第九章 电磁感应
高考物理总复习:选修3-2第九章电磁感应
①垂直于磁场 ②垂直于磁场 ③1 T·m2 ④ΦS ⑤ 磁感应强度 ⑥磁通量发生变化 ⑦切割磁感线 ⑧阻 碍引起感应电流的磁通量 ⑨电磁感应 ⑩其余四指 ⑪磁感线 ⑫导体运动的方向 ⑬感应电流 ⑭切割磁 感线
一、磁通量的计算和理解 规律方法 1.求磁通量时要明确是穿过哪一面积的磁通量.且 这一面积必须是磁场内的.
题后反思 判断是否有感应电流产生,分析磁通量是否变化是 唯一的判断依据.可简单理解为判断穿过所研究的面积 内的磁感线的条数是否发生变化.
例3
如图所示,用一根长为 L、质量不计的细杆与一个上 弧长为 l0、下弧长为 d0 的金属线框的中点连接并悬挂于 O 点,悬点正下方存在一个上弧长为 2l0、下弧长为 2d0 的 方向垂直纸面向里的匀强磁场,且 d0≪L.先将线框拉开到 如图所示位置,松手后让线框进入磁场,忽略空气阻力 和摩擦.下列说法正确的是( )
________________________________________ _______________________________________________ _______________________________________________ _______________________________________________ _______________________________________________
(2)S 不变,S 内的磁场变化(即 B 变化),导致 Φ 变 化.ΔΦ=ΔBS.
(3)B 和 S 同时变化,导致 Φ 变化.但 ΔΦ 不一定等 于 ΔB·ΔS.
【重点提示】 磁通量是否发生变化,是判定电磁 感应现象的惟一依据,而引起磁通量变化的原因,主要 是磁场变化和导线相对磁场的运动而引起的,具体方式 有多种多样.
技术物理基础第9章 电磁感应技术
28
29
自感现象 由于电路本身的电流发生变化引起 磁通量改变而产生的电磁感应现象叫做自感现象。 在自感现象中产生的感应电动势叫做自感电动势, 自感现象也是电磁感应的一种形式,所以它也遵守 电磁感应定律和楞次定律。
30
31
自感系数 在自感现象中,磁通量的变化是由 于线圈本身电流的变化引起的,而磁通量的多少是 与通过线圈的电流大小成正比的,所以磁通量的变 化量 ΔΦ 必与电流的变化 ΔI成正比。根据电磁感 应定律,自感电动势与电流的变化率 ΔI/Δt成正比, 即
7
8
9
10
第二节 楞次定律 楞次定律 从图 9-7的实验中,在磁棒插入线 圈和从线圈中拔出的过程中,会产生方向不同的感 应电流。当磁棒插入线圈时,穿过线圈的磁通量是 增加的;当磁棒从线圈中拔出时,穿过线圈的磁通 量是减少的。这说明感应电流的方向跟穿过闭合电 路的磁通量是增加还是减少是有关的。
24
25
第四节 互感 自感 互感现象 对于两个相邻近的电路,当其中一 个电流变化时,另一个电路产生感应电动势的现象 ,叫做互感现象,互感是一种在特定方式下产生的 电磁感应现象。
26
27
感应圈 感应圈的外观和构造如图 9-22所 示。在一束细铁丝做成的绝缘铁心 M 上,套着两 个彼此绝缘的导线线圈,其中匝数不多,由较粗导 线绕成的线圈通以电流,常称为原线圈。在原线圈 外面套着一个匝数很多、由细导线绕成的线圈,用 以获得感应电动势,常称为副线圈。
46
47
第一节 电磁感应现象 在什么条件下才能产生电磁感应现象呢?下面 我们来研究闭合电路的一部分导体在磁场。 里做切割磁感线的运动。在图 9-1的实验中, 当导体ab做切割磁感线的运动时,电流表的指针就 会发生偏转,这说明此时电路中有电流产生;当导 体 ab沿着磁感线运动时,电流表的指针不动,这说 明此时电路中没有电流产生。
大学物理第九章
动生电动势
由于导体运动而产生的感应电动势。
dΦ B dS Bldx
i
dΦ dt
Bl
dx dt
Bl
d a
B
l
c b
dx
负号表示电动势的方向。
在磁场中运动的导线内的感应电动势
导线内每个自由电子受到的
洛仑F兹力e
B
非静E电k 场 强Fe
B
a
电场。
解:由场的对称性,变化磁场所激发的感生电场
线在管内、外都是与螺线管同轴的同心圆。
取任一电场线(半径为r)作
为闭合回 路, 则
L L
E E
E
ddll21LrESdSlBtBt2ddSrSE
ER
r
B
感生电场
1)
当r
S
<RB时 dS t
S
B t
dS
r 2 dB
dt
E
1
2r
S
§9-1 电磁感应定律
法拉第(1791-1867英国)
