2017青岛一模考试数学(文)试题

合集下载

山东省青岛市2017年中考数学模拟试卷(一)(附答案)

山东省青岛市2017年中考数学模拟试卷(一)(附答案)

山东省青岛市2017年中考数学模拟试卷(一)(解析版)一、选择题(共8小题,每小题3分,满分24分)1.﹣0.2的倒数等于()A.0.2 B.﹣5 C.﹣ D.52.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.3.为了响应中央号召,2016年某市加大财政支农力度,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为()A.5.23×104元 B.5.23×107元 C.523×108元D.5.23×108元4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5 B.96,95 C.95,94.5 D.95,955.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)7.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.48.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A.B.C.D.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1=.10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是.11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是.12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB=.13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=度.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是个.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.三、解答题(共9题,74分)16.(8分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.17.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)18.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)20.(8分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.21.(8分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.23.(10分)阅读材料,回答问题:小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠A=30°,BC=a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.”这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.请判断此时“==”的关系是否成立?(2)完成上术探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC中,BC=a,AC=b,AB=c.过点C作CD⊥AB于D.∵在Rt△ABC和Rt△BDC中,∠ADC=∠BDC=90°,∴sinA=,sinB=.∴=,=.∴=.同理,过点A作AH⊥BC于H,可证=.∴==的.请将上面的过程补充完整.(3)运用上述结论解答问题①如图4,在△ABC中,如果∠B=60°,∠C=45°,AB=2,那么AC=.②在锐角△ABC中,若∠B=30°,AB=2,AC=2,求S.△ABC24.(12分)已知:矩形ABCD,DA=3cm,DC=4cm,点M从点A出发沿AB向终点B运动,点N从点C出发沿CA向终点A运动,点M、N同时出发,且运动的速度均为1cm/秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t秒.(1)当点N运动1秒时,求线段DN的长;(2)试求出多边形DAMN的面积S与t的函数关系式;(3)t为何值时,D,N,M三点共线?(4)t为何值时,以△DAN的一边所在直线为对称轴翻折△DAN,翻折前后的两个三角形所组成的四边形为菱形?2017年山东省青岛市中考数学模拟试卷(一)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.﹣0.2的倒数等于()A.0.2 B.﹣5 C.﹣ D.5【分析】根据倒数的意义,乘积是1的两个数互为倒数,0 没有倒数,求一个数的倒数,把这个数的分子和分母掉换位置即可.【解答】解:﹣0.2的倒数等于﹣5,故选B【点评】此题考查的目的是理解倒数的意义,掌握求倒数的方法及应用,明确:1的倒数是1,0没有倒数.2.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】由主视图的定义可得.【解答】解:这个几何体的主视图是,故选:D【点评】本题主要考查简单几何体的三视图,熟练掌握三视图的定义是解题的关键.3.为了响应中央号召,2016年某市加大财政支农力度,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为()A.5.23×104元 B.5.23×107元 C.523×108元D.5.23×108元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:53200万=5.23×108,故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5 B.96,95 C.95,94.5 D.95,95【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中96是出现次数最多的,故众数是96;而将这组数据从小到大的顺序排列(90,91,94,95,96,96),处于中间位置的那个数是94、95,那么由中位数的定义可知,这组数据的中位数是(94+95)÷2=94.5.故这组数据的众数和中位数分别是96,94.5.故选:A.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个【分析】小明共摸了100次,其中20次摸到黑球,则有80次摸到白球;摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.【解答】解:3=12(个).故选:C.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)【分析】根据旋转前后的三角形全等及所在象限符号的特点可得所求点的坐标.【解答】解:∵△AOB≌△A′OB′,∴A′B′=A B=b,OB′=OB=a,∵A′在第二象限,∴A′坐标为(﹣b,a),故选C.【点评】考查点的旋转问题;用到的知识点为:旋转前后图形的形状不变.7.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【分析】等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=34.6,把相关数值代入计算即可.【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.【点评】主要考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A.B.C.D.【分析】本题需先设正方形的边长为m,然后得出y与x、m是二次函数关系,从而得出函数的图象.【解答】解:设正方形的边长为m,则m>0,∵AE=x,∴DH=x,∴AH=m﹣x,∵EH2=AE2+AH2,∴y=x2+(m﹣x)2,y=x2+x2﹣2mx+m2,y=2x2﹣2mx+m2,=2[(x﹣m)2+],=2(x﹣m)2+m2,∴y与x的函数图象是A.故选A.【点评】本题主要考查了二次函数的图象和性质,在解题时要能根据几何图形求出解析式,得出函数的图象.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1=2.【分析】直接利用绝对值的性质以及特殊角的三角函数值和二次根式的性质化简求出答案.【解答】解:(﹣1)2﹣×(2013﹣π)0+()﹣1=1﹣2×1+3=2,故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片组成的数恰好为“12”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,两张卡片组成的数恰好为“12”的只有1种情况,∴两张卡片组成的数恰好为“12”的概率是:.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是﹣=2.【分析】设王师傅原计划每小时检修管道x米,根据在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,列方程即可.【解答】解:设王师傅原计划每小时检修管道x米,由题意得,﹣=2.故答案为﹣=2.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出等量关系,列出方程.12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB=45°.【分析】连接OA,OB.根据正方形的性质,得∠AOB=90°再根据圆周角定理,即可求解.【解答】解:连接OA,OB.根据正方形的性质,得∠AOB=90°.再根据圆周角定理,得∠APB=45°,故答案为:45°.【点评】此题主要考查了圆周角定理,综合运用了正方形的性质以及圆周角定理是解答此题的关键.13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=25度.【分析】根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等解答即可.【解答】解:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO==25°,故答案为:25.【点评】本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是5个.【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由题中所给出的主视图知物体共2列,且都是最高两层;由左视图知共行,所以小正方体的个数最少的几何体为:第一列第一行2个小正方体,第一列第二行2个小正方体,第二列第三行1个小正方体,其余位置没有小正方体.即组成这个几何体的小正方体的个数最少为:2+2+1=5个.故答案为:5.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.【分析】如图作∠BAC的平分线AM交BC于O,作ON⊥AB于D,以O为圆心,OD为半径画半圆即可.【解答】解:如图作∠BAC的平分线AM交BC于O,作ON⊥AB于D,以O为圆心,OD为半径画半圆即可.半圆O即为所求.【点评】本题考查作图﹣应用与设计,角平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.三、解答题(共9题,74分)16.(8分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.【分析】(1)通过解方程组可得到两直线的交点坐标;(2)先把括号内通分后进行同分母的减法运算,然后把分子因式分解后约分即可.【解答】解:(1)解方程组得,所以一次函数y=﹣2x+2和y=x﹣1的交点坐标为(1,0);(2)原式=•=•=a+3.【点评】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了分式的混合运算.17.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)【分析】(1)通过对比条形统计图和扇形统计图可知:学习态度层级为A级的有50人,占部分八年级学生的25%,即可求得总人数;(2)由(1)可知:C级人数为:200﹣120﹣50=30人,将图1补充完整即可;(3)各个扇形的圆心角的度数=360°×该部分占总体的百分比,所以可以先求出:360°×(1﹣25%﹣60%)=54°;(4)从扇形统计图可知,达标人数占得百分比为:25%+60%=85%,再估计该市近20000名初中生中达标的学习态度就很容易了.【解答】解:(1)50÷25%=200(人);故答案为:200;(2)C级人数:200﹣120﹣50=30(人).条形统计图如图所示:(3)C所占圆心角度数=360°×(1﹣25%﹣60%)=54°.(4)20000×(25%+60%)=17000(名).答:估计该市初中生中大约有17000名学生学习态度达标.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?【分析】(1)由转盘被等分成16个扇形,红色扇形有1个,黄色扇形有3个,蓝色扇形有5个,直接利用概率公式求解即可求得答案;(2)首先求得转转盘获得购物券的平均值,再与15元比较,即可知哪种方式对这位顾客更合算.【解答】解:(1)∵转盘被等分成16个扇形,红色扇形有1个,黄色扇形有3个,蓝色扇形有5个,∴P(获得50元购物券)=,P(获得30元购物券)=,P(获得10元购物券)=;(2)转转盘:×50+×30+×10=<15,∴直接获得购物券的方式对这位顾客更合算.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【分析】先根据等腰三角形的性质求出∠B的度数,过点A作AD⊥BC于点D,根据锐角三角函数的定义可求出BD的长,故可得出结论.【解答】解:∵△ABC是等腰三角形,∠A=150°,∴∠B=∠C==15°,过点A作AD⊥BC于点D,∴BD=AB•cos∠B≈12×0.97≈11.6cm,∴BC≈23.2>20cm,∴能画出一个半径为20cm的圆.【点评】本题考查的是解直角三角形的应用,熟知锐角三角函数的定义是解答此题的关键.20.(8分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设直拍球拍每副x元,横拍球每副y元,根据题意列出二元一次方程组,解方程组即可;(2)设购买直拍球拍m副,根据题意列出不等式,解不等式求出m的范围,根据题意列出费用关于m的一次函数,根据一次函数的性质解答即可.【解答】解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,,解得,,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m副,则购买横拍球(40﹣m)副,由题意得,m≤3(40﹣m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最小值,最小值为﹣40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少.【点评】本题考查的是列二元一次方程组、一元一次不等式解实际问题,正确列出二元一次方程组和一元一次不等式并正确解出方程组和不等式是解题的关键.21.(8分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.【分析】(1)求出四边形ADFC是平行四边形,推出CF=AD=BD,根据平行四边形的判定得出四边形BDCF是平行四边形,求CD=BD,进而可证明BF=CF;(2)当AC=BC时,四边形BCFD为菱形,根据菱形的判定得出即可;【解答】解:(1)证明:DE⊥BC,∠ACB=90°,∴∠BED=∠ACB,∴DF∥AC,∵CF∥AB,∴四边形ADFC是平行四边形,∴AD=CF,∵D为AB的中点,∴AD=BD,∴BD=CF,∵BD∥CF,∴四边形BDCF是平行四边形,∴CD=BF,∴BF=CF;(2)当AC=BC时,四边形BDCF为菱形,∵∠ACB=90°,D为AB的中点,∴DC=BD,∵四边形BDCF是平行四边形,∴四边形BDCF是菱形.【点评】本题考查了平行四边形的判定和性质,菱形的判定,直角三角形的性质的应用,能熟记菱形的性质和判定定理是解此题的关键.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.【分析】(1)设y=kx+b,则由图象可求得k,b,从而得出y与x之间的函数关系式,并写出x 的取值范围100≤x≤180;(2)设公司第一年获利W万元,则可表示出W=﹣(x﹣180)2﹣60≤﹣60,则第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)假设两年共盈利1340万元,则﹣x2+36x﹣1800﹣60=1340,解得x的值,根据100≤x ≤180,则x=160时,公司两年共盈利达1340万元.【解答】解:(1)设y=kx+b,则由图象知:,解得k=﹣,b=30,∴y=﹣x+30,100≤x≤180;(2)设公司第一年获利W万元,则W=(x﹣60)y﹣1500=﹣x2+36x﹣3300=﹣(x﹣180)2﹣60≤﹣60,∴第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)若两年共盈利1340万元,因为第一年亏损60万元,第二年盈利的为(x﹣60)y=﹣x2+36x﹣1800,则﹣x2+36x﹣1800﹣60=1340,解得x1=200,x2=160,∵100≤x≤180,∴x=160,∴每件产品的定价定为160元时,公司两年共盈利达1340万元.【点评】本题是一道一次函数的综合题,考查了二次函数的应用,还考查了用待定系数法求一次函数的解析式.23.(10分)阅读材料,回答问题:小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠A=30°,BC=a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.”这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.请判断此时“==”的关系是否成立?(2)完成上术探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:。

山东省青岛市胶州市2017届中考数学一模试卷(含解析)

山东省青岛市胶州市2017届中考数学一模试卷(含解析)

