电磁场与电磁波期末复习题库

合集下载

电磁场与电磁波期末试题

电磁场与电磁波期末试题

一、选择题(10×2=20分)1.产生电场的源为( C )A 位移电流和传导电流;B 电荷和传导电流;C 电荷和变化的磁场;D 位移电流和变化的磁场。

2.在有源区,静电场电位函数满足的方程是( A )A 泊松方程;B 亥姆霍兹方程;C 高斯方程;D 拉普拉斯方程。

3. 如果真空中有一个点电荷q 放在直角坐标系的原点,则坐标),,(z y x 处的电位=Φ( D )A 22241z y xq++πε; B 222041z y x q++πε; C 22241zy x q ++πε; D 22241zy x q ++πε。

4. 某金属在频率为1MHz 时的穿透深度为60m μ,当频率提高到4 MHz 时,其穿透深度为( B )A 15m μ;B 30m μ;C 120m μ;D 240m μ。

5. 在正弦电磁场中,位移电流应与该处电场的方向一致,其相位( C ) A 与电场相同; B 与电场相反; C 超前电场90°; D 滞后电场90°。

6. 一个半径为a 的导体球,球外为非均匀电介质,介电常数为a r 0εε=,设导体球的球心与坐标原点重合,则导体球与无穷远点的电容为( B )A a 04πε; B a 08πε; C a 012πε; D a 02πε。

7.对于非磁性介质,平行极化的均匀平面斜入射到介质分界面上,发生全透射的条件为( B )A 反射波平行极化;B 入射角等于布儒斯特角;C 入射角等于临界角;D 入射波为左旋园极化。

8.麦克思韦提出的( D )的概念,使在任何状态下的全电流都可保持连续A 传导电流;B 时变电流;C 运流电流;D 位移电流。

9. 如图所示的一个电量为q 的点电荷放在060导体内坐标),(d a 处,为求解导体包围空间的电位,需要( C )个镜像电荷A 1个;B 3个;C 5个;D 8个。

10. 已知良导体的电导率磁导率和介电常数分别为σμ和ε,则频率为ω的平面电磁波入射到该导体上时的集肤深度为( A )Aωμσ2; B 2ωμσ; Cωμσ21; D σωμ2。

《电磁场与电磁波》期末复习题及答案

《电磁场与电磁波》期末复习题及答案

《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。

A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。

(完整版)电磁场期末试题

(完整版)电磁场期末试题

电磁场与电磁波期末测验题一、判断题:(对的打√,错的打×,每题2分,共20分)1、标量场在某一点梯度的大小等于该点的最大方向导数。

(√)2、真空中静电场是有旋矢量场。

(×)3、在两种介质形成的边界上,电场强度的切向分量是不连续的。

(×)4、当导体处于静电平衡状态时,自由电荷只能分布在导体的表面。

(√)5、在理想导体中可能存在恒定电场。

(×)6、真空中恒定磁场通过任一闭合面的磁通为零。

(√)7、时变电磁场是有旋有散场。

(√)8、非均匀平面波一定是非TEM 波。

(×)9、任意取向极化的平面波可以分解为一个平行极化波与一个垂直极化波的合成 (√)10、真空波导中电磁波的相速大于光速。

(√)二、简答题(10+10=20分)1、简述静电场中的高斯定律及方程式。

答:真空中静电场的电场强度通过任一闭合曲面的电通等于该闭合曲面所包围的电荷量与真空介电常数之比。

⎰=⋅S S E 0d εq2、写出麦克斯韦方程的积分形式。

答:S D J l H d )(d ⋅∂∂+=⋅⎰⎰S l t S B l E d d ⋅∂∂-=⋅⎰⎰S lt 0d =⋅⎰S S Bq S=⋅⎰ d S D三、计算题(8+8+10+10+12+12)1 若在球坐标系中,电荷分布函数为⎪⎩⎪⎨⎧><<<<=-b r b r a a r 0, ,100 ,03ρ试求b r a a r <<<< ,0及b r >区域中的电通密度D 。

解 作一个半径为r 的球面为高斯面,由对称性可知r e D s D 24d rq q s π=⇒=⋅⎰ 式中q 为闭合面S 包围的电荷。

那么在a r <<0区域中,由于q = 0,因此D = 0。

在b r a <<区域中,闭合面S 包围的电荷量为()3333410d a r v q v -⨯==-⎰πρ 因此, ()r e D 2333310r a r -=- 在b r >区域中,闭合面S 包围的电荷量为()3333410d a b v q v -⨯==-⎰πρ 因此, ()r e D 2333310r a b -=- 2 试证位于半径为a 的导体球外的点电荷q 受到的电场力大小为222302232)(4)2(a f f a f a q F ---=πε 式中f 为点电荷至球心的距离。

电磁场与电磁波复习题

电磁场与电磁波复习题

第二章(选择)1、将一个带正电的带电体A从远处移到一个不带电的导体B附近,导体B的电势将( A )A升高B降低C不会发生变化D无法确定2、下列关于高斯定理的说法正确的是(A)A如果高斯面上E处处为零,则面内未必无电荷。

