考点56 算法与程序框图
算法与程序框图知识详解
一、算法1.算法的概念在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.注意:(1)算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或看成按要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.(2)通俗地讲,算法就是计算机解题的过程.在这个过程中,无论是形成解题思路还是编写程序,都是实施某种算法,前者是推理实现的算法,后者是操作实现的算法.(3)描述算法可以有不同的方式.可以用自然语言和数学语言加以叙述,也可以用算法语言给出精确的说明,或用框图直观的显示等.2.算法的特点(1)确定性:算法中的每一步应该是确定的并且能有效的执行且得到确定的结果,而不应当是模棱两可或者有歧义.(2)可行性:算法对于某一类问题的解决都必须是有效的,切实可行的,并且能重复使用.(3)有效性:一个算法的步骤序列是有限的,它应在有限步操作之后停止,而不是无限的.二、程序框图1.画程序框图的规则①使用标准的框图符号;②框图一般按从上到下、从左到右的方向画;③除判断框外,大多数框图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的唯一的符号;④一种判断是“是”与“不是”两分支的判断,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果;⑤在图形符号内描述的语言要非常简练、清楚.2.算法的基本逻辑结构及框图表示任何一种算法都可由顺序结构、条件结构和循环结构这三种基本逻辑结构组成.学习这部分时应注意:①循环结构中一定包含条件结构;②在循环结构中,通常都有一个起循环计数作用的变量,这个变量的取值一般都含在执行或终止循环体的条件中;③根据对条件的不同处理,循环结构又分为当型(WHILE型)和直到型(UNTIL型)两种.当型循环在每次执行循环体前对控制循环的条件进行判断,当条件满足时执行循环体,不满足则停止;直到型循环在执行了一次循环体之后,对控制循环的条件进行判断,当条件不满足时执行循环体,满足则停止.3.三种基本逻辑结构的共同特点(1)只有一个入口.(2)只有一个出口,请注意一个菱形判断框有两个出口,而一个条件结构只有一个出口,不要将菱形框的出口和条件结构的出口混淆了.(3)结构内的每一部分都有机会被执行到.也就是说对每一个框来说,都应当有一条从入口到出口的路径通过它.(4)结构内不存在死循环,即无终止的循环.在程序设计中是不允许有死循环出现的.以上这些共同特点,也是检查一个程序框图或算法是否正确,合理的有效方法.。
人教版高二数学上册算法框图的基本结构及设计知识点算法与程序框图
人教版高二数学上册算法框图的基本结构及设计知识点算法与程序框图算法框图是一种图形化的表示方法,用于描述算法的步骤和流程。
它由特定的符号和连接线构成,可以清晰地展示算法的逻辑结构和执行流程。
在人教版高二数学上册中,学生将学习算法框图的基本结构和设计知识点。
以下是相关的基本知识点和注意事项:1.算法框图的基本结构(1) 开始(Start)和结束(End):算法的执行通常从一个开始符号开始,以一个结束符号结束。
(2)输入和输出:算法通常需要获取输入数据并输出结果,在框图中用特殊符号表示。
(3) 过程(Process):算法中的操作步骤可以通过过程符号表示,包括一系列的计算或逻辑操作。
(4) 判断(Decision):算法可能需要进行条件判断,根据不同的条件执行不同的步骤。
判断符号通常有两个或多个出口,分别表示不同的条件结果。
(5) 循环(Loop):算法可能需要进行循环操作,重复执行一些步骤。
循环符号通常有一个判断条件和两个出口。
(6)连接线:算法框图之间通过连接线连接,表示程序的执行流程。
2.算法框图的设计知识点(1)模块化:将算法分解为若干个模块,每个模块完成一个特定的功能。
通过模块化可以提高算法的可读性和可维护性。
(2)层次结构:将算法按照层次结构进行组织,从而使得算法的逻辑结构清晰可见。
(3)合并与分支:合并表示将多个路径上的运行流程合并到一起,分支表示根据不同的条件选择不同的运行路径。
(4)定义变量和赋值操作:算法框图中需要定义和使用变量,通过赋值操作可以对变量进行初始化和修改。
(5)循环操作:循环操作用于重复执行一段程序代码,框图中循环部分需要设置循环条件和循环体。
(6)逻辑判断:算法框图中经常需要进行逻辑判断,根据不同的条件执行不同的代码。
(7)输入和输出:算法框图中需要用特定符号表示输入和输出的部分,以表示算法的输入和输出过程。
3.算法与程序框图的关系算法框图是对算法的图形化描述,用于表示算法的执行流程和逻辑结构。
算法与程序框图知识整理