2017年山东省青岛市胶州市中考数学一模试卷一、选择题(本题共8个小题,每小题3分,共24分)1.下列四个数中,其倒数是正整数的数是()A.2 B.﹣2 C. D.﹣2.下列美丽的图案,是轴对称图形但不是中心对称图形的是()A. B. C. D.3.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数 1 2 3 4 5 6 7 8 9 10黑棋数 1 3 0 2 3 4 2 1 1 3根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚4.在显微镜下,一种细菌的形状可以近似地看成圆,它的半径约为0.00000063m,这个数据用科学记数法表示为()A.0.63×10﹣6m B.6.3×10﹣7m C.6.3×10﹣8m D.63×10﹣8m5.如图,▱ABCD中,AB=4,BC=5,∠ABC=60°,对角线AC,BD交于点O,过点O作OE⊥AD,则OE等于()A. B.2 C.2 D.2.56.如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,作DE∥AB交⊙O于E,连接AE,若∠C=40°,则∠E等于()A.40° B.50° C.20° D.25°7.点P是图①中三角形上一点,坐标为(a,b),图①经过变化形成图②,则点P在图②中的对应点P′的坐标为()A.( a,b)B.(a﹣1,b)C.(a﹣2,b)D.( a, b)8.一次函数y=ax+b(a≠0)与二次函数ax2+2x+b(a≠0)在同一直角坐标系中的图象可能是()A. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)9.计算: = .10.某运动对要从甲乙丙丁四名跳高运动员中选拔一人参加比赛,教练组统计了最近几次队内选拔赛的成绩并进行了分析,得到如下表:甲乙丙丁平均数(cm)175 173 174 175方差(cm2) 3.5 3.5 12.5 13根据表中数据,教练组应该选择参加比赛(填“甲”或“乙”或“丙”或“丁”)11.如图,右边的扇形是由左边的正方形变形得到的,两图形周长相等,且扇形的半径等于正方形的边长,则扇形的面积为cm2.12.某市为治理污水,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成这一任务.则实际每天铺设污水排放管道的长度为m.13.如图,四边形ABCD是正方形,CF∥BD,DF∥BE,若BE=BD,则∠CDF= .14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,在Rt△ABC内部作正方形D1E1F1G1,其中点D1,E1分别在AC,BC边上,边F1G1在BC上,它的面积记作S1;按同样的方法在△CD1E1内部作正方形D2E2F2G2,它的面积记作S2,S2= ,…,照此规律作下去,正方形D n E n F n G n 的面积S n= .三、作图题(共4分)15.(4分)已知:如图,线段a,∠α求作:△ABC,使∠A=∠α,AB=AC,且BC边上的高AD=a.四、解答题(本大题共9小题,共74分)16.解方程组:(2)已知关于x的一元二次方程x2+2x﹣m=1有实数根,求m的取值范围.17.(6分)小明为班级联欢会设计了一个摸球游戏.游戏规则如下:在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.游戏者先从纸箱里随机摸出一个球,记录颜色后放回,将小球摇匀,再随机摸出一个球,若两次摸到的球颜色相同,则游戏者可获得一份纪念品.请你利用树状图或列表法求游戏者获得纪念品的概率.18.(6分)如图,斜坡AB的坡度为1:2.4,长度为26m,在坡顶B所在的平台上有一座电视塔CD,已知在A处测得塔顶D的仰角为45°,在B处测得塔顶D的仰角为73°,求电视塔CD的高度.(参考数值:sin73°≈,cos73°≈0.,tan73°≈)19.(6分)某市从参加九年级数学学业水平考试的8000名学生中,随机抽取了部分学生的成绩作为样本,为了节省时间,先将样本分成甲、乙两组,分别进行分析,得到表一;随后汇总整个样本数据,得到表二.表一:人数平均分甲组100 94乙组80 90表二:分数段频数等级0≤x<60 3 C60≤x<72 672≤x<84 36 B84≤x<9696≤x<108 50 A108≤x<120 13请根据表一、表二所示信息,回答下列问题:(1)样本中,数学成绩在84≤x<96分数段的频数为,等级为A的人数占抽样学生总人数的百分比为,中位数所在的分数段为(2)估计这8000名学生的数学成绩的平均分约为多少分(结果精确到0.1)20.(8分)如图①,在地面上有两根等长的立柱AB,CD,它们之间悬挂了一根抛物线形状的绳子,按照图中的直角坐标系,这条绳子可以用y=x2﹣x+3表示(1)求这条绳子最低点离地面的距离;(2)现由于实际需要,要在两根立柱之间再加一根立柱EF对绳子进行支撑(如图②),已知立柱EF到AB距离为3m,两旁的绳子也是抛物线形状,且立柱EF左侧绳子的最低点到EF 的距离为1m,到地面的距离为1.8m,求立柱EF的长.21.(8分)如图,在▱ABCD中,E是CD的中点,AE是延长线交BC的延长线于F,分别连接AC,DF,解答下列问题:(1)求证:△ADE≌△FCE;(2)若DC平分∠ADF,试确定四边形ACFD是什么特殊四边形?请说明理由.22.(10分)为适应日益激烈的市场竞争要求,某工厂从2016年1月且开始限产,并对生产线进行为期5个月的升降改造,改造期间的月利润与时间成反比例;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2016年1月为第1个月,第x 个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别求该工厂对生产线进行升级改造前后,y与x之间的函数关系式;(2)到第几个月时,该工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该工厂的资金紧张期,问该工厂资金紧张期共有几个月?23.(10分)问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:请你类比上述推导过程,利用图形的几何意义确定:13+23+33= .(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面的表示几何图形面积的方法探究:13+23+33+…+n3= .(直接写出结论即可,不必写出解题过程)24.(12分)如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发沿AD向点D匀速运动,速度是1cm/s;同时,点Q从点C出发沿CB方向,在射线CB上匀速运动,速度是2cm/s,过点P作PE∥AC交DC于点E,连接PQ、QE,PQ交AC于F.设运动时间为t(s)(0<t<8),解答下列问题:(1)当t为何值时,四边形PFCE是平行四边形;(2)设△PQE的面积为s(cm2),求s与t之间的函数关系式;(3)是否存在某一时刻t,使得△PQE的面积为矩形ABCD面积的;(4)是否存在某一时刻t,使得点E在线段PQ的垂直平分线上.2017年山东省青岛市胶州市中考数学一模试卷参考答案与试题解析一、选择题(本题共8个小题,每小题3分,共24分)1.下列四个数中,其倒数是正整数的数是()A.2 B.﹣2 C. D.﹣【考点】17:倒数.【分析】根据倒数的定义,可得答案.【解答】解:得到数是2,2是正整数,故选:C.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列美丽的图案,是轴对称图形但不是中心对称图形的是()A. B. C. D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,又是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,符合题意;C、既是轴对称图形,又是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,不符合题意.故选B.【点评】掌握中心对称图形与轴对称图形的概念.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.3.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数 1 2 3 4 5 6 7 8 9 10黑棋数 1 3 0 2 3 4 2 1 1 3根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚【考点】X8:利用频率估计概率.【分析】利用已知提供的数据求出黑棋子的比例,进而假设出白棋子个数,列出方程,解方程即可得出白棋子个数.【解答】解:根据试验提供的数据得出:黑棋子的比例为:(1+3+0+2+3+4+2+1+1+3)÷100=20%,所以白棋子比例为:1﹣20%=80%,设白棋子有x枚,由题意,得=80%,x=0.8(x+10),x=0.8x+8,0.2x=8,所以x=40,经检验,x=40是原方程的解,即袋中的白棋子数量约40颗.故选C.【点评】此题主要考查了利用频率估计概率,根据试验次数得出黑棋子的比例,从而得出白棋子个数是解决问题的关键.4.在显微镜下,一种细菌的形状可以近似地看成圆,它的半径约为0.00000063m,这个数据用科学记数法表示为()A.0.63×10﹣6m B.6.3×10﹣7m C.6.3×10﹣8m D.63×10﹣8m【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000063m=6.3×10﹣7m,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.如图,▱ABCD中,AB=4,BC=5,∠ABC=60°,对角线AC,BD交于点O,过点O作OE⊥AD,则OE等于()A. B.2 C.2 D.2.5【考点】L5:平行四边形的性质.【分析】作CF⊥AD于F,由平行四边形的性质得出∠ADC=∠ABC=60°,CD=AB=4,OA=OC,求出∠DCF=30°,由直角三角形的性质得出DF=CD=2,求出CF=DF=2,证出OE是△ACF的中位线,由三角形中位线定理得出OE的长即可.【解答】解:作CF⊥AD于F,如图所示:∵四边形ABCD是平行四边形,∴∠ADC=∠ABC=60°,CD=AB=4,OA=OC,∴∠DCF=30°,∴DF=CD=2,∴CF=DF=2,∵CF⊥AD,OE⊥AD,CF∥OE,∵OA=OC,∴OE是△ACF的中位线,∴OE=CF=;故选:A.【点评】本题考查了平行四边形的性质、直角三角形的性质、勾股定理、三角形中位线定理等知识;熟练掌握平行四边形的性质,证出OE是三角形的中位线是解决问题的关键.6.如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,作DE∥AB交⊙O于E,连接AE,若∠C=40°,则∠E等于()A.40° B.50° C.20° D.25°【考点】MC:切线的性质.【分析】由AC为圆O的切线,利用切线的性质得到AC与AB垂直,在直角三角形AOC中,由∠C的度数求出∠AOC的度数,利用同弧所对的圆周角等于圆心角的一半求出所求即可.【解答】解:∵AC与圆O相切,∴AC⊥AB,在Rt△AOC中,∠C=40°,∴∠AOC=50°,∵∠AOC与∠AED都对,∴∠E=∠AOC=25°,故选D【点评】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.7.点P是图①中三角形上一点,坐标为(a,b),图①经过变化形成图②,则点P在图②中的对应点P′的坐标为()A.( a,b)B.(a﹣1,b)C.(a﹣2,b)D.( a, b)【考点】D5:坐标与图形性质.【分析】根据已知点坐标变化规律确定出P′坐标即可.【解答】解:根据题意得:(2,0)变化后的坐标为(1,0),(4,0)变化后的坐标为(2,0),则P坐标为(a,b),图①经过变化形成图②,则点P在图②中的对应点P′的坐标(a,b),故选:A.【点评】此题考查了坐标与图形性质,弄清图中坐标变化是解本题的关键.8.一次函数y=ax+b(a≠0)与二次函数ax2+2x+b(a≠0)在同一直角坐标系中的图象可能是()A. B. C. D.【考点】H2:二次函数的图象;F3:一次函数的图象.【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+2x+b的图象相比较看是否一致.【解答】解:A、由抛物线可知,a>0,得b>0,由直线可知,a<0,b>0,故本选项错误;B、由抛物线可知,a<0,b>0,由直线可知,a>0,b<0,故本选项错误;C、由抛物线可知,a<0,b>0,由直线可知,a<0,b<0,故本选项错误;D、由抛物线可知,a>0,b>0,由直线可知,a>0,b>0,且交y轴同一点,故本选项正确.故选D.【点评】本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.二、填空题(本大题共6小题,每小题3分,共18分)9.计算: = x+y .【考点】6B:分式的加减法.【分析】首先把两分式分母化成相同,然后进行加减运算.【解答】解:原式===x+y.故答案为x+y.【点评】本题考查了分式的加减运算.解决本题首先应通分,最后要注意将结果化为最简分式.10.某运动对要从甲乙丙丁四名跳高运动员中选拔一人参加比赛,教练组统计了最近几次队内选拔赛的成绩并进行了分析,得到如下表:甲乙丙丁平均数(cm)175 173 174 175方差(cm2) 3.5 3.5 12.5 13根据表中数据,教练组应该选择甲参加比赛(填“甲”或“乙”或“丙”或“丁”)【考点】W7:方差;W2:加权平均数.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加即可.【解答】解:∵ =>>,∴从甲和丁中选择一人参加,∵S甲2=S乙2<S丙2<S丁2,∴教练组应该选择甲参加比赛;故答案为:甲.【点评】此题考查了平均数和方差,正确理解方差与平均数的意义是解题的关键.11.如图,右边的扇形是由左边的正方形变形得到的,两图形周长相等,且扇形的半径等于正方形的边长,则扇形的面积为 4 cm2.【考点】MO:扇形面积的计算;MN:弧长的计算.【分析】根据两图形周长相等求得扇形的弧长,然后利用扇形的面积公式即可求解.【解答】解:正方形的周长是4×2=8,则扇形的弧长是8﹣2﹣4=8,则扇形的面积是×4×2=4.故答案是:4.【点评】本题考查了扇形的面积的计算,理解扇形的面积公式是关键.12.某市为治理污水,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成这一任务.则实际每天铺设污水排放管道的长度为50 m.【考点】B7:分式方程的应用.【分析】设实际每天铺设污水排放管道的长度为xm,则计划每天铺设污水排放管道的长度为xm,根据时间=工作总量÷工作效率结合提前15天完成,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设实际每天铺设污水排放管道的长度为xm,则计划每天铺设污水排放管道的长度为xm,根据题意得:﹣=15,解得:x=50,经检验,x=50是原分式方程的解.故答案为:50.【点评】本题考查了分式方程的应用,根据时间=工作总量÷工作效率结合提前15天完成列出关于x的分式方程是解题的关键.13.如图,四边形ABCD是正方形,CF∥BD,DF∥BE,若BE=BD,则∠CDF= 105°.【考点】LE:正方形的性质;KH:等腰三角形的性质.【分析】连接AC,过D作DG⊥CF于G,根据正方形的性质得到AC⊥BD,OD=OC=BD,推出四边形ODGC是正方形,于是得到DG=OD=BD,根据已知条件得到四边形BEFD是菱形,于是得到DF=BD=DG,求得∠F=30°,即可得到结论.【解答】解:连接AC,过D作DG⊥CF于G,∵四边形ABCD是正方形,∴AC⊥BD,OD=OC=BD,∵BD∥CF,∴DG⊥BD,∴四边形ODGC是正方形,∴DG=OD=BD,∵CF∥BD,DF∥BE,BE=BD,∴四边形BEFD是菱形,∵∴DF=BD=DG,∴∠F=30°,∴BDF=150°,∴∠CDF=150°﹣45°=105°,故答案为:105°.【点评】本题考查了正方形的性质,菱形的判定和性质,直角三角形的性质,正确的作出辅助线是解题的关键.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,在Rt△ABC内部作正方形D1E1F1G1,其中点D1,E1分别在AC,BC边上,边F1G1在BC上,它的面积记作S1;按同样的方法在△CD1E1内部作正方形D2E2F2G2,它的面积记作S2,S2= ,…,照此规律作下去,正方形D n E n F n G n 的面积S n= .【考点】S9:相似三角形的判定与性质;KW:等腰直角三角形;LE:正方形的性质.【分析】易知AB=3G1F1,G1F1=3G2F2,求出第一个、第二个正方形的面积,探究规律后即可解决问题.【解答】解:∵CA=CB,∴∠C=90°,∴∠A=∠B=45°,∵正方形D1E1F1G1,易知AB=3G1F1,G1F1=3G2F2,∴正方形D1E1F1G1的边长为,面积为=,正方形D2E2F2G2,的边长为,面积为,…,正方形D n E n F n G n的面积S n=,故答案分别为,.【点评】本题考查等腰直角三角形的性质、正方形的性质等知识,解题的关键是学会探究规律、利用规律解决问题,属于中考常考题型.三、作图题(共4分)15.已知:如图,线段a,∠α求作:△ABC,使∠A=∠α,AB=AC,且BC边上的高AD=a.【考点】N3:作图—复杂作图;KH:等腰三角形的性质.【分析】作∠CAB=∠α,再作∠CAB的平分线,在角平分线上截取AD=a,可得点D,过点D 作AD的垂线,从而得出△ABC.【解答】解:如图,△ABC即为所求作三角形,其中∠CAB=∠α,AD=a,AB=AC【点评】本题主要考查作图﹣复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键.四、解答题(本大题共9小题,共74分)16.(1)解方程组:(2)已知关于x的一元二次方程x2+2x﹣m=1有实数根,求m的取值范围.【考点】AA:根的判别式;98:解二元一次方程组.【分析】(1)先将两个方程相减,消去未知数y,求出x的值,再求出y的值即可;(2)由条件原方程有实数根可以得出△≥0,建立不等式从而求出m的取值范围.【解答】解:(1),①﹣②,得2x=2,解得x=1.把x=1代入②,得1﹣2y=2,解得y=﹣.所以原方程组的解是;(2)∵关于x的一元二次方程x2+2x﹣m=1即x2+2x﹣m﹣1=0有实数根,∴△≥0,即4﹣4(﹣m﹣1)≥0,∴m≥﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程两个不相等的实数根;当△=0,方程两个相等的实数根;当△<0,方程没有实数根.也考查了解二元一次方程组.17.小明为班级联欢会设计了一个摸球游戏.游戏规则如下:在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.游戏者先从纸箱里随机摸出一个球,记录颜色后放回,将小球摇匀,再随机摸出一个球,若两次摸到的球颜色相同,则游戏者可获得一份纪念品.请你利用树状图或列表法求游戏者获得纪念品的概率.【考点】X6:列表法与树状图法.【分析】画树状图展示所有16种等可能的结果数,再找出两次摸到的球颜色相同的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中两次摸到的球颜色相同的结果数为6,所以游戏者获得纪念品的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.18.如图,斜坡AB的坡度为1:2.4,长度为26m,在坡顶B所在的平台上有一座电视塔CD,已知在A处测得塔顶D的仰角为45°,在B处测得塔顶D的仰角为73°,求电视塔CD的高度.(参考数值:sin73°≈,cos73°≈0.,tan73°≈)【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【分析】延长DC 交AM于F,作BE⊥AM于E.首先证明四边形BCEF是矩形,由题意BE:AE=1:2.4,在Rt△ABE中,根据AB=26,由勾股定理可得BE=10,AE=24,在Rt△BCD中,可知tan73°=,推出=,推出DC=BC,在Rt△AFD中,由∠DAF=45°,可知AF=DF,可得24+BC=10+BC,解方程求出BC即可解决问题.【解答】解:延长DC 交AM于F,作BE⊥AM于E.∵DF⊥BC,DF⊥AM,∴∠AEB=∠AFD=∠DCB=∠BCF=90°,∴四边形BCEF是矩形,∴BC=EF,BE=CF,由题意BE:AE=1:2.4,在Rt△ABE中,∵AB=26,由勾股定理可得BE=10,AE=24,在Rt△BCD中,∵∠DBC=73°,∴tan73°=,∴=,∴DC=BC,在Rt△AFD中,∵∠DAF=45°,∴AF=DF,∴24+BC=10+BC,∴BC=6,DC=20,答:电视塔CD的高度为20m.【点评】本题考查解直角三角形﹣仰角、坡度问题、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.19.某市从参加九年级数学学业水平考试的8000名学生中,随机抽取了部分学生的成绩作为样本,为了节省时间,先将样本分成甲、乙两组,分别进行分析,得到表一;随后汇总整个样本数据,得到表二.表一:人数平均分甲组100 94乙组80 90表二:分数段频数等级0≤x<60 3 C60≤x<72 672≤x<84 36 B84≤x<9696≤x<108 50 A108≤x<120 13请根据表一、表二所示信息,回答下列问题:(1)样本中,数学成绩在84≤x<96分数段的频数为72 ,等级为A的人数占抽样学生总人数的百分比为35% ,中位数所在的分数段为84≤x<96(2)估计这8000名学生的数学成绩的平均分约为多少分(结果精确到0.1)【考点】W4:中位数;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)用40%×180就可以得到数学成绩在84﹣96分数段的频数,等级为A的人数为63,而总人数为180,所以等级为A的人数占抽样学生总数的百分比可以用63÷180计算得到;(2)样本中,学生的数学成绩的平均分数可以用(100×94+80×90)÷(100+80)计算得到.【解答】解:(1)数学成绩在84﹣96分数段的频数为180﹣(3+6+36+50+13)=72,等级为A的人数占抽样学生总数的百分比为63÷180=35%,第90个数和第91个数都在(84,96)分数段,所以中位数所在的分数段为84≤x<96;表二:分数段频数等级0≤x<60 3 C60≤x<72 672≤x<84 36 B84≤x<96 7296≤x<108 50 A108≤x<120 13(2)学生的数学成绩的平均分数为:(100×94+80×90)÷(100+80)=92.2(分).故这8000名学生的数学成绩的平均分约为92.2分.故答案为:72,35%,84≤x<96.【点评】此题考查了频数分布表、平均数、中位数、频率、频数的定义,关键是根据平均数、中位数、频率、频数的定义和频数分布表列出算式,求出答案.20.如图①,在地面上有两根等长的立柱AB,CD,它们之间悬挂了一根抛物线形状的绳子,按照图中的直角坐标系,这条绳子可以用y=x2﹣x+3表示(1)求这条绳子最低点离地面的距离;(2)现由于实际需要,要在两根立柱之间再加一根立柱EF对绳子进行支撑(如图②),已知立柱EF到AB距离为3m,两旁的绳子也是抛物线形状,且立柱EF左侧绳子的最低点到EF 的距离为1m,到地面的距离为1.8m,求立柱EF的长.【考点】HE:二次函数的应用.【分析】(1)将抛物线解析式配方成顶点式即可得出答案;(2)由原抛物线解析式求得点A坐标,根据EF左侧抛物线顶点坐标设出解析式,将A坐标代入求得其解析式,再求出x=3时y的值即可.【解答】解:(1)∵y=x2﹣x+3=(x﹣4)2+,∴抛物线的顶点坐标为(4,),则这条绳子最低点离地面的距离为m;(2)对于y=x2﹣x+3,当x=0时,y=3,即点A坐标为(0,3),由题意,立柱EF左侧绳子所在抛物线的顶点为(2,1.8),∴可设其解析式为y=a(x﹣2)2+1.8,把x=0、y=3代入,得:3=a(0﹣2)2+1.8,解得:a=,∴y=(x﹣2)2+1.8,当x=3时,y=(3﹣2)2+1.8=2.1,∴立柱EF的长为2.1m.【点评】本题主要考查二次函数的应用,熟练掌握待定系数法求函数解析式是解题的关键.21.如图,在▱ABCD中,E是CD的中点,AE是延长线交BC的延长线于F,分别连接AC,DF,解答下列问题:(1)求证:△ADE≌△FCE;(2)若DC平分∠ADF,试确定四边形ACFD是什么特殊四边形?请说明理由.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】(1)由平行四边形的性质和中点的性质,易得∠DAE=∠F,∠D=∠ECF,AE=CE,继而证得:△ADE≌△FCE.(2)由第(1)问中△ADE≌△FCE,易得AD=CF,又由AD∥CF,即可证得四边形ACFD是平行四边形,再证出DF=CF,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠F,∠D=∠ECF,又∵E是DC的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)解:若DC平分∠ADF,则四边形ACFD是菱形;理由如下:∵△ADE≌△FCE,∴AD=CF,又∵AD∥CF,∴四边形ACFD是平行四边形,∵DC平分∠ADF,∴∠ADC=∠CDF,∴∠FCD=∠CDF,∴DF=CF,∴四边形ACFD是菱形.【点评】此题考查了平行四边形的判定与性质、菱形的判定、全等三角形的判定与性质.熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.22.(10分)(2017•胶州市一模)为适应日益激烈的市场竞争要求,某工厂从2016年1月且开始限产,并对生产线进行为期5个月的升降改造,改造期间的月利润与时间成反比例;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2016年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别求该工厂对生产线进行升级改造前后,y与x之间的函数关系式;(2)到第几个月时,该工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该工厂的资金紧张期,问该工厂资金紧张期共有几个月?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据题意列方程即可得到函数解析式;(2)把y=100代入y=10x﹣30即可得到结论;(3)对于y=,y=50时,得到x=2,得到x<2时,y<50,对于y=10x﹣30,当y=50时,得到x=8,于是得到结论.【解答】解:(1)由题意得,设前5个月中y与x的还是关系式为y=,把x=1,y=3代入得,k=100,∴y与x之间的函数关系式为y=,把x=5代入得y==20,由题意设5月份以后y与x的函数关系式为y=10x+b,把x=5,y=20代入得,20=10×5+b,∴b=﹣30,。

2017年青岛中考一模市北区数学试题答案

2017年青岛中考一模市北区数学试题答案

-----3分
探究三:
过点A作AE⊥BC,垂足为E.
在Rt△ACE中,∠AEC=900
∴ -----4分
∴AE= b.