B如果高斯面上E处处不为零,则面内必有静电荷。

C如果高斯面内无电荷,则高斯面上E处处为零。

D如果高斯面内有净电荷,则高斯面上E处处不为零3、以下说法哪一种是正确的(B)A电场中某点电场强度的方向,就是试验电荷在该点所受的电场力方向B电场中某点电场强度的方向可由E=F/q确定,其中q0为试验电荷的电荷量,q0可正可负,F为试验电荷所受的电场力C在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同D以上说法都不正确4、当一个带电导体达到静电平衡时(D)A表面曲率较大处电势较高B表面上电荷密度较大处电势较高C导体内部的电势比导体表面的电势高D导体内任一点与其表面上任一点电势差等于零5、下列说法正确的是(D)A场强相等的区域,电势也处处相等B场强为零处,电势也一定为零C电势为零处,场强也一定为零D场强大处,电势不一定高6、就有极分子电介质和无极分子电介质的极化现象而论(D)A、两类电介质极化的微观过程不同,宏观结果也不同B、两类电介质极化的微观过程相同,宏观结果也相同C、两类电介质极化的微观过程相同,宏观结果不同D、两类电介质极化的微观过程不同,宏观结果相同7、下列说法正确的是( D )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷B闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零C闭合曲面的电通量为零时,曲面上各点的电场强度必定为零。

D闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零8、根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是( D )A若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷B若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零C若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷D介质中的电位移矢量与自由电荷和极化电荷的分布有关9、将一个带正电的带电体A从远处移到一个不带电的导体B附近,导体B的电势将(A)A升高B降低C不会发生变化10、一平行板电容器充电后与电源断开,再将两极板拉开,则电容器上的(D)A、电荷增加B、电荷减少C、电容增加D、电压增加(判断)1、两个点电荷所带电荷之和为Q,当他们各带电量为Q/2时,相互间的作用力最小(×)2、已知静电场中某点的电势为-100V,试验电荷q0=3.0x10-8C,则把试验电荷从该点移动到无穷远处电场力作功为-3.0x10-6J (√)3、电偶极子的电位与距离平方成正比,电场强度的大小与距离的二次方成反比。

电磁场与电磁波复习题(简答题)

电磁场与电磁波复习题(简答题)

电磁场与电磁波复习题第一部分矢量分析1、请解释电场与静电场的概念。

静止电荷产生的场表现为对于带电体有力的作用,这种场称为电场。

不随时间变化的电场称为静电场。

2、请解释磁场与恒定磁场的概念。

运动电荷或电流产生的场表现为对于磁铁和载流导体有力的作用,这种物质称为磁场。

不随时间变化的磁场称为恒定磁场。

3、请解释时变电磁场与电磁波的概念。

如果电荷及电流均随时间改变,它们产生的电场及磁场也是随时变化的,时变的电场与时变的磁场可以相互转化,两者不可分割,它们构成统一的时变电磁场。

时变电场与时变磁场之间的相互转化作用,在空间形成了电磁波。

4、请解释自由空间的概念。

电磁场与电磁波既然是一种物质,它的存在和传播无需依赖于任何媒质。

在没有物质存在的真空环境中,电磁场与电磁波的存在和传播会感到更加“自由”。

因此对于电磁场与电磁波来说,真空环境通常被称为“自由空间”。

5、举例说明电磁场与波的应用。

静电复印、静电除尘以及静电喷漆等技术都是基于静电场对于带电粒子具有力的作用。

电磁铁、磁悬浮轴承以及磁悬浮列车等,都是利用磁场力的作用。

当今的无线通信、广播、雷达、遥控遥测、微波遥感、无线因特网、无线局域网、卫星定位以及光纤通信等信息技术都是利用电磁波作为媒介传输信息的。

6、请解释常矢与变矢的概念。

若某一矢量的模和方向都保持不变,此矢量称为常矢,如某物体所受到的重力。

而在实际问题中遇到的更多的是模和方向或两者之一会发生变化的矢量,这种矢量我们称为变矢,如沿着某一曲线物体运动的速度v等。

7、什么叫矢性函数?设t是一数性变量,A为变矢,对于某一区间G[a,b]内的每一个数值t,A 都有一个确定的矢量A(t)与之对应,则称A为数性变量t的矢性函数。

8、请解释静态场和动态场的概念。

如果在某一空间区域内的每一点,都对应着某个物理量的一个确定的值,则称在此区域内确定了该物理量的一个场。

换句话说,在某一空间区域中,物理量的无穷集合表示一种场。

《电磁场与电磁波》期末复习题-基础

《电磁场与电磁波》期末复习题-基础

电磁场与电磁波复习题1. 点电荷电场的等电位方程是( )。

A .C R q=04πε B .C R q=204πε C .C R q =024πε D .C R q =2024πε2. 磁场强度的单位是( )。

A .韦伯B .特斯拉C .亨利D .安培/米3. 磁偶极矩为m 的磁偶极子,它的矢量磁位为( )。

A .024R m e R μπ⨯B .02 ?4R m e R μπC .024R m e R επ⨯D .02 ?4R m e Rεπ 4. 全电流中由电场的变化形成的是( )。

A .传导电流B .运流电流C .位移电流D .感应电流 5. μ0是真空中的磁导率,它的值是( )。

A .4π×710-H/mB .4π×710H/mC .8.85×710-F/mD .8.85×1210F/m6. 电磁波传播速度的大小决定于( )。

A .电磁波波长B .电磁波振幅C .电磁波周期D .媒质的性质7. 静电场中试验电荷受到的作用力大小与试验电荷的电量( )A.成反比B.成平方关系C.成正比D.无关8. 真空中磁导率的数值为( )A.4π×10-5H/mB.4π×10-6H/mC.4π×10-7H/mD.4π×10-8H/m9. 磁通Φ的单位为( )A.特斯拉B.韦伯C.库仑D.安/匝10. 矢量磁位的旋度是( )A.磁感应强度B.磁通量C.电场强度D.磁场强度11. 真空中介电常数ε0的值为( )A.8.85×10-9F/mB.8.85×10-10F/mC.8.85×10-11F/mD.8.85×10-12F/m12. 下面说法正确的是( )A.凡是有磁场的区域都存在磁场能量B.仅在无源区域存在磁场能量C.仅在有源区域存在磁场能量D.在无源、有源区域均不存在磁场能量13. 电场强度的量度单位为( )A .库/米B .法/米C .牛/米D .伏/米14. 磁媒质中的磁场强度由( )A .自由电流和传导电流产生B .束缚电流和磁化电流产生C .磁化电流和位移电流产生D .自由电流和束缚电流产生15. 仅使用库仓规范,则矢量磁位的值( )A .不唯一B .等于零C .大于零D .小于零16. 电位函数的负梯度(-▽ϕ)是( )。