1831年,发现电磁感应现象。 1833年,发现电解定律。 1837年,发现电解质对电容的影响, 引入电容率概念。 1845年,发现磁光效应,顺磁质、抗 磁质等。
§9-1 电磁感应定律
1. 电磁感应现象
N
S
现象1
条形磁铁N极(或S极)插入线圈时,线圈中就有电 流通过,这种电流称为感应电流。 实验表明:磁铁与线圈有相对运动时,线圈中就有感 应电流,相对速度越大,感应电流也越大。
(a)Φ 0, dΦ
B
dt en
0, i
0
i
(b)Φ 0, dΦ
B
dt en
程守洙-普通物理学第七版-第9章--电磁感应电磁场理论
dΦ dt
(2)非闭合回路
a. Ei 已知 c
εi a Ei dl
b. Ei 未知,设法构成回路
物理之舟
εi
dΦ dt
返回 退出
若既有动生电动势,又有感生电动势
b b
εi
(v B) dl
a
a Ei dl
或
dΦ εi N dt
物理之舟
返回 退出
例9-4 半径为R 的无限长螺线管内部的磁场B随时间 作线性变化(dB/dt =常量)。 求管内外的感生电场。
Ei 2πr
Ei
R2 2r
感应电场分布为
dB dt
Ei
R22rr2ddddBtBt
物理之舟
rR
rR
返回 退出
例9-5 半径为R 的圆柱形体积内充满磁感应强度B(t) 的均匀磁场,有一长为 l 的金属棒放在其中,设 dB/dt 已知,求棒两端的感生电动势。
解: 利用前面的结果
r dB Ei 2 dt
导体棒匀速向右运动,外力( F F )的功率为
P F v IilBv Pe
外力做正功输入机械能,安培力做负功吸收它,
同时感应电动势(非静电场力)在回路中做正功又以电
能形式输出这个份额的能量。
——发电机
物理之舟
返回 退出
动生电动势的计算
(1)对于导体 回路
a. ε (v B) dl
闭合曲线
返回 退出
感应电场和感生电动势的计算
1. 感应电场的计算
对具有对称性的磁场分布,磁场变化时产生的
感应电场可由
L Ei dl
B
dS
S t
计算,方法类似于运用安培环路定理计算磁场,关 键是选取适当的闭合回路L。
高二物理第九章总结知识点
高二物理第九章总结知识点本文总结了高二物理第九章的重要知识点,旨在帮助同学们复习和回顾所学内容。
第九章主要涉及电磁感应、电磁场和电磁波三个方面的内容,并介绍了电磁振荡、交流电路和光的波动性等相关知识。
以下是本章的重点知识总结。
一、电磁感应1. 法拉第电磁感应定律:当导体相对于磁场运动或磁场发生变化时,导体中就会感应出感应电动势,其大小与导体运动速度、导体长度以及磁感应强度有关。
2. 楞次定律:感应电流的方向总是阻碍磁场发生变化的方式。
二、电磁场1. 电场和磁场:电场和磁场是相互关联的,当电场发生变化时,会产生磁场;当磁场发生变化时,会产生电场。
2. 磁场的性质:磁场有方向和大小之分,用磁感应强度表示,单位是特斯拉(T)。
3. 磁感线:磁感线是用来表示磁场方向的虚拟曲线,其方向是磁力线的方向。
三、电磁波1. 电磁波的概念:电磁波是通过自由空间以及一些介质传播的,由电场和磁场交替变化所产生的波动现象。
2. 光的电磁波性质:光既具有电磁波的特性,也具有粒子性质。
光的波长和频率之间有着确定的关系,即c=λν,其中c是光速。
3. 光的折射和反射:当光从一种介质射入另一种介质时,会发生折射现象;当光从一种介质射入另一种介质的界面上时,会发生反射现象。
四、电磁振荡和交流电路1. 电磁振荡:由于电容器和电感器之间的能量交换,电荷量和电流会周期性地发生变化。
这种周期性的变化称为电磁振荡,其频率由电容器和电感器的参数决定。
2. 交流电路:交流电路中的电压和电流大小和方向都周期性地变化,其频率通常为50Hz或60Hz,根据Ohm定律和功率公式可以计算电阻、电容和电感器上的电流和功率。
以上是本节内容的主要知识点总结。
通过对这些知识点的复习,同学们可以更好地理解和掌握高二物理第九章的内容,为进一步学习打下坚实的基础。
希望本文对同学们的学习有所帮助,祝大家学业进步!。
大学物理-第九章 电磁感应 电磁场理论
2.电场强度沿任意闭合曲线的线积分等于以该曲线
为边界的任意曲面的磁通量的变化率的负值。 3.通过任意闭合曲面的磁通量恒等于零。
4.磁场强度沿任意闭合曲线的线积分等于穿过以该 曲线为边界的曲面的全电流。
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
麦克斯韦方程组(物理含义)
(1) SDdSq (2)
例1 有一圆形平板电容器 R , 现对其充电,使电路上
的传导电流为 I ,若略去边缘效应, 求两极板间离开轴
线的距离为 r(r R) 的区域的(1)位移电流;
(2)磁感应强度 .
