高压直流输电系统的谐波产生与抑制 1

合集下载

谐波的危害及其抑制措施

谐波的危害及其抑制措施

谐波的危害及其抑制措施中国联通苏州分公司 柳振伟摘要:本文对谐波的概念及产生原理、谐波产生的问题作了较为详细的描述,并对目前解决谐波问题的措施作了分析。

关键词:交频器;谐波危害;抑制谐波措施一、概述理想状态下,优质的电力供应应该提供具有正弦波形的电压。

但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。

我们所说的供电系统中的谐波是指一些频率为基波频率(在我国工业用电频率以50Hz 为基波频率)整数倍的正弦波分量,又称为高次谐波。

在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。

这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。

因此,谐波是电力质量的重要指标之一。

当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。

谐波频率是基频率波的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。

谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。

谐波可以I 区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4,6、8等为偶次谐波,如基波为50Hz 时,2次谐波为lOOHz,3次谐波则是150Hz。

一般地讲,奇次谐波引起的危害比偶次谐波更多更大。

在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。

对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7,11、13、17、19等,变频器主要产生5、7次谐波。

一个正弦波在5次谐波和7次谐波的影响下怎样发生畸变。

(相对于基波的24%和9%),如下图所示。

图1 基波和谐波 图2 失真波形谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热,使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏,从而降低继电保护、控制、以及检测装置的工作精度和可靠性等。

谐波产生的根本原因及治理对策

谐波产生的根本原因及治理对策

谐波的产生主要是来自下列具有非线性特性的电气设备:(1)具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;(2)以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式各样的家用电器中。

以上这些非线性电气设备(或称之为非线性负荷)的显著的特点是它们从电网取用非正弦电流,也就是说,即使电源给这些负荷供给的是正弦波形的电压,但由于它们只有其电流不随着电压同步变化的非线性的电压-电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网电压严重失真在电力系统中对谐波的抑制就是如何减少或消除注入系统的谐波电流,以便把谐波电压控制在限定值之内,抑制谐波电流主要有四方面的措施: 1)降低谐波源的谐波含量。

也就是在谐波源上采取措施,最大限度地避免谐波的产生。

这种方法比较积极,能够提高电网质量,可大大节省因消除谐波影响而支出的费用。

2)采取脉宽调制(PWM)法。

采用脉宽调制(PWM)技术,在所需要的频率周期内,将直流电压调制成等幅不等宽的系列交流电压脉冲,这种方法可以大大抑制谐波的产生。

3)在谐波源处吸收谐波电流。

这类方法是对已有的谐波进行有效抑制的方法,这是目前电力系统使用最广泛的抑制谐波方法。

4)改善供电系统及环境。

对于供电系统来说,谐波的产生不可避免,但通过加大供电系统短路容量、提高供电系统的电压等级、加大供电设备的容量、尽可能保持三相负载平衡等措施都可以提高电网抗谐波的能力。

选择合理的供电电压并尽可能保持三相电压平衡,可以有效地减小谐波对电网的影响。

谐波源由较大容量的供电点或高一级电压的电网供电,承受谐波的能力将会增大。

高压直流输电线路中的谐波分析与滤波

高压直流输电线路中的谐波分析与滤波

高压直流输电线路中的谐波分析与滤波引言:高压直流输电作为一种高效、低损耗的电力传输方式,得到了广泛的应用。

然而,在实际的应用过程中,由于诸多因素的影响,高压直流输电中会产生各种谐波问题。

本文将从谐波的概念、产生原因、分析方法和滤波技术等方面,对高压直流输电线路中的谐波问题进行探讨。

一、谐波的概念和产生原因1.1 谐波的定义谐波是指在电力系统中,频率是基波频率整数倍的波形。

一般情况下,电力系统中的谐波主要包括3次、5次、7次等奇次谐波和2次、4次、6次等偶次谐波。

1.2 谐波的产生原因谐波的产生与电力系统中的非线性设备密切相关。

在高压直流输电中,主要的谐波产生装置包括经桥整流器、组串电感器、滤波器等。

这些设备的非线性特性会导致电流和电压的畸变,进而产生谐波。

二、高压直流输电线路中谐波分析的方法2.1 多谐波分析法多谐波分析法是一种常用的谐波分析方法。

它通过对高压直流输电线路中的电压、电流进行采样,并利用傅里叶变换将信号从时域转换到频域,进而得到谐波成分的频率、相位和幅值等信息。

2.2 矩阵法矩阵法是一种较为精确的谐波分析方法。

它通过建立电压-电流矩阵关系,利用矩阵运算进行谐波分析。

相比于多谐波分析法,矩阵法能够更准确地描述高压直流输电线路中的谐波特性。

三、高压直流输电线路中的谐波滤波技术3.1 无源谐波滤波技术无源谐波滤波技术是一种通过并联谐振电路实现谐波滤波的方法。

该技术主要通过选择谐波频率和合适的谐波电阻,将谐波电流引入谐振电路,并将其消耗在电阻上,从而实现谐波滤波的效果。

3.2 有源谐波滤波技术有源谐波滤波技术是一种利用可控硅等元件实现谐波滤波的方法。

该技术通过引入逆变器和滤波器等装置,对谐波电流进行补偿或抑制,从而达到谐波滤波的目的。

四、高压直流输电线路中谐波滤波的效果评价4.1 谐波抑制率谐波抑制率是评价谐波滤波效果的重要指标。

它衡量了谐波信号经过滤波后剩余谐波成分的比例。

一般来说,谐波抑制率越高,说明滤波效果越好。

电力系统谐波基本分析方法抑制方法

电力系统谐波基本分析方法抑制方法

电力系统谐波基本分析方法抑制方法電力系統諧波----基本原理、分析方法、抑制方法【摘要】变频器在工业生产中无可比拟的优越性,使越来越多的系统和装置采用变频器驱动方案,而且采用变频器驱动电动机系统因其节能效果明显,调节方便维护简单,网络化等优点,而被越来越多应用,但它非线性,冲击性用电工作方式,带来干扰问题亦倍受关注。

