Equivalence Detection Using Parse-tree Normalization for
目标检测要求和识别办法
- Boosting(Adaboost等)
(discriminative
- 隐马尔科夫模型(HMM) learning)
-其他
生成学习 vs. 判别学习
两种分类器学习模式
生成学习
---目标是学习到符合训练数据的类别模型 --- 如EM算法(Maximum Likelihood) 判别学习
在训练阶段即考虑类别之间的判别信息 包括Support Vector Machines (SVMs), Boosting, Minimum
其算法本身是通过改变数据分布来实现的,它根据每 次训练集之中每个样本的分类是否正确,以及上次的 总体分类的准确率,来确定每个样本的权值。将修改 过权值的新数据集送给下层分类器进行训练,最后将 每次训练得到的分类器最后融合起来,作为最后的决 策分类器。
使用adaboost分类器可以排除一些不必要的训练数据特 徵,并将关键放在关键的训练数据上面。
➢按照各弱分类器分类精度对其加权,然后将各个 弱分类器形成线性组合,得到最终分类器。
Viola-Jones算法中的AdaBoost
每一次boosting迭代如下: 评价每一个样本上的每一种矩形特征 为每一种矩形特征选择最佳分类阈值 选择最优的矩形特征及其阈值组合 改变样本权重
计算复杂度: O(MNT) M:特征数,N:样本数, T:阈值数
目标检测要求和识别办法
目标检测和识别
怎样检测和识别图像中物体,如汽车、牛等?
目标识别的应用
难点之一: 如何鲁棒识别?
类内差异(intra-class variability)
类间相似性(inter-class similarity)
难点之二:计算量大
一幅图像中像素个数多,目前每秒约产生300G像素的 图像/视频数据。 - Google图片搜索中已有几十亿幅图像 - 全球数字照相机一年产生180亿张以上的图片(2004 年)
计算机科学与技术专业使用阈值技术的图像分割等毕业论文外文文献翻译及原文
毕业设计(论文)外文文献翻译文献、资料中文题目: 1.使用阈值技术的图像分割2.最大类间方差算法的图像分割综述文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:计算机科学与技术班级:姓名:学号:指导教师:翻译日期: 2017.02.14毕业设计(论文)题目基于遗传算法的自动图像分割软件开发翻译(1)题目Image Segmentation by Using ThresholdTechniques翻译(2)题目A Review on Otsu Image Segmentation Algorithm使用阈值技术的图像分割 1摘要本文试图通过5阈值法作为平均法,P-tile算法,直方图相关技术(HDT),边缘最大化技术(EMT)和可视化技术进行了分割图像技术的研究,彼此比较从而选择合的阈值分割图像的最佳技术。
这些技术适用于三个卫星图像选择作为阈值分割图像的基本猜测。
关键词:图像分割,阈值,自动阈值1 引言分割算法是基于不连续性和相似性这两个基本属性之一的强度值。
第一类是基于在强度的突然变化,如在图像的边缘进行分区的图像。
第二类是根据预定义标准基于分割的图像转换成类似的区域。
直方图阈值的方法属于这一类。
本文研究第二类(阈值技术)在这种情况下,通过这项课题可以给予这些研究简要介绍。
阈分割技术可分为三个不同的类:首先局部技术基于像素和它们临近地区的局部性质。
其次采用全局技术分割图像可以获得图像的全局信息(通过使用图像直方图,例如;全局纹理属性)。
并且拆分,合并,生长技术,为了获得良好的分割效果同时使用的同质化和几何近似的概念。
最后的图像分割,在图像分析的领域中,常用于将像素划分成区域,以确定一个图像的组成[1][2]。
他们提出了一种二维(2-D)的直方图基于多分辨率分析(MRA)的自适应阈值的方法,降低了计算的二维直方图的复杂而提高了多分辨率阈值法的搜索精度。
这样的方法源于通过灰度级和灵活性的空间相关性的多分辨率阈值分割方法中的阈值的寻找以及效率由二维直方图阈值分割方法所取得的非凡分割效果。
人工智能领域中英文专有名词汇总
名词解释中英文对比<using_information_sources> social networks 社会网络abductive reasoning 溯因推理action recognition(行为识别)active learning(主动学习)adaptive systems 自适应系统adverse drugs reactions(药物不良反应)algorithm design and analysis(算法设计与分析) algorithm(算法)artificial intelligence 人工智能association rule(关联规则)attribute value taxonomy 属性分类规范automomous agent 自动代理automomous systems 自动系统background knowledge 背景知识bayes methods(贝叶斯方法)bayesian inference(贝叶斯推断)bayesian methods(bayes 方法)belief propagation(置信传播)better understanding 内涵理解big data 大数据big data(大数据)biological network(生物网络)biological sciences(生物科学)biomedical domain 生物医学领域biomedical research(生物医学研究)biomedical text(生物医学文本)boltzmann machine(玻尔兹曼机)bootstrapping method 拔靴法case based reasoning 实例推理causual models 因果模型citation matching (引文匹配)classification (分类)classification algorithms(分类算法)clistering algorithms 聚类算法cloud computing(云计算)cluster-based retrieval (聚类检索)clustering (聚类)clustering algorithms(聚类算法)clustering 聚类cognitive science 认知科学collaborative filtering (协同过滤)collaborative filtering(协同过滤)collabrative ontology development 联合本体开发collabrative ontology engineering 联合本体工程commonsense knowledge 常识communication networks(通讯网络)community detection(社区发现)complex data(复杂数据)complex dynamical networks(复杂动态网络)complex network(复杂网络)complex network(复杂网络)computational biology 计算生物学computational biology(计算生物学)computational complexity(计算复杂性) computational intelligence 智能计算computational modeling(计算模型)computer animation(计算机动画)computer networks(计算机网络)computer science 计算机科学concept clustering 概念聚类concept formation 概念形成concept learning 概念学习concept map 概念图concept model 概念模型concept modelling 概念模型conceptual model 概念模型conditional random field(条件随机场模型) conjunctive quries 合取查询constrained least squares (约束最小二乘) convex programming(凸规划)convolutional neural networks(卷积神经网络) customer relationship management(客户关系管理) data analysis(数据分析)data analysis(数据分析)data center(数据中心)data clustering (数据聚类)data compression(数据压缩)data envelopment analysis (数据包络分析)data fusion 数据融合data generation(数据生成)data handling(数据处理)data hierarchy (数据层次)data integration(数据整合)data integrity 数据完整性data intensive computing(数据密集型计算)data management 数据管理data management(数据管理)data management(数据管理)data miningdata mining 数据挖掘data model 数据模型data models(数据模型)data partitioning 数据划分data point(数据点)data privacy(数据隐私)data security(数据安全)data stream(数据流)data streams(数据流)data structure( 数据结构)data structure(数据结构)data visualisation(数据可视化)data visualization 数据可视化data visualization(数据可视化)data warehouse(数据仓库)data warehouses(数据仓库)data warehousing(数据仓库)database management systems(数据库管理系统)database management(数据库管理)date interlinking 日期互联date linking 日期链接Decision analysis(决策分析)decision maker 决策者decision making (决策)decision models 决策模型decision models 决策模型decision rule 决策规则decision support system 决策支持系统decision support systems (决策支持系统) decision tree(决策树)decission tree 决策树deep belief network(深度信念网络)deep learning(深度学习)defult reasoning 默认推理density estimation(密度估计)design methodology 设计方法论dimension reduction(降维) dimensionality reduction(降维)directed graph(有向图)disaster management 灾害管理disastrous event(灾难性事件)discovery(知识发现)dissimilarity (相异性)distributed databases 分布式数据库distributed databases(分布式数据库) distributed query 分布式查询document clustering (文档聚类)domain experts 领域专家domain knowledge 领域知识domain specific language 领域专用语言dynamic databases(动态数据库)dynamic logic 动态逻辑dynamic network(动态网络)dynamic system(动态系统)earth mover's distance(EMD 距离) education 教育efficient algorithm(有效算法)electric commerce 电子商务electronic health records(电子健康档案) entity disambiguation 实体消歧entity recognition 实体识别entity recognition(实体识别)entity resolution 实体解析event detection 事件检测event detection(事件检测)event extraction 事件抽取event identificaton 事件识别exhaustive indexing 完整索引expert system 专家系统expert systems(专家系统)explanation based learning 解释学习factor graph(因子图)feature extraction 特征提取feature extraction(特征提取)feature extraction(特征提取)feature selection (特征选择)feature selection 特征选择feature selection(特征选择)feature space 特征空间first order logic 一阶逻辑formal logic 形式逻辑formal meaning prepresentation 形式意义表示formal semantics 形式语义formal specification 形式描述frame based system 框为本的系统frequent itemsets(频繁项目集)frequent pattern(频繁模式)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy data mining(模糊数据挖掘)fuzzy logic 模糊逻辑fuzzy set theory(模糊集合论)fuzzy set(模糊集)fuzzy sets 模糊集合fuzzy systems 模糊系统gaussian processes(高斯过程)gene expression data 基因表达数据gene expression(基因表达)generative model(生成模型)generative model(生成模型)genetic algorithm 遗传算法genome wide association study(全基因组关联分析) graph classification(图分类)graph