解 如图作一半径
Q Q
为 r平行于极板的圆形
回路,通过此圆面积的
电位移通量为
I
R P*r
I
ห้องสมุดไป่ตู้
D D(πr2)
D
Edl BdS
L
s t
(3) SBdS0
(4) LHdl IsD t dS
1.电荷是产生电场的源。
2.变化的磁场也是产生电场的源。
3.自然界没有单一的“磁荷”存在。
4.电流是产生磁场的源,变化的电场也是产生磁场的源。
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
解:∵
B只分布在R 1
r
R 2
区
域内且
wm
B2 2
8
I2 2r 2
B I 2 r
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
RR11 RR22
⊙⊙BB II
rr ⊕⊕BB
r dr
所以取体积元为 dVl2rdr
W m VwmdVR R1 28μπ2Ir22l2πrdr
高考复习 第九章 电磁感应
第九章 电磁感应知识网络:第1单元 电磁感应 楞次定律一、电磁感应现象1.产生感应电流的条件感应电流产生的条件是:穿过闭合电路的磁通量发生变化。
以上表述是充分必要条件。
不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。
当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。
这个表述是充分条件,不是必要的。
在导体做切割磁感线运动时用它判定比较方便。
2.感应电动势产生的条件。
感应电动势产生的条件是:穿过电路的磁通量发生变化。
这里不要求闭合。
无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。
这好比一个电源:不论外电路是否闭合,电动势总是存在的。
但只有当外电路闭合时,电路中才会有电流。
二、右手定则伸开右手,使大拇指与四指在同一个平面内,并跟四指垂直,让磁感线穿过手心,使大拇指指向导体的运动方向,这时四指所指的方向就是感应电流的方向。
三、楞次定律1.楞次定律——感应电流总具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
( 阻碍 原磁场增加时,反抗, 原磁场减小时,补充 )2.对“阻碍”意义的理解:(1)阻碍原磁场的变化。
“阻碍”不是阻止,而是“延缓”(2)阻碍的是原磁场的变化,而不是原磁场本身,如果原磁场不变化,即使它再强,也不会产生感应电流.(3)阻碍不是相反.当原磁通减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动将和磁体运动同向,以阻碍其相对运动.(4)由于“阻碍”,为了维持原磁场变化,必须有外力克服这一“阻碍”而做功,从而导致R其它形式的能转化为电能.因此楞次定律是能量转化和守恒定律在电磁感应中的体现.3.楞次定律的具体应用从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。
高中物理:第9章电磁感应
第9章电磁感应第1讲 电磁感应现象 楞次定律板块一主干梳理·对点激活知识点1磁通量Ⅰ1.磁通量(1)定义:匀强磁场中,磁感应强度(B )与垂直磁场方向的面积(S )的乘积叫作穿过这个面积的磁通量,简称磁通,我们可以用穿过这一面积的磁感线条数的多少来形象地理解。
(2)公式:Φ=BS 。
(3)适用条件:①匀强磁场;②S 是垂直磁场中的有效面积。
(4)单位:韦伯(Wb ),1 Wb =1_T·m 2。
(5)标量性:磁通量是标量,但有正负之分。
磁通量的正负是这样规定的,即任何一个平面都有正、反两面,若规定磁感线从正面穿入时磁通量为正,则磁感线从反面穿入时磁通量为负。
2.磁通量的变化量 在某个过程中,穿过某个平面的磁通量的变化量等于末磁通量Φ2与初磁通量Φ1的差值,即ΔΦ=Φ2-Φ1。
3.磁通量的变化率(磁通量的变化快慢)磁通量的变化量与发生此变化所用时间的比值,即ΔΦΔt。
知识点2电磁感应现象Ⅰ1.电磁感应现象:当闭合电路的磁通量发生改变时,电路中有感应电流产生的现象。
2.产生感应电流的条件 (1)电路闭合。
(2)磁通量变化。
3.电磁感应现象的两种情况(1)闭合电路中部分导体切割磁感线运动。
(2)穿过闭合回路的磁通量发生变化。
4.电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只产生感应电动势,而不产生感应电流。