一台变频器来讲,它输入端和输出端都会产生高次谐波,输入端谐波会输入电源线对公用电网产生影响。

本文从变频器产生的谐波原理、谐波测试分析方法,谐波的抑制方法方面进行探讨。

【关键词】电力系统,变频器,谐波分析,谐波抑制。

【引言】谐波存在于电力系统已经很多年了,但是,近年来,随着技术的发展成熟,越来越多的设备系统为提高可靠性和效率广泛采用电力电子变频器,而且电力公司为降低设备所需的额定值以及线路损耗和电压降落,强制要求电力用户提高其自身的功率因数,而电力用户及工厂端改善功率因数的方法是使用功率因数补偿器—电容模组,这两种情况的出现,使得电力系统的谐波问题变得更加严重。

电力用户和工厂端普遍使用的变速传动和电力电子设备是产生这一现象的根源,而这些设备与功率因数校正电容模组之间的相互作用导致了电压和电流的放大效应;半导体电子工业的迅猛发展也导致了大批精密设备的诞生,与过去粗笨的设备相比,这些设备对电力公司供给的电能质量更加敏感,但同时也导致交流电流和电压稳态波形的畸变。

而为了得到可靠清洁的电力能源,人们必须面对电流和电压畸变的问题,而电流和电压的畸变的主要形式是谐波畸变。

【正文】1、变频器谐波产生从结构来看,变频器可分为间接变频和直接变频两大类。

间接变频将工频电流整流器变成直流,然后再由逆变器将直流变换成可控频率交流。

直接变频器则将工频交流变换成可控频率交流,没有中间直流环节。

它每相都是一个两组晶闸管整流装置反并联可逆线路。

正反两组按一定周期相互切换,负荷上就获了交变输出电压,幅值决定于各整流装置控制角,频率决定于两组整流装置切换频率。

电力系统中谐波分析和抑制手段

电力系统中谐波分析和抑制手段
电力系统 中谐波 分析 和抑制 手段
王 世 刚
( 深圳供 电局 , 东 深圳 5 8 0 ) 广 10 0
摘 要 : 波是 电力 系统 的一 大公 害。文 章介 绍 了谐波 的相 关定 义、谐 波 的产 生以及 谐波 所 带来 的危 害 ,对谐 谐 波的检 测 方法进 行 了分析 ,并结 合具体 的 案例重 点介 绍 了谐 波抑 制的 方法 。 关键 词 : 电力 系统 ;谐波 分析 ; 谐波抑 制 中图 分类 号 : M7 4 T 1 文献 标识 码 : A 文章 编号 : 0 9 27 2 1 ) 9 02 - 2 10 - 34( 0 1 1- 14 0
离正弦 电流。 ( )非线性负载 ,如各种变流器、整流 2
设 备 、P M 频 器 、交 直 流 换流 设 备等 电力 电子设 备 。 W变 ( ) 非线 性 设备 的谐 波 源 ,如 交 流 电 弧炉 、 日光 灯 、 3
准对公用 电网中各个等级 的电压 的限用值 、电流 的允 许 值 等 都 做 了相 应 的规 定 , 并 以 附录 的形 式 给 出 了测
量 谐 波 的方 法 和 数 据 处 理 及 测 量 仪 器 都 作 了相 应 的规 定 。这 个 规 定 给 我 国相 关 人 员进 行 谐 波 检 测 分 析 、谐
铁磁谐振设备和变压器等。
波污染 的抑制提供 了理论依据和大致思路 。
二 、谐 波 的危 害
在 供 电系 统 中 ,供 电主要 是通 过 正 弦波 的方 式 ,这 样可 以给 电力 系统 的分 析和 设计 带 来很 大便 利 ,还 可 以 最佳 地运 作 相应 的 系统 和设 备 ,但 是在 这里 面却 常 常有 谐波 的存在 ,造 成 电力 系统 中 电压 和 电流 的波形 发 生畸 变 。谐波 产 生的危 害主 要表 现在 以下两个 方面 : 1 线 路 的稳 固 和 安全 运 行 受 到 影 响 。 例如 , . 在 供 电系 统 中 ,谐 波 会 造 成 电磁 式 、感 应 式 和 晶 体 管 等 继 电 器 产 生 误 、 拒 动 。 谐 波 会 造 成 输 电 线