-----5分
问题解决:
两边与夹角的正弦的乘积的一半-----7分
问题应用:
过点A作AF⊥BC,垂足为F.
在Rt△ABF中,∠AFB=900
∴ -----8分
∴AF= b. -----9分

-----10分
24.(1)可求BO=DO=6,AO=CO=8, -----1分
可证△AOD∽△PQB,得 ,-----3分
∴ -----4分
答:PQ长 .-----4分
(2)延长QP交AD于E,则ME⊥QE,
可证△MPD∽△AOD,得 ,
∴ -----6分
可证△MPE∽△MDP,得 ,
∴ -----7分
九年级数学参考答案
一.选择题
题号
1
2
3
4
5
6
7
8
答案
B
D
A
C
C
B
C
B
二.填空题
题号
9
10
11
12
13
14
答案
9.5×10﹣7

乙的标准差小,更整齐
10
三、作图题
15.(1)正确做出图形;-----3分
(2)写出结论。 -----4分
四、解答题
16.(1)解:原式=( - )÷ = ÷ =(a+3)· =a.
∴AO=EO.-----4分
(2)答:平行四边形。
∵AD∥BC,
∴∠ADB=∠DBC,
又∵AO=EO,∠AOD=∠EOB,

2020届山东省青岛市2017级高三4月一模考试数学试卷及答案

2020届山东省青岛市2017级高三4月一模考试数学试卷及答案

2020届山东省青岛市2017级高三4月一模考试数学试卷★祝考试顺利★全卷满分150 分.考试用时120分钟。一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,复数12,i z i -=则z 的共轭复数z 的虚部为 A. –i B.1 C. i D. -12.已知集合2{|log 2}A x R x =∈<,集合B={x ∈R||x-1|<2}, 则A∩B=A. (0,3)B. (-1,3)C. (0,4)D. (-∞,3)3.已知某市居民在2019年用于手机支付的个人消费额ξ(单位:元)服从正态分布2(2000,100),N 则该市某居民手机支付的消费额在(1900, 2200)内的概率为A.0.9759B.0.84C.0.8185D.0.4772附:随机变量ξ服从正态分布2(,),N μσ则P(μ-σ<ξ<μ+σ)= 0.6826, (22)0.9544P μσξμσ-<<+=, P(μ- 3σ<ξ<μ+3σ)= 0.9974 . 4.设0.22,a b ==sin22,log 0.2,c =则a, b,c 的大小关系正确的是A. a>b> cB. b>a> cC. b>c>aD.c>a>b 5.已知函数39,0()( 2.718...,0x x x f x e xe x ⎧-≥==⎨<⎩为自然对数的底数),若f(x)的零点为α,极值点为β,则α+β=A.-1B.0C.1D.26.已知四棱锥P-ABCD 的所有棱长均相等,点E,F 分别在线段PA, PC 上,且EF//底面ABCD,则异面直线EF 与PB 所成角的大小为A.30°B.45°C.60°D.90°7.在同一直角坐标系下,已知双曲线C:22221(0,0)y x a b a b-=>>双曲线C 的一个焦点到一条渐近线的距离为2,函数sin(2)6y x π=+的图象向右平移3π单位后得到曲线D,点A,B 分别在双曲线C 的下支和曲线D 上,则线段AB 长度的最小值为A.2.B.C D.18.某单位举行诗词大会比赛,给每位参赛者设计了“保留题型” 、“升级题型” 、“创新题型”三类题型,每类题型均指定一道题让参赛者回答。已知某位参赛者答对每道题的概率均为4,5且各次答对与否相互独立,则该参赛者答完三道题后至少答对两道题的概率112.125A 80.125B 113.125C 124.125D 二、多项选择题:本题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,部分选对的得3分,有选错的得0分。9.已知向量(1,1),(3,1),(1,1),a b a b c +=-=-=r r r r r 设,a b r r 的夹角为θ,则.||||A a b =r r .B a c ⊥r r .//C b c r r D. θ=135°10.已知函数22()sin cos cos ,f x x x x x =+-x ∈R,则A. -2≤f(x)≤2B. f(x) 在区间(0,π)上只有1个零点C. f(x) 的最小正周期为π.3D x π=为f(x)图象的一条对称轴 11.已知数列{}n a 的前n 项和为S 11,1,21,n n n a S S a +==++数列12{}nn n a a +⋅的前n 项和为*,,n T n N ∈则下列选项正确的为A.数列{1}n a +是等差数列B.数列{1}n a +是等比数列C.数列{}n a 的通项公式为21n n a =- .1n D T <。

2017年山东省青岛市莱西市中考数学一模试卷

2017年山东省青岛市莱西市中考数学一模试卷

2017年山东省青岛市莱西市中考数学一模试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)﹣的倒数是()A.6 B.C.﹣6 D.﹣2.(3分)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39 400吨,将39 400用科学记数法表示为()A.3.94×103B.3.94×104C.39.4×103D.0.394×1053.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形 B.平行四边形C.一次函数图象D.反比例函数图象4.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(2a+1)(2a﹣1)=4a﹣1C.(﹣2a3)2=4a6D.x2﹣8x+16=(x+4)25.(3分)如图,面积为6cm2的△ABC纸片沿BC方向平移至△DEF的位置,平移的距离是BC长的2倍,则△ABC纸片扫过的面积为()A.18cm2B.21cm2C.27cm2D.30cm26.(3分)某施工队挖掘一条长90米的隧道,开工后每天比原计划多挖1米,结果提前3天完成任务,原计划每天挖多少米?若设原计划每天挖x米,则依题意列出正确的方程为()A.=3 B.C.D.7.(3分)如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,则弦BC的长等于()A.8 B.10 C.11 D.128.(3分)如图图案是用四种基本图形按照一定规律拼成的,第10个图案中的最下面一行从左至右的第2个基本图形应是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)9.(3分)计算= .10.(3分)如图,大圆半径为6,小圆半径为2,在如图所示的圆形区域中,随机撒一把豆子,多次重复这个实验,若把“豆子落在小圆区域A中”记作事件W,请估计事件W的概率P(W)的值.11.(3分)已知点A在反比例函数的图象上,AB⊥y轴,点C在x轴上,S △ABC=2,则反比例函数的解析式为.12.(3分)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为.13.(3分)如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB 于P.若四边形ABCD的面积是18,则DP的长是.14.(3分)小华将一条直角边长为1的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到一个等腰直角三角形(如图3),则图3中的等腰直角三角形的一条腰长为;同上操作,若小华连续将图1的等腰直角三角形折叠n次后所得到的等腰直角三角形(如图n+1)的一条腰长为.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)如图,在一块圆形铁板上剪出了一个最大的等边三角形ABC,请你画出原来的圆形铁板.四、解答题(本题满分74分,共有9道小题)16.(8分)计算:(1)化简:(2)解不等式组,并求其最小整数解..17.(6分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,400m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用B1、B2表示).该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.18.(6分)某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对她所任教的初三(1)班和(2)班进行了检测.如图表示从两班各随机抽取的10名学生的得分情况:(1)利用图中提供的信息,补全下表:班级平均数(分)中位数(分)众数(分)(1)班2424(2)班24(2)若把24分以上(含24分)记为“优秀”,两班各有60名学生,请估计两班各有多少名学生成绩优秀;(3)观察图中的数据分布情况,你认为哪个班的学生纠错的整体情况更好一些?19.(6分)如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).20.(8分)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B 种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.21.(8分)如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC 于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.22.(10分)如图将小球从斜坡的O点抛出,小球的抛出路线可以用二次函数y=ax2+bx刻画,顶点坐标为(4,8),斜坡可以用刻画.(1)求二次函数解析式;(2)若小球的落点是A,求点A的坐标;(3)求小球飞行过程中离坡面的最大高度.23.(10分)用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数之和为m,内部的格点个数为n,试探究S与m、n之间的关系式.(1)根据图中提供的信息填表:格点多边形各边上的格点边多边形内部的格点多边形的格点的个数格点个数面积多边形1412多边形252②多边形3635多边形4①4一般格点多边形m n S则S= (用含m、n的代数式表示)(2)对正三角形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,如图1、2是该正三角形格点中的两个多边形:设格点多边形的面积为S,该多边形各边上的格点个数之和为m,内部的格点个数为n,试探究S与m、n之间的关系式.则S与m、n之间的关系为S= (用含m、n的代数式表示).24.(12分)已知:如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.直线PE从B点出发,以2cm/s的速度向点A方向运动,并始终与BC平行,与AC 交于点E.同时,点F从C点出发,以1cm/s的速度沿CB向点B运动,设运动时间为t (s)(0<t<5).(1)当t为何值时,四边形PFCE是矩形?(2)设△PEF的面积为S(cm2),求S与t的函数关系式;(3)是否存在某一时刻t,使△PEF的面积是△ABC面积的?若存在,求出t 的值;若不存在,请说明理由.(4)连接BE,是否存在某一时刻t,使PF经过BE的中点?若存在,求出t的值;若不存在,请说明理由.2017年山东省青岛市莱西市中考数学一模试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)﹣的倒数是()A.6 B.C.﹣6 D.﹣【分析】根据乘积为1的两个数互为倒数,直接解答即可.【解答】解:∵﹣×(﹣6)=1,∴﹣的倒数是﹣6,故选:C.【点评】本题主要考查倒数的定义,解决此类题目时,只要找到一个数与这个数的积为1,那么此数就是这个数的倒数,特别要注意:正数的倒数也一定是正数,负数的倒数也一定是负数.2.(3分)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39 400吨,将39 400用科学记数法表示为()A.3.94×103B.3.94×104C.39.4×103D.0.394×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将39 400用科学记数法表示为3.94×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形 B.平行四边形C.一次函数图象D.反比例函数图象【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、等边三角形是轴对称图形,不是中心对称图形.故错误;B、平行四边形不是轴对称图形,是中心对称图形.故正确;C、一次函数图象是轴对称图形,也是中心对称图形.故错误;D、反比例函数图象是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(2a+1)(2a﹣1)=4a﹣1C.(﹣2a3)2=4a6D.x2﹣8x+16=(x+4)2【分析】先根据完全平方公式,平方差公式,幂的乘方和积的乘方分别求出每个式子的值,再判断即可.【解答】解:A、结果是a2﹣2ab+b2,故本选项错误;B、结果是4a2﹣1,故本选项错误;C、结果是4a6,故本选项正确;D、结果是(x﹣4)2,故本选项错误;故选C.【点评】本题考查了乘法公式,幂的乘方和积的乘方,完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.5.(3分)如图,面积为6cm2的△ABC纸片沿BC方向平移至△DEF的位置,平移的距离是BC长的2倍,则△ABC纸片扫过的面积为()A.18cm2B.21cm2C.27cm2D.30cm2【分析】根据平移的性质可以知道四边形ACED的面积是三个△ABC的面积,依此计算即可.【解答】解:∵平移的距离是边BC长的两倍,∴BC=CE=EF,∴四边形ACED的面积是三个△ABC的面积;∴四边形ABED的面积=6×(1+3)=24cm2,∴△ABC纸片扫过的面积=6×(2+3)=30cm2,故选D.【点评】考查了平移的性质,本题的关键是得出四边形ACED的面积是三个△ABC 的面积.然后根据已知条件计算.6.(3分)某施工队挖掘一条长90米的隧道,开工后每天比原计划多挖1米,结果提前3天完成任务,原计划每天挖多少米?若设原计划每天挖x米,则依题意列出正确的方程为()A.=3 B.C.D.【分析】设原计划每天挖x米,根据工作总量=工作时间×工作速度,要注意的是提前3天完成,根据这个等量关系可列出方程求解.【解答】解:若设原计划每天挖x米,则开工后每天挖(x+1)米,那么原计划用的时间为,开工后用的时间为,因为提前3天完成任务,所以得.故选C.【点评】本题涉及分式方程的应用,难度一般.考生需熟记的是一些基本的数学公式方能解答.7.(3分)如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,则弦BC的长等于()A.8 B.10 C.11 D.12【分析】作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=3,再利用勾股定理,可求得BH的长,继而求得答案.【解答】解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴=,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,∴AH=BF=3.∴BH===4,∴BC=2BH=8.故选A.【点评】此题考查了圆周角定理、垂径定理、三角形中位线的性质以及勾股定理.注意掌握辅助线的作法.8.(3分)如图图案是用四种基本图形按照一定规律拼成的,第10个图案中的最下面一行从左至右的第2个基本图形应是()A.B.C.D.【分析】观察图形可知,每个图案中从上往下,从左往右四种基本图形一个循环,第10个图案中的最下面一行从左至右的第2个基本图形是第47个图形,47÷4=11…3,根据规律即可作答.【解答】解:∵每个图案中从上往下,从左往右四种基本图形一个循环,第10个图案中的最下面一行从左至右的第2个基本图形是第47个图形,47÷4=11…3,∴第10个图案中的最下面一行从左至右的第2个基本图形应是.故选A.【点评】本题考查了规律型:图形的变化,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.注意本题每个图案中从上往下,从左往右四种基本图形一个循环.二、填空题(共6小题,每小题3分,满分18分)9.(3分)计算= 1 .【分析】首先化简二次根式,再计算括号里面的,然后计算除法即可.【解答】解:=(3﹣2)÷=÷=1;故答案为:1【点评】本题考查了二次根式的混合运算;把二次根式化成最简二次根式是解决问题的关键.10.(3分)如图,大圆半径为6,小圆半径为2,在如图所示的圆形区域中,随机撒一把豆子,多次重复这个实验,若把“豆子落在小圆区域A中”记作事件W,请估计事件W的概率P(W)的值.【分析】本题可以按照几何概型来估计事件W的概率P(W)的值,首先求出两个圆的面积,再由小圆的面积:大圆的面积,其比值即为P(W)的值.【解答】解:∵大圆半径为6,小圆半径为2,∴S大圆=36π,S小圆=4π,∴P(W)==,故答案为:.【点评】本题考查模拟方法估计概率,是一个基础题,题目的运算比较简单,注意不要丢分.11.(3分)已知点A在反比例函数的图象上,AB⊥y轴,点C在x轴上,S △ABC=2,则反比例函数的解析式为y=﹣.【分析】先根据反比例函数的图象在第二象限判断出k的符号,再由S△ABC=2得出AB•OB的值,进而可得出结论.【解答】解:∵反比例函数的图象在第二象限,∴k<0.∵S△ABC=2,∴AB•OB=2,∴AB•OB=4,∴k=﹣4,即反比例函数的解析式为y=﹣.故答案为:y=﹣.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.(3分)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为70π.【分析】易得此几何体为空心圆柱,圆柱的体积=底面积×高,把相关数值代入即可求解.【解答】解:观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,所以其体积为10×(π×42﹣π×32)=70π,故答案为70π.【点评】本题考查了由三视图判断几何体的知识,解决本题的关键是得到此几何体的形状,易错点是得到计算此几何体所需要的相关数据.13.(3分)如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB 于P.若四边形ABCD的面积是18,则DP的长是3.【分析】过点D作DE⊥DP交BC的延长线于E,先判断出四边形DPBE是矩形,再根据等角的余角相等求出∠ADP=∠CDE,再利用“角角边”证明△ADP和△CDE 全等,根据全等三角形对应边相等可得DE=DP,然后判断出四边形DPBE是正方形,再根据正方形的面积公式解答即可.【解答】解:如图,过点D作DE⊥DP交BC的延长线于E,∵∠ADC=∠ABC=90°,∴四边形DPBE是矩形,∵∠CDE+∠CDP=90°,∠ADC=90°,∴∠ADP+∠CDP=90°,∴∠ADP=∠CDE,∵DP⊥AB,∴∠APD=90°,∴∠APD=∠E=90°,在△ADP和△CDE中,,∴△ADP≌△CDE(AAS),∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,∴矩形DPBE是正方形,∴DP==3.故答案为:3.【点评】本题考查了正方形的判定与性质,全等三角形的判定与性质,熟记各性质并作辅助线构造出全等三角形和正方形是解题的关键.14.(3分)小华将一条直角边长为1的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到一个等腰直角三角形(如图3),则图3中的等腰直角三角形的一条腰长为;同上操作,若小华连续将图1的等腰直角三角形折叠n次后所得到的等腰直角三角形(如图n+1)的一条腰长为()n.【分析】应得到每次折叠后得到的等腰直角三角形的边长与第一个等腰直角三角形的边长的关系,进而利用规律求解即可.【解答】解:每次折叠后,腰长为原来的;故第2次折叠后得到的等腰直角三角形的一条腰长为()2=;小华连续将图1的等腰直角三角形折叠n次后所得到的等腰直角三角形的一条腰长为()n.故答案为:;()n.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)如图,在一块圆形铁板上剪出了一个最大的等边三角形ABC,请你画出原来的圆形铁板.【分析】直接利用三角形外接圆的作法得出符合题意的图形.【解答】解:如图所示:⊙O即为所求.【点评】此题主要考查了应用设计与作图,正确掌握三角形外接圆的作法是解题关键.四、解答题(本题满分74分,共有9道小题)16.(8分)计算:(1)化简:(2)解不等式组,并求其最小整数解..【分析】(1)直接将原式分解因式,将括号里面通分化简,进而求出答案;(2)分别解不等式,进而得出不等式的解集,进而得出答案.【解答】解:(1)=•=•=;(2),解①得:x≤3,解②得:x>﹣2,故不等式组的解集为:﹣2<x≤3,故不等式的最小整数解为:﹣1.【点评】此题主要考查了分式的混合运算以及不等式组的解法,正确掌握运算法则是解题关键.17.(6分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,400m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用B1、B2表示).该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.(6分)某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对她所任教的初三(1)班和(2)班进行了检测.如图表示从两班各随机抽取的10名学生的得分情况:(1)利用图中提供的信息,补全下表:班级平均数(分)中位数(分)众数(分)(1)班2424(2)班24(2)若把24分以上(含24分)记为“优秀”,两班各有60名学生,请估计两班各有多少名学生成绩优秀;(3)观察图中的数据分布情况,你认为哪个班的学生纠错的整体情况更好一些?【分析】(1)利用平均数的公式即可求出(1)班的平均数,将(2)的成绩由小到大排列,即可求出其中位数和极差;(2)利用统计图中的数据即可求出答案;(3)因为极差反映数据的离散程度,所以分别求出各自的极差即可求出答案.【解答】解:(1)班级平均数(分)中位数(分)众数(分)(1)班24(2)班2421(2)(1)班成绩优秀人数=60×=42(名),(2)班成绩优秀人数=60×=36(名)答:(1)班有42名学生成绩优秀,(2)班有36名学生成绩优秀.(3)因为(1)班的极差=27﹣21=6,(2)班的极差=30﹣15=15,所以(1)班的学生纠错的整体情况更好一些.【点评】本题考查统计知识,涉及平均数、中位数、众数等知识.19.(6分)如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).【分析】根据sin75°==,求出OC的长,根据tan30°=,再求出BC的长,即可求解.【解答】解:在直角三角形ACO中,sin75°==≈0.97,解得OC≈38.8,在直角三角形BCO中,tan30°==≈,解得BC≈67.3.答:该台灯照亮水平面的宽度BC大约是67.3cm.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.20.(8分)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B 种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.【分析】(1)根据函数图象找出点的坐标,结合点的坐标分段利用待定系数法求出函数解析式即可;(2)根据B种苗的数量不超过35棵,但不少于A种苗的数量可得出关于x的一元一次不等式组,解不等式组求出x的取值范围,再根据“所需费用为W=A 种树苗的费用+B种树苗的费用”可得出W关于x的函数关系式,根据一次函数的性质即可解决最值问题.【解答】解:(1)设y与x的函数关系式为:y=kx+b,当0≤x≤20时,把(0,0),(20,160)代入y=kx+b中,得:,解得:,此时y与x的函数关系式为y=8x;当20≤x时,把(20,160),(40,288)代入y=kx+b中,得:,解得:,此时y与x的函数关系式为y=6.4x+32.综上可知:y与x的函数关系式为y=.(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴,∴22.5≤x≤35,设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,∵k=﹣0.6,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=326(元).【点评】本题考查了一次函数的应用、待定系数法求函数解析式以及解一元一次不等式组,解题的关键是:(1)分段,利用待定系数法求出函数解析式;(2)根据数量关系找出W关于x的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,再利用待定系数法求出函数解析式是关键.21.(8分)如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC 于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.【分析】(1)先由已知平行四边形ABCD得出AB∥DC,AB=DC,⇒∠ABF=∠ECF,从而证得△ABF≌△ECF;(2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出FA=FE=FB=FC,AE=BC,得证.【解答】解:(1)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠ABF=∠ECF,∵EC=DC,∴AB=EC,在△ABF和△ECF中,,∴△ABF≌△ECF(AAS).(2)证明:∵AB=EC,AB∥EC,∴四边形ABEC是平行四边形,∴FA=FE,FB=FC,∵四边形ABCD是平行四边形,∴∠ABC=∠D,又∵∠AFC=2∠D,∴∠AFC=2∠ABC,∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形.【点评】此题考查的知识点是平行四边形的判定与性质,全等三角形的判定和性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形.22.(10分)如图将小球从斜坡的O点抛出,小球的抛出路线可以用二次函数y=ax2+bx刻画,顶点坐标为(4,8),斜坡可以用刻画.(1)求二次函数解析式;(2)若小球的落点是A,求点A的坐标;(3)求小球飞行过程中离坡面的最大高度.【分析】(1)由抛物线的顶点坐标为(4,8)可建立过于a,b的二元一次方程组,求出a,b的值即可;(2)联立两解析式,可求出交点A的坐标;(3)设小球飞行过程中离坡面距离为z,由(1)中的解析式可得到z和x的函数关系,利用函数性质解答即可.【解答】解:(1)∵抛物线顶点坐标为(4,8),∴,解得:,∴二次函数解析式为:y=﹣x2+4x;(2)联立两解析式可得:,解得:或,∴点A的坐标是(7,);(3)设小球离斜坡的铅垂高度为z,则z=﹣x2+4x﹣x=﹣(x﹣3.5)2+,故当小球离点O的水平距离为3.5时,小球离斜坡的铅垂高度最大,最大值是.【点评】本题考查了二次函数的应用,解答本题的关键是仔细审题,理解坡面的高度是解题关键,注意掌握配方法求二次函数最值得应用,难度一般.23.(10分)用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数之和为m,内部的格点个数为n,试探究S与m、n之间的关系式.(1)根据图中提供的信息填表:格点多边形各边上的格点的个数格点边多边形内部的格点个数格点多边形的面积多边形1412多边形252②多边形3635多边形4① 5 4一般格点多边形m n S则S= m+n﹣1 (用含m、n的代数式表示)(2)对正三角形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,如图1、2是该正三角形格点中的两个多边形:设格点多边形的面积为S,该多边形各边上的格点个数之和为m ,内部的格点个数为n,试探究S与m、n之间的关系式.则S与m、n之间的关系为S= m+2(n﹣1)(用含m、n的代数式表示).【分析】(1)并根据图发现2=×4+1﹣1;=×5+2﹣1;5=×6+3﹣1;=×5+4﹣1,由此即可得出S与m、n的关系;(2)根据8=8+2(1﹣1),11=7+2(3﹣1)得到S=m+2(n﹣1).【解答】解:(1)多边形2的面积=×1+×3×1=,多边形4的边上的格点数的和为5,因为2=×4+1﹣1;=×5+2﹣1;5=×6+3﹣1;=×5+4﹣1,所以S=m+n﹣1,故答案为:,5,S=m+n﹣1;(2)因为图1中,m=8,n=1,S=8,8=8+2(1﹣1),图2中,m=7,n=3,。

