GTR No 2 第1次修订
GTR(全球统一汽车技术法规)介绍
GTR技术法规介绍来源:全国汽车标准化技术委员会1.GTR技术法规的制定组织和《1998年协定书》GTR法规全称为全球统一汽车技术法规,由联合国世界车辆法规协调论坛(UN/WP29)负责制定发布,WP29原为联合国欧洲经济委员会内陆运输委员会下属的车辆结构工作组,在《1958年协定书》的框架下制定并实施ECE汽车技术法规,从20世纪80年代初开始,随着经济全球化的到来,许多国家和地区的政府开始认识到各自为政的汽车技术法规体系阻碍了汽车产品在全球范围内的自由流通,限制并阻碍了商品经济规律应起的作用,于是由国际上一些汽车工业发达国家牵头,开始进行国际汽车技术法规的协调与统一的工作,以打破世界各国、各地区已形成的汽车技术法规这一贸易技术壁垒。
在当时情况下,联合国欧洲经济委员会车辆结构工作组(UN/ECE/WP29)成了开展这种世界范围内汽车技术法规协调和统一工作的主要组织。
WP29于1998年6月25日制订《全球汽车技术法规协定书》[1],因此该协定书也就简称为《1998年协定书》。
世界各国以此协定书为法律框架,共同制修订全球统一的汽车技术法规。
该协定书在法律地位上明确原UN/ECE/WP29(联合国欧洲经济委员会车辆结构工作组)作为开展全球汽车技术法规协调和统一工作的国际组织,UN/ECE/WP29的名称随之更改为:“世界车辆法规协调论坛”(World Forum for Harmonization of Vehicle Regulations),仍简称为WP29,开始按照《全球汽车技术法规协定书》中规定的程序规则制定全球统一的汽车技术法规,到目前,《1998年协定书》的正式缔约方共计31个[2]。
历史之所以选择UN/ECE/WP29来开展全球范围内的汽车技术法规协调统一工作,其原因为:①UN/ECE/WP29成功运作《1958年协定书》,具有开展国际汽车技术法规统一工作的技术基础;②UN/ECE/WP29的广泛参与性,使其具有开展国际汽车技术法规统一工作的技术基础。
柯顿电台菜单1 (2)
Fcfglenaetstatue字符串长度
62characters
60字符
Fcfglenmessage
工厂信息字符串长度
90characters
90字符
Fcfglenphone
工厂电话字符串长度
16digits
15位
Fcfglenselcalladd
工厂选呼地址字符串长度
6digits
6位
1seconds
Macropause宏暂停
3seconds
Mscrosinglestep宏单步
On
Macrotune
宏调
Messages信息
55JL
Mode方式
Mute静音
On
Mutescan静音扫描
Selcall选呼
Scanforvoice
语音扫描
Passwordadmin
管理员密码
Passworduser
客户名称
Customerprofile客户简介
ZLF.nsp
Customerradio
客户电台
Sr
Customerreferemce
客户参考
Devices驱动
Easitalk
清晰谈
No
开
Fcfgclarifiermode工厂频率微调方式
Land陆地
Fcfgclarifierrange工厂频率微调范围
Mmaster
主
Slave
属
CfgTxpower
Maximum
50W
发射功率配置
最大值
50瓦
Cfgunits
单元配置
Metric
十进制
Impartial
GTR No 1
ECE/TRANS/180/Add.11 April 2005GLOBAL REGISTRYCreated on 18 November 2004, pursuant to Article 6 of the AGREEMENT CONCERNING THE ESTABLISHING OF GLOBAL TECHNICAL REGULATIONS FOR WHEELED VEHICLES, EQUIPMENT AND PARTS WHICH CAN BE FITTED AND/OR BE USED ON WHEELED VEHICLES(ECE/TRANS/132 and Corr.1)Done at Geneva on 25 June 1998AddendumGlobal technical regulation No. 1DOOR LOCKS AND DOOR RETENTION COMPONENTS(Established in the Global Registry on 18 November 2004)UNITED NATIONSECE/TRANS/180/Add.1page 3TABLE OF CONTENTSA. STATEMENT OF TECHNICAL RATIONALE AND JUSTIFICATION (4)B. TEXT OF REGULATION (17)1. SCOPE AND PURPOSE (17)2. APPLICATION (17)3. DEFINITIONS (17)REQUIREMENTS (19)4. GENERALREQUIREMENTS (19)5. PERFORMANCECONDITIONS (23)6. TESTPROCEDURE (23)7. TESTANNEXESAnnex 1 Latch Test for Load Test One, Two, and Three Force Applications (25)Annex 2 Inertial Test Procedures (31)Annex 3 Hinge Test Procedure (39)Annex 4 Sliding Side Door, Full Door Test (44)Annex 5 Vehicle Category Definitions (48)* * *ECE/TRANS/180/Add.1page 4A. Statement of Technical Rationale and JustificationI. IntroductionCurrent regulations were designed to test for door openings in vehicles that were built in the 1960s. Aside from changes made to United States of America and Canadian requirements in the early to mid-1990s to address rear door openings, no significant changes have been made to any of the current regulations. While existing regulations governing door openings have proven largely effective, door openings continue to present a risk of serious injury or death to vehicle occupants, particularly when an occupant is unbelted.The precise size of the safety problem posed by inadvertent door openings is difficult to quantify because very few jurisdictions gather the type of crash data needed to evaluate the problem. This task is further compounded by the effect of occupant belt use on injury risk. Notwithstanding the difficulty in quantifying the overall benefit associated with the establishment of a global technical regulation internationally, the types of changes to door retention components needed to upgrade existing regulations and standards appear to be quite small. Additionally, vehicle manufacturers and the ultimate consumers of motor vehicles can expect to achieve further cost savings through the formal harmonization of differing sets of regulations and standards that already largely replicate each other.Research conducted by the United States of America indicates that there are approximately 42,000 door openings in crashes in the United States of America per year. 1/ While this number corresponds to less than one per cent of the roughly six million crashes that occur in that country each year, the majority of those crashes do not occur at speeds where a door opening is likely. Rather, door failures appear to be most common in moderate- to high-speed crashes. 2/ Structural failures of the latch and striker are the leading cause of door openings. The United States of America’s evaluation of its data indicates that about two-thirds (64.5 per cent) of door openings involve damage to the latch or striker, either alone or in combination with damage to one or more hinges. The next most likely causes of a door opening are the failure of the vehicle structure holding the door in place or the door itself. In 8.37 per cent of the evaluated cases, the door support, e.g., B-pillar or C-pillar, was damaged; while in 9.68 per cent of the evaluated cases, the door structure caused the door to open without damaging the actual door retention components. Only rarely did a door open with no damage to the door whatsoever (2.15 per cent). 1/ At the request of the Working Party on Passive Safety, the United States of America provided data on the magnitude of the door ejections and door openings based on 1994-99 National Automotive Sampling System (NASS) and Fatal Analysis Reporting System (FARS) annual estimates. No data from other jurisdictions were presented.2/ In the United States of America the average change of velocity (delta V) for crashes where a door opens is approximately 30.5 km/h; the average delta V for crashes where there is no failure of the door retention system is approximately 21 km/h.ECE/TRANS/180/Add.15pageThe type of crash also has an impact on the likely type of door failure. The primary source offailure in side impact crashes was damage to the latch/striker assembly, while damage to the doorsupports was a distant secondary source. In rollover crashes, non-structural failures, i.e., thosewhere there is no damage to the door, are more common.In 1991, the United States of America conducted an engineering analysis of door latch systems incases involving vehicle side door openings to determine the loading conditions and failure modesof door latch systems in crashes. 3/ This analysis revealed the following four distinct failuremodes:Structural FailuresStructural failures are characterized as physical damage to the latch, striker, or hinges. Othertypes of structural failures include broken attachment hardware or separation of a latch, striker, orhinge from its support structure.Detent Lever-Fork Bolt Misalignment (Bypass) FailuresDetent lever-fork bolt misalignment (bypass) failures may occur when the striker is subjected tolongitudinal forces in conjunction with lateral forces. These forces cause the fork bolt to moveand become misaligned with the detent lever, causing the latch to open. These forces mosttypically occur in frontal and oblique frontal impacts.Linkage Actuation FailuresLinkage actuation failures are caused by forces being transmitted to the door’s linkage system(i.e., the connection between the door handle and the door latch) due to vehicle deformationduring a crash. It may be possible to observe some bowing of the door after a linkage actuationfailure.Inertial Force FailuresInertial force failures are latch openings due to acceleration of latch system components relative toeach other, which produce sufficient inertial force to activate the latch. Often, there is no visibledamage to the latch or striker system. Inertial loading typically occurs in rollover crashes or whena portion of the vehicle other than the door is impacted at a high speed.These four failure modes can be categorized as either structural failures or actuation failures.Structural failures usually leave clear evidence of the component failure and result in aninoperable door retention system. Actuation failures consist of latch by-pass, linkage actuation,and inertial force failures. Often a door opening caused by an actuation failure will not leave anyreadily visible evidence that the crash caused the door to open and will not affect the retentionsystem’s subsequent ability to open and close correctly. Thus, many of the failures associatedwith a latch by-pass, linkage actuation, or inertial force failure will be represented by the 2.15 percent of crashes where no damage to the door was observed.3/ Door Latch Integrity Study: Engineering Analysis and NASS Case Review,December, 1991, Docket No. NHTSA-1998-3705.ECE/TRANS/180/Add.1page 6According to the United States of America statistics, less than one per cent of occupants who sustain serious and fatal injuries in tow-away crashes are ejected through doors. Yet, despite the relatively rare occurrence of door ejections in crashes, the risk of serious or fatal injury is high when ejection does occur. Door ejections are the second leading source of ejections in all crashes in the United States of America. They are particularly likely in rollover crashes. Door ejections constitute 19 per cent (1,668) of all ejection fatalities and 22 per cent (1,976) of all ejection serious injuries in the United States of America each year. Of the approximately 42,000 door openings in the United States of America each year, side door openings constitute approximately 90 per cent (1,501) of all door ejection fatalities and 93 per cent (1,838) of the serious injuries.The rate of ejections through doors is heavily dependent on belt use. 94 per cent of serious injuries and fatalities attributable to ejections through doors in the United States of America involve unbelted occupants. While the risk of ejection will likely vary from jurisdiction to jurisdiction, based on differing rates of belt use, the incidence of door openings should be relatively constant among various jurisdictions given the similarity in door designs and the lack of occupant behaviour patterns as a factor in door failures.BackgroundII. ProceduralDuring the one-hundred-and-twenty-sixth session of WP.29 of March 2002, the Executive Committee (AC.3) of the 1998 Global Agreement (1998 Agreement) adopted a Programme of Work, which includes the development of a global technical regulation (gtr) to address inadvertent door opening in crashes. The Executive Committee also charged the Working Party on Passive Safety (GRSP) to form an informal working group to discuss and evaluate relevant issues concerning requirements for door locks and door retention components to make recommendations regarding a potential gtr.The informal working group was established in September 2002. The United States of America volunteered to lead the group’s efforts and develop a document detailing the recommended requirements for the gtr. The United States of America presented a formal proposal to the Executive Committee of the 1998 Agreement, which was adopted in June 2003 (TRANS/WP.29/2003/49). The GRSP developed the door locks and door retention gtr. At its May 2004 session, the GRSP concluded its work and agreed to recommend the establishment of this gtr to the Executive Committee.III. Existing Regulations, Directives, and International Voluntary StandardsThere are several existing regulations, directives, and standards that pertain to door locks and door retention components. All share similarities. The Canadian and US regulations are very similar to each other and the Japanese and UNECE regulations are very similar to each other. The European Union Directive is an exact alternative of the UNECE regulation requirements. The Australian regulation has commonalities to both of the above-mentioned pairs. A preliminary analysis has been made to identify the differences in the application, requirements, and test procedures of the North American and UNECE Regulations (TRANS/WP.29/GRSP/2001/1 and TRANS/WP.29/2003/49). There are no apparent conflicts between the gtr and other existing international regulations or standards. However, the gtr does incorporate aspects of the existing regulations, directives and standards that are not common to all existing requirements. Given theECE/TRANS/180/Add.17pagegenerally minor variability in the door retention designs among these jurisdictions that currentlyregulate door design, it is not expected that the additional requirements imposed by the gtr arelikely to drive major, costly changes to existing door retention designs.IV. Discussion of Issues Addressed by the gtrThe proposed gtr provides that certain door retention components on any door leading directlyinto an occupant compartment, i.e., a compartment containing one or more seatingaccommodations, must comply with the requirements of the gtr. Tractor trailers are excludedbecause they do not meet this criterion. Likewise, doors leading into cargo compartments that areseparated by a barrier would not be regulated since an individual could not access the occupantcompartment through those doors. The gtr excludes folding doors, roll-up doors, detachabledoors, and doors that provide emergency egress, as these types of doors would require entirelynew test procedures and are not in such common use as to justify the development of newrequirements and test procedures. Thus, for certain vehicle designs, some, but not all doors wouldbe regulated by the gtr.During the development of the gtr, all issues were thoroughly discussed. The followingdiscussions reflect the evaluation of the issues that lead to the final recommendations.