谐波原理及抑制

谐波原理及抑制

2 - 电力生产、配电和消耗各环节 产生的谐波干扰
目的:认识干扰源的特点
施耐德电气公司房地产客户部 16
谐波干扰
电源
在电网某一点, 谐波畸变依赖于:
负载类型
电缆或导线
变压器接线类型和阻抗
MV/LV
电源阻抗
PSB
EJP U
I
线性负载
施耐德电气公司房地产客户部
M
17
谐波干扰
施耐德电气公司房地产客户部
Usc(%) 9%
21
谐波干扰
L ligne
变频驱动器:
(频率转换型) 带阻容负载的三相六脉动整流桥 所有带前部整流的静态转换器都是潜在污染源
(功率电源, 变频器, UPS)
I (t)
L = 10 m H
% 100
50
0
N
1 5 7 11 13 17 19
THD(l) = 140 %
施耐德电气公司房地产客户部 22
谐波原理及抑制
内容
1 - 基本概念 2 - 电力生产、配电和消耗各环节产生的谐波干扰 3 - 标准和规定 4 - 谐波对主要元件的影响 5 - 谐波抑制方案 5.1 - 防止和校正 5.2 - 有源滤波器 5.3 - 正弦波采样理论
施耐德电气公司房地产客户部 2
1 - 基本概念
目的:了解本课必备的基本概念
较公平的方法: 采用允许的干扰功率, 该功率大小正比于用户实际 消耗的负载功率。然而对于低压网络, 该方法很难 用于家庭, 故采用对家用电器产品产生的谐波电流 进行限制。
施耐德电气公司房地产客户部 32
标准和规定
施耐德电气公司房地产客户部
低压开关柜
每相电流小于16A:

《高压直流输电原理与运行》复习提纲及答案

《高压直流输电原理与运行》复习提纲及答案

《高压直流输电原理与运行》复习提纲第1章(1)高压直流输电的概念和分类概念:高压直流输电由将交流电变换为直流电的整流器、高压直流输电线路以及将直流电变换为交流电的逆变器三部分组成。

高压直流输电是交流-直流-交流形式的电力电子换流电路。

常规高压直流输电:半控型的晶闸管,采取电网换相。

VSC高压直流输电:全控型电力电子器件,采用器件换相。

分类:长距离直流输电(两端直流输电),背靠背(BTB)直流输电方式,交、直流并联输电方式,交、直流叠加输电方式,三级直流输电方式。

(2)直流系统的构成1.直流单级输电:大地或海水回流方式,导体回流方式。

2.直流双极输电:中性点两端接地方式,中性点单端接地方式,中性线方式。

3.直流多回线输电:线路并联多回输电方式,换流器并联的多回线输电方式。

4.多端直流输电:并联多端直流输电方式,串联多端直流输电方式。

(3)高压直流输电的特点优点:经济性:高压直流输电的合理性和适用性体现在远距离、大容量输电中。

互连性:可实现电网的非同步互连,可实现不同频率交流电网的互连。

控制性:具有潮流快速可控的特点缺点:①直流输电换流站的设备多、结构复杂、造价高、损耗大、运行费用高、可靠性也较差。

②换流器工作时会产生大量的谐波,处理不当会对电网运行造成影响,必须通过设置大量、成组的滤波器消除这些谐波。

③电网换相方式的常规直流输电在传送有功功率的同时,会吸收大量无功功率,可达有功功率的50%~60%,需要大量的无功功率补偿装置及相应的控制策略。

④直流输电的接地极和直流断路器问题都存在一些没有很好解决的技术难点。

(4)目前已投运20个直流输电工程(详见p14)2010年,我国已建成世界上第一条±800KV的最高直流电压等级的特高压直流输电工程。

五直:天-广工程(±500,2000年),三-广工程(2004年),贵-广I回工程(2004年),贵-广II回工程(2008年),云广特高压工程(±800KV)(5)轻型直流输电特点:1.电压源换流器为无源逆变,对受端系统没有要求,故可用于向小容量系统或不含旋转电机的负荷供电。

谐波的产生、危害及解决方案(自己写的)

谐波的产生、危害及解决方案(自己写的)

直流输电换流站谐波的产生、危害及解决措施the Generation, Harm and Solutions of Harmonics inHVDC摘要:本文主要介绍了直流输电换流站谐波的产生、危害及解决措施。

首先介绍了6脉波及12脉波换流器的交流侧和直流侧的特征及非特征谐波。

之后就谐波对电网及电网中电力元件的影响进行了讨论。

最后介绍了抑制谐波的主动型及被动型的几种主要措施。

关键词:谐波危害抑制直流输电Abstract:This paper concentrates on the generation, harms and solutions of harmonics in HVDC. First of all, it introduces the types of harmonics generation from 6 pulse converter and 12 pulse converter. Second, it discusses the harm of harmonics including hot wastage and so on. Finally, it provides some main measures aiming at restrain the harm of harmonics consisting of active ones and passive ones.Key words:harmonics harm restrain HVDC一.研究直流输电系统谐波的意义1.研究背景直流输电技术从1954年在电力系统中得到应用以来,先后经历了汞弧阀换流时期和晶闸管换流时期,从试验性阶段,到稳步发展阶段,特别是1970年以后,随着电力电子技术和微机控制技术等发展,进入到大力发展阶段。

然而近年来,由于电力电子技术的不断发展和应用,也使得谐波对电力系统运行,电力设备,电力用户,通讯等领域中造成了很大的危害。

电力系统中的谐波及其抑制措施

电力系统中的谐波及其抑制措施

电力系统中的谐波及其抑制措施供电公司吕向阳【摘要】在电能质量多种指标中,受干扰性负荷影响,谐波是最为普遍的。

该文介绍了电力系统中的主要谐波源、谐波的危害及抑制措施。

关键词谐波抑制措施一、概述在理想的情况下,优质的电力供应应该提供具有正弦波形的电压。

但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。

我们所说的供电系统中的谐波是指一些频率为基波频率(在我国取工业用电频率50HZ为基波频率)整数倍的正弦分量,又称为高次谐波。

在供电系统中,产生谐波的根本原因是由于给具有非线形阻抗的电气设备(又称为非线形负荷)供电的结果。

这些非线形负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电能质量变坏。

因此,谐波是电能质量的重要指标之一。

供电系统中的谐波问题已引起各界的广泛关注,为保证供电系统中所有的电气、电子设备能在电磁兼容意义的基础上进行正常、和谐的工作,必须采取有力的措施,抑制并防止电网中因谐波危害所造成的严重后果。