山东省青岛市市北区2017届中考一模数学试卷(含解析)

山东省青岛市市北区2017届中考一模数学试卷(含解析)

2017年山东省青岛市市北区中考数学一模试卷一、选择题(本题共8个小题,每小题3分,共24分)1.相反数是5的数是()A.5 B.﹣5 C.D.﹣2.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④4.线段MN在直角坐标系中的位置如图所示,将MN绕点M逆时针旋转90°得到线段M1N1,则点N的对应点N1的坐标为()A.(0,0) B.(﹣5,﹣4) C.(﹣3,1)D.(﹣1,﹣3)5.根据表格估计一元二次方程x2+2x﹣4=0的一个解的范围在()A.﹣1<x<0 B.0<x<1 C.1<x<2 D.2<x<36.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20° B.25° C.40° D.50°7.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=8.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连接BF 交AC于点M,连接DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S四边形DGOF=2:7.其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)9.计算: = .10.某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为.11.某学校要从甲、乙两支女生礼仪队中,选拔一支身高相对整齐的队伍,代表学校承接迎宾任务,对两队女生升高情况(cm)的统计分析如表所示,在其它各项指标都相同的情况下,你认为队(填甲或乙)会被录取,理由是.12.某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与日销售量y(件)之间的关系如下表.。

青岛市2017年中考数学模拟试卷(一) 有答案

青岛市2017年中考数学模拟试卷(一) 有答案

山东省青岛市2017年中考数学模拟试卷(一)(解析版)一、选择题(共8小题,每小题3分,满分24分)1.﹣0.2的倒数等于( )A.0.2B.﹣5C.﹣D.52.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是( )A.B.C.D.3.为了响应中央号召,2016年某市加大财政支农力度,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为( )A.5.23×104元B.5.23×107元C.523×108元D.5.23×108元4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是( )A.96,94.5B.96,95C.95,94.5D.95,955.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( )A.18个B.15个C.12个D.10个6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为( )A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)7.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为( )A.10(1+x)2=36.4B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4D.10+10(1+x)+10(1+x)2=36.48.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为( )A.B.C.D.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1= .10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是 .11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是 .12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB= .13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO= 度.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是 个.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.三、解答题(共9题,74分)16.(8分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.17.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了 名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)18.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)20.(8分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.21.(8分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.23.(10分)阅读材料,回答问题:小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠A=30°,BC=a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.”这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.请判断此时“==”的关系是否成立?(2)完成上术探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC中,BC=a,AC=b,AB=c.过点C作CD⊥AB于D.∵在Rt△ABC和Rt△BDC中,∠ADC=∠BDC=90°,∴sinA= ,sinB= .∴= , = .∴=.同理,过点A作AH⊥BC于H,可证=.∴==的.请将上面的过程补充完整.(3)运用上述结论解答问题①如图4,在△ABC中,如果∠B=60°,∠C=45°,AB=2,那么AC= .②在锐角△ABC中,若∠B=30°,AB=2,AC=2,求S△ABC.24.(12分)已知:矩形ABCD,DA=3cm,DC=4cm,点M从点A出发沿AB向终点B运动,点N从点C出发沿CA向终点A运动,点M、N同时出发,且运动的速度均为1cm/秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t秒.(1)当点N运动1秒时,求线段DN的长;(2)试求出多边形DAMN的面积S与t的函数关系式;(3)t为何值时,D,N,M三点共线?(4)t为何值时,以△DAN的一边所在直线为对称轴翻折△DAN,翻折前后的两个三角形所组成的四边形为菱形?2017年山东省青岛市中考数学模拟试卷(一)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.﹣0.2的倒数等于( )A.0.2B.﹣5C.﹣D.5【分析】根据倒数的意义,乘积是1的两个数互为倒数,0 没有倒数,求一个数的倒数,把这个数的分子和分母掉换位置即可.【解答】解:﹣0.2的倒数等于﹣5,故选B【点评】此题考查的目的是理解倒数的意义,掌握求倒数的方法及应用,明确:1的倒数是1,0没有倒数.2.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是( )A.B.C.D.【分析】由主视图的定义可得.【解答】解:这个几何体的主视图是,故选:D【点评】本题主要考查简单几何体的三视图,熟练掌握三视图的定义是解题的关键.3.为了响应中央号召,2016年某市加大财政支农力度,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为( )A.5.23×104元B.5.23×107元C.523×108元D.5.23×108元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:53200万=5.23×108,故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是( )A.96,94.5B.96,95C.95,94.5D.95,95【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中96是出现次数最多的,故众数是96;而将这组数据从小到大的顺序排列(90,91,94,95,96,96),处于中间位置的那个数是94、95,那么由中位数的定义可知,这组数据的中位数是(94+95)÷2=94.5.故这组数据的众数和中位数分别是96,94.5.故选:A.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( )A.18个B.15个C.12个D.10个【分析】小明共摸了100次,其中20次摸到黑球,则有80次摸到白球;摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.【解答】解:3=12(个).故选:C.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为( )A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)【分析】根据旋转前后的三角形全等及所在象限符号的特点可得所求点的坐标.【解答】解:∵△AOB≌△A′OB′,∴A′B′=AB=b,OB′=OB=a,∵A′在第二象限,∴A′坐标为(﹣b,a),故选C.【点评】考查点的旋转问题;用到的知识点为:旋转前后图形的形状不变.7.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为( )A.10(1+x)2=36.4B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4D.10+10(1+x)+10(1+x)2=36.4【分析】等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=34.6,把相关数值代入计算即可.【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.【点评】主要考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为( )A.B.C.D.【分析】本题需先设正方形的边长为m,然后得出y与x、m是二次函数关系,从而得出函数的图象.【解答】解:设正方形的边长为m,则m>0,∵AE=x,∴DH=x,∴AH=m﹣x,∵EH2=AE2+AH2,∴y=x2+(m﹣x)2,y=x2+x2﹣2mx+m2,y=2x2﹣2mx+m2,=2[(x﹣m)2+],=2(x﹣m)2+m2,∴y与x的函数图象是A.故选A.【点评】本题主要考查了二次函数的图象和性质,在解题时要能根据几何图形求出解析式,得出函数的图象.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1= 2 .【分析】直接利用绝对值的性质以及特殊角的三角函数值和二次根式的性质化简求出答案.【解答】解:(﹣1)2﹣×(2013﹣π)0+()﹣1=1﹣2×1+3=2,故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是 .【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片组成的数恰好为“12”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,两张卡片组成的数恰好为“12”的只有1种情况,∴两张卡片组成的数恰好为“12”的概率是:.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是 ﹣=2 .【分析】设王师傅原计划每小时检修管道x米,根据在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,列方程即可.【解答】解:设王师傅原计划每小时检修管道x米,由题意得,﹣=2.故答案为﹣=2.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出等量关系,列出方程.12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB= 45° .【分析】连接OA,OB.根据正方形的性质,得∠AOB=90°再根据圆周角定理,即可求解.【解答】解:连接OA,OB.根据正方形的性质,得∠AOB=90°.再根据圆周角定理,得∠APB=45°,故答案为:45°.【点评】此题主要考查了圆周角定理,综合运用了正方形的性质以及圆周角定理是解答此题的关键.13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO= 25 度.【分析】根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等解答即可.【解答】解:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO==25°,故答案为:25.【点评】本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是 5 个.【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由题中所给出的主视图知物体共2列,且都是最高两层;由左视图知共行,所以小正方体的个数最少的几何体为:第一列第一行2个小正方体,第一列第二行2个小正方体,第二列第三行1个小正方体,其余位置没有小正方体.即组成这个几何体的小正方体的个数最少为:2+2+1=5个.故答案为:5.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.【分析】如图作∠BAC的平分线AM交BC于O,作ON⊥AB于D,以O为圆心,OD为半径画半圆即可.【解答】解:如图作∠BAC的平分线AM交BC于O,作ON⊥AB于D,以O为圆心,OD为半径画半圆即可.半圆O即为所求.【点评】本题考查作图﹣应用与设计,角平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.三、解答题(共9题,74分)16.(8分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.【分析】(1)通过解方程组可得到两直线的交点坐标;(2)先把括号内通分后进行同分母的减法运算,然后把分子因式分解后约分即可.【解答】解:(1)解方程组得,所以一次函数y=﹣2x+2和y=x﹣1的交点坐标为(1,0);(2)原式=•=•=a+3.【点评】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了分式的混合运算.17.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了 200 名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)【分析】(1)通过对比条形统计图和扇形统计图可知:学习态度层级为A级的有50人,占部分八年级学生的25%,即可求得总人数;(2)由(1)可知:C级人数为:200﹣120﹣50=30人,将图1补充完整即可;(3)各个扇形的圆心角的度数=360°×该部分占总体的百分比,所以可以先求出:360°×(1﹣25%﹣60%)=54°;(4)从扇形统计图可知,达标人数占得百分比为:25%+60%=85%,再估计该市近20000名初中生中达标的学习态度就很容易了.【解答】解:(1)50÷25%=200(人);故答案为:200;(2)C级人数:200﹣120﹣50=30(人).条形统计图如图所示:(3)C所占圆心角度数=360°×(1﹣25%﹣60%)=54°.(4)20000×(25%+60%)=17000(名).答:估计该市初中生中大约有17000名学生学习态度达标.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?【分析】(1)由转盘被等分成16个扇形,红色扇形有1个,黄色扇形有3个,蓝色扇形有5个,直接利用概率公式求解即可求得答案;(2)首先求得转转盘获得购物券的平均值,再与15元比较,即可知哪种方式对这位顾客更合算.【解答】解:(1)∵转盘被等分成16个扇形,红色扇形有1个,黄色扇形有3个,蓝色扇形有5个,∴P(获得50元购物券)=,P(获得30元购物券)=,P(获得10元购物券)=;(2)转转盘:×50+×30+×10=<15,∴直接获得购物券的方式对这位顾客更合算.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【分析】先根据等腰三角形的性质求出∠B的度数,过点A作AD⊥BC于点D,根据锐角三角函数的定义可求出BD的长,故可得出结论.【解答】解:∵△ABC是等腰三角形,∠A=150°,∴∠B=∠C==15°,过点A作AD⊥BC于点D,∴BD=AB•cos∠B≈12×0.97≈11.6cm,∴BC≈23.2>20cm,∴能画出一个半径为20cm的圆.【点评】本题考查的是解直角三角形的应用,熟知锐角三角函数的定义是解答此题的关键. 20.(8分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设直拍球拍每副x元,横拍球每副y元,根据题意列出二元一次方程组,解方程组即可;(2)设购买直拍球拍m副,根据题意列出不等式,解不等式求出m的范围,根据题意列出费用关于m的一次函数,根据一次函数的性质解答即可.【解答】解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,,解得,,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m副,则购买横拍球(40﹣m)副,由题意得,m≤3(40﹣m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最小值,最小值为﹣40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少.【点评】本题考查的是列二元一次方程组、一元一次不等式解实际问题,正确列出二元一次方程组和一元一次不等式并正确解出方程组和不等式是解题的关键.21.(8分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.【分析】(1)求出四边形ADFC是平行四边形,推出CF=AD=BD,根据平行四边形的判定得出四边形BDCF是平行四边形,求CD=BD,进而可证明BF=CF;(2)当AC=BC时,四边形BCFD为菱形,根据菱形的判定得出即可;【解答】解:(1)证明:DE⊥BC,∠ACB=90°,∴∠BED=∠ACB,∴DF∥AC,∵CF∥AB,∴四边形ADFC是平行四边形,∴AD=CF,∵D为AB的中点,∴AD=BD,∴BD=CF,∵BD∥CF,∴四边形BDCF是平行四边形,∴CD=BF,∴BF=CF;(2)当AC=BC时,四边形BDCF为菱形,∵∠ACB=90°,D为AB的中点,∴DC=BD,∵四边形BDCF是平行四边形,∴四边形BDCF是菱形.【点评】本题考查了平行四边形的判定和性质,菱形的判定,直角三角形的性质的应用,能熟记菱形的性质和判定定理是解此题的关键.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.【分析】(1)设y=kx+b,则由图象可求得k,b,从而得出y与x之间的函数关系式,并写出x的取值范围100≤x≤180;(2)设公司第一年获利W万元,则可表示出W=﹣(x﹣180)2﹣60≤﹣60,则第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)假设两年共盈利1340万元,则﹣x2+36x﹣1800﹣60=1340,解得x的值,根据100≤x≤180,则x=160时,公司两年共盈利达1340万元.【解答】解:(1)设y=kx+b,则由图象知:,解得k=﹣,b=30,∴y=﹣x+30,100≤x≤180;(2)设公司第一年获利W万元,则W=(x﹣60)y﹣1500=﹣x2+36x﹣3300=﹣(x﹣180)2﹣60≤﹣60,∴第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)若两年共盈利1340万元,因为第一年亏损60万元,第二年盈利的为(x﹣60)y=﹣x2+36x﹣1800,则﹣x2+36x﹣1800﹣60=1340,解得x1=200,x2=160,∵100≤x≤180,∴x=160,∴每件产品的定价定为160元时,公司两年共盈利达1340万元.【点评】本题是一道一次函数的综合题,考查了二次函数的应用,还考查了用待定系数法求一次函数的解析式.23.(10分)阅读材料,回答问题:小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠A=30°,BC=a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.”这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.请判断此时“==”的关系是否成立?(2)完成上术探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC中,BC=a,AC=b,AB=c.过点C作CD⊥AB于D.∵在Rt△ABC和Rt△BDC中,∠ADC=∠BDC=90°,∴sinA= ,sinB= .∴= CD , = CD .。