classification(图分类)graph clustering(图聚类)graph data(图数据)graph data(图形数据)graph database 图数据库graph database(图数据库)graph mining(图挖掘)graph mining(图挖掘)graph partitioning 图划分graph query 图查询graph structure(图结构)graph theory(图论)graph theory(图论)graph theory(图论)graph theroy 图论graph visualization(图形可视化)graphical user interface 图形用户界面graphical user interfaces(图形用户界面)health care 卫生保健health care(卫生保健)heterogeneous data source 异构数据源heterogeneous data(异构数据)heterogeneous database 异构数据库heterogeneous information network(异构信息网络) heterogeneous network(异构网络)heterogenous ontology 异构本体heuristic rule 启发式规则hidden markov model(隐马尔可夫模型)hidden markov model(隐马尔可夫模型)hidden markov models(隐马尔可夫模型) hierarchical clustering (层次聚类) homogeneous network(同构网络)human centered computing 人机交互技术human computer interaction 人机交互human interaction 人机交互human robot interaction 人机交互image classification(图像分类)image clustering (图像聚类)image mining( 图像挖掘)image reconstruction(图像重建)image retrieval (图像检索)image segmentation(图像分割)inconsistent ontology 本体不一致incremental learning(增量学习)inductive learning (归纳学习)inference mechanisms 推理机制inference mechanisms(推理机制)inference rule 推理规则information cascades(信息追随)information diffusion(信息扩散)information extraction 信息提取information filtering(信息过滤)information filtering(信息过滤)information integration(信息集成)information network analysis(信息网络分析) information network mining(信息网络挖掘) information network(信息网络)information processing 信息处理information processing 信息处理information resource management (信息资源管理) information retrieval models(信息检索模型) information retrieval 信息检索information retrieval(信息检索)information retrieval(信息检索)information science 情报科学information sources 信息源information system( 信息系统)information system(信息系统)information technology(信息技术)information visualization(信息可视化)instance matching 实例匹配intelligent assistant 智能辅助intelligent systems 智能系统interaction network(交互网络)interactive visualization(交互式可视化)kernel function(核函数)kernel operator (核算子)keyword search(关键字检索)knowledege reuse 知识再利用knowledgeknowledgeknowledge acquisitionknowledge base 知识库knowledge based system 知识系统knowledge building 知识建构knowledge capture 知识获取knowledge construction 知识建构knowledge discovery(知识发现)knowledge extraction 知识提取knowledge fusion 知识融合knowledge integrationknowledge management systems 知识管理系统knowledge management 知识管理knowledge management(知识管理)knowledge model 知识模型knowledge reasoningknowledge representationknowledge representation(知识表达) knowledge sharing 知识共享knowledge storageknowledge technology 知识技术knowledge verification 知识验证language model(语言模型)language modeling approach(语言模型方法) large graph(大图)large graph(大图)learning(无监督学习)life science 生命科学linear programming(线性规划)link analysis (链接分析)link prediction(链接预测)link prediction(链接预测)link prediction(链接预测)linked data(关联数据)location based service(基于位置的服务) loclation based services(基于位置的服务) logic programming 逻辑编程logical implication 逻辑蕴涵logistic regression(logistic 回归)machine learning 机器学习machine translation(机器翻译)management system(管理系统)management( 知识管理)manifold learning(流形学习)markov chains 马尔可夫链markov processes(马尔可夫过程)matching function 匹配函数matrix decomposition(矩阵分解)matrix decomposition(矩阵分解)maximum likelihood estimation(最大似然估计)medical research(医学研究)mixture of gaussians(混合高斯模型)mobile computing(移动计算)multi agnet systems 多智能体系统multiagent systems 多智能体系统multimedia 多媒体natural language processing 自然语言处理natural language processing(自然语言处理) nearest neighbor (近邻)network analysis( 网络分析)network analysis(网络分析)network analysis(网络分析)network formation(组网)network structure(网络结构)network theory(网络理论)network topology(网络拓扑)network visualization(网络可视化)neural network(神经网络)neural networks (神经网络)neural networks(神经网络)nonlinear dynamics(非线性动力学)nonmonotonic reasoning 非单调推理nonnegative matrix factorization (非负矩阵分解) nonnegative matrix factorization(非负矩阵分解) object detection(目标检测)object oriented 面向对象object recognition(目标识别)object recognition(目标识别)online community(网络社区)online social network(在线社交网络)online social networks(在线社交网络)ontology alignment 本体映射ontology development 本体开发ontology engineering 本体工程ontology evolution 本体演化ontology extraction 本体抽取ontology interoperablity 互用性本体ontology language 本体语言ontology mapping 本体映射ontology matching 本体匹配ontology versioning 本体版本ontology 本体论open government data 政府公开数据opinion analysis(舆情分析)opinion mining(意见挖掘)opinion mining(意见挖掘)outlier detection(孤立点检测)parallel processing(并行处理)patient care(病人医疗护理)pattern classification(模式分类)pattern matching(模式匹配)pattern mining(模式挖掘)pattern recognition 模式识别pattern recognition(模式识别)pattern recognition(模式识别)personal data(个人数据)prediction algorithms(预测算法)predictive model 预测模型predictive models(预测模型)privacy preservation(隐私保护)probabilistic logic(概率逻辑)probabilistic logic(概率逻辑)probabilistic model(概率模型)probabilistic model(概率模型)probability distribution(概率分布)probability distribution(概率分布)project management(项目管理)pruning technique(修剪技术)quality management 质量管理query expansion(查询扩展)query language 查询语言query language(查询语言)query processing(查询处理)query rewrite 查询重写question answering system 问答系统random forest(随机森林)random graph(随机图)random processes(随机过程)random walk(随机游走)range query(范围查询)RDF database 资源描述框架数据库RDF query 资源描述框架查询RDF repository 资源描述框架存储库RDF storge 资源描述框架存储real time(实时)recommender system(推荐系统)recommender system(推荐系统)recommender systems 推荐系统recommender systems(推荐系统)record linkage 记录链接recurrent neural network(递归神经网络) regression(回归)reinforcement learning 强化学习reinforcement learning(强化学习)relation extraction 关系抽取relational database 关系数据库relational learning 关系学习relevance feedback (相关反馈)resource description framework 资源描述框架restricted boltzmann machines(受限玻尔兹曼机) retrieval models(检索模型)rough set theroy 粗糙集理论rough set 粗糙集rule based system 基于规则系统rule based 基于规则rule induction (规则归纳)rule learning (规则学习)rule learning 规则学习schema mapping 模式映射schema matching 模式匹配scientific domain 科学域search problems(搜索问题)semantic (web) technology 语义技术semantic analysis 语义分析semantic annotation 语义标注semantic computing 语义计算semantic integration 语义集成semantic interpretation 语义解释semantic model 语义模型semantic network 语义网络semantic relatedness 语义相关性semantic relation learning 语义关系学习semantic search 语义检索semantic similarity 语义相似度semantic similarity(语义相似度)semantic web rule language 语义网规则语言semantic web 语义网semantic web(语义网)semantic workflow 语义工作流semi supervised learning(半监督学习)sensor data(传感器数据)sensor networks(传感器网络)sentiment analysis(情感分析)sentiment analysis(情感分析)sequential