(a) ApplicabilityThe application of the requirements of this gtr refers, to the extent possible, to the revised vehicleclassification and definitions that the Working Party on General Safety (GRSG) Common TaskInformal Group has prepared. Difficulties were encountered in determining which vehicles wouldbe covered. Currently, UNECE Regulations only apply to M1 vehicles (passenger vehicles withup to 9 seats in total) and N1 vehicles (goods vehicles weighing up to 3,500 kg gross vehiclemass). It was posited that it would be difficult to apply full door tests, such as the proposedinertial load, to large trucks and specialized vehicles. With the decision not to propose theinclusion of two full door tests, discussed in greater detail below, these concerns were largelyresolved. Likewise, the retention of a calculation for meeting the inertial load requirements wouldallow a jurisdiction to avoid applying a full-door inertial load test for doors on heavier vehicles.To address concerns about the applicability of door retention requirements to heavier vehicles, itwas proposed that the gtr only apply to passenger cars, light commercial vehicles, and vans andthat other vehicles be excluded initially, then added in the future after further evaluation ofvarious door designs. The argument in favour of a more inclusive gtr focuses attention on thecurrent United States of America, Canadian, Japanese, and Australian requirements that alreadyapply to all vehicles other than buses (M2 and M3 vehicles) and that the applicability of existingrequirements to commercial trucks has not proven problematic for vehicle manufacturers. Thisargument supports the exclusion of specific door types rather than entire classes of vehicles.ECE/TRANS/180/Add.1page 8Heavy trucks in the United States of America have been subject to that country’s door retention requirements since 1972. The United States of America requirement was extended to trucks because researchers from a major United States of America university determined in a study published in 1969 that the rate of door ejection from truck doors was approximately twice that from doors on passenger cars that met the door retention requirements. The authors of the study concluded that at 40.3 per cent, the level of door failure in the truck fleet was approximately four times the failure rate of regulated passenger cars and roughly equivalent to the rate of failure in passenger cars manufactured before 1956. They also concluded that insufficient door retention was a problem across vehicle weight classifications, with pick-up trucks, medium-weight trucks and tractor trailers all exhibiting a door failure rate in excess of 33 per cent.To accommodate both positions, the gtr will apply to all vehicles except buses, with exceptions for specific door designs. The gtr incorporates the definitions of Category 1-1 vehicles and Category 2 vehicles developed in draft Special Resolution 1 (S.R. 1) concerning common definitions and procedures to be used in global technical regulations, which will be submitted as an informal document at the one-hundred-and-thirty-fourth WP.29 session and with an expected adoption at the one-hundred-and-thirty-fifth WP.29 session. If a jurisdiction determines that its domestic regulatory scheme is such that full applicability is inappropriate, it may limit domestic regulation to vehicles with a gross vehicle weight of 3,500 kg or less. The jurisdiction could also decide to phase-in the door retention requirements for heavier vehicles, delay implementation for a few years, or even to impose only some of the gtr requirements to these heavier vehicles. For example, it is unlikely that a jurisdiction would want to require heavier truck doors to meet the dynamic inertial test rather than the calculation. On the other hand, the longitudinal and transverse load requirements have been applicable to heavy trucks in the United States of America and Canada for over thirty years without imposing any hardship on vehicle manufacturers.(b) DefinitionsDefinitions, used in this gtr, are defined in section B, paragraph 3. of this regulation, with the exception of those related to the applicability. Definitions that relate to the applicability are drawn from a draft version of S.R. 1 and are listed in Annex 5.(c) General RequirementsGRSP agreed to recommend that the gtr should specify requirements for side and back doors, door retention components and door locks. The United States of America, Canadian, and Australian regulations have provisions for back doors and door locks, the UNECE Regulations do not. Currently, UNECE Regulations require that the sliding door systems be tested in a fully latched position and an intermediate latched position. If there is no intermediate position, when unlatched, the door must move into an apparent open position. The United States of America and Canadian regulations have no latching system requirements for the sliding doors. The Working Party decided that it was appropriate to regulate the sliding side door latching system, but recognized that the existing UNECE requirement to determine whether a sliding side door was unlatched was too subjective. Accordingly, the gtr specifies a door closure warning system that activates when the sliding side door is not latched and there is no intermediate/secondary latching position.ECE/TRANS/180/Add.19pageThe inclusion of a requirement in the gtr that side doors remain shut during vehicle dynamic crashtests, as well as a requirement that at least one door per row be operable following a crash test,was considered. Existing UNECE Regulations with dynamic crash test components alreadyrequire all doors to stay closed during the test and at least one door per seat row to be operableafterwards. It is believed that it is unnecessary to repeat this requirement in the gtr and itsinclusion would make the certification process under this regulation very difficult. However,recognizing the value of such a requirement, non-UNECE countries have agreed to considerincluding a similar requirement in their domestic regulations. This will result in a harmonizedrequirement outside of the context of the gtr.Force levels identified in the current component static tests for latches and hinges have beenharmonized to eliminate variations due to rounding of unit conversions.(d) Performance Requirements(i) Hinged Doors IssuesCurrently, UNECE Regulation No. 11 has similar hinged door requirements to the NorthAmerican regulations, although UNECE Regulation No. 11 does not distinguish between cargoand non-cargo door latches. The Working Party agreed to recommend that cargo doors (i.e.,double doors) meet the same requirements as hinged doors if they provide access to the occupantseating compartment. Additionally, the term "cargo door" has been eliminated to clarify thatdoors that do not lead into an occupant compartment with one or more seat positions are notregulated by the gtr.(ii) Load TestsBoth regulations require load tests of the hinge systems in the longitudinal and transversedirections. These tests remain, but have been reworded such that the loads are applied based onthe alignment of the hinge system and not the alignment of the vehicle. A load test in the verticaldirection was evaluated and ultimately rejected except for back doors. Since a large number ofdoor openings occur during vehicle rollovers, it was suggested that perhaps a load test in thevertical direction would help reduce these types of openings. However, it was ultimatelydetermined that the addition of a load test conducted in a direction orthogonal to the existing testscould not be justified at the present time. Those countries concerned about protecting againstrollover crash door openings may determine that such a test would be useful outside the context ofthe gtr.ECE/TRANS/180/Add.1page 10(iii) Inertial TestA dynamic inertial test requirement was added to the gtr, as an option to the inertial calculation. There are provisions for this type of testing in both the UNECE and North American regulations, but there is no specified test procedure. A test procedure was developed based on the testing currently conducted for the UNECE requirement and validated by the United States of America and Canada. In addition to the longitudinal and transverse tests, tests in the vertical direction were considered. Conducting the inertial test in the vertical direction is feasible, but it is much more difficult to conduct than the tests in the longitudinal and transverse directions. Since the most common failure mode demonstrated in the inertial tests conducted by Canada was in the direction of door opening, it was determined that a test in the vertical direction appeared to be beneficial only for back door designs, which commonly open in the vertical direction. However, those countries concerned about protecting against rollover crash door openings may determine that such a test would be useful outside the context of the gtr.(iv) New Combination Component TestThe United States of America developed a new combination test procedure for hinged side doors that is representative of the combination of longitudinal compressive and lateral tensile forces that occur in real-world latch failures. Currently, no regulation, directive, or international voluntary standard has such a requirement, although it is possible that a test developed by one vehicle manufacturer may be suitable for substitution once it has been fully evaluated and a benefits correlation has been conducted.Examples of the types of crashes in which forces addressed by the combination test could occur are crashes in which either the front or the rear of the vehicle is impacted (including in an offset mode). The proposed combination test procedure was a static bench test capable of evaluating the strength of the latching systems and designed to detect fork bolt detent bypass failures. No other test procedure within the gtr simulates these types of latch failure conditions.In the combination test, the latch is mounted on a flat steel plate that moves horizontally and the striker is mounted on a vertically moving ram device. During the test, the latch and striker, while in their primary coupled position, are simultaneously moved such that lateral tension (i.e., force applied perpendicularly to the coupled latch and striker) and longitudinal compressive forces (i.e., force applied against the latch toward the striker) are applied at their interface.The required forces for the primary position of the hinged side door latching systems would be simultaneous forces of 16,000 N longitudinal compressive force and 6,650 N lateral tensile force. The longitudinal force application device is moved at a rate of one centimeter per minute until the longitudinal force is achieved.There is widespread support for a test that addresses the door failure modes represented by this test. However, in some vehicles, the test setup is such that the striker cannot interface with the faceplate of the latch, rendering the test meaningless. While it is possible to modify the striker portion of the latch system so that the test can be conducted, there is strong concern regarding the adoption of this type of procedure and its potential for enforceability questions.The adoption of the combination test into the gtr is not supported at this time due to the technical difficulties in conducting the test. Instead, the Working Party delegates and representatives will continue to review work on the modification of the United States of America-based procedure, or the development of a new procedure, to capture the benefits associated with a test addressing door failures due to simultaneous compressive longitudinal and tensile lateral loading of latch systems in real world crashes. Any acceptable procedure developed could then be added to the gtr as an amendment.(v) Door HingesBoth the UNECE and North American regulations have the same load testing requirements for door hinges. The current side door requirements for hinges, which are based on SAE Recommended Practice J934, Vehicle Passenger Door Hinge Systems, appear to test adequately the strength and design of door hinges. The United States of America’s comprehensive analysis of its data and possible failure modes has not revealed problems with door hinges. Accordingly, these requirements have been included in the gtr. The current UNECE requirements only allow for the hinges to be mounted on the forward edge in the direction of travel. This requirement was based on the safety concern of a possible inadvertent opening while the vehicle is in motion. This requirement, as stated, was found to be design restrictive and the safety concerns were resolved by developing text to regulate the design and not prohibit it.(vi) Hinged Side Door System Tests (Full Door Tests)A new series of test procedures was designed to simulate real world door openings in crashes. These tests consist of door-in-frame quasi-static (full door) tests in both longitudinal and lateral directions, independent from the door system.The lateral full door test is designed to simulate latch failures in crashes that produce outwards forces on the door (i.e., through occupant loading or inertial loading) such as side crashes that result in vehicle spin and rollover. The longitudinal full door test is designed to simulate a collision in which the side of the vehicle is stretched, leading to the possibility that the striker could be torn from its mated latch (i.e., far side door in side impacts, and front and rear offset crashes on the opposite side door).The inclusion of the full door tests in the gtr was not supported because the tests raise concerns about unduly restricting door designs, developing a repeatable and enforceable test procedure, and addressing door openings under real world conditions. Because of the current UNECE requirement for both the component tests and a door closure requirement in dynamic tests, there is some question as to whether a full door test provides any additional value. In an analysis of the proposed tests using its FARS and NASS databases, the United States of America was unable to correlate the proposed tests with a reduction on door openings in real world crashes at a level that was statistically significant.The contemplated test procedures were evaluated and concerns were expressed that the new procedure will end up being unduly design restrictive, given the limitations of the test frame. For example, it may be that multiple test frames would be required to ensure an appropriate "fit" between the door and the test frame. This is because placement of the test load relative to the latch mechanism may be sufficiently different to produce significantly different results, andbecause door specific holes must be drilled into the test frame. Additionally, the test frame may not adequately address new latch designs that may be mounted in non-traditional locations. Likewise, the procedure does not allow manufacturers the benefit of non-latch attachments that are primarily used for side impact purposes but also may have a positive effect on door closure. Concerns were voiced that conducting the proposed tests on a test frame rather than on the full vehicle is impractical because not all loads can be applied to a closed door. However, it may be possible to cut the door frame and attach it to the test fixture, although such an approach may not fully replicate the actual door-in-frame as installed in the vehicle since cutting the door frame may change its characteristics. Such an approach may address the fit between the latch and striker, as well as the physical characteristics of the door and the doorframe. Accordingly, it was finally agreed not to include these proposals.