青岛崂山九下一模2017-2018学年度数学试题

青岛崂山九下一模2017-2018学年度数学试题

初中教学质量抽测九年级数学试题真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题,第Ⅰ卷1-8题为选择题,共24分;第Ⅱ卷9-14题为选择题,15题为作图题,16-24为解答题,共96分,要求所有题目均在答题卡上作答,在本卷上作答无效。

第Ⅰ卷(共24分)一.选择题:下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,每小题选对得3分;不选,错选或选出的标号超过一个的不得分。

1. 下列命题中正确的是( )A. -2018的绝对值是2018B.-3的平方是-9C.15的倒数是1-5 22. 莫拉、沃姆两位博士及其同事在《PloS Biology 》期刊发表了一篇关于地球物种数量预测的文章。

根据他们采用的最新分析方法,这个星球总共拥有870万个物种,误差浮动为130万,870万用科学计数法可以表示为( )A.58.710⨯ B.68.710⨯ C.78.710⨯ D.70.8710⨯3.中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A. B. C. D.4. 下列运算中,计算正确的是( ) A.22422a a -= B.()235aa = C.527a a a ⋅= D.()33a a -=5.在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是( )A. 18,18,1B. 18,17.5,3C. 18,18,3D. 18,17.5,1第5题图 第6题图 6.如图,四边形ABCD 内接于o ,连接OB ,OD ,若BOD BCD ∠=∠,则BAD ∠的大小为( )A.30︒B.120︒C.45︒D.60︒7.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,AB =E 为OC 上一点,OE =1,连接BE ,过点A 作AF ⊥BE 于点F ,与BD 交于点G ,则BF 的长是( )第7题图8. 已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①a +b +c <0;②24b ac < ;③0abc >;④4a −2b +c <0;⑤c −a >1,其中所有正确结论的序号是( )A. ④⑤B. ①③⑤C. ①②③⑤D. ①②③④第8题图第Ⅱ卷(共96分)二.填空题(本题满分18分,共有6道小题,每小题3分)9.计算=_____________________10.某花卉基地有玫瑰花和牡丹花两种花卉,若基地有甲乙两家种植户,种植面积与卖花总收入如下表(假设不同种植户种植的同种花卉每亩卖花平均收入相等)11.如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为___________.第11题图第12题图12.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F. 若∠B=50∘,∠DAE=20∘,则∠FED′的大小为___度。

2017届山东省高考模拟(一)数学试卷及答案

2017届山东省高考模拟(一)数学试卷及答案

2017年春季高考第一次模拟考试数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第I 卷(选择题,共60分) 注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在小答题卡上。

2.每小题选出答案后,用铅笔把小答题卡上对应题目的答案标号涂黑,如需改动,用橡皮 擦干净后,再选涂其它答案,不能答在试题卷上。

一、单项选择题(本大题共20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1.满足{1}⊂≠A ⊆{1,2,3,4} 的集合有( )A 、5个B 、6个C 、7个D 、8个 2、若点(,9)a 在函数3x y =的图象上,则tan 6πa 的值为( )A.0B.3. 一元二次不等式220xx -++>的解集是( )A 、{}/12x x x <->或B 、{}/12x x -<<C 、{}/21x x x <->或 D.{}/21x x -<< 4.函数()22lg 12y xx =-+-的定义域是 A.()(),11,-∞-+∞ B.()1,1- C.()(),11,2-∞- D.()()(),11,22,-∞-+∞5、若直线x-y+m=0与圆x 2+y 2=2相切(m >0),则m=( ) A.2 B. -2 C. 2 D. ±26、下列说法正确的是( )A.a>b 是ac 2>bc 2的充要条件 。

B.b 2=ac 是a 、b 、c 成等比数列的充要条件。

C.1sin 2α=是30α=的充要条件。

D. ,m n m α∥⊥则n α⊥7、公差不为零的等差数列}{n a 的前n 项和为n S 。

山东省青岛市2017届高三统一质量检测一模数学文试题Word版含答案

山东省青岛市2017届高三统一质量检测一模数学文试题Word版含答案

高三同一质量检测 数学(文科)第Ⅰ卷一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、设全集2{|9,},{1,2},{2,1,2}I x x z Z A B =<∈==--,则()I A C B =A .{}1B .{}1,2C .{}2D .{}0,1,2 2、已知z 是z 的共轭复数,若1(z i i =+是虚数单位),则2z= A .1i - B .1i + C .1i -+ D .1i -- 3、已知R λ∈,向量(3,),(1,2)a b λλ==-,则“35λ=”是“a b ⊥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4、中国有个名句“运筹帷幄之中,决胜千里之外”,其中“筹”原意识指“孙子算经”中记载点算筹,古代是用算筹来进行计算,算筹是将几寸的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种 形式,如图,当表示一个多位数码时,像阿拉伯计数 一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位、百位、万位数用纵式,十位、千位、十万位用横式表示,依次类推,例如6613用算筹 表示就是,则8335用算筹可表示为5、已知输入x 的值为1,执行如右图所示的程序框图, 则输出的结果为A .1B .3C .7D .156、已知1,1x y >>,且lg ,2,lg x y 成等差数列,则x y +有A .最小值20B .最小值200C .最大值20D .最大值200, 7、要得到函数的图象2cos y x =,只需将2sin()3y x π=-的图象A .向右平移56π个单位 B .向右平移3π个单位 C .向左平移56π个单位 D .向左平移3π个单位8、某几何体的三视图如右图所示,则该几何体的体积为 A .883π+ B .1683π+ C .8163π+ D .16163π+ 9、定义在R 上的奇函数()f x 满足()(2)2f x f x +=-,且()11f =,则()2017f = A .0 B .1 C .-1 D .-2 10、已知0,0a b >>,双曲线22122:1(0,0)x y C a b a b-=>>,圆22223:204C x y ax a +-+=,若双曲线1C 的渐近线与圆2C 相切,则双曲线1C 的离心率是 A .233B .2C .2D .5第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 11、函数()ln(2)3f x x x=++-的定义域为 12、已知变量,x y 具有线性相关关系,它们之间的一组数据如下表所示,若y 关于x 的线性回归方程为ˆ 1.31yx =-,则m =13、若,x y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z y x =-的最大值为14、已知抛物线2:8,C y x O =为坐标原点,直线x m =与抛物线C 交于,A B 两点,若AOB ∆的重心为抛物线C 的焦点F ,则AF =15、已知函数()()23231,12323x x x x f x x g x x =+-+=-+-,设函数()()()F x f x g x =且函数()F x 的零点均在区间[],(,,)a b a b a b Z <∈内,则b a -的最小值为三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤 16、(本小题满分12分)某滑雪场开业当天共有500人滑雪,滑雪服务中心根据他们的年龄分成[)[)[)10,20,20,30,30,40, [)[]40,50,50,60五个组,现按分层抽样的方法选取20人参加有奖活动,这些人的样本数据的频率分布直方图如下图所示,从左往右分别为一组、二组、三组、四组、五组.(1)求开业当天所有滑雪的人年龄在[)20,30有多少人?(2)在选取的这20人样本中,从年龄不低于30岁的人中任选两人参加抽奖活动,求这两个人来自同一组的概率.17、(本小题满分12分) 已知函数()sin(2)cos(2)sin 2(),()23612f x x x m x m R f πππ=++++∈= .(1)求m的值;(2)在ABC∆中,角,,A B C的对边分别为,,a b c,若2,()3,2Bb f ABC==∆的面积是3,求ABC∆的周长.18、(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥平面,3,ABCD PA F=是棱PA上一个动点,E为PD的中点.(1)求证:平面BDF⊥平面PCF;(2)若AF=1,求证://CE平面BDF.19、(本小题满分12分)设数列{}n a的前n项和为n S,已知111,32,n na S S n N++==+∈ .(1)求数列{}n a的通项公式;(2)若18nn nnba a+=-,求数列{}n b的前n项和n T.20、(本小题满分13分)已知函数()41,()ln,af x xg x a x a Rx=+-=∈.(1)若函数()()()h x f x g x=-在[]1,3上为减函数,求a的最小值;(2)若函数3()(2)( 1.718828xp x x e e=-⋅=为自然对数的底数),()()2g xq xx=+,对于任意的12,(0,1)x x∈,恒有12()()p x q x>成立,求a的范围.22、(本小题满分14分)已知椭圆2222:1(0)x y a b a b Γ+=>>的左焦点为1F ,右顶点为1A ,上顶点为1B ,过111,,F A B 三点的圆P 的圆心坐标为3216,22. (1)求椭圆的方程;(2)若直线:(,l y kx m k m =+为常数,0k ≠)与椭圆Γ交于不同的零点M 和N. ①当直线l 过(1,0)E ,且20EM EN +=时,求直线l 的方程;②当坐标原点到直线l 的距离为32,且MON ∆面积为32时,求直线l 的倾斜角.。