5.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能。
知识点3楞次定律Ⅱ1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用X 围:适用于一切回路磁通量变化的情况。
2.右手定则(1)内容:①磁感线穿入右手手心。
(从掌心入,手背穿出) ②大拇指指向导体运动的方向。
③其余四指指向感应电流的方向。
(2)适用X 围:适用于部分导体切割磁感线。
双基夯实一、思维辨析1.磁通量等于磁感应强度B 与面积S 的乘积。
法拉第电磁感应定律__自感和涡流
方法一:利用公式 E=NΔΦ/Δt 设导体棒长为 L,绕 O 点转动角速度为 ω,则在 t 时间 1 内,其扫过一扇形面积 S= ωtL2 2 BΔS 1 则由公式得 E= t = BωL2 2
第九章 电磁感应
人 教 版 物 理
方法二:利用公式 E=BLv 上图中 O 点速度 v0=0,A 点速度 vA=ωL 1 则由公式 E=BLv,其中 v 取平均速度,得 E=BL·ωL 2 1 = BωL2. 2
人 教 版 物 理
2.感应电流与感应电动势的关系:遵守 ⑤闭合电路欧姆 定律, I= E . R+ r 二、感应电动势的大小——法拉第电磁感应定律 1. 法拉第电磁感应定律
(1)定律内容:电路中感应电动势的 ⑥大小 , 跟 穿
过这一电路的 ⑦磁通量的变化率 成正比.
ΔΦ (2)公式: ⑧E=n . Δt (3)公式说明:a. 上式适用于回路中磁通量发生变化的
量.严格地说,在变化的磁场中的一切导体内都有涡流产
生,只是涡电流的大小有区别,所以一些微弱的涡电流就 被我们忽视了.
第九章 电磁感应
人 教 版 物 理
五、电磁阻尼和电磁驱动 电磁阻尼是导体与磁场相对运动时,感应电流使导体 受到的安培力总是阻碍它们的相对运动,利用安培力阻碍 导体与磁场间的相对运动就是电磁阻尼.磁电式仪表的指 针能够很快停下,就是利用了电磁阻尼.“磁悬浮列车利 用涡流减速”其实也是一种电磁阻尼. 电磁驱动是导体与磁场相对运动时,感应电流使导体 受到的安培力总是阻碍它们的相对运动,应该知道安培力 阻碍磁场与导体的相对运动的方式是多种多样的.当磁场 以某种方式运动时 ( 例如磁场转动 ) ,导体中的安培力阻碍 导体与磁场间的相对运动而使导体跟着磁场动起来 (跟着转 动),这就是电磁驱动.
大学物理 第九章 电磁感应 电磁场理论的基本概念
选择绕行方向如右图所示:
b v
o 0 I x bdr 2r 0 Ib x a dr 0 Ib x a x r 2 ln x 2
x
0 Ivab d m d m dx 方向 动 dt dx dt 2x( x a )
v
19
V a I d a d ω b c b cV
三、法拉第电磁感应定律的使用方法 1、规定任一绕行方向为回路的正方向。由右手螺旋 法则确定回路的正法线方向 en 。 d 正法线方向 2、计算 SB dS 及 dt en 3、由 d 之值确定 i 的方向 dt S d L
i
d dt 0, i 0, i的方向与绕行方向相同 d 0, 0, 的方向与绕行方向相反 i i dt
L
解二: 构成扇形闭合回路
AOCA
B
L
A
1 2 m B dS BS AOCA B L 2
o
C
d m 1 1 2 d BL BL2 dt 2 dt 2
沿OACO
由楞次定律:
A
o
17
例2. 如图所示,一矩形导线框在无限长载流导线I 的场中向右运 动,t时刻如图所示,求其动生电动势。
E涡 dl 0
法拉第电磁感应定律推广为
d E涡 dl L 22 dt
静电荷激发电场 E dl 0 保守力场(无旋场) 电场 d 变化磁场激发电场 E涡 dl dt
d 产生的原因不同。 E涡 dl 涡旋电场 dt 静电场 的区别 电力线不同。 E dl 0 环流不同
高二物理第九章知识点
高二物理第九章知识点高二物理第九章主要涉及电磁感应和电磁波的知识。
本章包括以下几个知识点:法拉第电磁感应定律、感生电动势的方向和大小、自感与互感、电磁感应中的能量转化、电磁波的概念和特性等。
下面将逐一介绍这些知识点。
一、法拉第电磁感应定律在研究电磁感应现象时,我们可以根据法拉第电磁感应定律来分析。
该定律表明,当一个导体回路中的磁通量发生变化时,回路中就会感应出电动势,导致电流的产生。
这个电动势的大小与磁场变化率成正比。