(vii) Side Sliding Doors IssuesThe requirements and test procedures in both UNECE Regulation No. 11 and the North American standards for the track and slide combinations of side sliding doors are included in the gtr. The latch/striker system requirements of UNECE Regulation No. 11 are also included. However, neither regulation has a detailed full vehicle sliding door test procedure that simulates real world door openings in crashes.Simply testing the strength of the latch fails to fully account for the design of a sliding door. The current regulations for hinged doors adequately address door retention components because they test both the latch system and the hinge system. Since a sliding door has no hinges, only the latch is evaluated. The lack of a test for retention components other than the latch is an obvious weakness in the existing standards. Yet evaluating these components through a bench test would be impossible. The retention components simply are not amenable to a component test. The full-door test overcomes the lack of a component test similar to the hinge test for other doors by evaluating all retention components while the door interfaces with the doorframe.The procedure involves a full vehicle test in which a sliding door is tested by applying force against the two edges of the door. The test setup is initiated by placing two loading plates against the interior of the door. The loading plates are placed adjacent to the latch/striker system located at the door edge. If the door edge has two latch/striker systems, the loading plate is placed between the two systems. If a door edge does not have a latch/striker system, the loading plate is placed at a point midway along the length of the door edge. An outward lateral force of 18,000 N total is then applied to the loading plates, placing force against the two door edges. A test failure would be indicated by a 100 mm separation of the interior of door from the exterior of the vehicle’s doorframe at any point or either force application device reaching a total displacement of 300 mm. The gtr requires that there be no more than 100 mm of separation, even if the latch system does not fail, because, unlike hinged doors, the configuration of sliding doors allows for separation of the door from the frame without the latch system failing. The 100 mm limit is based on a commonly used measurement for maximum allowable open space in the United States of America and Canada for school bus opening requirements.The sliding door test procedure specifies that the test be conducted with force application devices that, when installed as part of the test setup, are each capable of reaching a total displacement of at least 300 mm after placement of the loading plates against the interior of the door. Under the test,。
GTR_TYRE_第21_次会议围绕六大议题展开讨论
20综述SUMMARYGTR TYRE 第21次会议围绕六大议题展开讨论作者 杨 振 谢东明2019年1月21~22日,轮胎全球技术法规(GTR TYRE )第21次会议在日内瓦召开。
加拿大交通部、美国高速公路安全管理局(NHTSA )、俄罗斯国家汽车工程研究院(NAMI )、日本汽车标准化国际中心(JASIC )、中国汽车技术研究中心有限公司(CATARC )等政府及政府相关研究机构,以及美国轮胎制造商协会(USTMA )、欧洲轮胎轮辋技术组织(ETRTO )、日本汽车轮胎协会(JATMA )、印度机动车辆研究协会(ARAI )等国际组织的专家共计20余人参加了会议。
Andrei V. Bocharov 博士作为GTR TYRE 第二阶段法规协调非正式工作组主席主持了本次会议,ETRTO 秘书长Nicolas deMahieu 担任会议秘书。
据了解,2017年在莫斯科召开的GTR TYRE 第16次工作组会议上,中国代表团将中国轮胎国家标准体系成功导入GTR ,并就第二阶段轮胎法规协调内容组织行业专家搭建系统框架。
至此,美国FMVSS 、联合国UN ECE 、中国GB 三大轮胎法规体系成为GTR 法规协调的主要方向。
GTR TYRE 第二阶段法规协调主要方向是制定开发UN GTR No.16第二修正案,主要围绕轻型载重汽车轮胎(LT/C )耐久试验和引入全球轮胎标识,以及对磨耗标识、轮胎尺寸、高速试验、耐久试验、低气压试验等内容进行协调。
其中,高速、耐久、低气压测试在联合国UN ECE 及美国FMVSS 两大法规体系下存在较大差异,中国标准溯源ISO ,但在具体测试内容上又不同于以上两大标准体系,如何在三大标准法规体系下进行兼容性协调,成为GTR TYRE IWG (非正式工作组)面临的挑战。
会议第一项议题回顾并批准了2018年10月在比利时布鲁塞尔召开的第20次会议技术结论(TYREGTR-20-15)。
2008年国际GTR法规及欧洲ECE法规发展动态
2008年国际GTR法规及欧洲ECE法规发展动态2008-05-21 [ 字体:大中小 ] 作者:朱毅一、国际汽车技术法规的发展1.2008年3月通过两项新的GTR2008年3月,联合国世界车辆法规协调论坛(UN/WP29)第144次会议在日内瓦联合国总部召开,在此次会议上,经《1998年协定书》缔约方管理委员会(AC3)审议和投票表决,通过两项新的全球统一汽车技术法规,具体情况见表1。
表1 UN/WP29新通过的两项GTR这样,截止到2008年5月,在联合国世界车辆法规协调论坛《1998年协定书》的框架下,共有7项GTR和一项特别决议(S.R.1)出台。
2.目前仍在起草的其它GTR法规项目的进展2008年1~5月,WP29继续对尚未完成的GTR项目开展起草工作,表2为具体项目。
在上述仍处于起草过程的GTR中,ESC项目为2007年新列的GTR制定项目。
根据美国代表的提案,WP29在第141次会议(2007年3月)上一致同意将车辆电子稳定控制系统ESC列为新的全球技术法规(GTR)制定项目,在制动与行走系工作组(GRRF)内成立开展ESC GTR制定工作的非正式工作小组,美国担任该非正式小组的主席。
ESC全球法规项目立项后,其起草工作进展较快,WP29/GRRF(制动与行走系)工作组在WP29第144次会议(2008年3月)上提交法规的文本草案,并将无法解决的问题提交WP29决策,计划在WP29第145次会议(2008年6月召开)上进行投票表决。
在ESC全球法规的起草过程中,我国组织相关专家和人员直接参与了该GTR的起草工作,并结合我国汽车行业的具体情况,对ESC相关条款提出了我国的意见和建议,基本上被WP29所采纳,反映在具体的法规文本中,我国提出的意见和建议包括:·针对该法规的使用范围提出了提案,建议将该全球技术法规的适用范围限定为安装有电子稳定性控制系统并且最大设计总质量在4536kg 以下的1-1、1-2和2类车辆,在内容上只规定电子稳定性控制系统的功能和性能要求以及对应的试验要求和试验规程,由各签约国根据本国国情自行决定哪些车辆需要强制安装ESC。
日产GT-R车型发展历史回顾
两度重生!日产GT-R车型发展历史回顾关于日产GT-R车型将要于年内进口国内的消息已经不再是什么新闻了。
在GT-R近40年的发展历程中,“战神”历经了两次停产,在全新的R35车型推出之后,日产又一次向世界证明了其精湛的造车工艺。
今天,就让我们一起走进GT-R 波澜壮阔的40年历史。
第一代(1969~1972年)日产历史上的第一辆Skyline GT-R车型于1969年2月4日的第15届东京车展上市正式发布,代号PGC10。
其实在这之前,日产的Skyline系列也推出过高性能版的车型(如Skyline Sports和2000GT等),并且在汽车赛事中取得过不错的成绩,但由于并未以GT-R命名,因此在这里,我们只是简单带过。
车展上亮相的高性能Skyline是一款4门轿车当时该车搭载了2.0L ,DOHC S20直列6缸发动机,功率160马力/7000rpm,最大扭矩177N·m。
『第一代GT-R车型 代号C10』传动系统方面,新车型采用了5挡手动变速箱,驱动形式为后驱,悬挂系统则采用了拖曳臂式结构。
到1971年,日产为GT-R增加了2门的Coupe车型,厂家代号KPGC10,以大家熟悉的代号来说应该是R27。
在第一代车型4年的生产中,日产共制造了1945辆GT-R车型。
在1969~1972年的各种比赛中,GT-R R27创造了50场不败的记录,因此成为性能车迷心目中的战神。
第二代(1972~1973年)第二代的GT-R车型于1972年正式登场,代号KPGC110(R28)。
新车外型并未发生太多的改变,仍是前后四圆灯设计。
动力部分同样没有太大变化,第二代车型使用的1989cc直列6缸I20发动机在数值上于第一代车型相近。
『第二代GT-R车型 代号C110』第二代的Skyline GT-R是日本本土第一个使用前后盘式刹车系统的车型。
除此之外,新车并没有太多的亮点,又恰逢当时的能源危机,第二代的Skyline GT-R并没有成为一款十分成功的车型。
GTR No 9 第1次勘误
GE.10-ECE/TRANS/180/Add.9/Corr.15 March 2010GLOBAL REGISTRYCreated on 18 November 2004, pursuant to Article 6 of theAGREEMENT CONCERNING THE ESTABLISHING OF GLOBAL TECHNICAL REGULATIONS FOR WHEELED VEHICLES, EQUIPMENT AND PARTS WHICH CAN BE FITTED AND/OR BE USED ON WHEELED VEHICLES(ECE/TRANS/132 and Corr.1)Done at Geneva on 25 June 1998AddendumGlobal technical regulation No. 9PEDESTRIAN SAFETYCorrigendum 1(Established in the Global Registry on 12 November 2009)UNITED NATIONSECE/TRANS/180/Add.9/Corr.1page 2TEXT OF THE REGULATIONParagraph 3.28., amend to read:"3.28. … The tape is held taut throughout the operation with one end held at the same level as the ground reference plane, vertically below the front face …"Paragraph 4.1., amend to read:"4.1. … For vehicles with a lower bumper height which is greater than, or equal to 425 mm and less than 500 mm …"Paragraph 6.3.1.1., amend to read:"6.3.1.1. … test mass of 13.4 ± 0.2 kg (see Figure 12). Dimensions of the various parts are detailed in Figure 12."Brackets, pulleys, etc. attached to …"Paragraph 6.3.1.1.5., amend to read:"6.3.1.1.5. … of 20 ± 4°C prior to impactor removal for test. After removal from the storage the impactor shall not be subjected to conditions other than those pertaining in the test area." Paragraph 6.3.1.1.7.2., figure 12, replace by the following:"Figure 12:..."ECE/TRANS/180/Add.9/Corr.1page 3Paragraph 6.3.1.2.8., amend to read:"6.3.1.2.8. … of 20 ± 4 °C prior to impactor removal for test. After removal from the storage the impactor shall not be subjected to conditions other than those pertaining in the test area." Paragraph 8.1.1.4., amend to read:"8.1.1.4. … The rotational axis of the impactor knee …"Paragraph 8.1.1.5., amend to read:"8.1.1.5. … The load shall be increased at a rate between 0.1 and 20 mm/s until …" Paragraph 8.1.2.2.1., amend the first sentence to read:"8.1.2.2.1. The foam flesh for the test impactor shall be stored for a period of at least four hours …"Paragraph 8.1.2.2.4., amend to read:"8.1.2.2.4. The relative humidity and temperature of the calibration area shall be measured at the time of calibration and recorded in the calibration report."Paragraph 8.2.2.1., amend to read:"8.2.2.1. The foam flesh for the test impactor shall be stored for a period of at least four hours …"Paragraph 8.2.2.4., amend to read:"8.2.2.4. The relative humidity and temperature of the calibration area shall be measured at the time of calibration and recorded in the calibration report."- - - - -。
gtr2 调教
步骤改动要素指示的信息及操作_____使用6档在最长的直道上达到引擎的转速上限使用6档在最长的直道上未达到引擎的转速上限在长直道末端引擎达到转速上限刹车碟温度在直道上低于300°C刹车碟温度在刹车时高于600°C 刹车碟温度基本保持在300到600°C 之间内侧胎温 - 外侧胎温 < 0°C内侧胎温 - 外侧胎温 > 5°C 0°C < 内侧胎温 - 外侧胎温 < 5°C 轮胎中部温度低于轮胎内侧及外侧温度轮胎中部温度高于轮胎内侧及外侧温度轮胎中部温度介于内侧及外侧之间刹车时前轮先抱死(赛车有直冲出赛道的趋势)刹车时后轮先抱死[赛车有打转(spin)的趋势]前后轮同时抱死在最大的弯角方向盘需要转到 最大 角度在最大的弯角方向盘转到 50% 的角度在最大的弯角方向盘转到 90% 的角度5STEERING LOCK 转向锁3CAMBER 外倾角TIRE PRESSURE INITIALSETUP 默认胎压4BRAKE BIAS 前后刹车平衡1GEAR BOX 变速箱2BRAKE DUCT刹车碟通风孔调校指南 FOR GTR2 : 21 步作者 : LmS (lms_oid@libertysurf.fr这篇调校向导是为模拟GT 赛事的游戏——GTR2而撰写的。
这篇文章希望通过简单而通俗易懂的基本知识及方法去引的调校方法。
需要指出的是,使用游戏的默认调校是开始本向导的最佳选择。
除了齿轮传动比,使用默认的设置,并在道,圈速基本一致后,我们就可以开始对赛车的各方面进行调校了。
循序渐进地、一步步地调节每一个参数(一次只调。
因为只有在无辅助的情况下,你作出的每一个赛车调校及驾驶时的修正才会给予你最大的回馈。
每次改动都需要去试跑几圈并观察所指示的数据以确认此次改动带来的是正面或是负面的作用。
数据会以详尽直观的于阅读,每个步骤所指示的数据及所需要作出的改动都会在本表格里列出来。
车载高压储氢系统氢循环试验标准概述
车载高压储氢系统氢循环试验标准概述■ 周 伟 李鸣迪 吕 洪(同济大学汽车学院)摘 要:燃料电池汽车车载储氢瓶的安全性一直是全社会关注的热点问题,其中氢循环充放试验是检验车载储氢瓶的抗疲劳、瓶口泄漏及内胆材料(IV型瓶)氢渗能力的重要手段。
目前国际上关于氢循环试验的标准主要有两个,分别是由联合国世界车辆法规协调论坛制定的GTR No.13和由国际标准化组织制定的ISO 19881,国内标准则是由国家标准化管理委员会制定的GB/T 35544。
本文介绍了这些标准在氢循环试验层面的内容,比较了其在试验对象、循环方法、卸放速率、验收标准等方面的异同之处。
在此基础上,本文讨论了加注时长、卸放速率两个关键问题对储氢瓶温度、寿命的影响,指出了国内外标准在此存在的不足之处。
最后,本文提出了相应的建议,以供氢循环试验的实施作参考。
关键词:储氢,氢循环试验,试验标准DOI编码:10.3969/j.issn.1002-5944.2020.12.034Overview of Standards on Hydrogen Cycling Test for On-boardCompressed Hydrogen Storage SystemZHOU Wei LI Ming-di LV Hong(College of Automobile, Tongji University)Abstract: The safety of fuel cell vehicle’s hydrogen storage tanks raises wide concerns in the society. The hydrogen cycling test is an important method to check tank fatigue, boss leakage and liner permeation. Nowadays there are two standards concerning hydrogen cycling test. They are GTR No.13 developed by World Forum for Harmonization of Vehicle Regulation and ISO 19881 developed by International Organization for Standardization. The domestic standard is GB/T 35544 developed by Standardization Administration of China. This paper introduces the contents related to hydrogen cycling test in these standards. Also, it compares their similarities and differences in the aspects of test object, cycling procedure, depressurization rate and acceptance criteria. Based on this, it discusses impacts of refueling time and depressurization rate on hydrogen storage tank’s temperature and life. Furthermore, it points out the deficiencies of these standards. Finally, it gives corresponding suggestions when deploying the hydrogen cycling test.Keywords: hydrogen storage tank, hydrogen cycling test, test standard标准比对在严峻的环境问题与石油供应不确定性的大背景下,氢能已经被越来越多的国家和地区提上了议程。
日产GTR使用手册说明书
重要安全信息和安全提示!遵守下列重要的驾驶规则,有助于全程保证您和乘客的舒适与安全!切勿酒后或服药后驾驶。
●这是用来表示可能导致死亡或严重人身伤害的危险。
为了避免或降低这种风险,请如实地按照信息和指示进行操作。
这是用来表示有可能引起轻微或中度人身伤害的危险。
为了避免或降低这种风险,请仔细地按照信息和指示小心操作。
备注插图中与此类似的箭头是为了引起您对图中某个项目的注意。
*公路赛“““在温度低于季用轮胎,以免对其造成永久性的胎面变形,从而造成轮胎损坏或故障。
这可能导致车辆失控,从而引起严重的人身伤亡。
如果弹起式发动机罩系统启动,切勿打开发动机罩,请立即联系日产高性能中心(NHPC)“请勿试图在加油枪自动关闭后继续往燃油箱内加注燃油。
继续加注燃油会导致溢出,造成燃油飞溅并可能引发火灾。
首次自动关闭时,油箱处于充满状态。
““保持轮胎充气至正确的压力。
在低轮胎压力下驾驶车辆可导致某些动力传动系统损坏,并影响低轮胎压力也可能导致轮胎故障,并导致““““驻车时遵照以下说明有助于防止制动盘和 制动衬块因生锈而粘在一起。
不遵循说明将会导致制动盘和制动衬块因生锈而粘在一起。
如果制动盘和制动衬块因生锈而粘在驻车前,驾驶车辆●以干燥制动系统,(如果洗车后仅行驶几米的距离,制动系统可能会完全卡住无法使用。
通过操作变速箱“如需更换制动衬块和制动盘工厂填装的制动液使用正品厂填装的制动液使用正品车辆行驶时不要将座椅靠背倾斜。
这会很危险。
此时肩部安全带不能适当地紧贴您的身体。
若发生意外事故,您可能会被抛向安全带而导致颈部或其他部位“安全带使用注意事项”●调节座椅位置时,请勿触动任何移动的部件,以避免可能造成的伤害和“。
WMTC全球技术法规
全球统一技术法规——就气体污染物排放、CO2 排放物以及发动机燃油消耗对装有点燃或压燃式发动机的两轮摩托车的测量规程A 技术原理和合理性1技术和经济可行性摩托车工业正在变得越来越全球化,制造商们开始在不同国家销售其产品。
《1998年协定书》的缔约方一致认为,应当采取措施解决摩托车的排放问题,这是改善各国空气质量的方法之一。
第一步就是在一项经协调的全球技术法规(gtr)中制定针对摩托车排气排放物的认证规程。
这项工作的基础就是经协调的试验规程,由GRPE世界协调摩托车排放认证规程非正式工作组(即:WMTC非正式工作组)制定。
关于该非正式工作组的工作、思路和结论的完整报告可在工作组的技术报告(TRANS/WP.29/2005/55)中得到。
指导此项工作的基本原理也包含在这份全面的技术报告中。
该试验规程:——能够代表世界范围内摩托车在道路上行驶的状况,——可以对车辆在道路上的排放进行可能达到的最有效的控制,——与目前最新的试验、取样和测量技术相对应,——适用于现有的和今后可预测的减少排气排放物技术在实际当中的应用,——能够为不同类型发动机进行排气排放物等级评定,——与制定恰当的排放因数保持一致,并且——包括足够的防止出现循环旁路的规定。
2工作程序背景本gtr的制定工作开始于2000年5月,建立了WMTC非正式工作组。
在2003年1月召开的GRPE第45次会议上,由德国提交的关于制定gtr的正式建议案被批准提交《1998年协定书》的管理委员会(AC.3)。
2003年11月13日,在AC.3会议上,德国的建议案被批准为gtr项目。
2005年1月,GRPE批准不带有限值要求的gtr文本草案,并提交AC.3进行文本格式上的最终审定。
不带限值要求的gtr最终文本的在本文件的B部分给出。
3现有的法规,指令和自愿执行的国际标准虽然目前在候补全球技术法规目录中没有相应法规,但下列法规中包含了对摩托车排气排放物的要求,这些要求在制定新的gtr时提供了技术参考:UNECE第40号法规的01系列修正本——关于就发动机气体污染物的排放方面批准装有点火式发动机的摩托车的统一规定欧盟——对指令97/24/EC进行修订的指令2002/51/EC:降低两轮和三轮机动车污染物的排放水平。
GTR引导组织再生术与人工骨移植联合治疗根分叉病变26例
目前对颜 面部毛 细血 管扩张 有效 且疗 效较佳 的治疗 方
法 大 多 集 中在 强 光 (P ) 脉 冲染 料 激 光 ( 8 IL 、 5 5或 5 5 , 有 9 )也 用 调 Q 激 光 治 疗 的 , 体 上 要 么 痊 愈 率 较 低 , 么 需 要 治 疗 总 要 的 次 数 和 周 期 比较 长 , 者 的耐 受 性 和 顺 应 性 比较 差 j 因 患 。
社 ,0 4: 1 3 2 0 7 —7 .