2017年山东省青岛市市南区中考数学一模试卷及答案解析

2017年山东省青岛市市南区中考数学一模试卷及答案解析

2017年山东省青岛市市南区中考数学一模试卷一、选择题1.(3分)−3的相反数是()A.3B.−3C.33D.−2.(3分)画出如图所示几何体的主视图、左视图和俯视图,其中正确的是()A.B.C.D.3.(3分)2016年青岛市参加中考人数约有162000人,将数据162000用科学记数法表示为()A.162×103B.16.2×104C.1.62×105D.16.2×106 4.(3分)已知⊙O的半径为5,直线l与⊙O相交,则圆心O到直线l的距离d的取值范围是()A.0≤d<5B.0<d<5C.d=5D.d>55.(3分)下列计算正确的是()A.3a2•4ab=7a3b B.(2ab3)2=4a2b6C.a12÷a6=a2D.4a+4b=8ab6.(3分)如图,点A,B,C的坐标分别为(2,5),(6,3),(4,﹣1);若以点A,B,C,D为顶点的四边形既是轴对称图形,又是中心对称图形,则点D的坐标可能是()A.(0,0)B.(0,1)C.(3,2)D.(1,0)7.(3分)某大型商场为了吸引顾客,规定凡在本商场一次性消费100元的顾客可以参加一次摸奖活动,摸奖规则如下:一个不透明的纸箱里装有1个红球、2个黄球、5个绿、12个白球,所有球除颜色外完全相同,充分摇匀后,从中摸出一球,若摸出的球是红、黄、绿球,顾客将分别获得50元、25元、20元现金,若摸出白球则没有获奖.若某位顾客有机会参加摸奖活动,则他每摸一次球的平均收益为()A.95元B.953元C.25元D.10元8.(3分)如图,一次函数y=kx+b的图象与反比例函数y=6的图象相交于A(2,m),B (n,1)两点,连接OA,OB,则△OAB的面积为()A.12B.10C.8D.6二、填空题9.(3分)计算:(12)﹣2−24×6=.10.(3分)某跳高运动员最近五次训练的成绩分别为181cn,177cm,181cm,182cm,179cm,则该运动员这五次成绩的方差为.11.(3分)如图,在直径为AB的⊙O中,C,D是⊙O上的两点,∠AOD=58°,CD∥AB,则∠ABC的度数为.12.(3分)清明节期间,小明和小新约好同时出发到中山公园踏青,小明家、小新家到中山公园的距离分别是4千米和10千米,小明步行前往,小新则骑免费单车,已知小新骑车的速度是小明步行速度的4倍,结果小新提前15分钟到达.若设小明步行速度为x千米/小时,则根据题意可列方程为.13.(3分)如图,矩形ABCD中,AB=4,BC=6,E为AB上一点,将△BCE沿CE翻折至△FCE,EF与AD相交于点G,且AG=FG,则线段AE的长为.14.(3分)如图,已知等边三角形OAB的顶点O(0,0),A(0,3),将该三角形绕点O 顺时针旋转,每次旋转60°,则旋转2017次后,顶点B的坐标为.三、作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.15.已知:如图,线段a,∠α.求作:Rt△ABC,使∠C=90°,∠A=∠α,AC=a.四、解答题16.(1)化简:r13r12−1(2−2≥32<−3.17.小明和小丽用如图所示的两个转盘做“配紫色”游戏:分别转动两个转盘,其中一个转盘转到红色,另一个转盘转到蓝色,即可配成紫色,两人商定,若能配成紫色,小明胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.18.甲、乙两人要测量灯塔AB的高度,甲在C处用高度为1.5米的侧角仪测得塔顶A的仰角为72°,乙在E处用高度为1.8米的测角仪测得塔顶A的仰角为50°,点B、C、E 在同一条直线上,且甲乙两人的距离CE=10米,请你根据所测量的数据计算灯塔AB的高度.(结果精确到0.1m)(参考数据:sin50°≈45,cos50°≈1625,tan50°≈54,sin72°≈1920,cos72°≈310,tan72°≈196)19.小刚对自己家近四年的家庭支出情况进行了统计,并制作了下列两个统计图,根据统计图回答下列问题:(1)已知2014年小刚家教育支出为0.27万元,请将图l中的统计图补充完整:(2)求近四年小刚家总支出的中位数和这四年平均每年的总支出;(3)根据以上信息,请你估计小刚家2017年教育支出大约是多少万元?并说明你是怎样估计的.2017年山东省青岛市市南区中考数学一模试卷参考答案与试题解析一、选择题1.(3分)−3的相反数是()A.3B.−3C.33D.−【解答】解:−3的相反数是3.故选:A.2.(3分)画出如图所示几何体的主视图、左视图和俯视图,其中正确的是()A.B.C.D.【解答】解:三视图如图,故选:D.3.(3分)2016年青岛市参加中考人数约有162000人,将数据162000用科学记数法表示为()A.162×103B.16.2×104C.1.62×105D.16.2×106【解答】解:将162000用科学记数法表示为1.62×105.故选:C.4.(3分)已知⊙O的半径为5,直线l与⊙O相交,则圆心O到直线l的距离d的取值范围是()A.0≤d<5B.0<d<5C.d=5D.d>5【解答】解:∵⊙O的半径为5,直线l与⊙O相交,∴圆心D到直线l的距离d的取值范围是0≤d<5,故选:A.5.(3分)下列计算正确的是()A.3a2•4ab=7a3b B.(2ab3)2=4a2b6C.a12÷a6=a2D.4a+4b=8ab【解答】解:∵3a2•4ab=12a3b,故选项A错误,∵(2ab3)2=4a2b6,故选项B正确,∵a12÷a6=a6,故选项C错误,∵4a+4b不能合并,故选项D错误,故选:B.6.(3分)如图,点A,B,C的坐标分别为(2,5),(6,3),(4,﹣1);若以点A,B,C,D为顶点的四边形既是轴对称图形,又是中心对称图形,则点D的坐标可能是()A.(0,0)B.(0,1)C.(3,2)D.(1,0)【解答】解:∵点A,B,C的坐标分别为(2,5),(6,3),(4,﹣1),∴AB=(2−6)2+(5−3)2=25,BC=(6−4)2+(−1−3)2=25,∴AB=BC,∵以点A,B,C,D为顶点的四边形既是轴对称图形,又是中心对称图形,∴四边形ABCD是菱形时满足要求,如图,点D的坐标为(0,1).故选:B.7.(3分)某大型商场为了吸引顾客,规定凡在本商场一次性消费100元的顾客可以参加一次摸奖活动,摸奖规则如下:一个不透明的纸箱里装有1个红球、2个黄球、5个绿、12个白球,所有球除颜色外完全相同,充分摇匀后,从中摸出一球,若摸出的球是红、黄、绿球,顾客将分别获得50元、25元、20元现金,若摸出白球则没有获奖.若某位顾客有机会参加摸奖活动,则他每摸一次球的平均收益为()A.95元B.953元C.25元D.10元【解答】解:50×120+25×220+20×520+0×1220=10元,故选:D.8.(3分)如图,一次函数y=kx+b的图象与反比例函数y=6的图象相交于A(2,m),B (n,1)两点,连接OA,OB,则△OAB的面积为()A.12B.10C.8D.6【解答】解:∵反比例函数y=6的图象经过A(2,m),B(n,1)两点,∴m=3,n=6;则直线y=kx+b的图象也过点(2,3),(6,1)两点,代入解析式y=kx+b得2+=36+=1,解得=−12=4,∴y=−12x+4.设直线AB交x轴于C点,∵y=0时,−12x+4=0,∴x=8,∴C(8,0),=12×8×3=12,S△BOC=12×8×1=4,∵S△AOC=S△AOC﹣S△BOC=12﹣4=8.∴S△AOB故选:C.二、填空题9.(3分)计算:(12)﹣2−24×6=﹣8.【解答】解:原式=4﹣26×6=4﹣2×6=4﹣12=﹣8故答案为:﹣810.(3分)某跳高运动员最近五次训练的成绩分别为181cn,177cm,181cm,182cm,179cm,则该运动员这五次成绩的方差为 3.2.【解答】解:该运动员这五次成绩的平均数是:(181+177+181+182+179)÷5=180,则方差=15[(181﹣180)2+(177﹣180)2+(181﹣180)2+(182﹣180)2+(179﹣180)2]=3.2.故答案为3.2.11.(3分)如图,在直径为AB的⊙O中,C,D是⊙O上的两点,∠AOD=58°,CD∥AB,则∠ABC的度数为61°.【解答】解:∵∠AOD=58°,∴∠ACD=12∠AOD=29°,∵CD∥AB,∴∠CAB=∠ACD=29°,∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣29°=61°,故答案为61°.12.(3分)清明节期间,小明和小新约好同时出发到中山公园踏青,小明家、小新家到中山公园的距离分别是4千米和10千米,小明步行前往,小新则骑免费单车,已知小新骑车的速度是小明步行速度的4倍,结果小新提前15分钟到达.若设小明步行速度为x千米/小时,则根据题意可列方程为4=104+1560.【解答】解:设小明步行速度为x千米/小时,则小新的速度为4x千米/小时,根据题意可列方程为:4=104+1560.故答案为:4=104+1560.13.(3分)如图,矩形ABCD中,AB=4,BC=6,E为AB上一点,将△BCE沿CE翻折至△FCE,EF与AD相交于点G,且AG=FG,则线段AE的长为1.【解答】解:如图所示,∵四边形ABCD是矩形,∴∠D=∠B=∠A=90°,AB=CD=4,AD=BC=6,根据题意得:△BCE≌△CEF,∴EF=BE,∠F=∠B=90°,CF=BC=6,在△GAE和△GFH中,∠=∠A=A∠A=∠A,∴△GAE≌△GFH(ASA),∴EG=GH,AE=FH,∴AH=EF,设BE=EF=x,则AE=FH=4﹣x,AH=x,∴DH=6﹣x,CH=6﹣(4﹣x)=2+x,根据勾股定理得:DC2+DH2=CH2,即42+(6﹣x)2=(x+2)2,解得:x=3,∴BE=3,∴AE=1,故答案为:1.14.(3分)如图,已知等边三角形OAB的顶点O(0,0),A(0,3),将该三角形绕点O 顺时针旋转,每次旋转60°,则旋转2017次后,顶点B的坐标为(332,−32).【解答】解:由题意知点B旋转360°60°=6次后与点B重合,即点B的旋转周期为6,∵2017÷6=336…1,∴点B旋转2017次后的坐标与旋转1次后的坐标相同,如图,OB绕点O顺时针旋转60°得到OB1,过点B1作B1C⊥x轴,∵△OAB为等边三角形,且A(0,3),∴OA=OB=OB1=3,∠AOB=60°,∴∠BOC=∠B1OC=30°,则B1C=OB1sin∠B1OC=3×12=32,OC=OB1cos∠B1OC=3×32=332,∴旋转2017次后,顶点B的坐标为(332,−32),故答案为:(332,−32).三、作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.15.已知:如图,线段a,∠α.求作:Rt△ABC,使∠C=90°,∠A=∠α,AC=a.【解答】解:如图,△ABC为所作.四、解答题16.(1)化简:r13r12−1(2)解不等式组:−2≥322<−3.【解答】解:(1)原式=oK1)2−1+3r12−1=2−r3r12−1=(r1)22−1=r1K1(2)由x﹣2≥3x,∴x≤﹣1由2+2<﹣3∴x<﹣10∴不等式组的解集为:x<﹣1017.小明和小丽用如图所示的两个转盘做“配紫色”游戏:分别转动两个转盘,其中一个转盘转到红色,另一个转盘转到蓝色,即可配成紫色,两人商定,若能配成紫色,小明胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.【解答】解:不公平,将A盘中蓝色部分记为蓝a、蓝b,B盘中红色部分记为红1、红2,画树状图如下:由树状图可知共有9种等可能结果,其中能配成紫色的有5种结果,∴小明获胜的概率为59,小丽获胜的概率为49,∵59≠49,∴这个游戏对双方不公平.18.甲、乙两人要测量灯塔AB的高度,甲在C处用高度为1.5米的侧角仪测得塔顶A的仰角为72°,乙在E处用高度为1.8米的测角仪测得塔顶A的仰角为50°,点B、C、E 在同一条直线上,且甲乙两人的距离CE=10米,请你根据所测量的数据计算灯塔AB的高度.(结果精确到0.1m)(参考数据:sin50°≈45,cos50°≈1625,tan50°≈54,sin72°≈1920,cos72°≈310,tan72°≈196)【解答】解:如图,作FG⊥AB于G,DH⊥AB于H.设AG=x.在Rt△AFG中,FG=A tB0°=54=45x,在Rt△ADH中,DH=B tD2°=6(r0.3)19,∵FG﹣DH=EB﹣CB=EC,∴45x−6(r0.3)19=10,解得x=20.8,∴AB=AG+BG=AG+EF=20.8+1.8=22.6米,答:灯塔AB的高度为22.6米.19.小刚对自己家近四年的家庭支出情况进行了统计,并制作了下列两个统计图,根据统计图回答下列问题:(1)已知2014年小刚家教育支出为0.27万元,请将图l中的统计图补充完整:(2)求近四年小刚家总支出的中位数和这四年平均每年的总支出;(3)根据以上信息,请你估计小刚家2017年教育支出大约是多少万元?并说明你是怎样估计的.【解答】解:(1)0.27÷15%=1.8(万元),如图所示:(2)近四年小刚家总支出的中位数为1.7+1.32=1.5(万元),这四年平均每年的总支出:1.7+1.8+1.2+1.34=1.5(万元),答:近四年小刚家总支出的中位数为1.5万元,这四年平均每年的总支出为1.5万元;(3)估计小刚家2017年教育支出大约是0.7万元,根据2015年比2013年少花0.5万元,2014年比2016年少花0.5万元,因此2017年教育支出大约是0.7万元.。