二、感生电动势的方向和大小根据法拉第电磁感应定律,我们可以判断感生电动势的方向和大小。
当磁场增强或减弱时,感生电动势的方向与磁场的变化方向相反。
而感生电动势的大小与磁场的变化率成正比,导线的长度和磁场的强度也会影响电动势的大小。
三、自感与互感自感是指电流通过导线产生的磁场,对导线自身形成的电动势的影响。
而互感是指两个或多个导线之间的磁场相互影响,导致彼此感应出电动势。
自感和互感对电磁感应现象起到了重要的作用。
四、电磁感应中的能量转化在电磁感应中,能量可以从磁场转化为电能,或从电能转化为磁场能。
例如,变压器中的能量转换主要是通过变化的磁场产生感应电流,从而实现从输入端到输出端能量转化的过程。
五、电磁波的概念和特性电磁波是由变化的电场和磁场相互耦合形成的波动现象。
电磁波具有许多特性,例如电磁波可以传播在真空中,具有波长和频率特性,可以被反射、折射和衍射等。
在高二物理学习的过程中,通过深入理解和掌握以上知识点,可以更好地理解电磁感应和电磁波相关的现象和应用。
从而提高解决实际问题的能力,并为进一步学习和研究电磁学奠定坚实的基础。
总结起来,高二物理第九章的知识点主要包括法拉第电磁感应定律、感生电动势的方向和大小、自感与互感、电磁感应中的能量转化、电磁波的概念和特性等。
通过对这些知识点的学习和掌握,我们可以更好地理解电磁学中的重要概念和原理,建立起扎实的物理基础。
希望同学们能够认真学习和应用这些知识,提高物理学习的兴趣和能力。
高三物理第九章知识点归纳总结
高三物理第九章知识点归纳总结高三物理第九章主要介绍了电磁感应、电磁场和电磁波等相关知识。
本章知识点归纳总结如下:一、电磁感应电磁感应是指在导体中或磁场中产生电动势的现象。
主要包括法拉第电磁感应定律和楞次定律。
1. 法拉第电磁感应定律法拉第电磁感应定律描述了导体中感应电动势的产生与变化。
定律表达式为:感应电动势的大小与导体中磁场的变化率成正比。
2. 楞次定律楞次定律描述了通过电磁感应产生的电流方向。
根据楞次定律,感应电动势的方向总是使通过电路的电流产生一个方向上的磁场,以阻碍磁场变化的方式。
二、电磁场电磁场是由带电粒子产生的电场和磁场组成的。
学习电磁场需要了解库仑定律、电场强度、电势能、真空中的光速等相关知识。
1. 库仑定律库仑定律描述了两个电荷之间的力与电荷之间的距离、大小和性质之间的关系。
定律表达式为:两个点电荷之间的相互作用力与它们的电荷量成正比,与它们之间的距离的平方成反比。
2. 电场强度电场强度是描述电场的物理量,定义为单位正电荷所受的力。
电场强度的大小与电荷量成正比,与距离的平方成反比。
3. 电势能电势能是电荷在电场中位置的一种衡量,定义为单位正电荷所具有的电势能。
电势能的大小与电荷量成正比,与距离成反比。
4. 真空中的光速真空中的光速是指电磁波在真空中传播的速度,约为3.00 x 10^8 m/s。
三、电磁波电磁波是由变化的电场和磁场相互作用而产生的能量传播现象。
本节重点学习电磁波的特性和电磁波谱。
1. 电磁波的特性电磁波有很多特性,包括振幅、波长、频率、传播速度等。
其中,波长和频率是互相关联的,与传播速度有一定的关系。
2. 电磁波谱电磁波谱是根据电磁波的不同波长和频率进行分类的。
按照波长从小到大的顺序,电磁波谱可以分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等七个区域。
总结:高三物理第九章主要介绍了电磁感应、电磁场和电磁波等知识点。
电磁感应涉及法拉第电磁感应定律和楞次定律,电磁场包括库仑定律、电场强度、电势能和真空中的光速等,电磁波涵盖电磁波的特性和电磁波谱。
大学物理第九章+电磁感应
• …… • 所以, 磁也可能产生电 8
9-1 电磁感应定律
1834 楞次(Lenz)
楞次定律
1845 诺埃曼(Neumann) 电磁感应数学表达
1864 麦克斯韦(Maxwell) 麦克斯韦电磁场理论
9
9.1 电磁感应定律
一、电动势*
1 .非静电力与电源
(1).有源情况下形成稳恒电流的条件
= =
p(υ×B)⋅dl =
o
− L ω lBdl = 0
LυB sin 90 cos180
0
−ωB
L
ldl
=−
0
dl = − 1 ω BL
2
LυBdl
0
2<0
(3)判断电动势方向 P端为负极,O端为正极。
40
9-1 电磁感应
七、发电机
电磁感应定律最伟大 应用之一——发电机
水轮发 电机
法拉第圆 盘发电机
22
四、Faraday电磁感应定律