pattern(序列模式)service oriented architecture 面向服务的体系结构shortest path(最短路径)similar kernel function(相似核函数)similarity measure(相似性度量)similarity relationship (相似关系)similarity search(相似搜索)similarity(相似性)situation aware 情境感知social behavior(社交行为)social influence(社会影响)social interaction(社交互动)social interaction(社交互动)social learning(社会学习)social life networks(社交生活网络)social machine 社交机器social media(社交媒体)social media(社交媒体)social media(社交媒体)social network analysis 社会网络分析social network analysis(社交网络分析)social network(社交网络)social network(社交网络)social science(社会科学)social tagging system(社交标签系统)social tagging(社交标签)social web(社交网页)sparse coding(稀疏编码)sparse matrices(稀疏矩阵)sparse representation(稀疏表示)spatial database(空间数据库)spatial reasoning 空间推理statistical analysis(统计分析)statistical model 统计模型string matching(串匹配)structural risk minimization (结构风险最小化) structured data 结构化数据subgraph matching 子图匹配subspace clustering(子空间聚类)supervised learning( 有support vector machine 支持向量机support vector machines(支持向量机)system dynamics(系统动力学)tag recommendation(标签推荐)taxonmy induction 感应规范temporal logic 时态逻辑temporal reasoning 时序推理text analysis(文本分析)text anaylsis 文本分析text classification (文本分类)text data(文本数据)text mining technique(文本挖掘技术)text mining 文本挖掘text mining(文本挖掘)text summarization(文本摘要)thesaurus alignment 同义对齐time frequency analysis(时频分析)time series analysis( 时time series data(时间序列数据)time series data(时间序列数据)time series(时间序列)topic model(主题模型)topic modeling(主题模型)transfer learning 迁移学习triple store 三元组存储uncertainty reasoning 不精确推理undirected graph(无向图)unified modeling language 统一建模语言unsupervisedupper bound(上界)user behavior(用户行为)user generated content(用户生成内容)utility mining(效用挖掘)visual analytics(可视化分析)visual content(视觉内容)visual representation(视觉表征)visualisation(可视化)visualization technique(可视化技术) visualization tool(可视化工具)web 2.0(网络2.0)web forum(web 论坛)web mining(网络挖掘)web of data 数据网web ontology lanuage 网络本体语言web pages(web 页面)web resource 网络资源web science 万维科学web search (网络检索)web usage mining(web 使用挖掘)wireless networks 无线网络world knowledge 世界知识world wide web 万维网world wide web(万维网)xml database 可扩展标志语言数据库附录 2 Data Mining 知识图谱(共包含二级节点15 个,三级节点93 个)间序列分析)监督学习)领域 二级分类 三级分类。
模式识别基础之近邻法
模式识别基础之近邻法近邻法是一种常用的模式识别方法,它通过测量不同对象间的相似性来进行分类。
本文将介绍近邻法的基本原理、应用领域以及优缺点。
一、基本原理近邻法是基于实例学习(instance-based learning)的一种算法。
它通过计算样本之间的距离或相似度来判断其归属类别。
简单来说,近邻法将新的样本与已有的样本进行比较,将其归类到与其最相似的样本所属的类别中。
在实际应用中,近邻法通常是通过计算样本之间的欧氏距离或余弦相似度来进行分类。
欧氏距离是指在坐标系中两点之间的直线距离,而余弦相似度是指两个向量之间的夹角的余弦值。
根据距离或相似度的大小,近邻法将样本进行分类。
二、应用领域1. 图像识别近邻法在图像识别领域有着广泛的应用。
通过计算图像的特征向量之间的相似度,可以实现图像分类、图像匹配等功能。
例如,当需要将一张未知图像分类到已知类别中时,可以通过计算未知图像与已知图像的特征向量之间的相似度来判断其归属类别。
2. 文本分类在文本分类任务中,近邻法也是一个常用的算法。
通过计算文本之间的相似度,可以实现文本的自动分类。
例如,当需要将一篇未知文本归类到已有类别中时,可以计算未知文本与已有文本之间的相似度,并将其归类到相似度最高的类别中。
3. 推荐系统近邻法在推荐系统中也得到了广泛的应用。
通过计算用户之间的兴趣相似度,可以为用户推荐符合其兴趣的物品。
例如,在电商平台上,通过计算用户购买记录或点击行为之间的相似度,可以为用户推荐与其兴趣相似的商品。
三、优缺点1. 优点近邻法具有以下优点:- 简单直观:近邻法的原理简单易懂,容易实现和解释。
- 非参数化:近邻法不对数据的分布做任何假设,适用于任何类型的数据。
- 灵活性强:近邻法适用于多种应用场景,可以根据实际需求进行定制。
2. 缺点近邻法也存在一些缺点:- 计算复杂度高:对于大规模的数据集,计算样本之间的距离或相似度可能会非常耗时。
- 依赖样本质量:近邻法受样本质量的影响较大,对于噪声数据或不均衡数据容易产生误分类。
目标检测参考文献
目标检测是计算机视觉领域中的一个重要任务,旨在识别和定位图像中的目标物体。
近年来,随着深度学习方法的发展,目标检测取得了显著的进展。
以下是一些经典的目标检测参考文献及其相关内容。
1.R-CNN: Rich feature hierarchies for accurate object detection 这是目标检测中的经典方法之一,引入了区域提议网络(Region Proposal Network)的概念,通过生成候选目标区域来提高检测的效果。
该方法通过使用卷积神经网络提取图像特征,并使用支持向量机对提取的特征进行分类和定位。
2.Faster R-CNN: Towards real-time object detection with regionproposal networks Faster R-CNN是R-CNN的改进版本,引入了一种称为Region Proposal Network(RPN)的网络模块,用于生成候选目标区域。
相比于R-CNN,Faster R-CNN在保持准确性的同时大幅提升了检测速度。
3.You Only Look Once: Unified, Real-Time Object Detection YOLO是一种实时目标检测方法,通过将目标检测问题转化为回归问题,并在单个神经网络中同时进行目标分类和定位,实现了快速准确的物体检测。
该方法在速度上具有显著优势,但在检测小物体和密集目标方面仍有改进空间。
4.Single Shot MultiBox Detector SSD是另一种实时目标检测方法,采用了特征金字塔网络(Feature Pyramid Network)和多尺度预测的策略,能够在不同尺度下同时检测目标。
SSD在准确性和速度方面取得了良好的平衡,成为目标检测领域的重要方法之一。
5.Mask R-CNN Mask R-CNN是在Faster R-CNN的基础上进行改进的方法,不仅可以检测和定位目标,还可以生成目标的语义分割掩码。
斑马技术公司DS8108数字扫描仪产品参考指南说明书
纹理物体缺陷的视觉检测算法研究--优秀毕业论文
摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II
数据结构代码相似度检测
数据结构代码相似度检测数据结构代码相似度检测是一项用于比较两个或多个代码片段之间的相似度的任务。
相似度检测对于软件开发中的代码复用、代码查重、代码抄袭检测等方面都非常重要。
在数据结构领域,相似度检测可以用于比较不同实现方式的数据结构,或者比较同一数据结构在不同环境下的使用情况。
2.代码指纹:通过计算代码片段的散列值或者哈希值,可以得到代码片段的指纹。
代码指纹可以用于比较两个代码片段之间的相似度。
常用的指纹算法包括MD5、SHA-1等。
通过计算两个代码片段之间的指纹相似度,可以判断它们的相似度。
3.抽象语法树(AST):代码片段可以被表示为抽象语法树。
通过比较两个抽象语法树之间的结构和节点,可以得到两个代码片段之间的相似度。
抽象语法树可以通过解析代码片段来生成。
除了相似度度量方法,还可以使用各种算法来实现数据结构代码相似度检测。
1. 基于字符串匹配的算法:可以使用字符串匹配算法,如KMP算法、Boyer-Moore算法等来比较两个代码片段之间的相似度。
这些算法可以在时间复杂度上得到较好的性能。
2.基于矩阵计算的算法:可以使用矩阵计算算法,如SVD(奇异值分解)或者PCA(主成分分析)等来比较两个代码片段之间的相似度。
这些算法可以在特征提取和降维上得到较好的性能。
3. 基于聚类的算法:可以使用聚类算法,如K-means聚类、DBSCAN 聚类等来比较多个代码片段之间的相似度。
聚类算法可以将相似的代码片段归为一类,并给出相似度的度量。
数据结构代码相似度检测是一个复杂的任务,需要综合考虑代码的语法结构、代码逻辑和代码执行过程等因素。
为了提高相似度检测的准确性和效率,可以结合多种相似度度量方法和算法进行检测。
此外,还可以使用机器学习和深度学习等方法来训练模型,从而提高相似度检测的性能和可扩展性。
最相似近邻法-概述说明以及解释
最相似近邻法-概述说明以及解释1.引言1.1 概述最相似近邻法是一种常用的机器学习算法,也被称为k近邻算法。
它是一种基于实例的学习方法,通过计算待预测样本与训练集中样本的相似度,来进行分类或回归预测。
该算法的核心思想是利用输入样本与训练集中已有样本的特征信息进行对比,找出与输入样本最相似的k个样本,并根据它们的标签信息来对输入样本进行分类或回归预测。
这种基于相似度的方法能够很好地捕捉样本之间的关系,适用于各种不规则分布的数据集。
最相似近邻法在实际应用中具有广泛的适用性,包括图像识别、推荐系统、医学诊断等领域。
尽管该算法存在一定的计算复杂度和需要大量存储空间的缺点,但其简单直观的原理和良好的泛化能力使其成为机器学习领域中不可或缺的一部分。
1.2 文章结构本文分为引言、正文和结论三个部分。
在引言部分,将对最相似近邻法进行概述,并介绍文章的结构和目的。
在正文部分,将详细介绍什么是最相似近邻法,以及它在不同应用领域的具体应用情况。
同时,将梳理最相似近邻法的优缺点,为读者提供全面的了解。
最后,在结论部分,将总结本文的主要内容,展望最相似近邻法的未来发展前景,并给出结论性的观点和建议。
整个文章将通过逻辑清晰的结构,带领读者深入理解和认识最相似近邻法的重要性和应用。
1.3 目的最相似近邻法是一种常用的机器学习算法,其主要目的是通过比较不同数据点之间的相似度,找出与目标数据点最相似的邻居。
通过这种方法,我们可以实现数据分类、推荐系统、图像识别等多种应用。
本文旨在深入探讨最相似近邻法的原理、应用领域以及优缺点,希望读者能更全面地了解这一算法,并在实际应用中取得更好的效果。
同时,我们也将展望最相似近邻法在未来的发展前景,为读者提供对未来研究方向的参考。
通过本文的阐述,希望读者能够更深入地理解最相似近邻法,为其在实际应用中提供更好的指导。
2.正文2.1 什么是最相似近邻法最相似近邻法是一种常用的机器学习算法,它通过计算数据样本之间的相似度来进行分类或回归预测。
基于移动激光扫描的行道树树干提取
林业工程学报,2020,5(5):117-124Journal of Forestry EngineeringD01:10.13360/j.issn.2096—1359.201912017基于移动激光扫描的行道树树干提取李秋洁,袁鹏成,刘旭,周宏平(南京林业大学机械电子工程学院,南京210037)摘要:基于移动激光扫描技术的行道树资源调查是当前的研究热点及未来的发展趋势,树干提取是行道树定位与分割的核心步骤,已有方法由知识驱动,人工设计树干检测规则,难以跨越低层点云数据到高层地物目标的语义鸿沟。
针对上述问题,基于移动2D LiDAR系统采集的城市街道点云数据,将行道树树干提取分为树干点云识别与树干点云分割2个步骤。
首先,构建城市街道点云标注数据集,提取深度、高程、维度、密度、强度等14个局部点云特征,采用Boosting监督学习算法从标注数据集中自动学习树干点云与非树干点云的差异性,通过特征融合获取高精度树干点云检测器;然后,基于树干点云识别结果,采用帧投影方法分割标识出每一根树干。
试验结果表明:基于监督学习的树干点云检测器有较好的分类性能,为树干分割提取提供了精准数据,对于0.10~0.40m的球域半径,测试集查准率均高于93%,查全率均高于94%。
此外,以Bayes错误率为评价指标衡量单个特征的鉴别力,得出鉴别力最强的3个特征为高程方差、强度范围及强度方差。