二、谐波源谐波源是指向公用电网注入谐波电流或在公用电网中产生谐波电压的电气设备。

在电力的生产、传输、转换和使用的各个环节中都会产生谐波。

在发电环节,当对发电机的结构和接线采取一些措施后,可以认为发电机供给的是具有基波频率的正弦波形的电压。

谐波的产生主要是来自下列具有非线形特性的电气设备:(1)具有铁磁饱和特性的铁心设备,如:变压器、电抗器:(2)以具有强烈非线形特性的电弧现象的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的电源设备,如:各种电力交流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用在化工、电气化铁道、冶金、矿山等工矿企业以及各式各样的家用电器中。

以上这些非线形电气设备(或称之为非线形负荷)的显著的特点是它们从电网取用非正弦电流,也就是说,即使电源给这些负荷供给的是正弦波形的电压,但由于它们具有其电流不随电压同步变化的非线形的电压—电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网电压严重失真,此外电网还须向这类负荷产生的谐波提供额外的电能。

论电网系统中谐波产生、危害及抑制方法

论电网系统中谐波产生、危害及抑制方法
谐波。 1 2 2 主 要 非 线 性 负载装 置 . . 在 以下 几 个 方 面 。。 1开 开 关 电 源 由 五 部 分 组 成 : 次 整 流 、 关 振 荡 回路 、 一 开 二 次 整流 、 载 和控 制 , 几个 部 分产 生 的 噪 声不 完 全 一样 。 负 这 这 几 种 干 扰 可 以 通 过 电 源 线 等 产 生 辐 射 干 扰 , 可 以 通 过 也 电源产 生传导 干扰 。 () 压 器空载合 闸涌流产生谐 波 。 2变 铁 心 中磁 通 变 化 时 , 产 生 8 1 会 ~ 5倍 额 定 电 流 的 涌 流 , 由 于 线 圈 电 阻 的 存 在 , 压 器 空 载 合 闸 涌 流 一 般 经 过 几 个 变 周 波 即 可 达 到 稳 定 。所 产 生 的 励 磁 涌 流 所 含 的 谐 波 成 份 以 3次 谐 波 为 主 。 ( ) 相 电 容 器 组 开 断 时 的 瞬 态 过 电压 干 扰 。 3单 电 力 电子 调 速 系 统 普 遍 应 用 于 工 业 中 改 进 电 机 效 率 及 灵 活 性 设 备 , 速 装 置 内电 力 电 子 器 件 对 过 电 压 特 别 敏 感 , 调 因 此 线 路 中 瞬 态 过 电压 会 造 成 调 速 系 统 的 过 电 压 保 护 误 跳 闸 。 由 于 与 中压 母 线 相 连 的 电 容 器 要 经 常 操 作 , 意 味 着 这 调速 系统误跳 闸事故会经常 发生 。
1 2 由 非 线 性 负 载 所 致 . l 2 1 非 线 性 负栽 - .
谐 波 产 生 的另 一 个 原 因是 由 于 非 线 性 负 载 。 当 电 流 流 经 线 性 负 载 时 , 载 上 电流 与 施 加 电 压 呈 线 性 关 系 ; 电 流 2 谐 波 的危 害 负 而 谐 波 研 究 的意 义 , 于 谐 波 的 危 害 十 分 严 重 , 要 表 现 在 主 流 经 非 线 性 负 载 时 , 负载 上 电 流 为 非 正 弦 电 波 , 产 生 了 则 即

高压直流输电系统交流谐波抑制—滤波器的设计

高压直流输电系统交流谐波抑制—滤波器的设计

高压直流输电系统交流谐波抑制—滤波器的设计作者:徐涛邵天龙张东方来源:《华中电力》2013年第09期摘要:近年来,高压直流输电(HVDC)技术作为一种新型输电技术在电力系统得到了广泛的发展和应用。

高压直流系统中的谐波及其抑制方法一直是对HVDC进行研究的一个重要组成部分。

关键字:高压直流输电,谐波,滤波器0概述随着电力需求日益增长﹐远距离大容量输电线路不断增加﹐电网扩大﹐交流输电受到同步执行稳定性的限制﹐在一定条件下的技术经济比较结果表明﹐采用直流输电更为合理﹐且比交流输电有较好的经济效益和优越的执行特性﹐因而直流输电重新被人们所重视并得到急速发展。

1 谐波的基本概念、谐波的产生、危害及抑制措施(1)国际上公认的谐波含义是:谐波是一个周期电气量的正弦波的分量,其频率为基波频率的整数倍。

谐波是指电压、电流波形发生畸变,主要是负荷的非线性造成的。

换流装置交流侧的电压和电流的波形不是正弦波,直流侧的电压和电流也不是平滑稳定的直流,它们都含有多种谐波分量。

谐波电流、谐波电压对电力系统用户的影响及危害,概括起来主要有以下几个方面[2][3][4] [6]:⑴谐波的存在,增加了系统中元件的附加谐波损耗,降低了发电、输电及用电设备的使用效率;大量的3次谐波流过中线时会使线路过热甚至造成火灾。

