电子书、题库视频学习平台
设数集 D R,则称映射 f :D→R 为定义在 D 上的函数,简记为
即
.
,其中 x 称为自变量,y 称为因变量.D 称为定义域,记作 ,
②函数值域
二、数列的极限 1.数列极限的定义 (1)数列的概念
如果按照某一法则,对每个 n Î N+ ,对应着一个确定的实数 xn ,这些实数 xn 按照下标
{ } n 从小到大排列得到的一个序列 x1, x2 , x3,, xn 就称为数列,简记为数列 xn .
6 / 120
圣才电子书
.
(2)映射三要素
包括:①定义域
;②值域 f ( X ) ;③对应法则 f .
(3)映射的特点
对每个 x∈X,元素 x 的像 y 是唯一的;而对每个
,元素 y 的原像不一定是
唯一的.
(4)满射
设 f 是从集合 X 到集合 Y 的映射,若 Rf = Y ,即 Y 中任一元素 y 都是 X 中某元素的像,
①逆映射
设 f 是 X 到 Y 的单射,则由定义,对每个
,有唯一的 x∈X,适合 f (x) = y .则
可定义一个从 Rf 到 X 的新映射 g,即
,对每个
,规定 g( y) = x ,
则 x 满足 f (x) = y .这个映射 g 称为 f 的逆映射,记作
,其定义域
,值
域
.
注:只有单射才存在逆映射.
圣才电子书
十万种考研考证电子书、题库视频学习平台
第一章 函数与极限
1.1 复习笔记
一、映射与函数
1.映射
(1)映射概念
设 X、Y 是两个非空集合,如果存在一个法则 f ,使得对 X 中每个元素 x,按法则 f ,
在 Y 中有唯一确定的元素 y 与之对应,则称 f 为从 X 到 Y 的映射,记作
b.下界:若存在 K2,对任意 x Î I 有 f (x) ³ K2 ,则称函数 f (x) 在I上有下界,而 K2 称为函数 f (x) 在I上的一个下界.
c.有界:若对任意 x Î I ,存在 M>0,总有 f (x) £ M ,则称 f (x) 在 I 上有界.
②单调性
a.单调递增 当 x1 < x2 时, f (x1) < f (x2 ) . b.单调递减 当 x1 < x2 时, f (x1) > f (x2 ) .
b.奇函数 f(-x)=-f(x),图形关于原点对称.
(3)反函数与复合函数
①反函数的定义
设函数 f:D→f(D)是单射,则它存在逆映射 f-1:f(D)→D,称此映射 f-1 为函数 f 的反
函数.
②反函数的特点
a.当 f 在 D 上是单调递增函数,f-1 在 f(D)上也是单调递增函数;
b.当 f 在 D 上是单调递减函数,f-1 在 f(D)上也是单调递减函数;
则称 f 为 X 到 Y 上的满射.
(5)单射
1 / 120
圣才电子书 十万两个不同元素
,它们的像
,则称 f 为 X
到 Y 的单射.
(6)一一映射(双射)
f 既是单射,又是满射,则称 f 为一一映射(或双射).
(7)逆映射与复合映射
(2)数列的项与通项
②复合映射
设有两个映射
,其中
,则由映
射 g 和 f 可以定出一个从 X 到 Z 的对应法则,它将每个 x∈X 映成 f[g(x)]∈Z.显然,这个
对应法则确定了一个从 X 到 Z 的映射,这个映射称为映射 g 和 f 构成的复合映射,记作 ,即
③复合映射的条件
在两个映射
f 的定义域内,即
.
2.函数
(1)函数的概念
且其值域
则函数
称为由函数 u=g(x)与函数 y=f(u)构成的复合函数,
它的定义域为
,变量 u 称为中间变量.
注:函数 g 与函数 f 构成的复合函数,即按“先 g 后 f”的次序复合的函数,记为
,
即
b.构成复合函数的条件 g 与 f 能构成复合函数
. 的条件是:函数 g 的值域 Rg 必须包含于函数 f 的定义域