关键词:树干提取;移动激光扫描;树干识别;树干分割‘Boosting监督学习算法中图分类号:S771.8;TP79文献标志码:A开放科学(资源服务)标识码(OS1D):文章编号:2096-1359(2020)05-0117-08Trunk extraction of street tree using mobile laser scanningLI Qiujie,YUAN Pengcheng,LIU Xu,ZHOU Hongping(College of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing210037,China)A、、i「,ci:Mobile laser scanning(MLS)measurement technology is well-suited for individual-tree-based urban forestinventory because it captures highly dense3D point cloud of vertical structures of individual roadside trees in a rapid and cost-effective way.Trunk extraction of street tree from MLS data is a preliminary and essential step for street tree location and further extraction and analysis of attributes of street tree,and is also a challenging problem because of the complex urban street environment.The existing methods are knowledge-driven and design trunk detection rules manually,which are difficult to cross the semantical gap between low-level point cloud data and high-level objects.To address the above problem,using point cloud data of urban street tree captured by the mobile2D LiDAR system,this paper divided trunk extraction of street tree into two steps,i.e.,recognition of trunk point cloud and segmentation of trunk point cloud.Firstly,the annotated data set of the urban street point cloud was constructed,and14local statistical features of point data were extracted including features of depth,elevation,dimension,density and intensity.Then,the Boosting supervised learning algorithm was used to automatically learn the difference between the trunk point cloud and non-trunk point cloud from annotated MLS data,and the point-wise trunk detector with high precision was obtained by fusion of all local features.Secondly,based on the recognition results of trunk detector,individual trunk was identified and segmented using the frame projection of trunk points.In the experiments,the MLS system was used to scan the street on one side with0.2m/s vehicle speed.Ten thousand frames including10810000points were collected on a50m long street section,including buildings,street trees,pedestrians,lanes,sidewalks,iron piles,street lights,turf and other ground objects.The experimental results demonstrated that the proposed method could obtain point-wise trunk segmentation from MLS data with high accuracy trunk detection without tedious detection or segmentation rules.For the spherical radius in the range of0.10-0.40m,the error rates of trunk detector on test set were less than0.06%accompanied by over93.09%recall rates and over94.87%precision rates.Most missed detection and false alarms concentrated on the two ends of trunks,which were easy to be confused with crown points on the top of trunk or turf points on the bottom of trunk.In addition,the Bayes error rate was used as an evaluation index to measure the discriminant power of single features.The three features with the strongest discriminant收稿日期:2019-12-12修回日期:2020-01-06基金项目:江苏省基础研究计划(BK20170930)。
ensemble的异常检测方法原理介绍
Ensemble methods in异常检测通常指的是将多个不同的异常检测算法结合起来,以提高检测的准确性和鲁棒性。
这种方法基于这样一个观察:单一的异常检测算法可能对某些数据集或异常类型表现良好,但对其他数据集或异常类型则表现不佳。
通过结合多个算法,可以取长补短,提高整体性能。
Ensemble methods的原理可以概括为以下几个步骤:1. 选择基检测器:选择多个不同的异常检测算法作为基检测器。
这些基检测器可以是基于统计方法的(如3-sigma原则、Z-score)、基于邻近度的(如k-最近邻、局部异常因子)、基于机器学习的(如支持向量机、隔离森林)等。
2. 独立检测:分别使用每个基检测器对数据集进行异常检测。
每个检测器根据自己的算法独立地评估每个数据点的异常性,并生成异常分数或标签。
3. 集成决策:将基检测器的结果进行集成,以形成一个最终的异常检测结果。
集成策略可以有多种,例如:- 投票法:每个检测器的异常分数或标签被用作投票,多数检测器认为异常的数据点被标记为异常。
- 平均法:计算所有检测器异常分数的平均值,高于某个阈值的点被认为是异常。
- 堆叠法(Stacking):使用一个元学习算法(如随机森林、梯度提升机)来学习如何最优地结合基检测器的结果。
4. 优化和调整:对集成方法进行优化和调整,以提高性能。
这可能包括选择最佳的基检测器组合、调整集成策略的参数、使用交叉验证等方法。
Ensemble methods的优势在于其能够结合不同算法的特点,提高异常检测的准确性和鲁棒性。
然而,这种方法也需要更多的计算资源,并且可能需要复杂的调参过程。
此外,集成方法的效果也取决于基检测器的选择和集成策略的设计。
基于多头注意力机制tree-lstm的句子语义相似度计算
基于多头注意力机制tree-lstm的句子
语义相似度计算
1. 数据预处理:将句子转换为向量表示,可以使用词向量或字节对编码(BPE)等技术。
2. 构建模型:使用多头注意力机制 Tree-LSTM 模型来学习句子的语义表示。
- 多头注意力机制:用于捕捉句子中不同位置的重要性,并对不同位置的信息进行加权求和。
- Tree-LSTM:一种基于树结构的 LSTM 模型,用于学习句子的句法结构和语义信息。
3. 相似度计算:通过计算两个句子的语义表示之间的余弦相似度或欧几里得距离等指标,来衡量它们的相似性。
4. 模型训练:使用大规模的文本数据集对模型进行训练,以学习到通用的语义表示。
5. 相似度比较:将待比较的句子输入到训练好的模型中,计算它们之间的相似度得分。
6. 结果评估:根据相似度得分,判断两个句子的语义相似程度。
需要注意的是,这只是一个基本的框架,实际实现中可能会涉及到更复杂的技术和优化。
此外,句子语义相似度计算的准确性也会受到数据质量、模型复杂度和训练参数等因素的影响。
k近邻算法例题 知乎
k近邻算法例题知乎K近邻算法被广泛采用于分类问题和回归问题的解决。
这种机器学习算法的工作方式是根据训练数据中最邻近的K个样本进行分类或预测。
在这篇文章中,我们将围绕一个K近邻算法的例题展开。
考虑一个数据集,它包括某几种水果的甜度和酸度。
我们想要根据这些属性来预测水果的种类。
我们可以使用K近邻算法分析这个数据集,以便将新的水果分类为苹果或是橙子。
第一步,我们需要将数据集分为训练集和测试集。
我们可以将70%的数据用于训练,30%的数据用于测试。
这可以通过在数据集上进行随机抽样来实现。
第二步,我们需要选择K值。
K值是指在分析新数据时考虑的最近邻居的数量。
通常,我们将K值设定为一个奇数,以免出现平票情况。
在这个例题中,我们可以将K值设定为3。
第三步,我们需要计算训练集中每个数据点与测试集中每个数据点之间的距离。
对于这个例题,我们可以使用欧氏距离作为距离度量方法。
欧氏距离的公式如下:d(x, y) = √(Σ(xi - yi)²)其中x和y是两个数据点的属性向量,xi和yi是属性向量中的单个值。
第四步,我们需要选择与测试点最近的K个训练集数据点,以便确定它的类别。
根据这个例题中的K值,我们将选择最近的3个数据点。
第五步,我们需要计算这3个最近邻居中每个类别出现的次数。
在这个例题中,如果有2个数据点是苹果,1个是橙子,则我们将分类这个测试水果为苹果。
最后,我们可以使用测试集来评估我们的算法的性能。
我们可以使用准确率、精确率和召回率等指标来衡量算法的性能。
通过这个例题,我们可以清楚地了解到K近邻算法的工作原理和应用。
该算法易于实现且在许多分类和回归问题中表现良好。
当我们学习机器学习算法时,如果想更好地掌握这个算法的工作原理和应用,这个例题是一个很好的例子。
感知器算法的实验报告
一、实验背景感知器算法是一种简单的线性二分类模型,由Frank Rosenblatt于1957年提出。
它是一种基于误分类项进行学习,以调整权重来拟合数据集的算法。
感知器算法适用于线性可分的数据集,能够将数据集中的样本正确分类。
本次实验旨在通过编程实现感知器算法,并使用iris数据集进行验证。
通过实验,我们能够熟悉感知器算法的基本原理,了解其优缺点,并掌握其在实际应用中的使用方法。
二、实验目的1. 理解感知器算法的基本原理;2. 编程实现感知器算法;3. 使用iris数据集验证感知器算法的性能;4. 分析感知器算法的优缺点。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 机器学习库:Scipy、Numpy、Matplotlib、sklearn四、实验步骤1. 导入必要的库```pythonimport numpy as npimport matplotlib.pyplot as pltfrom sklearn import datasetsfrom sklearn.model_selection import train_test_split```2. 读取iris数据集```pythoniris = datasets.load_iris()X = iris.datay = iris.target```3. 将数据集划分为训练集和测试集```pythonX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)```4. 编写感知器算法```pythondef perceptron(X, y, w, b, learning_rate):for i in range(len(X)):if np.dot(X[i], w) + b <= 0:w += learning_rate y[i] X[i]b += learning_rate y[i]return w, b```5. 训练感知器模型```pythonlearning_rate = 0.1max_iter = 100w = np.zeros(X.shape[1])b = 0for _ in range(max_iter):w, b = perceptron(X_train, y_train, w, b, learning_rate)```6. 评估感知器模型```pythondef predict(X, w, b):return np.sign(np.dot(X, w) + b)y_pred = predict(X_test, w, b)accuracy = np.mean(y_pred == y_test)print("感知器算法的准确率:", accuracy)```7. 可视化感知器模型```pythondef plot_decision_boundary(X, y, w, b):plt.figure(figsize=(8, 6))plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired,edgecolors='k', marker='o')x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1))Z = np.dot(np.c_[xx.ravel(), yy.ravel()], w) + bZ = Z.reshape(xx.shape)plt.contourf(xx, yy, Z, alpha=0.4)plt.xlabel("Sepal length (cm)")plt.ylabel("Sepal width (cm)")plt.title("Perceptron Decision Boundary")plt.show()plot_decision_boundary(X_train, y_train, w, b)```五、实验结果与分析1. 感知器算法的准确率为约0.9,说明感知器算法在iris数据集上表现良好。