山东省青岛市2017-2018学年高三上学期第一次模拟数学(文)试卷 Word版含解析

山东省青岛市2017-2018学年高三上学期第一次模拟数学(文)试卷 Word版含解析

2017-2018学年山东省青岛市高考数学一模试卷(文科)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i为虚数单位,复数等于()A.﹣1+i B.﹣1﹣i C. 1﹣i D. 1+i2.设全集I=R,集合A={y|y=log 2x,x>2},B={x|y=},则()A. A⊆B B. A∪B=A C. A∩B=∅ D. A∩(∁I B)≠∅3.如图是某体育比赛现场上七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()A. 5和1.6 B. 85和1.6 C. 85和0.4 D. 5和0.44.“∀n∈N*,2a n+1=a n+a n+2”是“数列{a n}为等差数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件5.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A. 2 B. C. D. 36.已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:x+2y+5=0,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=17.设m,n是不同的直线,α,β是不同的平面,下列中正确的是()A.若m∥α,n⊥β,m⊥n,则α⊥β B.若m∥α,n⊥β,m⊥n,则α∥βC.若m∥α,n⊥β,m∥n,则α⊥β D.若m∥α,n⊥β,m∥n,则α∥β8.函数y=4cosx﹣e|x|(e为自然对数的底数)的图象可能是()A. B. C. D.9.已知△ABC的三边分别为4,5,6,则△ABC的面积为()A. B. C. D.10.已知点G是△ABC的外心,,,是三个单位向量,且2++=,如图所示,△ABC的顶点B,C分别在x轴的非负半轴和y轴的非负半轴上移动,则G点的轨迹为()A.一条线段 B.一段圆弧C.椭圆的一部分 D.抛物线的一部分二、填空题:本大题共5小题,每小题5分,共25分.11.已知函数f(x)=tanx+sinx+2015,若f(m)=2,则f(﹣m)= .12.执行如图所示的程序框图,则输出的结果是;13.在长为12cm的线段AB上任取一点C,现作一矩形,使邻边长分别等于线段AC、CB的长,则该矩形面积大于20cm2的概率为.14.设z=x+y其中x,y满足,若z的最大值为6,则z的最小值为.15.若X是一个集合,τ是一个以X的某些子集为元素的集合,且满足:①X属于τ,∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ.则称τ是集合X上的一个拓扑.已知集合X={a,b,c},对于下面给出的四个集合τ:①τ={∅,{a},{c},{a,b,c}};②τ={∅,{b},{c},{b,c},{a,b,c}};③τ={∅,{a},{a,b},{a,c}};④τ={∅,{a,c},{b,c},{c},{a,b,c}}.其中是集合X上的拓扑的集合τ的序号是.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.某市甲、乙两社区联合举行迎“五一”文艺汇演,甲、乙两社区各有跳舞、笛子演奏、唱歌三个表演项目,其中甲社区表演队中表演跳舞的有1人,表演笛子演奏的有2人,表演唱歌的有3人.(Ⅰ)若从甲、乙社区各选一个表演项目,求选出的两个表演项目相同的概率;(Ⅱ)若从甲社区表演队中选2人表演节目,求至少有一位表演笛子演奏的概率.17.已知函数f(x)=4cosωx•sin(ωx+)+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.(Ⅰ)求a和ω的值;(Ⅱ)求函数f(x)在[0,π]上的单调递减区间.18.如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,底面ABCD是直角梯形,AD ∥BC,∠BAD=90°,BC=1,AB=,AD=AA1=3,E1为A1B1中点.(Ⅰ)证明:B1D∥平面AD1E1;(Ⅱ)证明:平面ACD1⊥平面BDD1B1.19.已知数列{a n}是等差数列,S n为{a n}的前n项和,且a10=28,S8=92;数列{b n}对任意n ∈N*,总有b1•b2•b3…b n﹣1•b n=3n+1成立.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)记c n=,求数列{c n}的前n项和T n.20.已知椭圆C:+=1(a>b>0)上顶点为A,右顶点为B,离心率e=,O为坐标原点,圆O:x2+y2=与直线AB相切.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线l:y=k(x﹣2)(k≠0)与椭圆C相交于E、F两不同点,若椭圆C上一点P满足OP∥l.求△EPF面积的最大值及此时的k2.21.已知函数f(x)=(ax2+2x﹣a)e x,g(x)=f(lnx),其中a∈R,e=2.71828…为自然对数的底数.(Ⅰ)若函数y=f(x)的图象在点M(2,f(2))处的切线过坐标原点,求实数a的值;(Ⅱ)若f(x)在[﹣1,1]上为单调递增函数,求实数a的取值范围.(Ⅲ)当a=0时,对于满足0<x1<x2的两个实数x1,x2,若存在x0>0,使得g′(x0)=成立,试比较x0与x1的大小.2015年山东省青岛市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i为虚数单位,复数等于()A.﹣1+i B.﹣1﹣i C. 1﹣i D. 1+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数代数形式的乘除运算化简求值.解答:解:=.故选:D.点评:本题考查了复数代数形式的乘除运算,是基础的计算题.2.设全集I=R,集合A={y|y=log 2x,x>2},B={x|y=},则()A. A⊆B B. A∪B=A C. A∩B=∅ D. A∩(∁I B)≠∅考点:集合的包含关系判断及应用.专题:计算题;集合.分析:化简集合A,B,即可得出结论.解答:解:由题意,A={y|y=log 2x,x>2}=(1,+∞),B={x|y=}=[1,+∞),∴A⊆B,故选:A.点评:本题考查集合的包含关系判断及应用,如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集.3.如图是某体育比赛现场上七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()A. 5和1.6 B. 85和1.6 C. 85和0.4 D. 5和0.4考点:茎叶图;众数、中位数、平均数.专题:图表型.分析:根据均值与方差的计算公式,分布计算出所剩数据的平均数和方差分即可.解答:解:根据题意可得:评委为某选手打出的分数还剩84,84,84,86,87,所以所剩数据的平均数为=85,所剩数据的方差为[(84﹣85)2+(84﹣85)2+(86﹣85)2+(84﹣85)2+(87﹣85)2]=1.6.故选B.点评:本题考查茎叶图、平均数和方差,对于一组数据通常要求的是这组数据的众数,中位数,平均数,方差,它们分别表示一组数据的特征,这样的问题可以出现在选择题或填空题.4.“∀n∈N*,2a n+1=a n+a n+2”是“数列{a n}为等差数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件考点:必要条件、充分条件与充要条件的判断;等差数列的性质.专题:等差数列与等比数列.分析:由2a n+1=a n+a n+2,可得a n+2﹣a n+1=a n+1﹣a n,可得数列{a n}为等差数列;若数列{a n}为等差数列,易得2a n+1=a n+a n+2,由充要条件的定义可得答案.解答:解:由2a n+1=a n+a n+2,可得a n+2﹣a n+1=a n+1﹣a n,由n的任意性可知,数列从第二项起每一项与前一项的差是固定的常数,即数列{a n}为等差数列,反之,若数列{a n}为等差数列,易得2a n+1=a n+a n+2,故“∀n∈N*,2a n+1=a n+a n+2”是“数列{a n}为等差数列”的充要条件,故选C点评:本题考查充要条件的判断,涉及等差数列的判断,属基础题.5.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A. 2 B. C. D. 3考点:简单空间图形的三视图.专题:计算题;空间位置关系与距离.分析:根据三视图判断几何体为四棱锥,再利用体积公式求高x即可.解答:解:根据三视图判断几何体为四棱锥,其直观图是:V==3⇒x=3.点评:由三视图正确恢复原几何体是解题的关键.6.已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:x+2y+5=0,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1考点:双曲线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:由已知得,由此能求出双曲线方程.解答:解:∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:x+2y+5=0,双曲线的一个焦点在直线l上,∴,解得a=2,b=,∴双曲线方程为﹣=1.点评:本题考查双曲线方程的求法,是基础题,解题时要认真审题,注意双曲线性质的合理运用.7.设m,n是不同的直线,α,β是不同的平面,下列中正确的是()A.若m∥α,n⊥β,m⊥n,则α⊥β B.若m∥α,n⊥β,m⊥n,则α∥βC.若m∥α,n⊥β,m∥n,则α⊥β D.若m∥α,n⊥β,m∥n,则α∥β考点:平面与平面之间的位置关系.专题:空间位置关系与距离.分析:利用线面平行、垂直的判定定理和性质定理及面面垂直的判定定理即可判断出答案.解答:解:选择支C正确,下面给出证明.证明:如图所示:∵m∥n,∴m、n确定一个平面γ,交平面α于直线l.∵m∥α,∴m∥l,∴l∥n.∵n⊥β,∴l⊥β,∵l⊂α,∴α⊥β.故C正确.故选C.点评:正确理解和掌握线面平行、垂直的判定定理和性质定理及面面垂直的判定定理是解题的关键.8.函数y=4cosx﹣e|x|(e为自然对数的底数)的图象可能是()A. B. C. D.考点:函数的图象.专题:函数的性质及应用.分析:先验证函数y=4cosx﹣e|x|是否具备奇偶性,排除一些选项,在取特殊值x=0时代入函数验证即可得到答案.解答:解:∵函数y=4cosx﹣e|x|,∴f(﹣x)=4cos(﹣x)﹣e|﹣x|=4cosx﹣e|x|=f(x),函数y=4cosx﹣e|x|为偶函数,图象关于y轴对称,排除BD,又f(0)=y=4cos0﹣e|0|=4﹣1=3,只有A适合,故选:A.点评:本题主要考查函数的图象,关于函数图象的选择题,通常先验证奇偶性,排除一些选项,再代特殊值验证,属于中档题.9.已知△ABC的三边分别为4,5,6,则△ABC的面积为()A. B. C. D.考点:余弦定理的应用;三角形中的几何计算.专题:解三角形.分析:根据余弦定理先求出其中一个角的余弦值,然后求出对应的正弦值,利用三角形的面积公式即可得到结论.解答:解:∵△ABC的三边长a=4,b=5,c=6,∴由余弦定理得cosC==,∴sinC===∴三角形的面积为S=absinC=×4×5×=.故选:B.点评:本题主要考查了三角形的面积的计算,利用余弦定理和正弦定理求出其中一个角的正弦值是解决本题的关键.10.已知点G是△ABC的外心,,,是三个单位向量,且2++=,如图所示,△ABC的顶点B,C分别在x轴的非负半轴和y轴的非负半轴上移动,则G点的轨迹为()A.一条线段 B.一段圆弧C.椭圆的一部分 D.抛物线的一部分考点:轨迹方程.专题:计算题;直线与圆.分析:确定点G是BC的中点,△ABC是直角三角形,∠A是直角,BC=2,根据△ABC的顶点B、C分别在x轴和y轴的非负半轴上移动,即可得出结论.解答:解:∵点G是△ABC的外心,且2++=,|∴点G是BC的中点,△ABC是直角三角形,∠A是直角∵,,是三个单位向量,∴BC=2∵△ABC的顶点B、C分别在x轴和y轴的非负半轴上移动∴G的轨迹是以原点为圆心1为半径的圆弧,故选:B.点评:本题考查向量在几何中的应用,解题的关键是判断三角形的形状,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.已知函数f(x)=tanx+sinx+2015,若f(m)=2,则f(﹣m)= 4028 .考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据解析式得出f(﹣x)+f(x)=4030,f(m)+f(﹣m)=4030,即可求解.解答:解:∵函数f(x)=tanx+sinx+2015,∴f(﹣x)=﹣tanx﹣sinx+2015,∵f(﹣x)+f(x)=4030,∴f(m)+f(﹣m)=4030,∵f(m)=2,∴f(﹣m)=4028.故答案为:4028.点评:本题考查了函数的性质,整体运用的思想,属于容易题,难度不大.12.执行如图所示的程序框图,则输出的结果是132 ;考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的s,i的值,当i=10时,不满足条件i≥11,退出循环,输出s的值为132.解答:解:模拟执行程序框图,可得i=12,s=1满足条件i≥11,s=12,i=11满足条件i≥11,s=132,i=10不满足条件i≥11,退出循环,输出s的值为132.故答案为:132.点评:本题主要考查了程序框图和算法,依次正确写出每次循环得到的s,i的值是解题的关键,属于基本知识的考查.13.在长为12cm的线段AB上任取一点C,现作一矩形,使邻边长分别等于线段AC、CB的长,则该矩形面积大于20cm2的概率为.考点:几何概型.专题:概率与统计.分析:设AC=x,则BC=12﹣x,由矩形的面积S=x(12﹣x)>20可求x的范围,利用几何概率的求解公式可求.解答:解:设AC=x,则BC=12﹣x矩形的面积S=x(12﹣x)>20∴x2﹣12x+20<0∴2<x<10由几何概率的求解公式可得,矩形面积大于20cm2的概率P==.故答案为:.点评:本题主要考查了二次不等式的解法,与区间长度有关的几何概率的求解公式的应用,属于基础试题14.设z=x+y其中x,y满足,若z的最大值为6,则z的最小值为﹣3 .考点:简单线性规划.分析:先根据条件画出可行域,观察可行域,当直线z=x+y过A点时取最大值,从而求出k值,再当直线z=x+y过B点时取最小值,求出z最小值即可.解答:解:作出可行域如图:直线x+y=6过点A(k,k)时,z=x+y取最大,∴k=3,z=x+y过点B处取得最小值,B点在直线x+2y=0上,∴B(﹣6,3),∴z的最小值为=﹣6+3=﹣3.故填:﹣3.点评:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.15.若X是一个集合,τ是一个以X的某些子集为元素的集合,且满足:①X属于τ,∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ.则称τ是集合X上的一个拓扑.已知集合X={a,b,c},对于下面给出的四个集合τ:①τ={∅,{a},{c},{a,b,c}};②τ={∅,{b},{c},{b,c},{a,b,c}};③τ={∅,{a},{a,b},{a,c}};④τ={∅,{a,c},{b,c},{c},{a,b,c}}.其中是集合X上的拓扑的集合τ的序号是②④.考点:集合的包含关系判断及应用.专题:压轴题;新定义.分析:根据集合X上的拓扑的集合τ的定义,逐个验证即可:①{a}∪{c}={a,c}∉τ,③{a,b}∪{a,c}={a,b,c}∉τ,因此①③都不是;②④满足:①X属于τ,∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ,因此②④是,从而得到答案.解答:解:①τ={∅,{a},{c},{a,b,c}};而{a}∪{c}={a,c}∉τ,故①不是集合X上的拓扑的集合τ;②τ={∅,{b},{c},{b,c},{a,b,c}},满足:①X属于τ,∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ因此②是集合X上的拓扑的集合τ;③τ={∅,{a},{a,b},{a,c}};而{a,b}∪{a,c}={a,b,c}∉τ,故③不是集合X上的拓扑的集合τ;④τ={∅,{a,c},{b,c},{c},{a,b,c}}.满足:①X属于τ,∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ因此④是集合X上的拓扑的集合τ;故答案为②④.点评:此题是基础题.这是考查学生理解能力和对知识掌握的灵活程度的问题,重在理解题意.本题是开放型的问题,要认真分析条件,探求结论,对分析问题解决问题的能力要求较高.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.某市甲、乙两社区联合举行迎“五一”文艺汇演,甲、乙两社区各有跳舞、笛子演奏、唱歌三个表演项目,其中甲社区表演队中表演跳舞的有1人,表演笛子演奏的有2人,表演唱歌的有3人.(Ⅰ)若从甲、乙社区各选一个表演项目,求选出的两个表演项目相同的概率;(Ⅱ)若从甲社区表演队中选2人表演节目,求至少有一位表演笛子演奏的概率.考点:列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:(Ⅰ)若从甲、乙社区各选一个表演项目,选出的两个表演项目所有基本事件的个数,求出相同的事件的个数,即可求解概率;(Ⅱ)从甲社区表演队中选2人表演节目,列出所有基本事件的个数,找出至少有一位表演笛子演奏的事件个数,然后求解概率.解答:解:(Ⅰ)记甲、乙两社区的表演项目:跳舞、笛子演奏、唱歌分别为A1,B1,C1;A2,B2,C2则从甲、乙社区各选一个表演项目的基本事件有(A1,A2),(A1,B2),(A1,C2),(B1,A2),(B1,B2),(B1,C2),(C1,A2),(C1,B2),(C1,C2)共9种,其中选出的两个表演项目相同的事件3种,所以(Ⅱ)记甲社区表演队中表演跳舞的、表演笛子演奏、表演唱歌的分别为a1,b1,b2,c1,c2,c3则从甲社区表演队中选2人的基本事件有(a1,b1),(a1,b2),(a1,c1),(a1,c2),(a1,c3),(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3)共15种其中至少有一位表演笛子演奏的事件有9种,所以点评:本题考查古典概型的概率的求法,列出所有基本事件,做到不重复不漏是解题的关键.17.已知函数f(x)=4cosωx•sin(ωx+)+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.(Ⅰ)求a和ω的值;(Ⅱ)求函数f(x)在[0,π]上的单调递减区间.考点:正弦函数的单调性;两角和与差的正弦函数.专题:三角函数的图像与性质.分析:(Ⅰ)根据条件确定函数最值和周期,利用三角函数的公式进行化简即可求a和ω的值;(Ⅱ)根据三角函数的单调性即可求出函数的单调递减区间.解答:解:(Ⅰ)==.当时,f(x)取得最大值2+1+a=3+a又f(x)最高点的纵坐标为2,∴3+a=2,即a=﹣1.又f(x)图象上相邻两个最高点的距离为π,∴f(x)的最小正周期为T=π故,ω=1(Ⅱ)由(Ⅰ)得由.得.令k=0,得:.故函数f(x)在[0,π]上的单调递减区间为点评:本题主要考查三角函数的图象和性质,利用三角函数的图象以及三角函数的辅助角公式求出函数的解析式是解决本题的关键.18.如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,底面ABCD是直角梯形,AD ∥BC,∠BAD=90°,BC=1,AB=,AD=AA1=3,E1为A1B1中点.(Ⅰ)证明:B1D∥平面AD1E1;(Ⅱ)证明:平面ACD1⊥平面BDD1B1.考点:直线与平面平行的判定;平面与平面垂直的判定.专题:空间位置关系与距离.分析:(Ⅰ)连结A1D交AD1于G,证明B1D∥E1G,利用直线与平面平行的判定定理证明B1D ∥平面AD1E1.(Ⅱ)设AC∩BD=H,通过△BHC~△DHA,结合BC=1,AD=3,求出,,证明AC⊥BD,然后证明BB1⊥AC,得到AC⊥平面BDD1B1,利用平面与平面垂直的判定定理证明平面ACD1⊥平面BDD1B1.解答:证明:(Ⅰ)连结A1D交AD1于G,因为ABCD﹣A1B1C1D1为四棱柱,所以四边形ADD1A1为平行四边形,所以G为A1D的中点,又E1为A1B1中点,所以E1G为△A1B1D的中位线,所以B1D∥E1G,又因为B1D⊄平面AD1E1,E1G⊂平面AD1E1,所以B1D∥平面AD1E1.(Ⅱ)设AC∩BD=H,因为AD∥BC,所以△BHC~△DHA又BC=1,AD=3,所以,∵AD∥BC,∠BAD=90°,所以∠ABC=90°∴,从而,,所以CH2+BH2=BC2,CH⊥BH,即AC⊥BD因为ABCD﹣A1B1C1D1为四棱柱,AA1⊥底面ABCD所以侧棱BB1⊥底面ABCD,又AC⊂底面ABCD,所以BB1⊥AC因为BB1∩BD=B,所以AC⊥平面BDD1B1,因为AC⊂平面ACD1,所以平面ACD1⊥平面BDD1B1.点评:本题考查直线与平面平行,平面与平面垂直的判定定理的应用,考查空间想象能力以及逻辑推理能力.19.已知数列{a n}是等差数列,S n为{a n}的前n项和,且a10=28,S8=92;数列{b n}对任意n ∈N*,总有b1•b2•b3…b n﹣1•b n=3n+1成立.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)记c n=,求数列{c n}的前n项和T n.考点:数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)设出{a n}的首项和公差,由已知列方程组求得首项和公差,代入等差数列的通项公式求通项;再由b1•b2•b3…b n﹣1•b n=3n+1,得b1•b2•b3…b n﹣1=3n﹣2(n≥2),两式相除可得数列{b n}的通项公式;(Ⅱ)把{a n}、{b n}的通项公式代入c n=,化简后利用错位相减法求得数列{c n}的前n项和T n.解答:解:(Ⅰ)设{a n}的首项为a1,公差为d,由a10=28,S8=92,得a10=a1+9d=28,,解得a1=1,d=3,a n=1+3(n﹣1)=3n﹣2;又∵b1•b2•b3…b n﹣1•b n=3n+1,∴b1•b2•b3…b n﹣1=3n﹣2(n≥2),两式相除得,当n=1时b1=4适合上式,∴;(Ⅱ)把{a n}、{b n}的通项公式代入c n=,得,则,,两式作差得:,∴,即.点评:本题考查了等差数列和等比数列的通项公式,考查了错位相减法求数列的和,是中档题.20.已知椭圆C:+=1(a>b>0)上顶点为A,右顶点为B,离心率e=,O为坐标原点,圆O:x2+y2=与直线AB相切.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线l:y=k(x﹣2)(k≠0)与椭圆C相交于E、F两不同点,若椭圆C上一点P满足OP∥l.求△EPF面积的最大值及此时的k2.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设出直线AB的方程为:,利用圆O与直线AB相切,列出关系式,设椭圆的半焦距为c,通过b2+c2=a2,利用离心率,求出a,b,得到椭圆C的标准方程.(Ⅱ)了直线与椭圆方程,设E(x1,y1),F(x2,y2),利用韦达定理,以及弦长公式,点到直线的距离,求出=分离常数,利用二次函数的最值,求解△EPF的面积的最大值,以及k的中.解答:解:(Ⅰ)由题意,直线AB的方程为:,即为bx+ay﹣ab=0因为圆O与直线AB相切,所以,…①…(2分)设椭圆的半焦距为c,因为b2+c2=a2,,所以…②…(3分)由①②得:a2=2,b2=1所以椭圆C的标准方程为:…(5分)(Ⅱ)由可得:(1+2k2)x2﹣8k2x+8k2﹣2=0设E(x1,y1),F(x2,y2)则,…(7分)所以又点O到直线EF的距离,∵OP∥l,∴=…(10分)又因为,又k≠0,∴令t=1+2k2∈(1,2),则,所以当时,最大值为所以当时,△EPF的面积的最大值为…(13分)点评:本题考查椭圆的方程的求法,直线与圆的我最关心,直线与椭圆的综合应用,考查分析问题解决问题的能力,考查转化思想的应用.21.已知函数f(x)=(ax2+2x﹣a)e x,g(x)=f(lnx),其中a∈R,e=2.71828…为自然对数的底数.(Ⅰ)若函数y=f(x)的图象在点M(2,f(2))处的切线过坐标原点,求实数a的值;(Ⅱ)若f(x)在[﹣1,1]上为单调递增函数,求实数a的取值范围.(Ⅲ)当a=0时,对于满足0<x1<x2的两个实数x1,x2,若存在x0>0,使得g′(x0)=成立,试比较x0与x1的大小.考点:导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(Ⅰ)求出函数的导函数f'(x)=[ax2+2(a+1)x+2﹣a]e x,通过f'(2),求出函数y=f(x)的图象在点M(2,f(2))处的切线方程,通过切线过坐标原点,求出a即可.(Ⅱ)通过f(x)在[﹣1,1]上为单调递增函数,只要f'(x)≥0,构造Γ(x)=ax2+2(a+1)x+2﹣a通过①当a=0时,推出函数f(x)在[﹣1,1]上为单调递增函数.②当a>0时,Γ(x)=ax2+2(a+1)x+2﹣a,利用二次函数的性质,Γ(x)min=Γ(﹣1)=﹣2a≥0⇒a≤0推出矛盾.③当a<0时,Γ(x)=ax2+2(a+1)x+2﹣a类比②,得到结果.(Ⅲ)利用,g'(x)=lnx+1.通过导数的几何意义,说明存在x0>0,使得,然后构造函数,利用新函数的导数,判断函数的单调性,然后推出x0>x1即可.解答:(本小题满分14分)解:(Ⅰ)∵f(x)=(ax2+2x﹣a)e x,∴f'(x)=[ax2+2(a+1)x+2﹣a]e x则f'(2)=(7a+6)e2,f(2)=(3a+4)e2∴函数y=f(x)的图象在点M(2,f(2))处的切线为:y﹣f(2)=(7a+6)e2(x﹣2)∵切线过坐标原点,0﹣f(2)=(7a+6)e2(0﹣2),即(3a+4)e2=2(7a+6)e2,∴…(3分)(Ⅱ)f'(x)=[ax2+2(a+1)x+2﹣a]e x要使f(x)在[﹣1,1]上为单调递增函数,只要ax2+2(a+1)x+2﹣a≥0令Γ(x)=ax2+2(a+1)x+2﹣a①当a=0时,Γ(x)=2x+2,在[﹣1,1]内Γ(x)≥Γ(﹣1)=0,∴f'(x)≥0函数f(x)在[﹣1,1]上为单调递增函数…(4分)②当a>0时,Γ(x)=ax2+2(a+1)x+2﹣a是开口向上的二次函数,其对称轴为,∴Γ(x)在[﹣1,1]上递增,为使f(x)在[﹣1,1]上单调递增,必须Γ(x)min=Γ(﹣1)=﹣2a≥0⇒a≤0而此时a>0,产生矛盾∴此种情况不符合题意…(6分)③当a<0时,Γ(x)=ax2+2(a+1)x+2﹣a是开口向下的二次函数,为使f(x)在[﹣1,1]上单调递增,必须f'(x)≥0,即Γ(x)≥0在[﹣1,1]上恒成立,∴⇒又a<0,∴﹣2≤a<0综合①②③得实数a的取值范围为[﹣2,0]…(8分)(Ⅲ),g'(x)=lnx+1.因为对满足0<x1<x2的实数x1,x2,存在x0>0,使得成立,所以,即,从而==.…(11分)设φ(t)=lnt+1﹣t,其中0<t<1,则,因而φ(t)在区间(0,1)上单调递增,φ(t)<φ(1)=0,∵0<x1<x2,∴,从而,又所以lnx0﹣lnx1>0,即x0>x1…(14分)点评:本题考查函数的导数的综合应用,切线方程的求法,构造法的应用,导数的几何意义,考查函数的单调性的应用,转化思想的应用.。

青岛城阳区第一中学2017届高三数学月考试题文

青岛城阳区第一中学2017届高三数学月考试题文

城阳一中2016高三10月份检测数学(文科) 试卷(时间: 120分钟)(总分: 150分)注意事项:1.考生务必须将姓名、准考证号、填写在答题纸规定的位置上。

2.第Ⅰ卷每小题选出答案后,写在答题纸的相应位置上.3.第Ⅱ卷答案必须写在答题纸各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案。

不按以上要求作答的答案无效.第Ⅰ卷(选择题 共50分)一、选择题:(本题共10个小题,每小题5分,共50分;在每小题给出的四个选项中只有一个是符合题目要求的.) 1.已知全集为U=R ,集合B={1|()12xx ≤},A={|2x x ≥},则()U C A B ⋂= ( )A .[0,2)B .[0,2]C .(1,2)D .(1,2] 2. 已知22log 3a =,22()3b =,121log 3c =,则,,a b c 的大小关系是( )。