3 讨论
长 脉 冲可 调 脉 宽 N : A d Y G激 光 治 疗 面 部 毛 细 血 管 扩 张 , 因治 疗 激 光 的脉 冲 宽 度 控 制 在 毫 秒 , 明显 低 于 皮 肤 组 织 的 热
[ ] 蔡金辉 , 2 陈葵 , 程飚 , 强脉 冲光治疗 2 8例面部毛 细血管 扩 等. 3
治疗 目的。
[ ] 王永贤 , 3 应朝霞 , 刘平 , 强脉 冲光和脉 冲染料激 光 5 5 m治 等. 9n
疗 面 部 毛 组 血 管 扩 张 的 比 较 研 究 [ ] 中 国美 容 医 学 ,09,8 J. 20 1
( ) 2 1— 2 . 2 :2 2 4
[ ] 周 国瑜 , 玲 悦 , 4 沈 田克 斌 , . 脉 冲 可 调 脉 宽 G nl Y 等 长 e t AG激 光 e
特殊性 , 多不 能 达 到 牙 周 组 织 结 构 和 功 能 的再 生 , 周 引 导 牙
G R组 , 治 疗 前 各 临 床 指 标 差 别 均 无 统 计 学 意 义 ( > T 2组 P
宁夏 医学 杂 志 2 1 0 0年 8月 第 3 2卷 第 8期
NnxaM dJ A g 00, o 3 , o 8 igi e , u .2 1 V l 2 N .
锐腾用户手册
锐腾AS21 1.5T&2.0T 用户手册上汽集团目录1 前言 (1)1.1 用户手册介绍 (1)1.1.1 用户手册 (1)1.1.2 特别声明 (1)1.1.3 提示信息 (1)1.2 车辆识别信息 (2)1.2.1 车辆识别标识 (2)1.2.2 车辆标牌 (3)2 仪表和控制 (3)2.1 仪表和控制装置 (3)2.2 组合仪表 (4)2.2.1 转速表 (4)2.2.2 发动机冷却液温度表 (4)2.2.3 燃油表 (4)2.2.4 车速表 (4)2.3 信息中心 (5)2.3.1 数字时钟 (5)2.3.2 警告符号 (5)2.3.3 累计(Trip)1 (6)2.3.4 挡位显示 (6)2.3.5 总里程 (6)2.3.6 行车电脑A (6)2.3.6.1 有报警灯的警告信息 (6)2.3.6.2 无报警灯的警告信息 (8)2.3.6.3 行车电脑信息 (11)2.4 警告灯和指示灯 (13)2.5 灯光及开关 (17)2.5.1 主灯光开关 (17)2.5.2 组合仪表背光照明调节 (18)2.5.3 前照灯照明高度手动调节 (18)2.5.4 雾灯开关 (18)2.5.5 灯光拨杆开关 (19)2.5.6 危险警告灯 (20)2.6 刮水器和洗涤器 (20)2.6.1 前风窗刮水器操作 (20)2.6.2 智能雨刮 (21)2.6.3 后风窗刮水器操作 (21)2.7 转向系统 (22)2.7.1 转向管柱调整 (22)2.7.2 电动助力转向 (22)2.8 喇叭 (23)2.9 后视镜 (23)2.9.1.1 外后视镜镜面电动调整: (23)2.9.1.2 外后视镜加热 (24)2.9.1.3 外后视镜折叠 (24)2.9.2 内后视镜 (24)2.10 遮阳板 (25)2.11 车窗 (25)2.11.1 电动车窗控制开关 (25)2.11.2 车窗操纵 (26)2.12 天窗 (26)2.12.1 使用须知 (26)2.12.2 天窗操作 (26)2.13 内部照明 (28)2.13.1 前室内照明灯和阅读灯 (28)2.13.2 后室内照明灯 (28)2.14 电源插座 (28)2.14.1 前排电源插座 (29)2.14.2 行李箱电源插座 (29)2.15 储物装置 (30)2.15.1 使用须知 (30)2.15.2 手套箱 (30)2.15.3 储物盒 (30)2.15.4 驾驶员侧储物盒 (30)2.15.5 小杂物箱 (31)2.15.6 行李箱储物盒 (31)2.15.7 眼镜盒 (32)2.16 杯托 (32)2.16.1 中控台杯托 (32)2.16.2 后扶手和后杯托 (32)2.17 车顶行李架 (33)2.17.1 车顶最大允许载荷 (33)2.17.2 定期检查 (33)3 空调和娱乐系统 (33)3.1 通风 (33)3.1.1 空调滤清器 (34)3.1.2 出风口 (34)3.2 自动控制空调 (35)3.2.1 控制面板 (35)3.2.2 空调系统显示屏 (35)3.2.3 空气分配模式 (35)3.2.4 温度调节 (36)3.2.5 自动控制空调模式 (36)3.2.6 A/C开关 (36)3.2.7 风量调节 (36)3.2.8 除霜/雾 (36)3.2.10 循环模式 (37)3.2.11 系统开关 (37)3.3 娱乐播放机 (37)3.3.1 重要安全信息: (37)3.3.2 屏幕使用注意事项 (38)3.3.3 娱乐系统可播放文件格式 (38)3.3.3.1 音频支持 (38)3.3.3.2 视频支持 (38)3.3.3.3 文本/图片支持 (38)3.3.3.4 IPod/iPhone兼容性 (39)3.3.4 基本操作 (39)3.3.4.1 娱乐播放机控制面板 (39)3.3.4.2 系统主界面 (40)3.3.4.3 功能块移动 (40)3.3.4.4 开机和关机 (40)3.3.4.5 方向盘控制键 (41)3.3.4.6 AV盒 (42)3.3.4.7 泊车模式音频策略 (42)3.3.4.8 音量调节 (42)3.3.4.9 插入和拔出USB存储设备 (42)3.3.4.10 连接和断开iPod (43)3.3.5 蓝牙电话 (43)3.3.5.1 使用须知 (43)3.3.5.2 蓝牙匹配及连接 (43)3.3.5.3 与手机配对 (44)3.3.5.4 从手机端配对 (44)3.3.5.5 电话菜单 (44)3.3.5.6 拨号键盘 (45)3.3.5.7 最近通话 (46)3.3.5.8 通讯录 (46)3.3.5.9 拨打电话 (47)3.3.5.10 同步电话簿 (48)3.3.5.11 快速检索 (48)3.3.5.12 列表拨打 (48)3.3.5.13 手机拨号 (49)3.3.5.14 其它功能 (49)3.3.5.14 来电 (49)3.3.6 娱乐 (50)3.3.6.1 使用须知 (50)3.3.6.2 收音机 (51)3.3.6.3 搜索电台 (52)3.3.6.4 播放音频文件 (53)3.3.6.4.1 最爱歌曲列表 (53)3.3.6.4.2 U盘文件夹列表 (55)3.3.6.5.1 AUX播放 (56)3.3.6.5.1 浏览图片 (57)3.3.7 空调 (57)3.3.8 车机互联(MirrorLink) (57)3.3.9 车辆设置 (58)3.3.9.1 车锁控制 (58)3.3.9.2 灯光控制 (58)3.3.10 设置 (59)3.3.10.1 蓝牙设置 (59)3.3.10.2 显示设置 (59)3.3.10.3 音效设置 (60)3.3.10.4 时间日期设置 (61)3.3.10.5 系统设置 (62)4 座椅和保护装置 (62)4.1 座椅 (62)4.1.1 概述 (62)4.1.2 头枕 (62)4.1.3 手动座椅调节 (63)4.1.4 电动座椅调节 (64)4.1.5 前座椅加热功能 (64)4.1.5 后座椅 (65)4.1.5.1 后座椅靠背调节 (65)4.1.5.2 后座椅折叠 (65)4.1.5.3 后座椅靠背展开并锁止 (65)4.2 安全带 (65)4.2.1 安全带的保护作用 (66)4.2.2 如何正确佩戴安全带 (66)4.2.2.1 胯-肩式安全带 (67)4.2.2.2 安全带正确走向 (68)4.2.2.3 安全带上固定点高度调节 (68)4.2.2.4 怀孕期间使用安全带 (69)4.2.2.5 伤残人士使用安全带 (69)4.2.3 儿童如何使用安全带 (69)4.2.3.1 婴幼儿 (69)4.2.3.2 较大的儿童 (70)4.2.4 安全带预张紧器 (70)4.2.5 安全带的检查、保养和更换 (71)4.2.5.1 检查安全带 (71)4.2.5.2 保养安全带 (71)4.2.5.3 更换安全带 (72)4.3 安全气囊 (72)4.3.1 概述 (72)4.3.3 安全气囊不展开的条件 (75)4.3.3.1 正面安全气囊 (75)4.3.3.2 侧面安全气囊 (76)4.3.4 车辆安全气囊的维修和更换 (77)4.3.4.1 维修安全气囊 (77)4.3.4.2 发生碰撞事故后更换安全气囊系统零部件 (77)4.3.5 车辆安全气囊的处置 (78)4.4 儿童保护装置 (78)4.4.1 重要安全说明 (78)4.4.1.1 关于使用儿童座椅的重要安全说明 (78)4.4.1.2 关于儿童乘车安全和侧面安全气囊的重要说明 (78)4.4.2 儿童座椅组别 (79)4.4.2.1 儿童座椅组别 (79)4.4.2.2 组0/0+儿童座椅 (80)4.4.2.3 组1儿童座椅 (81)4.4.2.4 组2儿童座椅 (81)4.4.2.5 组3儿童座椅 (81)4.4.3 儿童座椅固定方式 (82)4.4.3.1 用车辆的胯-肩式安全带固定 (82)4.4.3.2 用车辆的ISOFIX装置固定 (82)5 起动和驾驶 (83)5.1 钥匙 (83)5.1.1 概述 (83)5.1.2 更换遥控钥匙电池 (84)5.2 儿童保护锁 (84)5.3 防盗系统 (85)5.3.1 发动机防盗系统 (85)5.3.2 电子防盗报警系统 (85)5.3.2.1 锁止和解锁 (85)5.3.2.2 遥控门锁系统的操作(无钥匙起动) (85)5.3.2.3 无钥匙锁止 (85)5.3.2.4 无钥匙解锁 (86)5.3.2.6 误锁 (86)5.3.2.7 防盗报警指示灯 (86)5.3.2.8 防盗报警声音 (86)5.3.2.9 内部锁开关 (87)5.3.2.10 车门内拉手 (87)5.3.2.11 行车落锁 (87)5.3.2.12 自动解锁 (87)5.3.3 尾门 (87)5.4 起动和关闭发动机 (88)5.4.1 点火开关(无钥匙起动) (88)5.4.3 起动发动机(无钥匙起动) (89)5.4.3.1 起动程序 (89)5.4.3.2 车辆备用起动程序 (90)5.4.4 关闭发动机 (90)5.5 经济环保的驾驶方式 (90)5.5.1 磨合 (90)5.5.2 环境保护 (91)5.5.3 经济性驾驶 (91)5.5.4 特殊环境中的驾驶 (91)5.5.4.1 雨雪天气中驾驶 (91)5.5.4.2 积水路面上驾驶 (91)5.5.5 检查和保养 (92)5.6 催化转换器 (92)5.7 燃油系统 (93)5.7.1 燃油要求 (93)5.7.2 加油口 (93)5.7.2.1 燃油加油口小门 (93)5.7.2.1 油箱加油口盖 (93)5.7.3 燃油加注 (93)5.7.4 燃油系统积碳清洗剂 (93)5.8 双离合自动变速器(TST)* (94)5.8.1 使用须知 (94)5.8.2 换挡 (94)5.8.2.1 换挡杆操作 (94)5.8.2.2 换挡杆位置 (95)5.8.2.3 换挡速度 (95)5.8.2.4 强制降挡(Kick-down) (95)5.8.3 车辆起步 (95)5.8.4 坡道行驶 (95)5.8.4.1 上坡起步 (95)5.8.4.2 下坡行驶 (96)5.8.5 控制模式 (96)5.8.5.1 经济模式 (96)5.8.5.2 运动模式 (96)5.8.5.3 雪地模式 (96)5.8.5.4 巡航控制模式 (96)5.8.5.5 Tiptronic模式 (97)5.8.6保护模式 (97)5.8.6.1 双离合自动变速器过热保护 (97)5.8.6.2 跛行模式 (97)5.8.6.3 严重功能性故障 (98)5.9 制动系统 (98)5.9.1 行车制动器 (98)5.9.1.1 真空助力系统 (98)5.9.1.3 电子制动力分配系统(EBD) (98)5.9.1.4 电子制动辅助系统(EBA) (98)5.9.1.5 坡道起步辅助系统(HHC) (99)5.9.1.6 自动驻车(Auto Hold) (99)5.9.2 防抱死制动系统(ABS) (100)5.9.2.1 紧急状态下的制动 (101)5.9.2.2 ABS故障警告灯 (101)5.9.3 一键式电子驻车系统(EPB) (101)5.9.3.1 启用电子驻车系统 (101)5.9.3.2 关闭电子驻车系统 (102)5.9.3.3 辅助起步功能 (102)5.9.3.4 紧急制动功能 (102)5.10 动态稳定控制系统和牵引力控制系统 * (102)5.10.1 动态稳定控制系统(SCS) (102)5.10.2 牵引力控制系统(TCS) (102)5.10.3 开启与关闭 (103)5.10.4 动态稳定控制/牵引力控制警告灯 (103)5.11 Start-Stop智能启停节油系统 (103)5.11.1 发动机自动停机 (104)5.11.2 发动机自动起动 (104)5.11.3 蓄电池 (105)5.11.4 Start-Stop智能启停节油系统故障 (105)5.11.5 蓄电池严重亏电,起动机不工作 (105)5.12 巡航控制系统 (105)5.12.1 巡航控制系统激活 (106)5.12.2 巡航目标车速调节 (106)5.12.3 暂停 (106)5.12.4 恢复 (107)5.13 泊车辅助系统 (107)5.13.1 超声波传感器泊车辅助系统 (107)5.13.1.1 后部泊车辅助系统 (107)5.13.1.2 泊车辅助系统工作状态 (107)5.13.1.3 泊车辅助系统的报警周期 (108)5.13.2 泊车摄像头系统 (108)5.13.3 泊车辅助信息 (108)5.14 装载 (109)5.14.1 行李箱装载 (109)5.14.2 车内装载 (109)6 行驶途中故障 (110)6.1 危险警告装置 (110)6.1.1 危险警告灯 (110)6.1.2 三角警示牌 (110)6.2 跨接起动 (110)6.2.1 跨接电缆 (111)6.3.1.1 牵引钩 (112)6.3.1.2 牵引 (112)6.3.2 托运车辆 (113)6.4 轮胎修补与车轮更换 (114)6.4.1 备胎和工具箱 (114)6.4.2 更换备胎工具 (114)6.4.3 更换车轮 (114)6.4.4 放置千斤顶 (114)6.4.5 换上备胎 (115)6.4.6 紧凑型备胎 (116)6.5 更换保险丝 (116)6.5.1 保险丝 (116)6.5.1.1 保险丝熔断前后对比 (116)6.5.1.2 保险丝盒 (117)6.5.2 蓄电池保险丝盒 (117)6.5.3 乘客舱保险丝盒 (118)6.5.4 发动机舱保险丝盒 (119)6.6 更换灯泡 (121)6.6.1 灯泡规格 (121)6.6.2 更换操作 (122)6.6.2.1 前室内照明灯和阅读灯 (122)6.6.2.2 后室内照明灯 (122)6.6.2.3 手套箱灯和行李箱灯 (123)7 维修和保养 (123)7.1 维护保养 (123)7.1.1 保养 (123)7.1.2 保养记录 (123)7.1.3 更换制动液 (123)7.1.4 更换冷却液 (123)7.1.5 废气排放控制 (124)7.1.6 车主的维护保养 (124)7.1.7 特殊状态 (124)7.1.8 车库中的安全 (124)7.1.9 有毒液体 (125)7.2 发动机盖 (125)7.2.1 打开发动机盖 (125)7.2.2 关闭发动机盖 (125)7.2.3 发动机盖未关报警 (125)7.3 发动机舱 (126)7.4 发动机 (126)7.4.1 发动机机油的ACEA分类 (126)7.4.2 检查和添加机油 (127)7.5.2 维护和保养 (128)7.6 冷却系统 (129)7.6.1 检查和添加冷却液 (129)7.6.2 冷却液规格 (130)7.6.3 防冻液 (130)7.7 制动 (130)7.7.1 制动衬块 (130)7.7.2 检查和添加制动液 (131)7.7.3 制动液规格 (131)7.8 蓄电池 (131)7.8.1 蓄电池维护 (131)7.8.2 蓄电池更换 (132)7.9 洗涤器 (132)7.9.1 检查和加注洗涤液 (132)7.9.2 洗涤器喷嘴 (133)7.9.3 洗涤液规格 (133)7.10 刮水器 (133)7.10.1 刮水片 (133)7.10.2 更换风窗玻璃刮水片 (134)7.11 轮胎 (134)7.11.1 概述 (134)7.11.1.1 新轮胎 (134)7.11.1.2 标有方向性胎面花纹的轮胎 (134)7.11.1.3 轮胎的使用寿命 (135)7.11.2 轮胎的检查 (135)7.11.2.1 轮胎气压 (135)7.11.2.2 气门 (135)7.11.2.3 刺破的轮胎 (135)7.11.3 轮胎磨损标记 (135)7.11.4 更换轮胎 (136)7.11.5 车轮换位 (136)7.12 清洁和车辆保养 (137)7.12.1 汽车外部养护 (137)7.12.1.1 洗车 (137)7.12.1.2 上蜡 (138)7.12.1.3 抛光油漆 (138)7.12.1.4 刮水片 (139)7.12.1.5 车窗和镜子 (139)7.12.1.6 塑料部件 (139)7.12.1.7 油漆损伤 (139)7.12.1.8 密封条 (139)7.12.1.9 车轮 (139)7.12.2 汽车内部养护 (140)7.12.2.1 塑料部件、人造革和织物 (140)7.12.2.2 安全气囊的罩盖 (140)7.12.2.3 座椅安全带 (140)7.12.2.4 地毯和织物 (140)7.12.2.5 皮革 (140)7.12.2.6 组合仪表、娱乐显示器 (140)8 技术数据 (141)8.1 车辆主要尺寸参数 (141)8.2 整车质量参数 (141)8.3 发动机主要参数 (142)8.4 动力性能参数 (143)8.5 推荐的油液和容量 (143)8.6 四轮定位参数表(空载) (144)8.7 车轮和轮胎 (144)8.8 备胎 * (144)8.9 轮胎气压(冷态) (144)1 前言1.1 用户手册介绍1.1.1 用户手册感谢您购买上汽集团的产品。
GTR No 9 第1次修订