⑵谐波会导致继电保护和自动装置的误动作,电磁继电器滞动,感应式电流继电器误动或拒动,并会使电气测量仪表计量不准确。

电力测量仪表通常是按工频正弦波形设计的,当有谐波时,将会产生测量误差。

⑶使交流电网中的发电机和电容器由于谐波的附加损耗而过热⑷对通讯设备产生干扰,特别是对临近的电话线路产生杂音。

⑸使换流器的控制不稳定,有可能引起电网中发生局部的谐振过电压。

谐波对直流输电系统有如此大的危害,故需要研究抑制谐波的方法。

目前,减小直流输电系统中谐波的措施可以分为两类[1]:(1)增加换流器的脉动数以减小谐波(2)装设滤波器减小谐波2高压直流输电系统滤波器的设计2.1 交流滤波器的分类实际工程中的滤波器一般分为无源滤波器和有源滤波器两种[5]。

变频器谐波产生原因与抑制方法的分析

变频器谐波产生原因与抑制方法的分析

变频器谐波产生原因与抑制方法的分析变频器(VFD)是一种用于控制电动机转速的装置,通过调整电源频率和电压来改变电机运行速度。

然而,变频器在使用过程中常常会产生谐波,导致电网负载不稳定,影响其他电气设备的正常运行。

本文将分析变频器谐波产生的原因,并介绍一些抑制谐波的方法。

1.变频器本身结构特点:变频器通过高频开关器件(如IGBT、MOSFET等)将直流电源转化为交流电源,在电流开关过程中会产生高频脉冲,这些脉冲会引起电压和电流的谐波。

2.非线性负载:变频器供电的电机通常是非线性负载,即电流与电压不成正比。

非线性负载会引起电流谐波的产生,进而导致电压谐波扩大。

3.电源系统结构:由于电源系统结构及其参数的限制,电源系统的阻抗不匹配可能导致变频器谐波产生。

例如,电容器、滤波器等元件的阻抗变化会引起电源谐波问题。

4.电源负载波动:当电源系统中的其他负载发生波动时,变频器的谐波也会受到影响。

电源负载波动会引起电压波动,进而导致变频器谐波的产生。

针对变频器谐波问题,可以采取以下几种抑制方法:1.安装滤波器:滤波器是一种能够滤除谐波信号的装置,通过调整滤波器的参数(如电容、电感等),可以有效地消除变频器产生的谐波。

2.采用三级变频器:三级变频器是一种设计更为复杂的变频器,通过增加线性输入级、非线性级和滤波级的结构,可以大大减小谐波的产生。

3.提高电压/电流质量监测和控制:通过使用高效的电源和电流控制技术,可以减小电压和电流的波动,从而减小谐波的产生。

4.加强电网监测和保护:定期检查电网的参数,确保电源系统的稳定运行,减小电压波动,从根本上减少变频器谐波产生。

5.优化变频器设计:改进变频器的硬件和软件设计,减小开关脉冲和非线性负载对谐波产生的影响。

总之,变频器谐波的产生主要是由于变频器本身结构特点、非线性负载、电源系统结构和电源负载波动等原因导致的。

为了抑制变频器谐波,可以采取安装滤波器、采用三级变频器、提高电压/电流质量监测和控制、加强电网监测和保护、优化变频器设计等方法。

供电系统中谐波的产生与抑制

供电系统中谐波的产生与抑制

对于电力系统三相供电来说,有三相平衡和三相不平衡的非线性特性,电气铁道是当前中压供电系统中典型的三相不平衡谐波源。(电气铁道:将高压、三相电力在变电所降压和变成单相后向接触网供电,一般为25kV)
二、电力系统谐波的危害:
1.使供电线路和用电设备的热损耗增加。
(1) 谐波对线路的影响
电力系统谐波产生原因与抑制措施(2010-11-05 15:20:20)
标签: 电力系统谐波教育
电力系统谐波危害及抑制措施分析
一、电力系统谐波产生的原因
谐波产生的根本原因是由于电力系统中某些设备和负荷的非线性特性,即所加的电压与产生的电流不成线性ห้องสมุดไป่ตู้正比)关系而造成的波形畸变。
当电力系统向非线性设备及负荷供电时,这些设备或负荷在传递(如变压器)、变换(如交直流换流器)、吸收(如电弧炉)系统(发电机)所供给的基波能量的同时,又把部分基波能量转换为谐波能量向系统倒送,使系统的正弦波形畸变,电能质量下降。也可以理解为当正弦波(基波)电压施加到非线性负载上时,负载吸收的电流与其上施加的电压波形不一至,其电流发生了畸变。由于负载与整个网络相连接,这样畸变电流就可以流人到电网中,这样的负载就成了电力系统中的谐波源。
3.对通信线路产生干扰。
在电力线路上流过幅度较大的奇次低频谐波电流时,通过电磁耦合,会在邻近电力线路的通信线路中产生干扰电压。干扰通信线路的正常工作,使通话清晰度降低,甚至会引起通信线路的破坏。
4.对用电设备的影响
电力谐波会使电视机、计算机的显示亮度发生波动,图像或图形发生畸变,甚至会使机器内部元件损坏,导致机器无法使用或系统无法运行。
(4)防止电容器组对谐波的放大,在电网中并联电容器组起改善功率因数和调节电压的作用,当谐波存在时,在一定的参数下电容器组会对谐波起到放大作用,危及电容器本身和附近其他电气设备的安全,可以采取串联电抗器或将电容器组的某一支路改为滤波器的方法来限制对谐波的放大,也可以通过限制电容器组的投入容量来避免电容器对谐波的放大。