1 .定律的表述
当穿过以闭合回路为边界的任意曲面的磁通量发生 变化时,产生的感应电动势正比于磁通量变化率的 负值,即(国际单位制下)
ε = − dΦ
dt
2 .感应电动势的大小:与磁通量无关,仅与磁通量的时 间变化率成正比。
23
3.“-”号的意义—确定感应电动势方向(反映
=
μ0I0L 2π
⎢⎣⎡ω
sin(ωt) ln
b + vt a + vt
− vHale Waihona Puke cosωt⎜⎛⎝b
1 + vt
−
a
1 + vt
⎟⎠⎞⎥⎦⎤
第九章 电磁感应
选修3-2 第九章 电磁感应第1讲 电磁感应产生的条件 楞次定律磁通量 Ⅰ(考纲要求)1.磁通量的计算(1)公式:Φ=BS .(2)适用条件:①匀强磁场;②S是垂直磁场的有效面积.(3)单位:韦伯,1 Wb =1 T·m 2.2.碰通量的物理意义(1)可以形象地理解为磁通量就是穿过某一面积的磁感线的条数.(2)同一个平面,当它跟磁场方向垂直时,磁通量最大,当它跟磁场方向平行时,磁通量为零.电磁感应现象 Ⅰ(考纲要求) 1.当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象. 2.产生感应电流的条件表述1 闭合电路的一部分导体在磁场内做切割磁感线运动.表述2 穿过闭合电路的磁通量发生变化.3.产生电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只有感应电动势,而无感应电流.楞次定律 Ⅱ(考纲要求) 1.楞次定律(1)内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适用条件:所有电磁感应现象.2.右手定则(如图9-1-1所示)(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内,让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.2.判断感应电流方向的“三步法”规律 适用范围 基本现象 安培定则 电流的磁效 应 运动电荷、电流产生磁场 左手 定则 磁场力 磁场对运动电荷、电流的作用 右手定则 楞次定律 电磁电应 导体做切割磁感线运动 回路的磁通量变化图9-1-1图9-1-2 图9-1-4 3.右手定则掌心——磁感线垂直穿入, 拇指——指向导体运动的方向, 四指——指向感应电流的方向.1.下图中能产生感应电流的是( ).2.如图9-1-2所示,小圆圈表示处于匀强磁场中的闭合电路一部分导线的横截面,速度v 在纸面内.关于感应电流的有无及方向的判断正确的是( ).A .甲图中有感应电流,方向向外B .乙图中有感应电流,方向向外C .丙图中无感应电流D .丁图中a 、b 、c 、d 四位置上均无感应电流3.(2011·杭州高三检测)如图9-1-3所示,通电直导线右边有一个矩形线框,线框平面与直导线共面,若使线框逐渐远离(平行)通电导线,则穿过线框的磁通量将( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章电磁感应班级姓名得分时量:60分钟总分:100分一.选择题:本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,至少有一个是符合要求的,选对但不全的得3分,选错或不选得0分,选对得6分。
[ ]1.(2011海南第7题)自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献。
下列说法正确的是A.奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系B.欧姆发现了欧姆定律,说明了热现象和电现象之间存在联系C.法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系D.焦耳发现了电流的热效应,定量得出了电能和热能之间的转换关系1、ACD[ ]2.如图所示,光滑绝缘水平面上,有一矩形线圈冲入一匀强磁场,线圈全部进入磁场区域时,其动能恰好等于它在磁场外面时的一半,设磁场宽度大于线圈宽度,那么A.线圈恰好在刚离开磁场的地方停下B.线圈在磁场中某位置停下C.线圈在未完全离开磁场时即已停下D.线圈完全离开磁场以后仍能继续运动,不会停下来2、解析:线圈冲入匀强磁场时,产生感应电流,线圈受安培力作用做减速运动,动能也减少.