GE.11-Global registry Created on 18 November 2004, pursuant to Article 6 of the Agreementconcerning the establishing of global technical regulations for wheeledvehicles, equipment and parts which can be fitted and/or be used onwheeled vehicles (ECE/TRANS/132 and Corr.1) done at Geneva on25 June 1998Addendum 9: Global technical regulation No. 9Pedestrian safetyAmendment 1 Established in the Global Registry on 10 November 2010_______________UNITED NATIONSECE /TRANS/180/Add.9/Amend.122 February 2011ECE/TRANS/180/Add.9/Amend.12The statement of technical rationale and justificationParagraph 55., amend to read:"55. While this approach maximizes the discretion of jurisdictions to decide whether vehicles should be excluded from the gtr for feasibility or practical reasons, or because there is no safety need to regulate the vehicles, the group also decided to recommend excluding one unique vehicle type from the regulation. The test procedures in the gtr are based largely on the classic vehicle shape with a long bonnet. Certain vehicles, generally cargo vehicles, have a very short bonnet and a front shape that is very close to the vertical. Because of the short, vertical bonnet, the design leaves very little soft space once the hinges, latches, and other hardware are considered. There are additionally feasibility concerns for the bumpers of these vehicles. The different shape of the front leaves little room to incorporate existing countermeasures, such as those used on passenger vehicles, and new countermeasures have not been identified. The pedestrian kinematics with these vehicles may be very different. The head to bonnet impact is occurring earlier and leg injuries are occurring at a reduced frequency than with traditional long bonnet vehicles. In addition, there are difficulties in applying the head tests to these vehicles, particularly with regard to determination of test zone reference lines.1For these reason, the group recommends that those vehicles of category 1-2 and category 2, where the distance, measured longitudinally on a horizontal plane, between the transverse centre line of the front axle and the R-point of the driver's seat is less than 1,100 mm, be exempt from the requirements of the regulation. To prevent inconsistencies in the market, Contracting Parties can exempt category 1-1 vehicles if they have components of the front structure that are interchangeable with exempted category 1-2 and category 2 vehicles. The group agreed to recommend allowing Contracting Parties this option even though not all Contracting Parties have these vehicles in their fleet and were therefore not able to fully evaluate the exemption."Paragraph 74., the reference to footnote 15 and footnote 15, renumber as footnote 16 Paragraph 78., the reference to footnote 16 and footnote 16, renumber as footnote 17 Paragraph 99., the reference to footnote 17 and footnote 17, renumber as footnote 18 Paragraph 100., the reference to footnote 18 and footnote 18, renumber as footnote 19 Paragraph 106., the reference to footnote 19 and footnote 19, renumber as footnote 20 Paragraph 107., the reference to footnote 20 and footnote 20, renumber as footnote 21 Paragraph 109., the reference to footnote 21 and footnote 21, renumber as footnote 22 Paragraph 130., the reference to footnote 22 and footnote 22, renumber as footnote 231Informal document No. GRSP-45-25ECE/TRANS/180/Add.9/Amend.13 Section 10, amend to read:"10. Appendix–reference documents used by the working group … …INF GR/PS/188 Draft meeting minutes of the 100th meetingINF GR/PS/189 Attendance list 10th meetingGRSP-47-18/Rev.2 (USA) Proposal for amendments to global technical regulation No. 9 (Pedestrian Safety)"The text of the regulationParagraph 2.1., amend to read:"2.1. This global technical regulation (gtr) shall apply to the frontal surfaces ofpower driven vehicles of category 1-1 with a gross vehicle mass exceeding500 kg; and of category 1-2 with a gross vehicle mass exceeding 500 kg butnot exceeding 4,500 kg; and of category 2 with a gross vehicle massexceeding 500 kg but not exceeding 4,500 kg. 2 However, power drivenvehicles of category 1-2 and category 2, where the distance, measuredlongitudinally on a horizontal plane, between the transverse centre line of thefront axle and the R-point of the driver's seat is less than 1,100 mm, areexempt from the requirements of this regulation. Contracting Parties canexempt category 1-1 vehicles where the distance, measured longitudinally ona horizontal plane, between the transverse centre line of the front axle and theR-point of the driver's seat is less than 1,100 mm and having the componentsof the frontal structure that are interchangeable with the above-mentionedcategory 1-2 and category 2 vehicles.All definitions of Special Resolution No. 1 shall apply as necessary."2 A contracting party may restrict application of the requirements in its domestic legislation if it decides that such restriction is appropriate.。
GTR(全球统一汽车技术法规)介绍
GTR技术法规介绍来源:全国汽车标准化技术委员会1.GTR技术法规的制定组织和《1998年协定书》GTR法规全称为全球统一汽车技术法规,由联合国世界车辆法规协调论坛(UN/WP29)负责制定发布,WP29原为联合国欧洲经济委员会内陆运输委员会下属的车辆结构工作组,在《1958年协定书》的框架下制定并实施ECE汽车技术法规,从20世纪80年代初开始,随着经济全球化的到来,许多国家和地区的政府开始认识到各自为政的汽车技术法规体系阻碍了汽车产品在全球范围内的自由流通,限制并阻碍了商品经济规律应起的作用,于是由国际上一些汽车工业发达国家牵头,开始进行国际汽车技术法规的协调与统一的工作,以打破世界各国、各地区已形成的汽车技术法规这一贸易技术壁垒。
在当时情况下,联合国欧洲经济委员会车辆结构工作组(UN/ECE/WP29)成了开展这种世界范围内汽车技术法规协调和统一工作的主要组织。
WP29于1998年6月25日制订《全球汽车技术法规协定书》[1],因此该协定书也就简称为《1998年协定书》。
世界各国以此协定书为法律框架,共同制修订全球统一的汽车技术法规。
该协定书在法律地位上明确原UN/ECE/WP29(联合国欧洲经济委员会车辆结构工作组)作为开展全球汽车技术法规协调和统一工作的国际组织,UN/ECE/WP29的名称随之更改为:“世界车辆法规协调论坛”(World Forum for Harmonization of Vehicle Regulations),仍简称为WP29,开始按照《全球汽车技术法规协定书》中规定的程序规则制定全球统一的汽车技术法规,到目前,《1998年协定书》的正式缔约方共计31个[2]。
历史之所以选择UN/ECE/WP29来开展全球范围内的汽车技术法规协调统一工作,其原因为:①UN/ECE/WP29成功运作《1958年协定书》,具有开展国际汽车技术法规统一工作的技术基础;②UN/ECE/WP29的广泛参与性,使其具有开展国际汽车技术法规统一工作的技术基础。
日产gtr排放标准 -回复
日产gtr排放标准-回复关于日产GTR的排放标准,以下是一份详细的回答。
文章目录:1. 环保意识的兴起2. 国际排放标准3. 日本国内的排放标准4. 日产GTR的排放技术5. 日产GTR 2019款的排放指标6. 日产的环境守护行动第一部分:环保意识的兴起随着全球对环境保护意识的增强,各国开始加强对车辆排放的控制,以减少对大气污染的贡献。
因此,汽车制造商们都努力提高汽车的燃油效率和减少尾气排放,以符合各国的排放标准。
第二部分:国际排放标准根据环保组织国际协会(International Council on Clean Transportation,简称ICCT)制定的国际标准,各国将车辆排放分为Tier1-3三个阶段。
Tier 1是最严格的标准,要求车辆排放非常低;Tier 2则相对宽松一些,Tier 3是最近出台的更为严格的排放标准。
第三部分:日本国内的排放标准日本对车辆排放的控制也非常严格,而且是世界上首个采用Euro 5排放标准的国家。
Euro 5标准要求汽车的氮氧化物(NOx)、非甲烷总烃(NMHC)、碳氢化合物(CH)、颗粒物(PM)和二氧化碳(CO2)的排放量都要低于一定程度。
第四部分:日产GTR的排放技术日产GTR是一款标志性的超级跑车,出色的性能和令人惊叹的外观使其备受追捧。
为了满足日本国内和国际的排放标准,日产采用了一系列排放技术来改善GTR的尾气排放。
例如,他们使用了直喷技术和涡轮增压系统,提高了燃烧效率,减少了尾气中有毒物质的生成。
第五部分:日产GTR 2019款的排放指标根据日本国内的排放标准,GTR 2019款的CO2排放量必须控制在250g/km以下。
此外,根据Euro 5排放标准,GTR的NOx排放量应小于0.2g/km。
日产为了达到这些标准,在引擎设计中加入了高效的催化剂和排气系统,通过减少尾气中的有害物质,降低了排放水平。
第六部分:日产的环境守护行动除了GTR的排放技术改进之外,日产还采取了一系列环境守护行动来减少公司整体的碳排放。
GT-R历史
在GT-R系列车型长达40年的发展历程中,逐渐由高性能车的代表演变为“战神”,同时也历经了两次停产,在全新的R35车型推出之后,日产又一次向世界证明了自己精湛的造车工艺。
第一代车型1969~1972年该车配备的引擎为一台2.0L的直列6缸引擎,117.5千瓦的功率,最大扭矩177N.m。
这款车型采用了5挡手动变速箱,驱动形式为后驱,悬挂系统则采用了拖曳臂式结构。
到1971年,日产为GT-R增加了2门的Coupe(参数车型)车型。
第二代车型1972~1973年第二代与第一代的引擎相同,但是在当时的社会背景之下,油耗较高的化油器车型并不如以前那样受到追捧。
这款车唯一的亮点也许就是成为了日本首部采用了前碟后鼓制动系统的车型。
第三代车型1989~1994年日产再次推出了GT-R,这次的车型代号为BNR32,也就是后来简称的R32。
第三代车型的引擎也升级为一部2.6L的6缸引擎,同时配备了双涡轮增压器。
最大输出206(参数图片)千瓦,扭矩达353N.m,与之前的两代车型一样采用了5速手动变速器。
悬挂系统为四轮独立的多连杆式,添加了在电控四轮驱动系统之上扭力分配功能。
第三代车型提速时间仅为4.7秒,极速可达243KM/h,在当时几乎难以见到敌手。
第四代车型1995~1998年代号为BNR33的新车引擎动力也已达到日本的公率上限,维持206千瓦的动力同时,扭矩被提升至375N.m,仍采用5速手动变速器。
新一代车型在经历小改款之后,配合升级了ABS系统以及四轮驱动系统,令车辆的性能再次得到了提升。
第五代车型1999~2002年BNR34系列调整了底盘数据,同时缩短车身以实现操控性能的提升。
虽然引擎的增压值被再次调高,但是没有采用新的引擎还是令这款车在车迷眼中失去了一些光彩。
所以在2002年8月,日产停止了这款车型的生产,算上性能版本以及升级版,仅仅万余台的销量确实很难让人满意。
第六代车型2007~至今2007年,全新的GT-R以独立车系的身份再次被推出,3.5秒的提速性能也相当的令人满意。
第2号全球技术法规(GTR2)研究
第2号全球技术法规(GTR2)研究
王建超;朱天飞;王青;周荣波;石伟;窦金泉
【期刊名称】《小型内燃机与车辆技术》
【年(卷),期】2022(51)2
【摘要】对第2号全球技术法规(GTR No.2)的内容进行了详细的研究,总结出了法规对Ⅰ型试验(常温下冷启动后排气污染物排放试验)和Ⅱ型试验(双怠速试验)的具体要求,并与目前我国的第四阶段标准做了比较。
通过掌握国际技术法规的发展动向,为我国相关技术法规的修改完善提供参考。
【总页数】5页(P89-93)
【作者】王建超;朱天飞;王青;周荣波;石伟;窦金泉
【作者单位】天津内燃机研究所(天津摩托车技术中心)
【正文语种】中文
【中图分类】U483
【相关文献】
1.第17号全球技术法规(GTR17)研究
2.第18号全球技术法规(GTR18)研究
3.全球技术法规研究
4.摩托车排放试验循环的全球技术法规研究
5.轮胎全球技术法规研究
因版权原因,仅展示原文概要,查看原文内容请购买。
机动车环检新标准限值变更验收记录(完整版)
合格
测试数据(三)
车型
车牌号
检测项目
测量数值
修改后限值
软件(平台) 判定
轻型普通货 车
过量空气系数(入)
1.09
0. 95—1.05
不合格
低怠速(CO%)
1.77
0.60
不合格
低怠速(HC 10-6)
97
80
不合格
高怠速(CO%)
2.01
0.30
不合格
高怠速(HC 10-6)
103
50
不合格
验收依据
自由加速法限值变更
测试验证方法
用测试车按标准进行检测
测试数据(一)
车型
车牌号
检测项目
测量数值
修改后限值
软件(平台) 判定
轻型普通货 车
KE)1次
5.75
-
-
K(m_1)2次
5.12
-
-
K(m1)3次
4.79
-
-
Kg)平均值
5.22
1.20
不合格
测试数据(二)
车型
车牌号
检测项目
测量数值
修改后限值
软件(平台) 判定
软件名称
软件版本
软件开发商
修改申请人
日期
2019. 4.30
需修改的内容:排气污染物限值
修改理由:
依据GE18285-2018、GB3847-2018标准和XXXX要求,2019年5月1日起实施新标准限值
修改方式:
备份旧程序,由软件开发商提供替换程序,然后公司网络管理员进行安装并测试验收。
修改后内容:
0.23
1.20
合格