电磁场与电磁波复习题

电磁场与电磁波复习题

一、选择题1、关于均匀平面电磁场,下面的叙述正确的是A.在任意时刻,各点处的电场相等B.在任意时刻,各点处的磁场相等C.在任意时刻,任意等相位面上电场相等、磁场相等D.同时选择A和B2、空气中某一球形空腔,腔内分布着不均匀的电荷,其电荷体密度与半径成反比,则空腔外表面上的电场强度A.大于腔内各点的电场强度B.小于腔内各点的电场强度C.等于腔内各点的电场强度D.不能确定3、用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是A.镜像电荷是否对称B.电位所满足的方程是否未改变C.边界条件是否保持不变D.同时选择B和C∇⨯=,其中的J4、微分形式的安培环路定律表达式为H JA.是传导电流密度B.是磁化电流密度C.是传导电流和磁化电流密度D.若在真空中则是传导电流密度;在介质中则为磁化电流密度5、电源以外恒定电流场基本方程微分形式说明它是有散无旋场无散无旋场无散有旋场 D. 有散有旋场6、两个载流线圈之间存在互感,对互感没有影响的是A.线圈的尺寸B.两个线圈的相对位置C.线圈上的电流D.线圈所在空间的介质7、一导体回路位于与磁场力线垂直的平面内,欲使回路中产生感应电动势,应使A.磁场随时间变化B.回路运动C.磁场分布不均匀D.同时选择A和B8、一沿+z 传播的均匀平面波,电场的复数形式为()m x y E E e je =-r r r ,则其极化方式是A .直线极化B .椭圆极化C .右旋圆极化D .左旋圆极化9、.对于载有时变电流的长直螺线管中的坡印廷矢量,下列陈述中,正确的是:A. 无论电流增大或减小, 都向内B. 无论电流增大或减小, 都向外C. 当电流增大,向内;当电流减小时,向外10、在边界形状完全相同的两个区域内的静电场,满足相同的边界条件,则两个区域中的场分布A .一定相同B .一定不相同C .不能断定相同或不相同11、z >0半空间中为ε=2ε0的电介质,z <0半空间中为空气,在介质表面无自由电荷分布。

电磁场期末复习_计算题

电磁场期末复习_计算题

②电场、磁场强度复矢量
解: ① kex3ez4, k5, ek ex0.6ez0.8
k, 53108 1.5109rad/s
c
f 7.5108Hz, 20.4m
2
k
② E H x x,,z z e 0y H 3 1 x,e z j (e 3x k4 z)(A e x/0 m .8,e z0 .6 0) 41e0 2 j (3x 0 4z)V /m
求导线产生的磁场;线圈中的感应电动势。
解: ② CH dli HeI02 co ts(A /m )
id
b a
磁感应强度为
Be
I0cost 2
(T)
SB d sd dbI0 2 c o ta sd 2 I 0 aln d dbco ts
故感应电动势为 d d tI2 0 aln d dbsi n t(V )
Jd D t r0 E m s itn 8 1 31 6 1 9 0 2 16E 0 m s itn 4 .5 1 3 0 E m si2 n 1 (6t0 )
8
电磁场与电磁波
2014复习资料
8. 在E 理z,想t介 质e x (4 εr=c 2.0 25o ,μtrs =-1))k 中(均已z 匀知平该面平波面电波场频强率度为瞬10时G值Hz为, :
8. 在E 理z,想t介 质e x (4 εr=c 20 .25o ,μtrs =-1))k ( 中已均z 知匀该平平面面波波电频场率强为度1瞬0G时H值z, 为:
③求磁场强度瞬时值④平均坡印廷矢量。
解: ③ r 120 1 80 ,
r
2 .25
Hz , t
ey
40
cos(
t-kz
4

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题(含答案)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数,散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。

散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。

2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分,旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。

当S 点P 时,存在极限环量密度。

⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。

4.⽮量的旋度在直⾓坐标系下的表达式。

5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。

梯度的⼤⼩为该点标量函数?的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u的数学表达式是,梯度的表达式8、亥姆霍兹定理的表述在有限区域内,⽮量场由它的散度、旋度及边界条件唯⼀地确定,说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。

9、麦克斯韦⽅程组的积分形式分别为 0()s l s s l sD dS Q BE dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为 020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场,⼀般采⽤时谐场来分析时变电磁场的⼀般规律,是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下,可以使⽤叠加原理。

电磁场与电磁波期末考试题库

电磁场与电磁波期末考试题库

电磁场与电磁波期末考试题库一、选择题1.静电场是指:– A. 电荷在电场中不断运动的状态– B. 电荷在电场中静止的状态– C. 电场中没有电荷存在的状态– D. 电场中电势为零的状态2.电场强度的定义式是:– A. $E =\\frac{1}{4\\pi\\varepsilon_0}\\frac{q}{r^2}$– B. $E = \\varepsilon_0\\frac{q}{r^2}$– C. $E =\\frac{1}{4\\pi\\varepsilon_0}\\frac{q}{r}$– D. $E = \\varepsilon_0\\frac{q}{r}$3.电场线的特点是:– A. 线的密度表示电场强度的大小– B. 线的颜色表示电场强度的大小– C. 线的方向表示电场强度的方向– D. 线上的点表示电场强度的大小4.关于电场线的说法正确的是:– A. 电场线一定是直线– B. 电场线一定是曲线– C. 电场线既可以是直线也可以是曲线– D. 电场线没有特定的形状5.电场中的带电粒子受到的力是由以下哪些因素决定的?– A. 粒子的电荷大小– B. 粒子所处位置的电场强度– C. 粒子的质量– D. 粒子的电荷大小和所处位置的电场强度二、填空题1.电场强度的单位是\\\\。