同理,线圈冲出匀强磁场时,动能减少,进、出时减少的动能都等于安培力做的功.由于进入时的速度大,故感应电流大,安培力大,安培力做的功也多,减少的动能也多,线圈离开磁场过程中,损失动能少于它在磁场外面时动能的一半,因此线圈离开磁场仍继续运动.故选D.[ ]3.(2008年宁夏卷)如图所示,同一平面内的三条平行导线串有两个电阻R和r,导体棒PQ与三条导线接触良好;匀强磁场的方向垂直于纸面向里.导体棒的电阻可忽略.当导体棒向左滑动时,下列说法正确的是A.流过R的电流为由d到c,流过r的电流为由b到aB.流过R的电流为由c到d,流过r的电流为由b到aC.流过R的电流为由d到c,流过r的电流为由a到bD.流过R的电流为由c到d,流过r的电流为由a到b3、解析:依据右手定则可判断出导体棒PQ中的电流由P到Q,Q处电势最高,P处电势最低,由P到Q电势依次升高.外电路中的电流方向总是从高电势流向低电势处,因此流过R 的电流为由c 到d ,流过r 的电流为由b 到a ,选项B 正确.[ ]4.(2009年安徽卷)如图(甲)所示,一个电阻为R 、面积为S 的矩形导线框abcd ,水平放置在匀强磁场中,磁场的磁感应强度为B ,方向与ad 边垂直并与线框平面成45°角,o 、o ′分别是ab 边和cd 边的中点.现将线框右半边obco ′绕oo ′逆时针旋转90°到图(乙)所示位置.在这一过程中,导线中通过的电荷量是A.2BS 2RB.2BS RC.BS RD .0 4、A[ ]5(2011北京).某同学为了验证断电自感现象,自己找来带铁心的线圈L 、小灯泡A 、开关S 和电池组E ,用导线将它们连接成如图所示的电路。
检查电路后,闭合开关S ,小灯泡发光;再断开开关S ,小灯泡仅有不显著的延时熄灭现象。
虽经多次重复,仍未见老师演示时出现的小灯泡闪亮现象,他冥思苦想找不出原因。
你认为最有可能造成小灯泡末闪亮的原因是A .电源的内阻较大B .小灯泡电阻偏大C .线圈电阻偏大D .线圈的自感系数较大5、C[ ]6(2011上海).如图,磁场垂直于纸面,磁感应强度在竖直方向均匀分布,水平方向非均匀分布。
一铜制圆环用丝线悬挂于O 点,将圆环拉至位置a 后无初速释放,在圆环从a 摆向b 的过程中(A)感应电流方向先逆时针后顺时针再逆时针(B)感应电流方向一直是逆时针(C)安培力方向始终与速度方向相反(D)安培力方向始终沿水平方向6、解析: 环在左边下摆过程,环中向里的磁感线增加,感应电流方向为逆时针方向,环摆至交界区附近,磁感线向里减少,向外增加,感应电流方向为顺时针,环摆至右边区域时,向外的磁感线减少,感应电流方向为逆时针,A 正确,B 错。
由于磁感线在竖直方向分布均匀,水平方向分布不均匀,根据受力的对称性,环任意时刻在竖直方向安培力合力为0,水平方向合力不为0,g 故D 正确C 错误。
[ ]7(2011江苏卷).如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。
匀强磁场与导轨一平面垂直。
阻值为R 的导体棒垂直于导轨静止放置,且与导轨接触。
T=0时,将开关S 由1掷到2。
Q 、i 、v 和a 分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度。
下列图象正确的是7、电容器放电,开始,i=E/R ,因安培力作用产生加速度,速度增大,感应电动势增大,则电流减小,安培力减小,加速度减小,最终速度恒定,C 错,电容器上电压等于金属棒上电动势,电量不为0,故A 错;i 最后为0,故B 错;所以选D 。
[ ]8如图所示,在平面上有两条相互垂直且彼此绝缘的长通电直导线,以它们为坐标轴构成一个平面直角坐标系.四个相同的闭合圆形线圈在四个象限中完全对称放置,两条导线中电流大小与变化情况相同,电流方向如图所示,当两条导线中的电流都开始增大时,四个线圈a 、b 、c 、d 中感应电流的情况是A .线圈a 中无感应电流B .线圈b 中无感应电流C .线圈c 中有顺时针方向的感应电流D .线圈d 中有逆时针方向的感应电流8、解析:由安培定则判断磁场方向,故线圈a 、c 中磁通量增加有电流.再根据楞次定律可知线圈a 电流为逆时针,c 为顺时针,A 错,C 对.而线圈b 、d 中合磁通量为零,无感应电流,B 对D 错.答案:BC[ ] 9.(浙江卷)半径为r 带缺口的刚性金属圆环在纸面上固定放置,在圆环的缺口两端引出两根导线,分别与两块垂直于纸面固定放置的平行金属板连接,两板间距为d ,如图(上)所示。