鸢尾花数据集为例实现贝叶斯算法和感知器算法
鸢尾花数据集为例实现贝叶斯算法和感知器算法贝叶斯算法:贝叶斯算法是一种基于概率的分类算法。
它假设样本特征之间相互独立,并根据贝叶斯定理计算后验概率来进行分类。
在鸢尾花数据集上实现贝叶斯算法的步骤如下:1. 导入数据集:从鸢尾花数据集中获取特征和标签。
2. 数据预处理:对特征进行标准化或归一化处理,以便特征具有相似的尺度。
3. 拆分数据集:将数据集划分为训练集和测试集,用于模型的训练和评估。
4. 计算先验概率:根据训练集中的标签计算每个类别的先验概率。
5. 计算类条件概率:对于每个特征和每个类别,计算其类条件概率。
6. 预测分类:使用贝叶斯公式,结合先验概率和类条件概率,计算后验概率,选择具有最高后验概率的类别作为预测结果。
7. 评估模型:使用测试集评估模型的性能,可以计算准确度或其他评价指标。
感知器算法:感知器算法是一种简单的分类算法,可以用于二分类问题。
该算法通过迭代更新模型的权重和偏置,使模型能够学习将数据分为不同类别。
在鸢尾花数据集上实现感知器算法的步骤如下:1. 导入数据集:从鸢尾花数据集中获取特征和标签。
2. 数据预处理:对特征进行标准化或归一化处理,以便特征具有相似的尺度。
3. 初始化权重和偏置:随机初始化模型的权重和偏置。
4. 迭代更新模型:对于每个样本,计算模型的预测值,与真实标签进行比较,根据预测的正确与否,更新权重和偏置。
5. 重复步骤4,直到达到预先定义的停止条件(例如达到最大迭代次数或预测准确率达到一定阈值)。
6. 评估模型:使用测试集评估模型的性能,可以计算准确度或其他评价指标。
需要注意的是,在实际应用中,贝叶斯算法和感知器算法可能需要进行一些改进和优化,以提高分类的准确性和性能。
以上只是一种简单的实现示例。
人工智能开发中的目标检测与物体跟踪技巧
人工智能开发中的目标检测与物体跟踪技巧随着人工智能的快速发展,目标检测与物体跟踪成为了计算机视觉领域的热门研究方向。
目标检测技术旨在从图像或视频中准确地识别和定位特定的对象,而物体跟踪则是在视频中实时追踪目标对象的位置与运动轨迹。
这两个技术的结合将在许多领域中发挥重要作用,例如智能监控、自动驾驶、视频分析等。
在目标检测与物体跟踪的发展中,研究人员提出了许多创新的算法和模型。
其中最重要的是基于卷积神经网络(Convolutional Neural Network,CNN)的方法。
CNN以其强大的特征提取能力和端到端的训练方式成为目标检测与物体跟踪的首选模型。
通过使用多层卷积和池化操作,CNN可以自动提取图像中的高级抽象特征,从而实现更好的目标识别和定位效果。
目标检测方法通常可以分为两类:基于区域的方法和基于锚点的方法。
基于区域的方法通过生成一系列候选的感兴趣区域(Region of Interest,ROI),然后使用CNN对每个ROI进行分类和定位。
这种方法的代表是R-CNN系列算法,包括R-CNN、Fast R-CNN和Faster R-CNN。
在这些算法中,候选区域的生成通常使用选择性搜索(Selective Search)等方法。
虽然基于区域的方法在目标检测中取得了很好的效果,但其速度相对较慢,不适用于实时应用。
为了解决基于区域方法的速度问题,研究人员提出了基于锚点的方法。
这种方法将候选框的生成过程融入到CNN中,通过在图像上生成大量不同尺度和长宽比的锚点,然后利用CNN网络对每个锚点进行目标分类和位置回归。
代表性的方法有YOLO(You Only Look Once)和SSD(Single Shot MultiBox Detector)。
这些方法快速且准确,适用于实时应用,成为目标检测领域新的研究热点。
物体跟踪技术是基于目标检测,通过连续帧之间的关联来实现目标的实时追踪。
在物体跟踪中,最常见的方法是基于相关滤波器的跟踪器。
贝叶斯节点使用说明
贝叶斯节点使用说明作者:张青松目录1. 贝叶斯节点 (2)1.1. 朴素贝叶斯分类基本原理 (2)1.2. 贝叶斯节点 (2)2. 贝叶斯设置 (3)2.1. 建立贝叶斯节点的工作流 (3)2.1.1. 设置 (3)3. 贝叶斯分类结果 (4)1.贝叶斯节点贝叶斯节点使用了经典的朴实贝叶斯(NaiveBayes)算法对数据进行分类,其核心思想是贝叶斯公式:对于给出的待分类项,求解在此项出现的条件下各类别出现的概率,取概率最大的类别作为对该项的分类结果。
1.1.朴素贝叶斯分类基本原理朴素贝叶斯正式定义如下:1.设x={a1,a2,…,a m}为一个待分类项,而每个a为x的一个特征属性.2.有类别集合C={y1,y2,…y n,}。
3.计算P(y1|x),P(y2|x),…,P(y n|x)。
4.如果P(y k|x)=max{P(y1|x),P(y2|x),…,P(y n|x)},则x∈y k。
针对训练数据中,某个类别下的某个特征划分没有出现时,会令分类器的质量大大降低。
为了解决这个问题,引入了Laplace校准。
其思想就是对每类别下所有划分的计数加1,或者概率加上一个很小的值,这样如果训练样本集数据充分大时,并不会对结果产生影响,并且解决了概率为0的尴尬局面。
1.2.贝叶斯节点在DataStudio中,通过设置面板在输入的训练数据表中,选择某个标称量字段作为分类目标字段以及另一部分列作为参与分类的特征属性,训练朴素贝叶斯模型,然后使用该模型对位置的数据进行分类。
2.贝叶斯设置2.1.建立贝叶斯节点的工作流图1 贝叶斯节点工作流首先为贝叶斯节点连接输入数据。
输入数据中必须包含类型为标称量的字段。
以数据集为例。
2.1.1.设置图2 贝叶斯节点数据选择设置选择数据集中的标称量字段作为分类的目标列,并且在下方表格中选中要作为特征属性参与分类的列。
切换到模型页签,如图。
图3 贝叶斯算法参数设置注意:模型页签中的默认概率表示上文中提到的Laplace校准参数,最大分类个数不能小于分类目标列标称量的个数。
二阶段目标检测算法
二阶段目标检测算法一、原理及流程具体流程如下:1.输入图像:将待检测的图像输入到算法中。
2.候选框生成:算法通过图像特征和先验知识生成多个候选框,候选框可能包含目标物体。
3.ROI特征提取:对于每个候选框,提取ROI(感兴趣区域)特征,通常使用卷积神经网络(CNN)提取特征。
4.候选框分类:通过分类器对ROI特征进行分类,判断候选框是否包含目标物体。
5.NMS(非极大值抑制):对于多个重叠的候选框,通过NMS方法选择得分最高的候选框作为最终检测结果。
6.输出结果:输出检测结果,即定位、分类和置信度。
二、主要算法及方法1. R-CNN(Region-based Convolutional Neural Network)系列:R-CNN是二阶段目标检测方法的开创者,它通过选择性方法生成候选框,并使用CNN提取ROI特征,最后使用支持向量机(SVM)对候选框进行分类。
后续改进的方法有Fast R-CNN、Faster R-CNN等。
2. SPP-Net(Spatial Pyramid Pooling Network):SPP-Net通过将不同尺度特征图输入到全连接层,实现了对任意尺度输入图像进行检测的能力。
3. SSD(Single Shot MultiBox Detector):SSD是一种基于锚框的目标检测算法,它在特征图上密集地使用多尺度锚框,通过卷积和非线性变换来预测候选框的位置和类别。
4. YOLO(You Only Look Once)系列:YOLO直接将目标检测问题转化为回归问题,通过将图像分为网格并预测每个网格的边界框和类别来实现目标检测。
YOLOv4是目前最新版本,它通过改变网络结构和训练策略进一步提高了检测性能。
三、应用及优势1.目标检测:二阶段目标检测算法在许多计算机视觉任务中都有广泛的应用,如人脸检测、行人检测、车辆检测等。
2.视频监控:二阶段目标检测算法可以用于实时视频监控系统,实现对目标物体的快速检测和跟踪。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Equivalence Detection Using Parse-tree Normalization forMath SearchMohammed Shatnawi Department of Computer Info. Systems Jordan University of Science and Tech. Jordan-Irbid (22110)-P.O.Box (3030) mshatnawi@.joAbstractI n recent years, efforts have begun to put math contents on the Web. As for other types of Web information, search capabilities should be provided to enable users to find what they need because without the ability to search the data for specific items, the data is useless. Conventional (i.e. text-based or even multimedia-based) search engines fall short of providing math-search capabilities. Preliminary efforts to create math-search systems have started, and many of the issues and the challenges for building such systems have been identified. One of the more difficult challenges is the detection of mathematical equivalence between expression in users’ queries and expressions in math contents. The purpose of this research is to develop techniques and algorithm for equivalence-detection based math search. In particular, this research aims to explore some proposed normalization rules, then to develop a general way that can be utilized to transform both the repository contents and users’ input expressions into a unified normalized form.1.1 IntroductionFinding needed information on the Web is not easy to achieve with a high degree of accuracy. Information retrieval systems have been designed to help users locate and retrieve their requests on the Web. Information retrieval systems are composed of some algorithms that try to make the search and retrieval of the requested information as accurate and fast as possible.Among all of these, "the text aspect has been the only data type that lends itself to a full functionalAbdou YoussefDepartment of Computer Science The George Washington University Washington, DC 20052ayoussef@processing" [1]. Many algorithms that work together trying to refine text search have achieved a good level of maturity. Unfortunately those search engines did not achieve the same progress in terms of mathematical expression as a separate distinguished type of text T he major obstacle to math search in current text search systems is that those systems do not differentiate between a user query that contains a mathematical expression and any other query that contains text term. Therefore, they process mathematical expressions as other texts, regardless of its nature of being well-structured and having properties that make it different from other forms of text.1.2 Accessing Math Expressions on the WebThere are many items that contain mathematical expressions in their content. Unfortunately, many of these items can not be accessed and retrieved by current search engines for the following reasons: • Virtually all searches are text-based [14], thus,unless we have an agreed upon technique that is understood by both users and search engines, a user needs to know the best search terms and the best way to write a query to be used in searching for any mathematical expression.