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GE.08-ECE/TRANS/180/Add.2/Amend.129 January 2008GLOBAL REGISTRYCreated on 18 November 2004, pursuant to Article 6 of theAGREEMENT CONCERNING THE ESTABLISHING OF GLOBAL TECHNICAL REGULATIONS FOR WHEELED VEHICLES, EQUIPMENT AND PARTS WHICH CAN BE FITTED AND/OR BE USED ON WHEELED VEHICLES(ECE/TRANS/132 and Corr.1)Done at Geneva on 25 June 1998AddendumGlobal technical regulation No. 2Amendment 1MEASUREMENT PROCEDURE FOR TWO-WHEELED MOTORCYCLES EQUIPPED WITH A POSITIVE OR COMPRESSION IGNITION ENGINE WITH REGARD TO THE EMISSION OF GASEOUS POLLUTANTS, CO2 EMISSIONS AND FUEL CONSUMPTION (Established in the Global Registry on 22 June 2005)UNITED NATIONSECE/TRANS/180/Add.2/Amend.1page 2Section AParagraph 2., add three new subparagraphs to read:"… in Part B of this document.At its April 2006 meeting held in Pune (India), WMTC/FEG agreed to prepare new test cycle proposals and a new vehicle classification for draft amendments to the gtr in order to suit low-powered vehicles, such as commonly used in India and China.A small WMTC Task Force, coordinated by IMMA, was set up to prepare a proposal on the test cycle(s) and any new classification that might be necessary to achieve this objective. The Task Force was attended by Germany (TUV), India, Italy, Japan (JASIC) and IMMA. Task Force meetings were held in August and October 2006.At its November 2006 meeting held in Ann Arbor (United States of America), WMTC/FEG agreed to a modified version of one of the WMTC Task Force proposals and forwarded it to WMTC Informal Group in January 2007 where it was approved for submission to GRPE."Paragraph 3., amend to read:"…EU:Directive 2002/51/EC amending directive 97/24/EC: The reduction of the level of pollutant emissions from two- and three-wheeled motor vehiclesIndian Regulation:MoSRT&H/ CMVR/ TAP-115/116 and Central Motor Vehicle Rule No. 115Japanese Regulation:Road vehicle Act, Article 41 "Systems and Devices of Motor Vehicles"Safety Regulations for Road Vehicles, Article 31 "Emission Control Devices"United States of America regulation:US-FTP Subpart F, Emission Regulations for 1978 and Later New MotorcyclesISO standards:ISO 11486 (Motorcycles - Chassis dynamometer setting method)ISO 6460 (gas sampling)ISO 7860 (fuel consumption)ISO 4106 (Motorcycles -- Engine test code -- Net power)Most of these …"ECE/TRANS/180/Add.2/Amend.1page 3Paragraph.4., add a subparagraph to read:"…Finally, a first draft of the World-wide Motorcycle Test Cycle (WMTC) was produced. It was foreseen that this first draft needed to be modified on the basis of an evaluation concerning driveability and practical points concerning the measurement procedure. Since this process is iterative by nature, several adaptation rounds including the driveability tests were carried out.In order to take into account the performances and the use of low-powered motorcycles, additional data were supplied by India. After further analysis, it was agreed that the previously agreed reduced speed test cycles should be modified and that the class 1 vehicle subcategories could be merged.In each of these steps, specific technical issues were …"Paragraph 4.(d), amend to read:"… as required by the 1998 Agreement.The Informal group will continue its work on the comparative database of results from the different test procedures, which will act as a major input on the discussion of limit values that are compatible to the existing limit values in different regions/countries."Section BInsert a new paragraph 3.9., to read:"3.9. "Maximum net engine power" is the maximum net engine power of the vehicle as declared by the manufacturer, measured in accordance with ISO 4106:2004 (Motorcycles -- Engine test code -- Net power)."Paragraph 6.3.1., amend to read:"6.3.1. Class 1Vehicles that fulfil the following specifications belong to class 1:50 cm³ < engine capacity < 150 cm³ and v max < 50 km/hclass 1orengine capacity < 150 cm³ and 50 km/h ≤ v max < 100 km/h"ECE/TRANS/180/Add.2/Amend.1 page 4Paragraph 6.3.3., figure 6-1, replace by the following: " "Paragraph 6.5.4.1., amend to read:"6.5.4.1. Test cycles Test cycles (vehicle speed patterns), for the Type I test consists of up to three partsthat are shown in Annex 5. Depending on the vehicle class (see paragraph 6.3.) the following test cycle parts have to be run:Class 1: part 1, reduced speed in cold condition, followedby part 1 reduced speed in hot condition.Class 2: Subclass 2-1: part 1, reduced speed in cold condition, followedby part 2, reduced speed in hot condition.Subclass 2-2: part 1 in cold condition, followed by part 2 in hotcondition.Class 3: Subclass 3-1: part 1 in cold condition, followed by part 2 in hotcondition, followed by part 3 reduced speed in hot condition.Subclass 3-2: part 1 in cold condition, followed by part 2 in hotcondition, followed by part 3 in hot condition."Figu r e 6 -1 : vehicle classification150300450600750900 1050 120013501500engine capacity in cm 313- 12 - 12 - 23- 2m a x . v e h i c l e s p e e d i n k m /hECE/TRANS/180/Add.2/Amend.1 page 5Paragraph 6.5.6.1., amend to read:"6.5.6.1. Chassis dynamometer setting derived from on-road coast down measurements To use this alternative on road coast down measurements have to be carried out asspecified in Annex 7."Paragraph 8.1.1.4.4., amend to read: " ……DF is the coefficient defined in paragraph 8.1.1.4.6. below. ……"Annex 5, figure A5-1, replace by the following: ""Annex 5, figure A5-2, replace by the following:""ECE/TRANS/180/Add.2/Amend.1 page 6Annex 5, Tables A5-1 to A5-15, replace by the following (see following pages):"Table A5-1: Cycle part 1, 1 to 120 sindicatorsindicatorstime roller speed in km/hstop acc cruise dec. no gear-shift no first gear time roller speed in km/h stop acc cuise dec no gear-shift no first gear 1 0,0 X 61 29,7 X 2 0,0 X 62 27,0 X 3 0,0 X 63 23,0 X 4 0,0 X 64 18,7 X 5 0,0 X 65 14,2 X 6 0,0 X 66 9,4 X 7 0,0 X 67 4,9 X 8 0,0 X 68 2,0 X 9 0,0 X 69 0,0 X 10 0,0 X 70 0,0 X 11 0,0 X 71 0,0 X 12 0,0 X 72 0,0 X 13 0,0 X 73 0,0 X 14 0,0 X 74 1,7 X 15 0,0 X 75 5,8 X 16 0,0 X 76 11,8 X 17 0,0 X 77 18,3 X 18 0,0 X 78 24,5 X 19 0,0 X 79 29,4 X 20 0,0 X 80 32,5 X 21 0,0 X 81 34,2 X 22 1,0 X 82 34,4 X 23 2,6 X 83 34,5 X 24 4,8 X 84 34,6 X 25 7,2 X 85 34,7 X 26 9,6 X 86 34,8 X 27 12,0 X 87 35,2 X 28 14,3 X 88 36,0 X 29 16,6 X 89 37,0 X 30 18,9 X 90 37,9 X 31 21,2 X 91 38,6 X 32 23,5 X 92 38,8 X 33 25,6 X 93 38,8 X 34 27,1 X 94 38,7 X 35 28,0 X 95 38,5 X 36 28,7 X 96 38,0 X 37 29,2 X 97 37,4 X 38 29,8 X 98 36,9 X 39 30,4 X X 99 36,6 X 40 29,6 X X 100 36,4 X 41 28,7 X X 101 36,4 X 42 27,9 X X X 102 36,5 X 43 27,5 X X X 103 36,7 X 44 27,3 X X X 104 36,9 X 45 27,4 X X X 105 37,0 X 46 27,5 X X X 106 37,2 X 47 27,6 X X X 107 37,3 X 48 27,6 X X X 108 37,4 X 49 27,6 X X X 109 37,3 X 50 27,7 X X X 110 36,8 X 51 27,8 X X 111 35,8 X 52 28,1 X X 112 34,7 X 53 28,6 X X 113 31,8 X 54 29,0 X X 114 28,9 X 55 29,2 X X 115 26,7 X X 56 29,5 X X 116 24,6 X X 57 29,7 X X 117 25,2 X X 58 30,1 X X 118 26,2 X X 59 30,5 X X 119 27,6 X X 6030,7XX12029,2XXECE/TRANS/180/Add.2/Amend.1 page 7Table A5-2: Cycle part 1, 121 to 240 sindicatorsindicatorstime roller speed in km/h stop acc cruise dec no gear-shift no first gear time roller speed in km/hstop acc cruise dec no gear-shift no first gear 121 31,0 X X 181 0,0 X 122 32,8 X X 182 0,0 X 123 34,3 X X 183 2,0 X 124 35,1 X 184 6,0 X 125 35,3 X 185 12,4 X 126 35,1 X 186 21,4 X 127 34,6 X 187 30,0 X 128 33,7 X 188 37,1 X 129 32,2 X 189 42,5 X 130 29,6 X 190 46,6 X 131 26,0 X 191 49,8 X 132 22,0 X 192 52,4 X 133 18,5 X 193 54,4 X 134 16,6 X 194 55,6 X 135 17,6 X 195 56,1 X 136 21,0 X 196 56,2 X 137 25,2 X 197 56,2 X 138 29,1 X 198 56,2 X 139 31,4 X 199 56,7 X 140 31,9 X 200 57,2 X 141 31,4 X 201 57,7 X 142 30,6 X 202 58,2 X 143 29,5 X 203 58,7 X 144 28,0 X 204 59,3 X 145 24,9 X 205 59,8 X 146 20,2 X 206 60,0 X 147 14,8 X 207 60,0 X 148 9,5 X 208 59,9 X 149 4,8 X 209 59,9 X 150 1,4 X 210 59,9 X 151 0,0 X 211 59,9 X 152 0,0 X 212 59,9 X 153 0,0 X 213 59,8 X 154 0,0 X 214 59,6 X 155 0,0 X 215 59,1 X 156 0,0 X 216 57,1 X 157 0,0 X 217 53,2 X 158 0,0 X 218 48,3 X 159 0,0 X 219 43,9 X 160 0,0 X 220 40,3 X 161 0,0 X 221 39,5 X 162 0,0 X 222 41,3 X 163 0,0 X 223 45,2 X 164 0,0 X 224 50,1 X 165 0,0 X 225 53,7 X 166 0,0 X 226 55,8 X 167 0,0 X 227 55,8 X 168 0,0 X 228 54,7 X 169 0,0 X 229 53,3 X 170 0,0 X 230 52,3 X 171 0,0 X 231 52,0 X 172 0,0 X 232 52,1 X 173 0,0 X 233 51,8 X 174 0,0 X 234 50,8 X 175 0,0 X 235 49,2 X 176 0,0 X 236 47,5 X 177 0,0 X 237 45,7 X 178 0,0 X 238 43,9 X 179 0,0 X 239 42,0 X 1800,0X24040,2XECE/TRANS/180/Add.2/Amend.1 page 8Table A5-3: Cycle part 1, 241 to 360 sindicatorsindicatorstime roller speed in km/h stop acc cruise dec no gear-shift no first gear time roller speed in km/h stop acc cruise dec no gear-shift no first gear 241 38,3 X 301 30,6 X X 242 36,4 X 302 28,9 X 243 34,6 X 303 27,8 X 244 32,7 X 304 27,2 X 245 30,6 X 305 26,9 X 246 28,1 X 306 26,5 X 247 25,5 X 307 26,1 X 248 23,1 X 308 25,7 X 249 21,2 X 309 25,5 X 250 19,5 X 310 25,7 X 251 17,8 X 311 26,4 X 252 15,3 X 312 27,3 X 253 11,5 X 313 28,1 X 254 7,2 X 314 27,9 X 255 2,5 X 315 26,0 X 256 0,0 X 316 22,7 X 257 0,0 X 317 19,0 X 258 0,0 X 318 16,0 X 259 0,0 X 319 14,6 X 260 0,0 X 320 15,2 X 261 0,0 X 321 16,9 X 262 0,0 X 322 19,3 X 263 0,0 X 323 22,0 X 264 0,0 X 324 24,6 X 265 0,0 X 325 26,8 X 266 0,0 X 326 27,9 X 267 0,5 X 327 28,1 X 268 2,9 X 328 27,7 X 269 8,2 X 329 27,2 X 270 13,2 X 330 26,8 X 271 17,8 X 331 26,6 X 272 21,4 X 332 26,8 X 273 24,1 X 333 27,0 X 274 26,4 X 334 27,2 X 275 28,4 X 335 27,4 X 276 29,9 X 336 27,6 X 277 30,5 X 337 27,7 X 278 30,5 X 338 27,9 X 279 30,3 X 339 28,1 X 280 30,2 X 340 28,3 X 281 30,1 X 341 28,6 X 282 30,1 X 342 29,0 X 283 30,1 X 343 29,6 X 284 30,1 X 