2.静电势能的单位是\\\\。

3.感应电场的方向与引起它的磁场的变化方式\\\\。

4.麦克斯韦方程组包括\\\_\_个方程。

三、计算题1.一根长为10cm的直导线通有1A的电流,求导线周围某点的磁场强度。

2.一个带电粒子在电场中受到的力为5N,电荷大小为2C,求电场强度的大小。

3.两个带电粒子相距1m,电荷分别为1C和-2C,求它们之间的电势能。

四、问答题1.什么是电磁场?2.什么是电磁波?3.静电场和感应电场有什么区别?4.麦克斯韦方程组描述了什么?五、实验题设计一个实验,验证库仑定律。

以上是《电磁场与电磁波期末考试题库》的题目内容,包括选择题、填空题、计算题、问答题和实验题。

电磁波与电磁场期末复习题(试题+答案)

电磁波与电磁场期末复习题(试题+答案)

电磁波与电磁场期末复习题(试题+答案)电磁波与电磁场期末试题一、填空题(20分)1.旋度矢量的散度恒等与零,梯度矢量的旋度恒等与零。

2.在理想导体与介质分界面上,法线矢量n r由理想导体2指向介质1,则磁场满足的边界条件:01=?B n ρρ,s J H n =?1ρρ。

3.在静电场中,导体表面的电荷密度σ与导体外的电位函数?满足的关系式n ??=?εσ-。

4.极化介质体积内的束缚电荷密度σ与极化强度P 之间的关系式为P ?-?=σ。

5.在解析法求解静态场的边值问题中,分离变量法是求解拉普拉斯方程的最基本方法;在某些特定情况下,还可用镜像法求拉普拉斯方程的特解。

6.若密绕的线圈匝数为N ,则产生的磁通为单匝时的N 倍,其自感为单匝的2N 倍。

7.麦克斯韦关于位移电流的假说反映出变化的电场要产生磁场。

8.表征时变场中电磁能量的守恒关系是坡印廷定理。

9.如果将导波装置的两端短路,使电磁波在两端来回反射以产生振荡的装置称为谐振腔。

10.写出下列两种情况下,介电常数为ε的均匀无界媒质中电场强度的量值随距离r 的变化规律:带电金属球(带电荷量为Q )E = 24r Qπε;无限长线电荷(电荷线密度为λ)E =r2。

11.电介质的极性分子在无外电场作用下,所有正、负电荷的作用中心不相重合,而形成电偶极子,但由于电偶极矩方向不规则,电偶极矩的矢量和为零。

在外电场作用下,极性分子的电矩发生转向,使电偶极矩的矢量和不再为零,而产生极化。

12.根据场的唯一性定理在静态场的边值问题中,只要满足给定的边界条件,则泊松方程或拉普拉斯方程的解是唯一的。

二、判断题(每空2分,共10分)1.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。

(×)2.一个点电荷Q 放在球形高斯面中心处。

如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。

(×)3.在线性磁介质中,由IL ψ=的关系可知,电感系数不仅与导线的几何尺寸、材料特性有关,还与通过线圈的电流有关。

电磁场和电磁波复习题

电磁场和电磁波复习题

《电磁场和电磁波》复习题一、选择题1.图所示两个载流线圈,所受的电流力使两线圈间的距离扩大缩小不变2.毕奥—沙伐定律在任何媒质情况下都能应用在单一媒质中就能应用必须在线性,均匀各向同性媒质中应用。

3. 真空中两个点电荷之间的作用力A. 若此两个点电荷位置是固定的,则不受其他电荷的引入而改变B. 若此两个点电荷位置是固定的,则受其他电荷的引入而改变C. 无论固定与不固定,都不受其他电荷的引入而改变4.真空中有三个点电荷、、。

带电荷量,带电荷量,且。

要使每个点电荷所受的电场力都为零,则:A. 电荷位于、电荷连线的延长线上,一定与同号,且电荷量一定大于B. 电荷可位于连线的任何处,可正、可负,电荷量可为任意大小C. 电荷应位于、电荷连线的延长线上,电荷量可正、可负,且电荷量一定要大于5.静电场中电位为零处的电场强度A. 一定为零B. 一定不为零C. 不能确定6.空气中某一球形空腔,腔内分布着不均匀的电荷,其电荷体密度与半径成反比,则空腔外表面上的电场强度A. 大于腔内各点的电场强度B. 小于腔内各点的电场强度C. 等于腔内各点的电场强度7.图示长直圆柱电容器中,内圆柱导体的半径为,外圆柱导体的半径为,内、外导体间的上、下两半空间分别充有介电常数为与的电介质,并外施电压源。

若以外导体圆柱为电位参考点,则对应该问题电位的唯一正确解是A.B.C.8.电源以外恒定电流场基本方程微分形式说明它是有散无旋场无散无旋场无散有旋场9.设半径为a 的接地导体球外空气中有一点电荷Q,距球心的距离为,如图所示。