• The same expression can be rewritten in manydifferent but equivalent ways (e.g. 1/x and x^-1) [13] [12].• Text-based search engines do not consider thesyntax of a mathematical expression as one of its main features [13] [12].• The way used to search for equivalent text terms(i.e. thesaurus to search for synonyms) is not feasible for searching for an equivalent mathematical expression [13].1.2.1Equivalence and InconsistencyEquivalence.One major problem in being able to retrieve relevant items is the inconsistency between the author's vocabulary and the user's vocabulary. Therefore, the user may search for a term the author does not provide. This problem has been studied in text search and there are some proposed solutions such as searching for the synonyms during the search process using thesaurus lookup. A similar problem exists when you search for a mathematical expression because the term y+x is the same as x+y mathematically, and 0.5 is the same as 1/2. This problem adds another obstacle that makes the current search engines fail in retrieving items that contain mathematical expressions. More precisely, the same mathematical expression can be represented in many (sometimes infinite) numbers of ways; thus, it is not feasible to use a thesaurus structure to search for all equivalent expressions.Even if the current search engines are equipped with tools to enhance their ability in retrieving items that contain a certain type of a mathematical expression, they will still fail in retrieving the documents that contain variants of that mathematical expression. Therefore, there is a needfor a way to retrieve the documents that contain not only the expression itself but also the expression's equivalent forms.1.2.2Syntax InterpretationAnother important reason that makes current search engines fail in retrieving mathematical expressions is that search engines do not understand mathematical structures but they well-understand text because a word in an unstructured text is simplya word with no data type definition and no conceptual definition.Mathematical expressions are well structured and the structure itself holds their correct interpretations.1.3Relation with Theorem ProvingSystemsGenerally, in theorem proving we want to verify whether some statement (the conjecture) is a logical consequence of a set of statements (e.g. axioms and hypotheses) [5]. In particular, theorem proving concerns itself with proving whether two given mathematical expressions are equivalent.Our problem is different form theorem provingin that we have only one mathematical expression as input and we need to find its many equivalent formsas our output after applying rules of equivalence thathave been fed to the system based on predefined Grammar of Equivalence Rules (GER) on the input expression.1.4ObjectivesThe objective of this research is to design and implement an effective and reliable technique that transforms a user input expression into a unique normalized form. This form will be used in searchingfor a mathematical expression in a way that takesinto account its unique properties. The way that expressions are stored in the searchable databasemust be compliant with the way normalized expressions are interpreted.1.5Definition of NormalizationNormalization is a sequence of transformationsthat transforms an original expression form one algebraic/structural form into an equivalent one. According to this definition we divided the normalization into two types, algebraic and structural normalization.In algebraic normalization, the process of normalization is done on the expression in its algebraic form. For example, the expression z+y+xwill be normalized into x+y+z.In structural normalization, the expression's parsetree structure will change after normalizing the mathematical expression. For this reason, we call it structural normalization.1.6Significant ContributionsThis research makes two significant contributionsto the field of math search.- Introduction of a new approach for addressing themath equivalence and detection techniques.- Development of a completely new method to discover different equivalent math expressions andmap all of them into one normalized form.2. A Mathematical Expression Parser(MEP)The first step of our work is to create a Mathematical Expression Parser (MEP), which creates a parse tree for a certain mathematical expression.2.1Equivalence Detection and Normalization(EDN)The equivalence detection and normalization is the most important part of our work. Indeed it is the core of our research. The EDN aims to transform the expression tree that we have created earlier using MEP into a normalized tree. This tree is equivalent to the original tree but it is an agreed upon representation, based on some rules, to facilitate the search process.In the first part of this research and for better understanding of our research we propose four fixed rules that can be applied to the tree that results from the MEP. Therefore, after applying them as needed, we shall be able to get the final normalized tree form. After that, the last normalized tree is used for comparison and matching during the search process.2.2 Group Removal RuleA mathematical expression is grouped if it appears between left and right parentheses.It is obvious that the above expression canbe transformed to the following expression tree using MEP: Figure 1: Tree representation of (d +c) +f^-a/3 The parse tree after applying this rule is depicted in figure 2.Figure 2: Tree representation of (d+c) +f^-a/3 after2.3 to the Negative Power RuleThe previous example has "to the negative power" sub expression (i.e. f^-a). This part can be transformed to an equivalent expression by using the following mathematical