直流输电系统谐波危害及治理新方案研究

直流输电系统谐波危害及治理新方案研究

直流输电系统谐波危害及治理新方案研究一、研究背景和意义随着电力系统的不断发展,直流输电技术在长距离、大容量输电领域得到了广泛应用。

然而直流输电系统在运行过程中会产生大量的谐波,这些谐波对电力系统的稳定性、设备寿命和电网安全产生严重影响。

因此研究直流输电系统谐波危害及治理新方案具有重要的理论和实践意义。

首先研究直流输电系统谐波危害有助于提高电力系统的运行效率。

谐波会导致电力系统中的无功功率增加,从而使发电机、变压器等设备的损耗增大,降低系统的运行效率。

此外谐波还会引起电力系统中的电压不平衡、电流不对称等问题,进一步影响系统的稳定运行。

其次研究直流输电系统谐波危害有助于保障电力系统的安全稳定。

谐波会对电力系统中的设备产生腐蚀作用,导致设备的寿命缩短,甚至引发设备故障。

同时谐波还会干扰电力系统中的通信设备,降低系统的抗干扰能力,增加事故发生的风险。

因此研究直流输电系统谐波治理新方案对于提高电力系统的安全性和稳定性具有重要意义。

研究直流输电系统谐波治理新方案有助于推动电力技术的创新和发展。

传统的谐波治理方法主要采用滤波器、无功补偿装置等被动控制手段,这些方法在一定程度上可以减小谐波的影响,但其效果有限且难以适应复杂的电力系统环境。

因此研究新型的直流输电系统谐波治理技术,如动态无功补偿、自适应滤波等主动控制技术,对于推动电力技术的发展具有重要意义。

研究直流输电系统谐波危害及治理新方案具有重要的理论和实践意义。

通过对直流输电系统谐波的研究,可以为电力系统的优化运行提供理论依据和技术支撑,有助于提高电力系统的运行效率、安全性和稳定性,推动电力技术的创新和发展。

1.1 直流输电系统的应用和发展现状随着电力系统的不断发展,交流输电系统在长距离、大容量的电力输送中具有明显的优势。

然而随着全球能源结构的调整和可再生能源的大规模开发,交流输电系统面临着诸多挑战,如电网稳定性、设备寿命、环境污染等。

因此直流输电技术作为一种新型的电力输送方式,逐渐成为电力领域研究的重要方向。

HVDC系统的谐波及其抑制

HVDC系统的谐波及其抑制

HVDC系统的谐波及其抑制摘要:目前,高压直流(HVDC)输电在远距离、大容量方面独具优势,其输电技术在我国已经得到了广泛地应用,并且在今后几十年中,在我国还将有更为广阔的应用前景。

但高压直流输电中的换流变压器是一大功率、非线性电子元器件,系统中由于大功率电力电子设备的投入,谐波问题也随之产生。

在查阅了相关资料文献的基础上,结合自己的理解,摘录出如下方面关于HVDC系统的谐波及其抑制的内容:(1)高压直流输电系统中的谐波及其危害(2)高压直流输电系统中谐波的类型(3)高压直流输电系统谐波的分析和抑制措施关键字:高压直流输电系统,谐波,特征谐波,非特征谐波1.绪论1.1引言:自1954 年世界上第一个工业直流输电工程在瑞典投运以来,高压直流输电的商业化运行已有50 年的历史。

与交流输电相比,直流输电具有非同步联络能力线路输送容量大,网损小功率易控制等优点。

直流输电在我国已经得到了广泛地应用。

但是,直流输电带来巨大经济利益的同时,也给系统运行带来了新的挑战。

因为换流变压器是一大功率、非线性电子元器件,在系统中产生大量非特征和特征谐波,对供电质量是一种“污染”,严重干扰周围通信系统,而且使输电系统电气设备发热而损坏,严重时在输电系统产生并联和串联谐振。

因此,对谐波的分析方法提出来更新、更高的要求。

1.2谐波的定义:在电力系统中理想的交流电压与交流电流是呈正弦波形的,当正弦电压施加在线性无源元件电阻、电感和电容上时,仍为同频率的正弦波。

但当正弦电压施加在非线性电路上时,电流就变为非正弦波,非正弦电流在电网阻抗上产生压降,会使电压波形也变为非正弦波。

对这些非正弦电量进行傅立叶级数分解,除得到与电网基波频率相同的分量外,还得到一系列大于电网基波频率的分量,这部分分量就称为谐波。

1.3 谐波的产生及其危害:图1 直流输电系统接线示意图图 2 id 及Ud 波形图 1 为HVDC 系统示意图。

如图2 所示。

在换流桥直流侧整流电压Ud 不是一个纯直流电压波形,而交流侧电流Id 为一非正弦波形。

高压直流输电技术中的谐波及其抑制

高压直流输电技术中的谐波及其抑制

高压直流输电技术中的谐波及其抑制周泊宇(华北电力大学,北京市昌平区)The Harmonic Waves in HVDC and the Control of Harmonic WavesZHOU Bo-yu(North China Electric Power University,Changping district,Beijing )ABSTRACT:When we use the technology of HVDC,the power electronic devices in converter stations will generate different kinds of harmonic waves. We must solve these problems in order to use HVDC more extensive.In this paper ,I will analysis different kinds of harmonic waves,the measurement of the harmonic waves and the control of the harmonic waves.KEY WORDS:HVDC,harmonic waves,inverter,filter摘要:高压直流输电技术在应用中,换流站的电力电子器件会产生不同次数谐波,只有解决好谐波的问题,才能更好的利用高压直流输电技术。