344 30,1 X 285 30,1 X 345 30,5 X 286 30,1 X 346 30,7 X 287 30,2 X 347 30,8 X 288 30,4 X X 348 30,8 X 289 31,0 X X 349 30,8 X 290 31,8 X X 350 30,8 X 291 32,7 X X 351 30,8 X 292 33,6 X X 352 30,8 X 293 34,4 X X 353 30,8 X 294 35,0 X X 354 30,9 X 295 35,4 X X 355 30,9 X X X 296 35,5 X X 356 30,9 X X X 297 35,3 X X 357 30,8 X X X 298 34,9 X X 358 30,4 X X X 299 33,9 X X 359 29,6 X X 30032,4XX36028,4XXECE/TRANS/180/Add.2/Amend.1 page 9Table A5-4: Cycle part 1, 361 to 480 sindicatorsindicatorstime roller speed in km/h stop acc cruise dec no gear-shift no first gear time roller speed in km/h stop acc cruise dec no gear-shift no first gear 361 27,1 X X 421 34,0 X 362 26,0 X X 422 35,4 X 363 25,4 X X 423 36,5 X 364 25,5 X X X 424 37,5 X 365 26,3 X X X 425 38,6 X 366 27,3 X X X 426 39,7 X 367 28,4 X X X 427 40,7 X 368 29,2 X X X 428 41,5 X 369 29,5 X X X 429 41,7 X 370 29,5 X X X 430 41,5 X 371 29,0 X X X 431 41,0 X 372 28,1 X X X 432 40,6 X 373 27,2 X X X 433 40,3 X 374 26,3 X X X 434 40,2 X 375 25,7 X X X 435 40,1 X 376| 25,5 X X X 436 39,8 X 377 25,6 X X X 437 38,9 X 378 26,0 X X X 438 37,5 X 379 26,4 X X X 439 35,8 X 380 27,0 X X X 440 34,2 X 381 27,7 X X X 441 32,5 X 382 28,5 X X X 442 30,9 X 383 29,4 X X X 443 29,4 X 384 30,2 X X X 444 28,0 X 385 30,5 X X X 445 26,5 X 386 30,3 X X 446 25,0 X 387 29,5 X X 447 23,5 X 388 28,7 X X 448 21,9 X 389 27,9 X X 449 20,4 X 390 27,5 X 450 19,4 X 391 27,3 X 451 18,8 X 392 27,0 X 452 18,4 X 393 26,5 X 453 18,0 X 394 25,8 X 454 17,5 X 395 25,0 X 455 16,9 X 396 21,5 X 456 16,4 X 397 16,0 X 457 16,6 X 398 10,0 X 458 17,7 X 399 5,0 X 459 19,4 X 400 2,2 X 460 20,9 X 401 1,0 X 461 22,3 X 402 0,0 X 462 23,2 X 403 0,0 X 463 23,2 X 404 0,0 X 464 22,2 X 405 0,0 X 465 20,3 X 406 0,0 X 466 17,9 X 407 0,0 X 467 15,2 X 408 1,2 X 468 12,3 X 409 3,2 X 469 9,3 X 410 5,9 X 470 6,4 X 411 8,8 X 471 3,8 X 412 12,0 X 472 2,0 X 413 15,4 X 473 0,9 X 414 18,9 X 474 0,0 X 415 22,1 X 475 0,0 X 416 24,8 X 476 0,0 X 417 26,8 X 477 0,0 X 418 28,7 X 478 0,0 X 419 30,6 X 479 0,0 X 42032,4X4800,0XECE/TRANS/180/Add.2/Amend.1 page 10Table A5-5: Cycle part 1, 481 to 600 sindicatorsindicatorstime roller speed in km/hstop acc cruise dec no gear-shift no first gear time roller speed in km/hstop acc cruise dec no gear-shift no first gear 481 0,0 X 541 0,0 X 482 0,0 X 542 2,7 X 483 0,0 X 543 8,0 X 484 0,0 X 544 16,0 X 485 0,0 X 545 24,0 X 486 1,4 X 546 32,0 X 487 4,5 X 547 37,2 X 488 8,8 X 548 40,4 X 489 13,4 X 549 43,1 X 490 17,3 X 550 44,6 X 491 19,2 X 551 45,2 X 492 19,7 X 552 45,3 X 493 19,8 X 553 45,4 X 494 20,7 X 554 45,5 X 495 23,6 X 555 45,6 X 496 28,1 X 556 45,7 X 497 32,8 X 557 45,8 X 498 36,3 X 558 45,9 X 499 37,1 X 559 46,0 X 500 35,1 X X 560 46,1 X 501 31,1 X X 561 46,2 X 502 28,0 X X 562 46,3 X 503 27,5 X X 563 46,4 X 504 29,5 X X 564 46,7 X 505 34,0 X X 565 47,2 X 506 37,0 X X 566 48,0 X 507 38,0 X X 567 48,9 X 508 36,1 X 568 49,8 X 509 31,5 X 569 50,5 X 510 24,5 X 570 51,0 X 511 17,5 X 571 51,1 X 512 10,5 X 572 51,0 X 513 4,5 X 573 50,4 X 514 1,0 X 574 49,0 X 515 0,0 X 575 46,7 X 516 0,0 X 576 44,0 X 517 0,0 X 577 41,1 X 518 0,0 X 578 38,3 X 519 2,9 X 579 35,4 X 520 8,0 X 580 31,8 X 521 16,0 X 581 27,3 X 522 24,0 X 582 22,4 X 523 32,0 X 583 17,7 X 524 38,8 X 584 13,4 X 525 43,1 X 585 9,3 X 526 46,0 X 586 5,5 X 527 47,5 X 587 2,0 X 528 47,5 X 588 0,0 X 529 44,8 X 589 0,0 X 530 40,1 X 590 0,0 X 531 33,8 X 591 0,0 X 532 27,2 X 592 0,0 X 533 20,0 X 593 0,0 X 534 12,8 X 594 0,0 X 535 7,0 X 595 0,0 X 536 2,2 X 596 0,0 X 537 0,0 X 597 0,0 X 538 0,0 X 598 0,0 X 539 0,0 X 599 0,0 X 5400,0X6000,0XTable A5-6: Cycle part 1, reduced speed, 1 to 120 sindicatorsindicatorstime roller speed in km/hstop acc cruise dec no gear-shift no first gear time roller speed in km/h stop acc cruise dec no gear-shift no first gear 1 0,0 X 61 29,6 X 2 0,0 X 62 26,9 X 3 0,0 X 63 23,0 X 4 0,0 X 64 18,6 X 5 0,0 X 65 14,1 X 6 0,0 X 66 9,3 X 7 0,0 X 67 4,8 X 8 0,0 X 68 1,9 X 9 0,0 X 69 0,0 X 10 0,0 X 70 0,0 X 11 0,0 X 71 0,0 X 12 0,0 X 72 0,0 X 13 0,0 X 73 0,0 X 14 0,0 X 74 1,7 X 15 0,0 X 75 5,8 X 16 0,0 X 76 11,8 X 17 0,0 X 77 17,3 X 18 0,0 X 78 22,0 X 19 0,0 X 79 26,2 X 20 0,0 X 80 29,4 X 21 0,0 X 81 31,1 X 22 1,0 X 82 32,9 X 23 2,6 X 83 34,7 X 24 4,8 X 84 34,8 X 25 7,2 X 85 34,8 X 26 9,6 X 86 34,9 X 27 12,0 X 87 35,4 X 28 14,3 X 88 36,2 X 29 16,6 X 89 37,1 X 30 18,9 X 90 38,0 X 31 21,2 X 91 38,7 X 32 23,5 X 92 38,9 X 33 25,6 X 93 38,9 X 34 27,1 X 94 38,8 X 35 28,0 X 95 38,5 X 36 28,7 X 96 38,1 X 37 29,2 X 97 37,5 X 38 29,8 X 98 37,0 X 39 30,3 X X 99 36,7 X 40 29,6 X X 100 36,5 X 41 28,7 X X 101 36,5 X 42 27,9 X X X 102 36,6 X 43 27,4 X X X 103 36,8 X 44 27,3 X X X 104 37,0 X 45 27,3 X X X 105 37,1 X 46 27,4 X X X 106 37,3 X 47 27,5 X X X 107 37,4 X 48 27,6 X X X 108 37,5 X 49 27,6 X X X 109 37,4 X 50 27,6 X X X 110 36,9 X 51 27,8 X X 111 35,9 X 52 28,1 X X 112 34,8 X 53 28,5 X X 113 31,9 X 54 28,9 X X 114 29,0 X 55 29,2 X X 115 26,9 X X 56 29,4 X X 116 24,7 X X 57 29,7 X X 117 25,4 X X 58 30,0 X X 118 26,4 X X 59 30,5 X X 119 27,7 X X 6030,6XX12029,4XXTable A5-7: Cycle part 1, reduced speed, 121 to 240 sindicatorsindicatorstime roller speed in km/h stop acc cruise dec no gear- shift no first gear time roller speed in km/hstop acc cruise dec no gear- shift no first gear 121 31,2 X X 181 0,0 X 122 33,0 X X 182 0,0 X 123 34,4 X X 183 0,0 X 124 35,2 X 184 0,0 X 125 35,4 X 185 0,4 X 126 35,2 X 186 1,8 X 127 34,7 X 187 5,4 X 128 33,9 X 188 11,1 X 129 32,3 X 189 16,7 X 130 29,8 X 190 21,3 X 131 26,1 X 191 24,7 X 132 22,1 X 192 28,4 X 133 18,6 X 193 31,8 X 134 16,8 X 194 34,6 X 135 17,7 X 195 36,3 X 136 21,1 X 196 37,8 X 137 25,4 X 197 39,6 X 138 29,2 X 198 41,3 X 139 31,6 X 199 43,3 X 140 32,1 X 200 45,1 X 141 31,6 X 201 47,5 X 142 30,7 X 202 49,0 X 143 29,7 X 203 50,0 X 144 28,1 X 204 49,5 X 145 25,0 X 205 48,8 X 146 20,3 X 206 47,6 X 147 15,0 X 207 46,5 X 148 9,7 X 208 46,1 X 149 5,0 X 209 46,1 X 150 1,6 X 210 46,6 X 151 0,0 X 211 46,9 X 152 0,0 X 212 47,2 X 153 0,0 X 213 47,8 X 154 0,0 X 214 48,4 X 155 0,0 X 215 48,9 X 156 0,0 X 216 49,2 X 157 0,0 X 217 49,6 X 158 0,0 X 218 49,9 X 159 0,0 X 219 50,0 X 160 0,0 X 220 49,8 X 161 0,0 X 221 49,5 X 162 0,0 X 222 49,2 X 163 0,0 X 223 49,3 X 164 0,0 X 224 49,4 X 165 0,0 X 225 49,4 X 166 0,0 X 226 48,6 X 167 0,0 X 227 47,8 X 168 0,0 X 228 47,0 X 169 0,0 X 229 46,9 X 170 0,0 X 230 46,6 X 171 0,0 X 231 46,6 X 172 0,0 X 232 46,6 X 173 0,0 X 233 46,9 X 174 0,0 X 234 46,4 X 175 0,0 X 235 45,6 X 176 0,0 X 236 44,4 X 177 0,0 X 237 43,5 X 178 0,0 X 238 43,2 X 179 0,0 X 239 43,3 X 1800,0X24043,6XTable A5-8: Cycle part 1, reduced speed, 241 to 360 sindicatorsindicatorstime roller speed in km/h stop acc cruise dec no gear- shift no first gear time roller speed in km/h stop acc cruise dec no gear-shift no first gear 241 43,9 X 301 30,6 X X 242 43,7 X 302 29,0 X 243 43,0 X 303 27,8 X 244 40,9 X 304 27,2 X 245 36,9 X 305 26,9 X 246 32,1 X 306 26,5 X 247 26,6 X 307 26,1 X 248 21,8 X 308 25,7 X 249 17,2 X 309 25,5 X 250 13,7 X 310 25,7 X 251 10,3 X 311 26,4 X 252 7,0 X 312 27,3 X 253 3,5 X 313 28,1 X 254 0,0 X 314 27,9 X 255 0,0 X 315 26,0 X 256 0,0 X 316 22,7 X 257 0,0 X 317 19,0 X 258 0,0 X 318 16,0 X 259 0,0 X 319 14,6 X 260 0,0 X 320 15,2 X 261 0,0 X 321 16,9 X 262 0,0 X 322 19,3 X 263 0,0 X 323 22,0 X 264 0,0 X 324 24,6 X 265 0,0 X 325 26,7 X 266 0,0 X 326 27,9 X 267 0,5 X 327 28,0 X 268 2,9 X 328 27,6 X 269 8,2 X 329 27,1 X 270 13,2 X 330 26,7 X 271 17,8 X 331 26,6 X 272 21,4 X 332 26,7 X 273 24,1 X 333 27,0 X 274 26,4 X 334 27,2 X 275 28,4 X 335 27,4 X 276 29,9 X 336 27,5 X 277 30,5 X 337 27,7 X 278 30,5 X 338 27,9 X 279 30,3 X 339 28,1 X 280 30,2 X 340 28,3 X 281 30,1 X 341 28,6 X 282 30,1 X 342 29,1 X 283 30,1 X 343 29,6 X 284 30,2 X 344 30,1 X 285 30,2 X 345 30,6 X 286 30,2 X 346 30,8 X 287 30,2 X 347 30,8 X 288 30,5 X X 348 30,8 X 289 31,0 X X 349 30,8 X 290 31,9 X X 350 30,8 X 291 32,8 X X 351 30,8 X 292 33,7 X X 352 30,8 X 293 34,5 X X 353 30,8 X 294 35,1 X X 354 30,9 X X 295 35,5 X X 355 30,9 X X X 296 35,6 X X 356 30,9 X X X 297 35,4 X X 357 30,8 X X X 298 35,0 X X 358 30,4 X X X 299 34,0 X X 359 29,6 X X 30032,4XX36028,4XXTable A5-9: Cycle part 1, reduced speed, 361 to 480 sindicatorsindicatorstime roller speed in km/h stop acc cruise dec no gear- shift no first gear time roller speed in km/h stop acc cruise dec no gear-shift no first gear 361 27,1 X X 421 34,0 X 362 26,0 X X 422 35,4 X 363 25,4 X X 423 36,5 X 364 25,5 X X X 424 37,5 X 365 26,3 X X X 425 38,6 X 366 27,3 X X X 426 39,6 X 367 28,3 X X X 427 40,7 X 368 29,2 X X X 428 41,4 X 369 29,5 X X X 429 41,7 X 370 29,4 X X X 430 41,4 X 371 28,9 X X X 431 40,9 X 372 28,1 X X X 432 40,5 X 373 27,1 X X X 433 40,2 X 374 26,3 X X X 434 40,1 X 375 25,7 X X X 435 40,1 X 376 25,5 X X X 436 39,8 X 377 25,6 X X X 437 38,9 