A 、a b c >> B 、b c a >> C 、c a b >> D 、c b a >>3. 命题“若x ,y 都是偶数,则x +y 也是偶数“的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数 4.已知不等式ax 2-bx -1≥0的解集是⎣⎡⎦⎤-12,-13,则不等式x 2-bx -a <0的解集是( ) A .(2,3) B .(-∞,2)∪(3,+∞) C.⎝⎛⎭⎫13,12D.⎝⎛⎭⎫-∞,13∪⎝⎛⎭⎫12,+∞ 5.已知命题22:2:23p x R q a y x ax ∃∈===-+;命题是函数在区间[)1,+∞递增的充分但不必要条件.给出下列结论:①命题“p q ∧”是真命题;②命题“p q ⌝∧”是真命题;③命题“p q ⌝∨”是真命题;④命题“p q ∨⌝”是假命题 其中正确说法的序号是 A.②④ B.②③C.②③④D.①②③④6.函数xf (x)23x =+的零点所在的一个区间是( )A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2) 7. 已知22ππαβ-≤<≤,则2αβ-的范围是( ).A .(,0)2π-B .[,0]2π-C .(,0]2π-D .[,0)2π-8.若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2 C.12 D .-129. 已知函数32()f x x bx cx d =+++的图象如图,则函数2221()33cy og x bx =++的单调递减区间是A .1(,)2+∞B .1(,)2-∞C .(2,3)-D .(,2)-∞-10. 设函数()f x 的定义域为R ,()0111103xx x f x x R x ≤≤⎧⎪=∈⎨⎛⎫--<<⎪⎪⎝⎭⎩,且对任意的都有 ()()11f x f x +=-,若在区间[]()()1,5g x f x mx m -=--上函数,恰有6个不同零点,则实数m 的取值范围是 A.11,46⎛⎤⎥⎝⎦B.11,34⎛⎤ ⎥⎝⎦C.10,5⎛⎤ ⎥⎝⎦D.10,6⎛⎤ ⎥⎝⎦第Ⅱ卷(非选择题 共100分)二、填空题:(本大题共5小题,每题5分,共25分,把答案写在答题纸上。

山东省青岛市2017年中考数学模拟试卷(一)(含答案)

 山东省青岛市2017年中考数学模拟试卷(一)(含答案)

山东省青岛市2017年中考数学模拟试卷(一)(解析版)一、选择题(共8小题,每小题3分,满分24分)1.﹣0.2的倒数等于()A.0.2 B.﹣5 C.﹣ D.52.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.3.为了响应中央号召,2016年某市加大财政支农力度,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为()A.5.23×104元 B.5.23×107元 C.523×108元D.5.23×108元4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5 B.96,95 C.95,94.5 D.95,955.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)7.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.48.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x 的函数图象可能为()A.B.C.D.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1=.10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是.11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是.12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB=.13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH ⊥AB于H,连接OH,则∠DHO=度.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是个.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.三、解答题(共9题,74分)16.(8分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.17.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)18.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)20.(8分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.21.(8分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.23.(10分)阅读材料,回答问题:小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC 中,如果∠C=90°,∠A=30°,BC=a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.”这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.请判断此时“==”的关系是否成立?(2)完成上术探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC中,BC=a,AC=b,AB=c.过点C作CD⊥AB于D.∵在Rt△ABC和Rt△BDC中,∠ADC=∠BDC=90°,∴sinA=,sinB=.∴=,=.∴=.同理,过点A作AH⊥BC于H,可证=.∴==的.请将上面的过程补充完整.(3)运用上述结论解答问题①如图4,在△ABC中,如果∠B=60°,∠C=45°,AB=2,那么AC=..②在锐角△ABC中,若∠B=30°,AB=2,AC=2,求S△ABC24.(12分)已知:矩形ABCD,DA=3cm,DC=4cm,点M从点A出发沿AB向终点B运动,点N从点C出发沿CA向终点A运动,点M、N同时出发,且运动的速度均为1cm/秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t秒.(1)当点N运动1秒时,求线段DN的长;(2)试求出多边形DAMN的面积S与t的函数关系式;(3)t为何值时,D,N,M三点共线?(4)t为何值时,以△DAN的一边所在直线为对称轴翻折△DAN,翻折前后的两个三角形所组成的四边形为菱形?2017年山东省青岛市中考数学模拟试卷(一)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.﹣0.2的倒数等于()A.0.2 B.﹣5 C.﹣ D.5【分析】根据倒数的意义,乘积是1的两个数互为倒数,0 没有倒数,求一个数的倒数,把这个数的分子和分母掉换位置即可.【解答】解:﹣0.2的倒数等于﹣5,故选B【点评】此题考查的目的是理解倒数的意义,掌握求倒数的方法及应用,明确:1的倒数是1,0没有倒数.2.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】由主视图的定义可得.【解答】解:这个几何体的主视图是,故选:D【点评】本题主要考查简单几何体的三视图,熟练掌握三视图的定义是解题的关键.3.为了响应中央号召,2016年某市加大财政支农力度,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为()A.5.23×104元 B.5.23×107元 C.523×108元D.5.23×108元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:53200万=5.23×108,故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5 B.96,95 C.95,94.5 D.95,95【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中96是出现次数最多的,故众数是96;而将这组数据从小到大的顺序排列(90,91,94,95,96,96),处于中间位置的那个数是94、95,那么由中位数的定义可知,这组数据的中位数是(94+95)÷2=94.5.故这组数据的众数和中位数分别是96,94.5.故选:A.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个【分析】小明共摸了100次,其中20次摸到黑球,则有80次摸到白球;摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.【解答】解:3=12(个).故选:C.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)【分析】根据旋转前后的三角形全等及所在象限符号的特点可得所求点的坐标.【解答】解:∵△AOB≌△A′OB′,∴A′B′=AB=b,OB′=OB=a,∵A′在第二象限,∴A′坐标为(﹣b,a),故选C.【点评】考查点的旋转问题;用到的知识点为:旋转前后图形的形状不变.7.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【分析】等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=34.6,把相关数值代入计算即可.【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.【点评】主要考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a (1±x)2=b.8.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x 的函数图象可能为()A.B.C.D.【分析】本题需先设正方形的边长为m,然后得出y与x、m是二次函数关系,从而得出函数的图象.【解答】解:设正方形的边长为m,则m>0,∵AE=x,∴DH=x,∴AH=m﹣x,∵EH2=AE2+AH2,∴y=x2+(m﹣x)2,y=x2+x2﹣2mx+m2,y=2x2﹣2mx+m2,=2[(x﹣m)2+],=2(x﹣m)2+m2,∴y与x的函数图象是A.故选A.【点评】本题主要考查了二次函数的图象和性质,在解题时要能根据几何图形求出解析式,得出函数的图象.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1=2.【分析】直接利用绝对值的性质以及特殊角的三角函数值和二次根式的性质化简求出答案.【解答】解:(﹣1)2﹣×(2013﹣π)0+()﹣1=1﹣2×1+3=2,故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片组成的数恰好为“12”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,两张卡片组成的数恰好为“12”的只有1种情况,∴两张卡片组成的数恰好为“12”的概率是:.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是﹣=2.【分析】设王师傅原计划每小时检修管道x米,根据在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,列方程即可.【解答】解:设王师傅原计划每小时检修管道x米,由题意得,﹣=2.故答案为﹣=2.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出等量关系,列出方程.12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB=45°.【分析】连接OA,OB.根据正方形的性质,得∠AOB=90°再根据圆周角定理,即可求解.【解答】解:连接OA,OB.根据正方形的性质,得∠AOB=90°.再根据圆周角定理,得∠APB=45°,故答案为:45°.【点评】此题主要考查了圆周角定理,综合运用了正方形的性质以及圆周角定理是解答此题的关键.13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH ⊥AB于H,连接OH,则∠DHO=25度.【分析】根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等解答即可.【解答】解:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO==25°,故答案为:25.【点评】本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是5个.【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由题中所给出的主视图知物体共2列,且都是最高两层;由左视图知共行,所以小正方体的个数最少的几何体为:第一列第一行2个小正方体,第一列第二行2个小正方体,第二列第三行1个小正方体,其余位置没有小正方体.即组成这个几何体的小正方体的个数最少为:2+2+1=5个.故答案为:5.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.【分析】如图作∠BAC的平分线AM交BC于O,作ON⊥AB于D,以O为圆心,OD为半径画半圆即可.【解答】解:如图作∠BAC的平分线AM交BC于O,作ON⊥AB于D,以O为圆心,OD为半径画半圆即可.半圆O即为所求.【点评】本题考查作图﹣应用与设计,角平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.三、解答题(共9题,74分)16.(8分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.【分析】(1)通过解方程组可得到两直线的交点坐标;(2)先把括号内通分后进行同分母的减法运算,然后把分子因式分解后约分即可.【解答】解:(1)解方程组得,所以一次函数y=﹣2x+2和y=x﹣1的交点坐标为(1,0);(2)原式=•=•=a+3.【点评】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了分式的混合运算.17.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)【分析】(1)通过对比条形统计图和扇形统计图可知:学习态度层级为A级的有50人,占部分八年级学生的25%,即可求得总人数;(2)由(1)可知:C级人数为:200﹣120﹣50=30人,将图1补充完整即可;(3)各个扇形的圆心角的度数=360°×该部分占总体的百分比,所以可以先求出:360°×(1﹣25%﹣60%)=54°;(4)从扇形统计图可知,达标人数占得百分比为:25%+60%=85%,再估计该市近20000名初中生中达标的学习态度就很容易了.【解答】解:(1)50÷25%=200(人);故答案为:200;(2)C级人数:200﹣120﹣50=30(人).条形统计图如图所示:(3)C所占圆心角度数=360°×(1﹣25%﹣60%)=54°.(4)20000×(25%+60%)=17000(名).答:估计该市初中生中大约有17000名学生学习态度达标.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?【分析】(1)由转盘被等分成16个扇形,红色扇形有1个,黄色扇形有3个,蓝色扇形有5个,直接利用概率公式求解即可求得答案;(2)首先求得转转盘获得购物券的平均值,再与15元比较,即可知哪种方式对这位顾客更合算.【解答】解:(1)∵转盘被等分成16个扇形,红色扇形有1个,黄色扇形有3个,蓝色扇形有5个,∴P(获得50元购物券)=,P(获得30元购物券)=,P(获得10元购物券)=;(2)转转盘:×50+×30+×10=<15,∴直接获得购物券的方式对这位顾客更合算.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【分析】先根据等腰三角形的性质求出∠B的度数,过点A作AD⊥BC于点D,根据锐角三角函数的定义可求出BD的长,故可得出结论.【解答】解:∵△ABC是等腰三角形,∠A=150°,∴∠B=∠C==15°,过点A作AD⊥BC于点D,∴BD=AB•cos∠B≈12×0.97≈11.6cm,∴BC≈23.2>20cm,∴能画出一个半径为20cm的圆.【点评】本题考查的是解直角三角形的应用,熟知锐角三角函数的定义是解答此题的关键.20.(8分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设直拍球拍每副x元,横拍球每副y元,根据题意列出二元一次方程组,解方程组即可;(2)设购买直拍球拍m副,根据题意列出不等式,解不等式求出m的范围,根据题意列出费用关于m的一次函数,根据一次函数的性质解答即可.【解答】解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,,解得,,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m副,则购买横拍球(40﹣m)副,由题意得,m≤3(40﹣m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最小值,最小值为﹣40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少.【点评】本题考查的是列二元一次方程组、一元一次不等式解实际问题,正确列出二元一次方程组和一元一次不等式并正确解出方程组和不等式是解题的关键.21.(8分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.【分析】(1)求出四边形ADFC是平行四边形,推出CF=AD=BD,根据平行四边形的判定得出四边形BDCF是平行四边形,求CD=BD,进而可证明BF=CF;(2)当AC=BC时,四边形BCFD为菱形,根据菱形的判定得出即可;【解答】解:(1)证明:DE⊥BC,∠ACB=90°,∴∠BED=∠ACB,∴DF∥AC,∵CF∥AB,∴四边形ADFC是平行四边形,∴AD=CF,∵D为AB的中点,∴AD=BD,∴BD=CF,∵BD∥CF,∴四边形BDCF是平行四边形,∴CD=BF,∴BF=CF;(2)当AC=BC时,四边形BDCF为菱形,∵∠ACB=90°,D为AB的中点,∴DC=BD,∵四边形BDCF是平行四边形,∴四边形BDCF是菱形.【点评】本题考查了平行四边形的判定和性质,菱形的判定,直角三角形的性质的应用,能熟记菱形的性质和判定定理是解此题的关键.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.【分析】(1)设y=kx+b,则由图象可求得k,b,从而得出y与x之间的函数关系式,并写出x的取值范围100≤x≤180;(2)设公司第一年获利W万元,则可表示出W=﹣(x﹣180)2﹣60≤﹣60,则第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)假设两年共盈利1340万元,则﹣x2+36x﹣1800﹣60=1340,解得x的值,根据100≤x≤180,则x=160时,公司两年共盈利达1340万元.【解答】解:(1)设y=kx+b,则由图象知:,解得k=﹣,b=30,∴y=﹣x+30,100≤x≤180;(2)设公司第一年获利W万元,则W=(x﹣60)y﹣1500=﹣x2+36x﹣3300=﹣(x﹣180)2﹣60≤﹣60,∴第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)若两年共盈利1340万元,因为第一年亏损60万元,第二年盈利的为(x﹣60)y=﹣x2+36x﹣1800,则﹣x2+36x﹣1800﹣60=1340,解得x1=200,x2=160,。

山东省青岛市高考数学一模试卷

山东省青岛市高考数学一模试卷

山东省青岛市高考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017高三下·静海开学考) 设集合A={x||4x﹣1|≥9,x∈R},B={x| ≥0,x∈R},则A∩B=()A . (﹣3,﹣2]B . (﹣3,﹣2]∪C . (﹣∞,﹣3]∪D . (﹣∞,﹣3)∪2. (2分)(2013·新课标Ⅰ卷理) 若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A . ﹣4B .C . 4D .3. (2分)已知命题,则()A .B .C .D .4. (2分)已知偶函数在区间上是增函数,且满足,下列判断中错误的是()A .B . 函数在上单调递减C . 函数的图像关于直线对称D . 函数的周期是5. (2分)已知M=dx,N=cosxdx,由图示程序框图输出的S为()A . 1B . ln2C .D . 06. (2分)要得到函数的图象,可以将函数的图象()A . 向左平移个单位B . 向左平移个单位C . 向右平移个单位D . 向右平移个单位7. (2分)(2017·抚顺模拟) 已知一几何体的三视图如图所示,俯视图由一个直角三角形与一个半圆组成,则该几何体的体积为()A . 6π+12B . 6π+24C . 12π+12D . 24π+128. (2分)设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为()A .B .C .D .9. (2分)如图过拋物线y2=2px(p>0)的焦点F的直线依次交拋物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则拋物线的方程为()A . =xB . =3xC . =xD . =9x10. (2分) (2017高二下·湖北期中) 已知f(x)是定义在R上的函数,其导函数为f′(x)﹣f(x)>1,f(0)=2016,则不等式f(x)>2017•ex﹣1(其中e为自然对数的底数)的解集为()A . (﹣∞,0)∪(0,+∞)B . (2017,+∞)C . (0,+∞)D . (0,+∞)∪(2017,+∞)二、填空题 (共5题;共5分)11. (1分)(2014·新课标I卷理) (x﹣y)(x+y)8的展开式中x2y7的系数为________.(用数字填写答案)12. (1分) (2016高一下·大连期中) 已知,,则=________.13. (1分) (2018高二上·莆田月考) 若x,y满足约束条件则z=x−2y的最小值为________.14. (1分) (2017高二下·溧水期末) 已知△ABC是等边三角形,有一点D满足 + = ,且||= ,那么• =________.15. (1分)将边长为2正方形ABCD沿对角线BD折成直二面角A﹣BD﹣C,有如下四个判断:①AC⊥BD②AB与平面BCD所成60°角③△ABC是等边三角形④若A、B、C、D四点在同一个球面上,则该球的表面积为8π其中正确判断的序号是________ .三、解答题 (共6题;共55分)16. (5分) (2016高一下·湖北期中) 已知等差数列{an}的前n项和Sn ,且a3=7,S11=143,(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=2 +2n,求数列{bn}的前n项和Tn .17. (5分) (2017高二下·咸阳期末) 某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为2,4,4.现从这10人中随机选出2人作为该组代表参加座谈会.(I)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(II)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.18. (10分) (2016高一下·邯郸期中) 设向量 =(sinx,cosx), =(cosx,sinx),x∈R,函数f(x)= •(﹣).(1)求函数f(x)的最小正周期;(2)当x∈[- , ]时,求函数f(x)的值域.19. (10分) (2017高一下·肇庆期末) 已知ω>0,0<φ<π,直线x= 和x= 是函数f(x)=sin (ωx+φ)图象的两条相邻的对称轴,则(1)求f(x)的解析式;(2)设h(x)=f(x)+ .20. (10分)(2017·青浦模拟) 如图,F1 , F2分别是椭圆C: =1(a>b>0)的左、右焦点,且焦距为2 ,动弦AB平行于x轴,且|F1A|+|F1B|=4.(1)求椭圆C的方程;(2)若点P是椭圆C上异于点、A,B的任意一点,且直线PA、PB分别与y轴交于点M、N,若MF2、NF2的斜率分别为k1、k2,求证:k1•k2是定值.21. (15分) (2015高二下·九江期中) 已知函数f(x)=alnx+ (a,b∈R)在点(1,f(1))处的切线方程为x﹣2y=0.(1)求a,b的值;(2)当x>1时,f(x)﹣kx<0恒成立,求实数k的取值范围;(3)证明:当n∈N*,且n≥2时, + + +…+>.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共6题;共55分) 16-1、17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档