在本文中,作者将针对谐波的种类、谐波的测量以及谐波的抑制进行分析。

关键词:高压直流输电技术,谐波,换流器,滤波器0 引言高压直流输电系统在建设中会建设大量的换流站,由于换流站中大量的电力电子器件的应用,会产生一定次数的谐波,这些谐波对系统的安全稳定运行以及通讯设备的正常使用都会产生严重的影响,比如,引起局部的串并联谐振,放大谐波分量,产生附加损耗和发热;对电机、变压器、电容器、电缆等设备造成振动、过热、绝缘老化,严重影响设备的使用寿命甚至直接造成设备损坏;干扰邻近通讯系统,影响通讯质量。

高压直流输电系统的电力质量分析

高压直流输电系统的电力质量分析

高压直流输电系统的电力质量分析随着电力系统的发展,高压直流输电系统越来越普及。

与传统的交流输电系统不同,高压直流输电系统无需经过变压器等复杂的装置,具有输电距离远、占地面积小等优势。

高压直流输电系统还可以提高电网的可靠性和稳定性,为电力系统的安全运行提供了有力保障。

但是,在高压直流输电系统中,电力质量问题也值得重视,本文对高压直流输电系统的电力质量问题进行分析。

一、高压直流输电系统的电力质量问题高压直流输电系统面临的主要电力质量问题有:1. 直流侧谐波问题:高压直流输电系统中直流电压存在谐波,这些谐波会导致设备损坏和电网不稳定。

2. 电磁兼容问题:高压直流输电系统中始终会存在电磁波,这些电磁波可能会影响到设备的正常运行,甚至对人体健康造成威胁。

3. 地电位问题:高压直流输电系统中直流电极进行接地,因此存在地电位问题。

在输电过程中,地电位会出现变化,这可能会引起直流电极腐蚀,设备失效等问题。

二、高压直流输电系统的电力质量控制为了保证高压直流输电系统的安全运行,必须对其进行电力质量控制。

1. 直流侧谐波控制:直流侧谐波控制是通过采用谐波滤波器等装置对谐波进行滤波,降低谐波对系统的影响,提高系统的可靠性和稳定性。

2. 电磁兼容控制:电磁兼容控制是通过采用屏蔽和隔离等装置,减少电磁波的辐射和传播,保证设备正常运行,并保护人体健康。

3. 地电位控制:地电位控制是通过采用电位控制器、地电位补偿装置等,控制直流电极的接地电位,防止地电位超过安全范围,损坏设备和影响电网的正常运行。

三、高压直流输电系统的电力质量检测对于高压直流输电系统,为了保障其电力质量,需要进行定期的电力质量检测。

电力质量检测可以发现电力质量问题,并及时采取措施进行改善。

1. 电力质量检测内容:电力质量检测内容包括谐波分析、电磁辐射扫描、地电位测量等。

2. 电力质量检测技术:电力质量检测技术包括数字信号处理技术、传感器检测技术等,用于获取电力质量相关数据,对电力质量进行分析和评价,并提出改进措施。

探析大功率高压直流电源纹波抑制措施

探析大功率高压直流电源纹波抑制措施

探析大功率高压直流电源纹波抑制措施摘要:高压直流电源的纹波抑制一直是激光器电源技术的关键问题,针对用于大功率激光器的高压直流电源的纹波抑制问题,本文提出了一种基于神经网络优化的全波对称倍压整流方法,该方法能够对整流电路的关键参数进行合理优化,提高纹波抑制效果,提升直流电源的输出性能。

关键词:大功率;高压直流电源;纹波;抑制措施大功率激光器装置在各类工业及科研领域都有广泛的应用,如分子气体激光器(CO2、CO等),可以产生各类从紫外到远红外波段范围的激光,且具有较高的效率和激光功率,连续输出时功率最高可达104W级,脉冲输出的能量最高可达104J/脉冲水平,这些激光器在装备制造及加工、光通信技术、核聚变等领域具有广泛的应用。

高压倍压加速器采用倍压整流电路产生的直流电压来加速带电粒子,其中高压电源对加速管的供电对整个带电粒子的加速起到关键性作用。

为了维持上述各类大型科研设备的大功率输出,设计一个能稳定高效地输出电能的高压直流电源十分必要,一般而言,高压直流电源主要由高频逆变和高压升压两部分组成,在逆变和升压的过程中会产生有害的纹波电压。

纹波电压主要由倍压整流电路的漏感及高压逆变电路残留的交流成分造成,如果不能及时滤除纹波电压,会对用电设备造成不利影响:①降低供电效率;②产生不期望的谐波,造成电压畸变;③产生浪涌电流,损害设备。

传统的全波对称倍压整流技术可以大大降低高压电源的纹波电压,但其电路参数的设计主要依赖于经验。

1纹波产生机理及抑制直流高压电源输出的纹波电压主要取决于高频、低频纹波及电源自身的控制系统噪声幅值。

高压直流电源的输出电压是通过对输入的整流直流电压经功率放大器进行脉宽调制、整流滤波等方法来实现的。

由脉动的整流电容产生的输出电压具有一定的脉冲性,因此会产生不期望的高频噪声。

此外,高压电源本身的内部结构也能导致纹波电压的产生。

纹波电压产生于高压电压自身运行过程中,其中低频纹波主要由整流环节中整流桥整流再经滤波电容得到,高频纹波产生于高频逆变过程,在纹波电压占比中整流环节的纹波电压值较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高压直流输电系统的谐波产生与抑制
直流输电换流器的交流侧与直流侧的电流与电压中所存在的频率为换相电压基波频率整数倍的各正弦分量。