X 378 25,9 X X X 438 37,4 X 379 26,3 X X X 439 35,8 X 380 26,9 X X X 440 34,1 X 381 27,6 X X X 441 32,5 X 382 28,4 X X X 442 30,9 X 383 29,3 X X X 443 29,4 X 384 30,1 X X X 444 27,9 X 385 30,4 X X X 445 26,5 X 386 30,2 X X 446 24,9 X 387 29,4 X X 447 23,4 X 388 28,6 X X 448 21,8 X 389 27,9 X X 449 20,3 X 390 27,5 X 450 19,3 X 391 27,2 X 451 18,7 X 392 26,9 X 452 18,3 X 393 26,4 X 453 17,8 X 394 25,7 X 454 17,4 X 395 24,9 X 455 16,8 X 396 21,4 X 456 16,3 X 397 15,9 X 457 16,5 X 398 9,9 X 458 17,6 X 399 4,9 X 459 19,2 X 400 2,1 X 460 20,8 X 401 0,9 X 461 22,2 X 402 0,0 X 462 23,0 X 403 0,0 X 463 23,0 X 404 0,0 X 464 22,0 X 405 0,0 X 465 20,1 X 406 0,0 X 466 17,7 X 407 0,0 X 467 15,0 X 408 1,2 X 468 12,1 X 409 3,2 X 469 9,1 X 410 5,9 X 470 6,2 X 411 8,8 X 471 3,6 X 412 12,0 X 472 1,8 X 413 15,4 X 473 0,8 X 414 18,9 X 474 0,0 X 415 22,1 X 475 0,0 X 416 24,7 X 476 0,0 X 417 26,8 X 477 0,0 X 418 28,7 X 478 0,0 X 419 30,6 X 479 0,0 X 42032,4X4800,0XTable A5-10: Cycle part 1, reduced speed, 481 to 600 sindicatorsindicatorstime roller speed in km/h stop acc cruise dec no gear- shift no first gear time roller speed in km/hstop acc cruise dec no gear- shift no first gear 481 0,0 X 541 0,0 X 482 0,0 X 542 2,8 X 483 0,0 X 543 8,1 X 484 0,0 X 544 14,2 X 485 0,0 X 545 19,2 X 486 1,4 X 546 23,5 X 487 4,5 X 547 27,2 X 488 8,8 X 548 30,4 X 489 13,4 X 549 33,1 X 490 17,3 X 550 35,7 X 491 19,2 X 551 38,3 X 492 19,7 X 552 41,0 X 493 19,8 X 553 43,6 X 494 20,7 X 554 43,7 X 495 23,7 X 555 43,8 X 496 27,9 X 556 43,9 X 497 31,9 X 557 44,0 X 498 35,4 X 558 44,1 X 499 36,2 X 559 44,2 X 500 34,2 X X 560 44,3 X 501 30,2 X X 561 44,4 X 502 27,1 X X 562 44,5 X 503 26,6 X X 563 44,6 X 504 28,6 X X 564 44,9 X 505 32,6 X X 565 45,5 X 506 35,5 X X 566 46,2 X 507 36,6 X X 567 47,1 X 508 34,6 X 568 48,0 X 509 30,0 X 569 48,7 X 510 23,1 X 570 49,2 X 511 16,7 X 571 49,4 X 512 10,7 X 572 49,3 X 513 4,7 X 573 48,7 X 514 1,2 X 574 47,3 X 515 0,0 X 575 45,0 X 516 0,0 X 576 42,3 X 517 0,0 X 577 39,4 X 518 0,0 X 578 36,6 X 519 3,0 X 579 33,7 X 520 8,1 X 580 30,1 X 521 14,3 X 581 25,9 X 522 19,3 X 582 21,8 X 523 23,5 X 583 17,7 X 524 27,3 X 584 13,5 X 525 30,8 X 585 9,4 X 526 33,7 X 586 5,6 X 527 35,2 X 587 2,1 X 528 35,2 X 588 0,0 X 529 32,5 X 589 0,0 X 530 27,9 X 590 0,0 X 531 23,2 X 591 0,0 X 532 18,5 X 592 0,0 X 533 13,8 X 593 0,0 X 534 9,1 X 594 0,0 X 535 4,5 X 595 0,0 X 536 2,3 X 596 0,0 X 537 0,0 X 597 0,0 X 538 0,0 X 598 0,0 X 539 0,0 X 599 0,0 X 5400,0X6000,0XTable A5-11: Cycle part 2, 1 to 120 sindicatorsindicatorstime roller speed in km/hstop acc cruise dec no gear- shift no first gear time roller speed in km/h stop acc cruise dec no gear- shift no first gear 1 0,0 X 61 23,7 X X 2 0,0 X 62 23,8 X X 3 0,0 X 63 25,0 X X 4 0,0 X 64 27,3 X X 5 0,0 X 65 30,4 X X 6 0,0 X 66 33,9 X X 7 0,0 X 67 37,3 X X 8 0,0 X 68 39,8 X X 9 2,3 X 69 39,5 X 10 7,3 X 70 36,3 X 11 15,2 X 71 31,4 X 12 23,9 X 72 26,5 X 13 32,5 X 73 24,2 X X 14 39,2 X 74 24,8 X X 15 44,1 X 75 26,6 X X 16 48,1 X 76 27,5 X X 17 51,2 X 77 26,8 X X 18 53,3 X 78 25,3 X X 19 54,5 X 79 24,0 X X 20 55,7 X 80 23,3 X X 21 56,9 X 81 23,7 X X 22 57,5 X 82 24,9 X X 23 58,0 X 83 26,4 X X 24 58,4 X 84 27,7 X X 25 58,5 X 85 28,3 X X 26 58,5 X 86 28,3 X X 27 58,6 X X 87 28,1 X X 28 58,9 X X 88 28,1 X X 29 59,3 X X 89 28,6 X X 30 59,8 X X 90 29,8 X X 31 60,2 X X 91 31,6 X X 32 60,5 X X 92 33,9 X X 33 60,8 X X 93 36,5 X 34 61,1 X X 94 39,1 X 35 61,5 X X 95 41,5 X 36 62,0 X X 96 43,3 X 37 62,5 X X 97 44,5 X 38 63,0 X X 98 45,1 X 39 63,4 X X 99 45,1 X 40 63,7 X X 100 43,9 X 41 63,8 X X 101 41,4 X 42 63,9 X X 102 38,4 X 43 63,8 X X 103 35,5 X 44 63,2 X X 104 32,9 X 45 61,7 X X 105 31,3 X 46 58,9 X X 106 30,7 X X 47 55,2 X 107 31,0 X X 48 51,0 X 108 32,2 X X 49 46,7 X 109 34,0 X X 50 42,8 X 110 36,0 X 51 40,2 X 111 37,9 X 52 38,8 X 112 39,9 X 53 37,9 X 113 41,6 X 54 36,7 X 114 43,1 X 55 35,1 X 115 44,3 X 56 32,9 X 116 45,0 X 57 30,4 X 117 45,5 X 58 28,0 X 118 45,8 X X 59 25,9 X 119 46,0 X X 6024,4XX12046,1XXTable A5-12: Cycle part 2, 121 to 240 sindicatorsindicatorstime roller speed in km/h stop acc cruise dec no gear- shift no first gear time roller speed in km/h stop acc cruise dec no gear-shift no first gear 121 46,2 X X 181 57,0 X 122 46,1 X X 182 56,3 X 123 45,7 X X 183 55,2 X 124 45,0 X 184 53,9 X 125 44,3 X 185 52,6 X 126 44,7 X 186 51,4 X 127 46,8 X 187 50,1 X 128 50,1 X 188 51,5 X 129 53,6 X 189 53,1 X 130 56,9 X 190 54,8 X 131 59,4 X 191 56,6 X 132 60,2 X 192 58,5 X 133 59,3 X 193 60,6 X 134 57,5 X 194 62,8 X 135 55,4 X 195 64,9 X 136 52,5 X 196 67,0 X 137 47,9 X 197 69,1 X 138 41,4 X 198 70,9 X 139 34,4 X 199 72,2 X 140 30,0 X X 200 72,8 X 141 27,0 X X 201 72,8 X 142 26,5 X X 202 71,9 X 143 28,7 X X 203 70,5 X 144 33,8 X 204 68,8 X 145 40,3 X 205 67,1 X 146 46,6 X 206 65,4 X 147 50,4 X 207 63,9 X 148 54,0 X 208 62,8 X 149 56,9 X 209 61,8 X 150 59,1 X 210 61,0 X 151 60,6 X 211 60,4 X X 152 61,7 X 212 60,0 X X 153 62,6 X 213 60,2 X X 154 63,1 X 214 61,4 X X 155 62,9 X 215 63,3 X X 156 61,7 X 216 65,5 X X 157 59,4 X 217 67,4 X X 158 56,6 X 218 68,5 X X 159 53,7 X 219 68,7 X X 160 50,7 X 220 68,1 X X 161 47,7 X 221 67,3 X X 162 45,0 X 222 66,5 X X 163 43,1 X 223 65,9 X X 164 41,9 X 224 65,5 X X 165 41,6 X 225 64,9 X X 166 41,3 X 226 64,1 X X 167 40,9 X 227 63,0 X X 168 41,8 X 228 62,1 X X 169 42,1 X 229 61,6 X X 170 41,8 X 230 61,7 X X 171 41,3 X 231 62,3 X X 172 41,5 X 232 63,5 X X 173 43,5 X 233 65,3 X X 174 46,5 X 234 67,3 X X 175 49,7 X 235 69,3 X X 176 52,6 X 236 71,4 X X 177 55,0 X 237 73,5 X 178 56,5 X 238 75,6 X 179 57,1 X 239 77,7 X 18057,3X24079,7XTable A5-13: Cycle part 2, 241 to 360 sindicatorsindicatorstime roller speed in km/h stop acc cruise dec no gear- shift no first gear time roller speed in km/h stop acc cruise dec no gear-shift no first gear 241 81,5 X 301 68,3 X 242 83,1 X 302 67,3 X 243 84,6 X 303 66,1 X 244 86,0 X 304 63,9 X 245 87,4 X 305 60,2 X 246 88,7 X 306 54,9 X 247 89,6 X 307 48,1 X 248 90,2 X 308 40,9 X 249 90,7 X 309 36,0 X 250 91,2 X 310 33,9 X 251 91,8 X 311 33,9 X 252 92,4 X 312 36,5 X 253 93,0 X 313 41,0 X 254 93,6 X 314 45,3 X 255 94,1 X 315 49,2 X 256 94,3 X 316 51,5 X 257 94,4 X 317 53,2 X 258 94,4 X 318 53,9 X 259 94,3 X 319 53,9 X 260 94,3 X 320 53,7 X 261 94,2 X 321 53,7 X 262 94,2 X X 322 54,3 X 263 94,2 X X 323 55,4 X 264 94,1 X X 324 56,8 X 265 94,0 X X 325 58,1 X 266 94,0 X X 326 58,9 X 267 93,9 X X 327 58,2 X 268 93,9 X X 328 55,8 X 269 93,9 X X 329 52,6 X 270 93,9 X X 330 49,2 X 271 93,9 X X 331 47,6 X 272 94,0 X X 332 48,4 X 273 94,0 X X 333 51,8 X 274 94,1 X X 334 55,7 X 275 94,2 X 335 59,6 X 276 94,3 X 336 63,0 X 277 94,4 X 337 65,9 X 278 94,5 X 338 68,1 X 279 94,5 X 339 69,8 X 280 94,5 X 340 71,1 X 281 94,5 X 341 72,1 X 282 94,4 X 342 72,9 X 283 94,5 X 343 73,7 X 284 94,6 X 344 74,4 X 285 94,7 X 345 75,1 X 286 94,8 X 346 75,8 X 287 94,9 X 347 76,5 X 288 94,8 X 348 77,2 X 289 94,3 X 349 77,8 X 290 93,3 X 350 78,5 X 291 91,8 X 351 79,2 X 292 89,6 X 352 80,0 X 293 87,0 X 353 81,0 X 294 84,1 X 354 82,0 X 295 81,2 X 355 83,0 X 296 78,4 X 356 83,7 X 297 75,7 X 357 84,2 X 298 73,2 X 358 84,4 X 299 71,1 X 359 84,5 X 30069,5X36084,4XTable A5-14: Cycle part 2, 361 to 480 sindicatorsindicatorstime roller speed in km/h stop acc cruise dec no gear- shift no first gear time roller speed in km/h stop acc cruise dec no gear-shift no first gear 361 84,1 X 421 63,1 X X 362 83,7 X 422 63,6 X X 363 83,2 X 423 63,9 X X 364 82,8 X 424 63,8 X X 365 82,6 X 425 63,6 X X 366 82,5 X 426 63,3 X X 367 82,4 X 427 62,8 X X 368 82,3 X 428 61,9 X X 369 82,2 X 429 60,5 X X 370 82,2 X 430 58,6 X X 371 82,2 X 431 56,5 X X 372 82,1 X 432 54,6 X X 373 81,9 X 433 53,8 X X 374 81,6 X 434 54,5 X X 375 81,3 X 435 56,1 X X 376 81,1 X 436 57,9 X X 377 80,8 X 437 59,7 X X 378 80,6 X 438 61,2 X X 379 80,4 X 439 62,3 X X 380 80,1 X 440 63,1 X X 381 79,7 X 441 63,6 X X 382 78,6 X 442 63,5 X X 383 76,8 X 443 62,7 X X 384 73,7 X 444 60,9 X X 385 69,4 X 445 58,7 X X 386 64,0 X 446 56,4 X X 387 58,6 X 447 54,5 X X 388 53,2 X 448 53,3 X X 389 47,8 X 449 53,0 X X 390 42,4 X 450 53,5 X X 391 37,0 X 451 54,6 X X 392 33,0 X X 452 56,1 X X 393 30,9 X X 453 57,6 X X 394 30,9 X X 454 58,9 X X 395 33,5 X X 455 59,8 X X 396 38,0 X 456 60,3 X X 397 42,5 X 457 60,7 X X 398 47,0 X 458 61,3 X X 399 51,0 X 459 62,4 X X 400 53,5 X 460 64,1 X X 401 55,1 X 461 66,2 X X 402 56,4 X 462 68,1 X X 403 57,3 X 463 69,7 X X 404 58,1 X 464 70,4 X X 405 58,8 X 465 70,7 X X 406 59,4 X 466 70,7 X 407 59,8 X 467 70,7 X 408 59,7 X 468 70,7 X 409 59,4 X 469 70,6 X 410 59,2 X 470 70,5 X 411 59,2 X 471 70,4 X 412 59,6 X 472 70,2 X 413 60,0 X 473 70,1 X 414 60,5 X 474 69,8 X 415 61,0 X 475 69,5 X 416 61,2 X 476 69,1 X 417 61,3 X 477 69,1 X 418 61,4 X 478 69,5 X 419 61,7 X 479 70,3 X X 42062,3X48071,2XX。