有一变化的磁场垂直于纸面,规定向内为正,变化规律如图(下)所示。
在t=0时刻平板之间中心有一重力不计,电荷量为q 的静止微粒,则以下说法正确的是A. 第2秒内上极板为正极B. 第3秒内上极板为负极C. 第2秒末微粒回到了原来位置D. 第3秒末两极板之间的电场强度大小为0.22/r d答案:A[ ]10、(2009年重庆卷)如图为一种早期发电机原理示意图,该发电机由固定的圆形线圈和一对用铁芯连接的圆柱形磁铁构成,两磁极相对于线圈平面对称,在磁极绕转轴匀速转动过程中,磁极中心在线圈平面上的投影沿圆弧XOY 运动,(O 是线圈中心),则A.从X 到O ,电流由E 经G 流向F ,先增大再减小B.从X 到O ,电流由F 经G 流向E ,先减小再增大C.从O 到Y ,电流由F 经G 流向E ,先减小再增大D.从O 到Y ,电流由E 经G 流向F ,先增大再减小10、解析:在磁极绕转轴从X 到O 匀速转动,穿过线圈平面的磁通量向上增大,根据楞次定律可知线圈中产生瞬时针方向的感应电流,电流由F 经G 流向E ,又导线切割磁感线产生感应电动势E 感=BLV ,导线处的磁感应强度先增后减可知感应电动势先增加后减小、则电流先增大再减小,AB 均错;在磁极绕转轴从O 到Y 匀速转动,穿过线圈平面的磁通量向上减小,根据楞次定律可知线圈中产生逆时针方向的感应电流,电流由E 经G 流向F ,又导线切割磁感线产生感应电动势E 感=BLV ,导线处的磁感应强度先增后减可知感应电动势先增加后减小、则电流先增大再减小,C 错、D 对。
二、非选择题:本大题共3小题,共40分。
11.(实验题)(10分)(2009年全国卷Ⅱ)某同学用多用电表测量二极管的反向电阻。
完成下列测量步骤:(1)检查多用电表的机械零点。
(2)将红、黑表笔分别插入正、负表笔插孔,将选择开关拔至电阻测量挡适当的量程处。
(3)将红、黑表笔___________,进行欧姆调零。
(4)测反向电阻时,将__________表笔接二极管正极,将_________表笔接二极管负极,读出电表示数。
(5)为了得到准确的测量结果,应让电表指针尽量指向表盘___________(填“左侧”、“右侧”或“中央”);否则,在可能的条件下,应重新选择量程,并重复步骤(3)(4)。
(6)测量完成后,将选择开关拔向_______________位置。
答案(3)短接(4)红 黑(5)中央(6)OFF12.(计算题)(14分)矩形线圈abcd ,长ab =20 cm ,宽bc =10 cm ,匝数n =200,线圈回路总电阻R =5 Ω.整个线圈平面内均有垂直于线框平面的匀强磁场穿过,若匀强磁场的磁感应强度B 随时间t 的变化规律如图所示,求:(1)线圈回路中产生的感应电动势和感应电流;(2)当t =0.3 s 时,线圈的ab 边所受的安培力大小;(3)在1 min 内线圈回路产生的焦耳热.12、解析:(1)磁感应强度的变化率ΔB Δt =(20-5)×10-20.3T/s =0.5 T/s 感应电动势为E =n ΔΦΔt =nS ΔB Δt =200×0.1×0.2×0.5 V =2 V感应电流为I =E R =25A =0.4 A. (2)当t =0.3 s 时,磁感应强度B =0.2 T ,则安培力为F =nBIl =200×0.2×0.4×0.2 N =3.2 N.(3)Q =I 2Rt =0.42×5×60 J =48 J.答案:(1)2 V 0.4 A (2)3.2 N (3)48 J13.(16分)如图所示,横截面为矩形的管道中,充满了水银,管道的上下两壁为绝缘板,左右两壁为导体板(图中阴影部分),两导体板被一无电阻的导线短接.管道的高度为a ,宽度为b ,长度为c .加在管道两端截面上的压强差恒为p ,水银以速度v 沿管道方向流动时,水银受到管道的阻力F 与速度成正比,即F =k v (k 为已知常量).求:(1)水银的稳定流速v 1为多大?(2)如果将管道置于一匀强磁场中,磁场与绝缘壁垂直,磁感应强度的大小为B ,方向向上,此时水银的稳定流速v 2又是多大?(已知水银的电阻率为ρ,磁场只存在于管道所在的区域,不考虑管道两端之外的水银对电路的影响)解析:(1)由pab =k v 1得,v 1=pab k. (2)感应电动势E =Bb v 2电阻R =ρb ac由欧姆定律可得I =Bac v 2ρ由平衡条件可得:pab =BIb +k v 2所以v 2=pabρkρ+B 2abc答案:(1)pab k (2)pabρkρ+B 2abc。