换流器对交流系统来说它还是一个谐波电流源,而对直流线路来说它还是一个谐波电压源。

谐波与基波的频率之比称为谐波次数。

谐波的大小和相位可以从波形的傅立叶分析得到。

直流输电系统的谐波有特征谐波和非特征谐波。

这些谐波对交、直流系统中的设备及邻近的通信系统都有不良影响和危害。

往往需要采取措施加以疏导和抑制,使谐波分量能符合有关技术标准的规定。

特征谐波。

在以下理想条件下,换流器产生的谐波称为特征谐波。

①换相电压为三相对称的正弦基波电压②换流各相的换相电抗相等③换流阀的触发脉冲等距④换流器直流侧电流为一恒定的直流电流。

对换流器交、直流侧的电流和电压波形进行傅立叶分析可知,一个脉动数为P的换流器,在理想条件下,交流侧的谐波次数为n=kp±1次,k为正整数,其中kp+1次为正序,kp-1次为负序;直流侧的谐波次数为n=kp次。

对6脉动和12脉动换流器,交流侧分别产生5,7,11,13……次和11,13,23,25……次的特征谐波;直流侧分别产生6,12,18……次和12,24,36次的特征谐波。

交流侧谐波电流的大小与触发角a(或关断角g)和换相角m有关,并且谐波次数愈高其有效值愈小。

当换相角为零时(电流波形为宽120°电角度的矩形波),n次谐波电流的有效值为基波电流有效值的1/n。

谐波电流随换相角的加大或触发角(或关断角)减小而减小。

直流侧特征谐波电压
的大小随触发角a(或关断角g)加大而增大并与换相角m有关,而换相角m又与直流电流、换相电抗以及a(或g)角有关。

因此,12脉动换流器比6脉动换流器的谐波特性有很大的改善,这也是目前换流站只采用12脉动换流器作基本换流单元的主要原因。

12脉动换流器是由换相电压的相位相差30°的两个6脉动换流器串联而成,通常30°的相位差是由换流变压器阀侧线圈采用Y 和△接线来实现。

换流站交流侧谐波电流,按交流电网谐波阻抗的分布情况,流入交流电网,产生谐波电压,畸变交流电压波形;直流侧的谐波电压加在平波电抗器,直流滤波器和直流输电线路组成的直流网络上,产生谐波电流。

为了计算这些谐波电压和电流的分布,通常是将换流站交流侧各次谐波电流视为谐波电流源,应用交流系统对应的各次谐波阻抗等值网络分别求解;而将直流侧各次谐波电压视为谐波电压源,应用直流网络对应的各次谐波的等值网络分别求解。

也可以采用统一计算交、直流系统中特征谐波潮流的方法来进行分析。

非特征谐波。

在各种非理想条件下,换流器交、直流侧所产生的,除特征谐波以外的其它各次谐波,均称为非特征谐波。

常见的非特征谐波有交流系统中的3次谐波以及由此而产生的换流器交、直流侧的非特征谐波,直流侧的9次和18次谐波等。

非特征谐波的计算分析比较复杂。

通常是对各种因素分别单独考虑,经简化处理,得出交流侧和直流侧的非特征谐波电流和电压,把它们视为谐波电流和电压源,来计算交、直流网络中的非特征谐波电流和电压的分布。

直流输电系统的特征谐波和非特征谐波也可以用EMTP(电磁暂
态程序)和FFT(快速付立叶转换)程序进行计算分析,结果较为精确,交流系统部分可适当的简化以节省机时。

直流输电系统所产生的谐波对交流系统和换流器本身的运行以及邻近的通信系统都将产生影响或危害。

电力系统中运行的发电机,电动机,电容器,电抗器等电器设备,在谐波的作用下,将产生附加损耗,发热和振动。

也可能在某一谐波频率下,发生局部的谐波谐振,使某些设备受到过电压,过热或损坏。

直流线路和有关交流线路的谐波电流和电压,通过电磁和静电感应,对邻近和并行的通信系统产生谐波噪声干扰。

此外,谐波对继电保护和自动装置的性能和动作,对测量仪表的准确度也可能产生影响。

为了减少谐波的影响和危害,许多国家都制订了自己的谐波标准,以限制电力系统中所允许的谐波含量。

中国于1993年也制订了“电能质量公用电网谐波”的国家标准(GB/T 14549-93),对电力系统中各点的谐波电压畸变率以及用户注入电力系统的各次谐波电流有效值均有规定。

在进行直流输电换流站交、直流滤波装置设计时,一般按IEC919-1所推荐的“高压直流输电系统的性能” 第一部分“稳态条件”中关于交、直流滤波器的设计准则来考虑。

为使谐波电压和电流满足谐波标准规定的要求,往往需要对谐波进行抑制以减少谐波含量。

从理论上说,增加换流器的脉动数,可以提高特征谐波的次数,从而有效地降低特征谐波分量。

例如可以采用十八及以上脉动数的换流器,以进一步减小谐波。

但由于换流变压器绕组接线和绝缘都比较复杂,制造费用以及备品都要增多,因此实际
工程中还没有采用过。

目前,在换流器交流侧抑制谐波的主要措施是装设换流站交流滤波装置以吸收谐波电流,使流入交流系统的谐波电流减小并从而降低谐波电压。

在直流侧则主要利用平波电抗器来减少谐波。

直流系统的谐波主要受限制于直流线路对通信的干扰,当不满足要求时,需设置换流站直流滤波装置。

相关文档
最新文档