现拆除接地线,再把点电荷Q移至足够远处,可略去点电荷Q对导体球的影响。

若以无穷远处为电位参考点,则此时导体球的电位A.B.C.10.图示一点电荷Q与一半径为a 、不接地导体球的球心相距为,则导体球的电位A. 一定为零B. 可能与点电荷Q的大小、位置有关C. 仅与点电荷Q的大小、位置有关11.以位函数为待求量的边值问题中,设、、都为边界点的点函数,则所谓第二类边值问题是指给定12.以位函数为待求量的边值问题中,设、、都为边界点的点函数,则所谓第三类边值问题是指给定13.以位函数为待求量边值问题中,设、、都为边界点的点函数,则所谓第一类边值问题是指给定(为在边界上的法向导数值)14.在无限大被均匀磁化的磁介质中,有一圆柱形空腔,其轴线平行于磁化强度, 则空腔中点的与磁介质中的满足15.两块平行放置载有相反方向电流线密度与的无限大薄板,板间距离为, 这时A. 两板间磁感应强度为零。

《电磁场与电磁波》复习题

《电磁场与电磁波》复习题

《电磁场与电磁波》复习题2016年《电磁场与电磁波》复习题⼀、选择题1.已知⽮量()()()2222x y z E e x axz e xy by e z z czx xyz =++++-+-,试确定常数a 、b 、c ,使E 为⽆源场【】。

A .2,1,2a b c ===-B .2,1,2a b c =-==-C .2,1,2a b c ==-=-D .2,1,2a b c ===2.在两种媒质的分界⾯上,设n e 和t e 分别为界⾯的切向和法向,则电场1E 和2E 满⾜的关系式为___________。

【】A 12()0n e E E ?-=B 12()0n e E E ?-=C 12()0t e E E ?-=D 12()0t eE E ?-=3. 在圆柱坐标系中,三个相互正交的坐标单位⽮量为e ρ、e φ、z e ,其中为常⽮量单位⽮量为【】。

A .e ρB .e φC .z eD .都不是4. 已知()()22222/x y z E e xyz y e x z xy e x y V m=-+-+,则点()2,3,1P -处E ?的值为【】。

A .-10B .5C .10D .-55.同轴线的内导体半径为1r ,外导体的内半径为2r ,内外导体间填充介电常数为0r εεε==的均匀电介质,则同轴线单位长度的电容C 为_________。

【】 A 122ln(/)r r πε B 212ln(/)r r πε C 122ln(/)r r r πε D 212ln(/)r r r πε 6.已知标量函数2u x yz =,则u在点(2,3,1)处沿指定⽅向3/504/505/50l x y z e e e e =++的⽅向导数为【】。

A .100/ B .112/ C .56/ D .224/7. ⼀般导电媒质的电导率σ,介电常数ε和电磁波⾓频率ω之间满⾜【】。

A .()/1σωε>>B .()/1σωε<<C .()/1σωε=D .()/1σωε≈ 8.坡印廷⽮量S E H =?,它的⽅向表⽰____⽅向,⼤⼩表⽰___。

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题 一、填空题1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任意一点处通量对体积的变化率。

散度与通量的关系是矢量场中任意一点处通量对体积的变化率。

2、 散度在直角坐标系的表达式 z A y A x A z yxA A ∂∂∂∂∂∂++=⋅∇= div ;散度在圆柱坐标系下的表达;3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。

当S 点P 时,存在极限环量密度。

二者的关系n dS dC e A ⋅=rot ;旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该点最 大环量密度的方向。

4.矢量的旋度在直角坐标系下的表达式。

5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。

梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与梯度的关系是梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e 的表达式 ; 7、直角坐标系下方向导数u ∂的数学表达式是cos cos cos l αβγ∂∂∂∂∂∂∂∂uuuu=++xyz ,梯度的表达式x y z G e e e grad x y z φφφφφ∂∂∂=++=∇=∂∂∂;8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。

9、麦克斯韦方程组的积分形式分别为0()s l s s l s D dS Q B E dl dS t B dS D H dl J dS t ⋅=∂⋅=-⋅∂=∂=+⋅∂⎰⎰⎰⎰⎰⎰其物理描述分别为10、麦克斯韦方程组的微分形式分别为20E /E /tB 0B //tB c J E ρεε∇⋅=∇⨯=-∂∂∇⋅=∇⨯=+∂∂其物理意义分别为 11、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场, 一般采用时谐场来分析时变电磁场的一般规律,是因为任何时变周期函数都可以用正弦函数表示的傅里叶级数来表示;在线性条件下,可以使用叠加原理。

电磁场与电磁波 期末考试复习题

电磁场与电磁波   期末考试复习题

3、电介质极化后,其内部存在 A. 自由正电荷 C. 自由正负电荷
B. 自由负电荷 D. 电偶极子 A )保持连续.
4、在两种导电介质的分界面处,电场强度的( A. 切向分量 B. 幅值 C. 法向分量
D. 所有分量
5、介电常数为 ε 的介质区域中,静电荷的体密度为 ρ,已知这些电荷产生的电 场为 E(x,y,z),而 D(x,y,z)=εE(x,y,z)。下面的表达式中正确的是( C ) 。 A. ▽·D=0 C. ▽·D=ρ 6、介质的极化程度取决于:( A. 静电场 B. 外加电场 B. ▽·E=ρ/ε0 D. ▽×D=ρ D )。 D. 外加电场和极化电场之和 C )倍。
12、 在两种介质的分界面上, 若分界面上存在传导电流, 则边界条件为( A. Ht不连续,Bn不连续
B
B. Ht不连续,Bn连续
B
C. Ht连续,Bn不连续
B
D. Ht连续,Bn连续
B
13、磁介质中的磁场强度由( A.自由电流 C.磁化电流
D
)产生.
B.束缚电流 D.自由电流和束缚电流共同 )倍。
B. R = −1, T = 0 D. R = 0, T = 0
二、填空题 (每空 2 分,共 20 分) u v r u v r r 1、对于矢量 A ,若 A = a x Ax + a y Ay + a z Az , r r r r r 则: a z × a x = a y ; a x × a x = 0
S
∫ E ⋅ dl = 0
l
v
v
13、在无源理想介质中
Jc=
0
,ρ=
0
14、在理想介质中电位的泊松方程 ∇ 2ϕ = −