rule:• x^-y is equivalent to 1/x^yTherefore, according to this rule, the previous expression should be transformed to d+c+1/f^a/3 Figure 3: Tree representation for (d+c) +f^-a/3 afterthe second rule2.4 T ree Height CompressionIn this section we will follow the same procedure of decreasing the height of the tree by applying the rule of Height Compression. This rule works as follows:All the similar parent nodes that are descending from the same node are combined with lowest level parent node. Therefore, the leaves will be children of that common node given that the parent of each of those leaves will not change but their level will be changed after applying this rule. All of the above can be illustrated more by applying this rule on our example in figure 5. Therefore, the tree now would look like the following tree:Figure 4: Tree representation for (d+c) +f^-a/3 after2.5 T ree Reorder RuleSorting or reordering the leaves is done by following a user defined rule of reordering. For example, we proposed our defined rule, which is:Numbers < Alphabetic (string, character) <Operations (*, +) < Grouped ParenthesisSince we proposed the above rule, this does not mean that other users can not propose their own rule. But we have to apply the same proposed rule consistently on both the user query and the searchable database.After applying this rule, the expression treelooks like the following:Figure 5: Tree representation for (d+c) +f^-a/3 after3.Grammar of Equivalence RulesA Grammar is used to generate an infinite set of valid mathematical equivalence rules (e.g. x^-2 mathematically equivalent to 1/x^2). The grammar rules will impose some desired structure on the equivalence rules; the system administrator should follow this structure in order to add a valid mathematical equivalence rule to the GER. Moreover, our system should not accept an invalid rule (i.e. a rule that does not comply with the grammar rules).3.1 S yntax of GER RulesThe basic syntax for the rules in GER would be in the form of:E: E (E is a non terminal symbol which represents a mathematical expression)The left hand side of the ":" operator is the expression before applying certain rule of equivalence, while the right hand side of the ":" operator is the expression after applying certain rule of equivalence.3.2GER's Grammar: Formal DefinitionThe grammar that we will start explaining is a Context Free Grammar (CFG), where every production rule is in the form V → w where V is non-terminal symbol and w is a string consisting of terminals and/or non-terminals.Our grammar G is a quadruple (T, N, S, R), where:T is a finite set of terminal symbols,N is a finite set of non-terminal symbols,S is a unique starting symbol.R is a finite set of productions of the form αÆβ, where α and β are strings of non-terminals and terminals.We build the following grammar to start with for our normalization system, we use the notational shorthand '|', which can be read as "or", to represent multiple production rules within a single line:G= {T, N, S, R,}T= {0, 1, 2... 9, -1, $, #,-},N= {S, E, T, F, B, D},R= {SÎE: E,EÆ E+T | E-T | T, TÆT*F | T/F | T^F | F,FÆ (E) | B, (i.e. B stands for basic term)BÆ $D | -$D | #D | 0 | 1 | -1, DÆ 0...9 | DD}Our normalization system will be built based on the above basic grammar. Based on that grammar one can expand it to include many valid mathematical equivalence rules. 3.3Tree Compression Rule's GrammarThis rule has a distinct grammar in order to make it easier to add such those rules (i.e. tree compression rule for different operators). Tree Compression rule goes under the structural normalization; the grammar for this rule will be as follows:First of all, the general rule format that is discussed earlier is a little different form this rule format, which should be specified as follows:E: GHere, in the tree compression rule, the structure of the tree is going to be changed after applying any form of the above rule. Therefore the right sub expression (i.e. the one after applying this rule) has a different structure from the left sub expression.The grammar for this rule is explained as follows:T= {0, 1, 2... 9, $, -},N= {S, E, T, F, B, G, K, D},R= {SÎE: E| E: G, EÆ E+T | E-T | T,TÆT*F | T/F | T^F | F, FÆ (E) | B, BÆ $D | -$DDÆ 0...9 | DD, GÆ +GK | -GK | /GK | ^GK | (G) | K | KK, KÆ BBased on the above grammar, the system administrator can use to add the following tree compression rules:3.4 G eneric NormalizationThe normalization system that is built based on GER is termed generic normalization. Based on GER the system administrator should be able to add any valid mathematical equivalence rules, our normalization system should be able to detect equivalence for those added rules. We have developed algorithms that detect equivalence for any added rule that conforms to the grammar; any added rule to the generic normalization system is derived from a general principle in which a rule is admissible if and only if there is a corresponding transformation on the parse-tree [9].Our universal normalization algorithm’s idea is straight forward and based on the idea of pattern matching. The algorithm scans the input expression looking for a match with the left hand side of a rule so a rule can be applied on that expression (i.e. or sub-expression).3.5 Rule ValidationOur normalization system should not allow the system administrator to add an equivalence rule that does not comply with the specified format. In other words, if a rule does not comply with the format that we have specified earlier and/or does not complywith the above GER grammar, the system rejects the rule.The system administrator should have the basic mathematical knowledge in order to ovoid adding an invalid mathematical equivalence rule, or the system administrator should have a trusted mathematical reference to refer to, in order to verify the equivalence rule correctness.The Validator is a component of our normalization system that is responsible for validating the correctness of any equivalence rules that is added by a system administrator. The Validator verifies if the added rule is compliant with the GER grammar format. This validation process is done using a compiler compiler such as javaCC. Figure 6: General Normalization System Based onGER (Administrator’s Part)4. Performance