电磁场与电磁波期末考试试题库

电磁场与电磁波期末考试试题库

2I 1I 1l l⨯•《电磁场与电磁波》自测试题1.介电常数为ε的均匀线性介质中,电荷的分布为()r ρ,则空间任一点E ∇= ____________, D ∇= _____________。

2. /ρε;ρ1. 线电流1I 与2I 垂直穿过纸面,如图所示。

已知11I A =,试问1.l H dl =⎰__ _______;若.0lH dl =⎰, 则2I=_____ ____。

2. 1-; 1A1. 镜像法是用等效的 代替原来场问题的边界,该方法的理论依据是___。

2. 镜像电荷; 唯一性定理1. 在导电媒质中, 电磁波的相速随频率改变的现象称为_____________, 这样的媒质又称为_________ 。

2. 色散; 色散媒质1. 已知自由空间一均匀平面波, 其磁场强度为0cos()y H e H t x ωβ=+, 则电场强度的方向为__________, 能流密度的方向为__________。

2. z e ; x e -1. 传输线的工作状态有________ ____、_______ _____、____________三种,其中________ ____状态不传递电磁能量。

2. 行波; 驻波; 混合波;驻波1. 真空中有一边长为的正六角 形,六个顶点都放有点电荷。

则在图示两种情形 下,在六角形中心点处的场强大小为图中____________________;图中____________________。

2. ;1. 平行板空气电容器中,电位(其中 a 、b 、c 与 d 为常数), 则电场强度__________________,电荷体密度_____________________。

2.;1. 在静电场中,位于原点处的电荷场中的电场强度线是一族以原点为中心的__________________ 线, 等位线为一族_________________。

2. 射 ; 同心圆1. 损耗媒质中的平面波 , 其传播系数 可表示为__________ 的复数形式,其中表 示衰减的为___________。

电磁场与电磁波期末考试复习试题4套(部分含答案)

电磁场与电磁波期末考试复习试题4套(部分含答案)

电磁场与电磁波期末考试复习资料11.圆柱坐标系中单位矢量 , 。

2.对于矢量A ,若 ,则=+•y x a y x a x )(2 ,=⨯x z a y a x 2 。

3.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ,矢量B A ⋅= 。

4.已知直角坐标系中点P 1(5,-2,1),P 2(3,1,2),则P1的位置矢量为 ,P1到P2的距离矢量为 。

5.已知球坐标系中单位矢量 。

6.在两半无限大导电平面组成的直角劈形中间放置一点电荷,此时点电荷的镜像电荷个数为 。

7.点电荷q 在自由空间任一点r 处电场强度为 。

8.静电场中导体内的电场为 ,电场强度与电位函数的关系为 。

9.高斯散度定理的积分式为 ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。

10.已知任意一个矢量场A ,则其旋度的散度为 。

11.真空中静电场的基本方程的微分形式为 、 、 。

12.分析恒定磁场时,在无界真空中,两个基本场变量为 ,它们之间的关系为 。

13.斯托克斯定理为 ,它表明矢量场A 的旋度沿曲面S 的方向分量的面积分等于该矢量沿围绕此面积曲线边界的线积分。

14.任意一个标量场u ,则其梯度的旋度为 。

15.对于某一矢量 ,它的散度定义式为 ,用哈密顿算子表示为 。

16.介质中静电场的基本方程的积分式为 , , 。

17.介质中恒定磁场的基本方程的微分形式为 、 、 。

18.介质中恒定磁场的基本方程的积分式为 , , 。

19.静电场中两种介质分界面的边界条件是 , 。

20.在无限大的导体平面上方d 处放一点电荷q ,则其镜像电荷电量为 ,位置位于 ;如果一个点电荷置于两平行导体中间,则此点电荷有 镜像电荷。

21.矢量场223z a yz a y x a A z y x ++=在点P(1,1,0)的散度为 。

22.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ,位置位于 ;当点电荷q 向无限远处运动时,其镜像电荷向 运动。

电磁场与电磁波复习题

电磁场与电磁波复习题

文档解密:6cL4SsoDTwyFgJ电磁场与电磁波复习题一、填空1、球坐标系的坐标变量分别为半径r,角度φ,角度θ。

2、散度处处为零的场称为无散场,旋度处处为零的场称为无旋场。

3、无极分子的极化称为位移极化,有极分子的极化称为取向。

4、真空中的恒定电流场是无旋无散场。

5、任一标量场梯度的旋度一定等于0。

6、线性各向同性的均匀介质,极化的本构关系为D=ε E ,磁化的本构关系为βμH ,导电介质的本构关系为J=σE 。

7、恒定磁场的两种磁介质分界面处,磁感应强度的法向分量一定连续。

8、传导电流是指电子离子在导体或液体中形成的电流。

9、均匀平面波的电场强度和磁场强度之比,称为电磁波的___波阻抗_____________。

10、散度定理的公式∮sAds=∫r(∆A)dr 。

11、真空中的恒定磁场是有旋无散场。

12、复能流密度矢量的实部代表流动,虚部代表交换。

13、电磁波的频率描述相位随时间的变化特性, 而波长描述相位随空间的变化特性。

14、根据介质中束缚电荷的分布特性,介质分子可以分为有极分子和无极分子。

15、恒定磁场是有旋无散场。

16、电磁波的周期是描述相位随时间的变化特性,而波长是描述相位随空间的变化特性。

17、复数形式的麦克斯韦方程组是__________________,____________________,________________,___________________。

18、均匀平面波的电场和磁场振幅之比等于__波阻抗_______。

19、损耗媒质的本征阻抗为_②_____(①实数,②复数),损耗媒质又称为_____散媒介____。

20、理想介质分界面两侧电场强度E满足的关系是_E1t=E2t__________,电位移矢量D满足的关系是___D1n=D2n___________。

21、已知介质中有恒定电流分布J,则介质中磁场强度H与J的关系为_D×H=J__________,磁感应强度B的散度为__∆·B=0____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场习题汇总2-12若带电球的内外区域中的电场强度为⎪⎪⎩⎪⎪⎨⎧<>=a r aqr a r r q, ,2r e E试求球内外各点的电位。

解 在a r <区域中,电位为()()aqr a a q r aa rr+-=⋅+⋅=⋅=⎰⎰⎰∞∞222d d d r E r E r E ϕ 在a r>区域中,()rq r r =⋅=⎰∞r E d ϕ 2-14 已知真空中的电荷分布函数为⎪⎩⎪⎨⎧>≤≤=a r ar r r,00 ,)(2ρ式中r 为球坐标系中的半径,试求空间各点的电场强度。

解 由于电荷分布具有球对称性,取球面为高斯面,那么根据高斯定理204d επεqr E qs=⇒=⋅⎰s E在a r ≤≤0区域中 ()52254d 4d r r r r v r q r vππρ===⎰⎰ r r r r r e e E 03052515441εεππ==在a r >区域中 ()502254d 4d a r r r v r q a v ππρ===⎰⎰ r r r a a r e e E 025052515441εεππ== 2-17 若在一个电荷密度为ρ,半径为a 的均匀带电球中,存在一个半径为b 的球形空腔,空腔中心 与带电球中心的间距为d ,试求空腔中的电场强度。

解 此题可利用高斯定理和叠加原理求解。

首先设半径为a 的整个球内充满电荷密度为ρ的电荷,则球内P 点的电场强度为r e E r P032013 3441ερρππε==r r 式中r 是由球心o 点指向P 点的位置矢量,再设半径为b 的球腔内充满电荷密度为ρ-的电荷,则其在球内P 点的电场强度为r e E r P '-='''-=0320233441ερρππεr r 式中r '是由腔心o '点指向P 点的位置矢量。

那么,合成电场强度P P E E 21+即是原先空腔内任一点的电场强度,即()d r r E E E P P P 002133ερερ='-=+= 式中d 是由球心o 点指向腔心o '点的位置矢量。

可见,空腔内的电场是均匀的。

2-19 已知内半径为a ,外半径为b 的均匀介质球壳的介电常数为ε,若在球心放置一个电量为q 的点电荷,试求:①介质壳内外表面上的束缚电荷;②各区域中的电场强度。

解 先求各区域中的电场强度。

根据介质中高斯定理re D s D 2244d rqq D r q sππ=⇒=⇒=⋅⎰ 在a r ≤<0区域中,电场强度为 r e DE 2004rq πεε==在b r a ≤<区域中,电场强度为 re DE 24rqπεε== 在b r >区域中,电场强度为 r e DE 2004r q πεε==再求介质壳内外表面上的束缚电荷。

由于()E P 0εε-=,则介质壳内表面上束缚电荷面密度为()2020414a qa q s πεεπεεερ⎪⎭⎫ ⎝⎛--=--=⋅-=⋅=P e P n r 外表面上束缚电荷面密度为()2020414b qb q s πεεπεεερ⎪⎭⎫ ⎝⎛-=-=⋅=⋅=P e P n r 2-32 若平板空气电容器的电压为V ,极板面积为A , 间距为d ,如习题图2-32所示。

若将一块厚度为)(d t t < 的导体板平行地插入该平板电容器中,试求外力必须作 的功。

解 未插入导体板之前,电容量dAC 0ε=。

插入导体板后,可看作两个电容串联,其中一个电容器的电容习题图2-32xA C 01ε=,另一个电容器的电容xt d AC --=02ε,那么总电容量为td AC C C C C -=+='02121ε根据能量守恒原理,电源作的功和外力作的功均转变为电场能的增量,即12ΔW W W W W e -==+外电源式中()()20ΔV t d d AtV CV V C qV W -=-'==ε电源电源W V C C W W W e 21)(21d 212=-'=-= 则 ()2021V t d d AtW --=ε外3-10 试证位于半径为a 的导体球外的点电荷q 受到的电场力大小为222302232)(4)2(a f f a f a q F ---=πε 式中f 为点电荷至球心的距离。

若将该球接地后,再计算点电荷q 的受力。

证明 根据镜像法,必须在球内距球心fa d 2=处引入的镜像电荷q f a q -='。

由于球未接地,为了保持总电荷量为零,还必须引入另一个镜像电荷-q ',且应位于球心,以保持球面为等电位。

那么,点电荷q 受到的力可等效两个镜像电荷对它的作用力,即,rr e e F 22202201)(4)(4a f afq d f q q --=-'=πεπε(N ) r r e e F 30220244f aq f q q πεπε='-=(N )合力为 re F F F 22230223221)(4)2(a f f a f a q ---=+=πε(N ) 当导体球接地时,则仅需一个镜像电荷q ',故q 所受到的电场力为F 1。