AnalysisMeasuring the performance of any newly developed system is required to evaluate its effectiveness and to compare it with other systems.The major problem in measuring the performance of math search systems is the lack of any math query benchmark because this area is relatively new. In the absence of an agreed upon query benchmark, the performance of our normalization system is based on the searchable database content. Therefore, the result of a certain search using the same set of normalization rules on two different database contents results in two different outcomes [3].The main goal of the normalization system is to increase the number of true hits when a user searches for a math expression. Therefore, after applying a set of normalization rules on both; a certain type of database content and a user math query, this process will result in new math expressions which will not be founded without applying that set of normalization rules. The following examples will clarify the above concepts.Suppose the database content has the following math expression:(a^b)^c+k^(-g)And the user searches for a^(b*c)+1/k^g or the user searches for part of the previous expression (i.e.a^(b*c) or 1/k^g). In this case, without applying any kind of normalization rules, the searches does not retrieve the expression (a^b)^c+k^(-g) since this expression does not match the user request or the search may retrieve many irrelevant items before it retrieves the relevant one. The search engine uses the techniques for text retrieval and probability of occurrences (i.e. a, b, c, k, and g may not achieve the required threshold to be retrieved as a result of the user search).There are two normalization rules that have been accepted and added to a list of normalization rules to be applied on the database content and on the user math query. These normalization rules are:1-(a^b)^c:a^(b*c)2-a^(-b):1/a^bIf the above two rules were applied, the database content and the user query will be normalized according to them. Therefore, the database content will be normalized to a^(b*c)+1/k^g.In case of a complete database and enough normalization rules, the number of relevant retrieved items will be increased (i.e. precision will be increased). Some of the items that would not be retrieved without normalization, normalization increases the chance for such those items to be retrieved, therefore, the recall will be effected positively as well [2][1].5.ConclusionThis research shows that we have achieved some progress in searching for a mathematical expression (e.g. y+x). In our research we focused more on mathematical expression search process in terms of search engines and the Web search issues.After applying the normalization and equivalence rules, the recall and even precision of our search will be increased. Since we are transforming different equivalent mathematical expression into a common form, this common form will be compared against the searchable database, which contains the normalized form of that expression as well. According to that, the comparison process will end up finding most of the items that have the common mathematical expression [2][1].According to the above, our research is good in terms of enhancing the mathematical expression web search process. This way of enhancing is done by using GER in which a system administrator can adddifferent kind of normalization rules based on the predefined grammar. This normalization system transforms a user input, which is a mathematical expression, to a normalized unique form. The latter is equivalent to the original user input. In order to transform the input expression into its normalized form the system applies a set of rules on the input expression.6.Future WorkMuch remains to be done. The following is a small list of possible directions of future work:• Once digital libraries of mathematics (e.g. theDLMF of NIST [13]) become available and “standard” benchmark mathematical queries have been developed and accepted, it will be logical to measure the improvement in recall (and precision) that normalization brings to math search.• Quantification of the performance improvementof each added equivalence rule.• Testing on human subjects in various science/math communities and at various professional levels which equivalence rules are helpful and which would be confusing.• Expanding the grammar of equivalence rule byadding more operations.• Relevance ranking can be adjusted to reflect: • How widely recognized is the equivalence rulethat caused the matching and • The profile of the users.7. References[1]Kowalski, Gerald J., Maybury, Mark T. "Information Storage and Retrieval Systems: Theory and Implementation", Springer, 2nd edition, 2000.[2] Precision/Recall,/hsl/Searching/Reca ll-Precision.html[3] Joydeep Ghosh “Performance Evaluation ofInformation Retrieval Systems”, /users/mooney/ir-course/slides/Evaluation.ppt[4] Sergey Brin and Lawrence Page, "TheAnatomy of a Large-Scale Hypertextual Web Search Engine”, Proceedings of the 7th international conference on World Wide Web, Brisbane, Australia, 1998.[5] Automated Theorem Proving,/~tptp/OverviewOfATP .html[6] Semantic Web, /2001/sw/ [7] Thomas W. Parsons, "Introduction to CompilerConstruction", Computer Science Press, W.H. Freeman and Company, 1992. [8]Geoffrey Weglarz "Two Worlds of Data – Unstructured and Structured", DM Review Magazine, September 2004.[9] Derivations and Parse Trees,http://www.cs.nuim.ie/~jpower/Courses /parsing/node24.html[10] Saracevic, T. “Relevance: A Review of and aFramework for the Thinking on the Notion”, Journal of the American Society of Information Science, 26(4), 1975, 321-343.[11] Baeza- Yates, R. and Ribeiro-Neto, B. “Moderninformation retrieval”, Reading, MA, Addison-Wesley, 1999.[12] Youssef, A. “Information Search And Retrievalof Mathematics Contents: Issues and Methods”, The proceeding of the ISCA 14th International Conference on Intelligent and Adaptive Systems and Software Engineering (IASSE-2005), July 20-22, 2005, Toronto, Canada.[13] Abdou Youssef, Bruce R. c "Technical Aspectsof the Digital Library of Mathematical Functions, Annals of Mathematics and Artificial Intelligence, Volume38, pp. 121-136, 2003.[14] Robert Miner "Math Searching and MathML inthe NSDL", presentation, 2004.。