3-16 已知点电荷q 位于半径为a 的导体球附近,离球心的距离为f ,试求:①当导体球的电位为ϕ时的镜像电荷;②当导体球的电荷为Q 时的镜像电荷。

解 ①如前所述,此时需要两个镜像电荷等效带电导体球的影响。

一个是离球心fa 2处,电量为qf a q -='的镜像电荷。

另一个镜像电荷q "位于球心,其电量取决于导体球的电位。

已知导体球的电位为ϕ,而镜像电荷及球外点电荷对于球面边界的电位没有贡献,因此,球心镜像电荷q "的电量应满足aq 04πεϕ''=即ϕπεa q 04=''② 当导体球携带的电荷为Q 时,在离球心fa 2处的镜像电荷仍然为q f a q -=',而球心处的镜像电荷q faQ q +='',以保持电荷守恒,即Q q q =''+'。

4-2设同轴线内导体半径为a ,外导体的内半径为b ,填充媒质的电导率为σ。

根据恒定电流场方程,计算单位长度内同轴线的漏电导。

解 设0;,====ϕϕ时,时b r V a r 。

建立圆柱坐标系,则电位应满足的拉普拉斯方程为0d d d d 12=⎪⎭⎫⎝⎛=∇r r r r ϕϕ 求得同轴线中的电位ϕ及电场强度E 分别为⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=b a b r V ln ln ϕr e E ⎪⎭⎫ ⎝⎛-=-∇=b a Vrln 1ϕ 则r e E J ⎪⎭⎫ ⎝⎛-==b a Vr ln 1σσ单位长度内通过内半径的圆柱面流进同轴线的电流为⎪⎭⎫ ⎝⎛=⋅=⎰b a VI s ln 2d πσs J 那么,单位长度内同轴线的漏电导为⎪⎭⎫⎝⎛===b a V I R G ln 21πσ()m S 4-3设双导线的半径a ,轴线间距为D ,导线之间的媒质电导率为σ,根据电流场方程,计算单位长度内双导线之间的漏电导。

解 设双导线的两根导线上线电荷密度分别为+ρ和-ρ,利用叠加原理和高斯定理可求得两导线之间垂直连线上任一点的电场强度大小为 ⎪⎭⎫ ⎝⎛-+=r D r E 112περ 那么,两导线之间的电位差为 aa D V ad a-=⋅=⎰-ln d περr E 单位长度内两导线之间的电流大小为 ()a D D I s s-=⋅=⋅=⎰⎰ερσσs E s J d d则单位长度内两导线之间的漏电导为 ()⎪⎭⎫⎝⎛--===a a D a D DVI R G ln 1πσ ()m S若a D >>则单位长度内双导线之间的漏电导为⎪⎭⎫ ⎝⎛=a D G ln πσ()m S4-5已知环形导体块尺寸如习题图4-5所示。

试求a r =与b r =两个表面之间的电阻。

解 建立圆柱坐标系,则电位应满足的拉普拉斯方程为0d d d d 12=⎪⎭⎫⎝⎛=∇r r r r ϕϕ 该方程的解为 ()21ln C r C r +=ϕ令()(),0 ,0==b V a ϕϕ求得常数a b V C ln 01-=。

那么,电场强度为()r e r E ab r V r ln d d 0=-=ϕ电流密度为 r e E J ab r V lnσσ==电流强度为⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⋅=⎰⎰⎰a b V d z a a b a V I d ln 2d d ln d 0200σπφσπS J由此求得两个表面之间的电阻为σπd a b I V R ⎪⎭⎫ ⎝⎛==ln 20X5-5已知无限长导体圆柱的半径为a ,其内部存在的圆柱空腔半径为b ,导体圆柱的轴线与空腔圆柱的轴线之间的间距为c ,如习题图5-5(a )所示。

若导体中均匀分布的电流密度为0J z e J =,试求空腔中的磁感应强度。

解 柱内空腔可以认为存在一个均匀分布的等值反向电流,抵消了原有的电流而形成的。

那么,利用叠加原理和安培环路定律即可求解。

已知半径为a ,电流密度为0J 的载流圆柱在柱内半径r 处产生的磁场强度H 1为 021d J r lπ⎰=⋅l H 求得201r J H =φ,或写为矢量形式 21rJ H ⨯= 对应的磁感应强度为 201r J B ⨯=μ同理可得半径为b ,电流密度为J -的载流圆柱在柱内产生的磁场强度为 22r J H '⨯-= 对应的磁感应强度为 202r J B '⨯-=μ上式中r r ',的方向及位置如习题图5-5(b )示。

因此,空腔内总的磁感应强度为21B B B +=()r r J'-⨯=20μ200cJ x z e e ⨯=μ200c J y μe =5-7若在a y -=处放置一根无限长线电流I z e ,在y = a 处放置另一根无限长线电流I x e ,如习题图5-7所示。

试求坐标原点处的磁感应强度。

解 根据无限长电流产生的磁场强度公式,求得位于a y -=处的习题图5-5(a ) 习题图5-5(b )YZ -aaIIX无限长线电流I z e 在原点产生的磁场为aI xπ21e H -=位于a y =处的无限长线电流I x e 产生的磁场为aI zπ22e H -=因此,坐标原点处总磁感应强度为()210H H B +=μ()x z aIe e +-=πμ20 5-9已知电流环半径为a ,电流为I ,电流环位于z = 0 平面,如习题图5-9所示。

试求),0,0(h P 处的磁感应强度。

解 由毕奥—沙伐定律得⎰⨯=l r r I 24d πe l H因为l d 处处与r e 正交,则φd d a r =⨯e l即⎰⎰=⨯=224d 4d r Ia rI H r πφπe l 由对称性可知,P 点磁场强度只有z H 分量,所以()⎰+=ππφ20232224d ha Ia H z ()232222ha Ia +=因此,()h P ,0,0处的磁感应强度为()23222002ha Ia z+==μμe H B6-7若无限长直导线与半径为a 的圆环导线平行放置, 电流方向如习题图6-7所示。

相关文档
最新文档