算法与程序框图知识整理算法初步、框图第一节算法与程序框图1.算法的概念(1)算法的定义:广义的算法是指完成某项工作的方法和步骤在数学中,现代意义的算法是指可以用计算机来解决的某一类问题的程序和步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成。
(2)算法的描述:自然语言、程序框图、程序语言。
2.程序框图(1)程序框图又称流程图,是一种用程序框,流程线,文字说明表示算法的图形;(2)构成程序框的图形符号3.几种重要的结构(1)顺序结构(2)条件结构(3)循环结构典例分析:例1.下列说法正确的是()A .算法就是某个问题的解题过程;B .算法执行后可以产生不同的结果;C .解决某一个具体问题算法不同结果不同;D .算法执行步骤的次数不可以为很大,否则无法实施。
例2.设计算法,求0=+b ax 的解,并画出流程图。
解析:对于方程0=+b ax 来讲,应该分情况讨论方程的解。
我们要对一次项系数a 和常数项b 的取值情况进行分类,分类如下:(1)当a ≠0时,方程有唯一的实数解是ab -;(2)当a=0,b=0时,全体实数都是方程的解;(3)当a=0,b ≠0时,方程无解。
第一步:判断a 是否不为零。
若成立,输出结果“解为ab -”;第二步:判断a=0,b=0是否同时成立。
若成立,输出结果“解集为R ”;第三步:判断a=0,b ≠0是否同时成立。
若成立,输出结果“方程无解”,结束。
例3.设计算法,找出输入的三个不相等实数a 、b 、c 中的最大值,并画出流程图。
第一步:输入a ,b ,c 的值;第二步:判断a >b 是否成立,若成立,则执行第三步;否则执行第四步;第三步:判断a >c 是否成立,若成立,则输出a ,并结束;否则输出c ,并结束;第四步:判断b >c 是否成立,若成立,则输出b ,并结束;否则输出c ,并结束。
例4.设计一个算法,求123..........99++++的值,并画出程序框图。
算法与程序框图
算法与程序框图1.算法与程序框图(1)算法①算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.②应用:算法通常可以编成计算机程序,让计算机执行并解决问题.(2)程序框图定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.三种基本逻辑结构及相应语句判断正误(正确的打“√”,错误的打“×”)(1)一个程序框图一定包含顺序结构,但不一定包含条件结构和循环结构.() (2)条件结构的出口有两个,但在执行时,只有一个出口是有效的.( ) (3)输入框只能紧接开始框,输出框只能紧接结束框.( ) (4)输入语句可以同时给多个变量赋值.( ) (5)在算法语句中,x =x +1是错误的.( ) 答案:(1)√ (2)√ (3)× (4)√ (5)×(优质试题·高考北京卷)执行如图所示的程序框图,输出的s 值为( )A .2 B.32 C.53D.85解析:选C.运行该程序,k =0,s =1,k <3; k =0+1=1,s =1+11=2,k <3;k =1+1=2,s =2+12=32,k <3;k =1+2=3,s =32+132=53,k =3.输出的s 值为53.故选C.要计算1+12+13+…+12 017的结果,下面程序框图中的判断框内可以填( )A .n <2 017?B .n ≤2 017?C .n >2 017?D .n ≥2 017?解析:选B.题中所给的程序框图中的循环结构为当型循环,累加变量初始值为0,计数变量初始值为1,要求S =0+1+12+13+…+12 017的值,共需要计算2 017次,故选B.(优质试题·高考江苏卷改编)如图是一个算法流程图,若输入x 的值为116,则输出y 的值是________________.解析:由流程图可得y =⎩⎪⎨⎪⎧2x ,x ≥1,2+log 2x ,0<x <1,所以当输入的x 的值为116时,y =2+log 2116=2-4=-2. 答案:-2如图所示的框图,已知集合A ={x |框图中输出的x 值},集合B ={y |框图中输出的y 值},全集U =Z ,Z 为整数集,则当x =-1时,(∁U A )∩B =________.解析:依题意得,当x =-1时,A ={0,1,2,3,4,5,6},B ={-3,-1,1,3,5,7,9},(∁U A )∩B ={-3,-1,7,9}. 答案:{-3,-1,7,9}顺序结构与条件结构[典例引领]执行如图所示的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]【解析】 由程序框图得分段函数s =⎩⎪⎨⎪⎧3t ,t <1,4t -t 2,t ≥1.所以当-1≤t <1时,s =3t ∈[-3,3);当1≤t ≤3时,s =4t -t 2=-(t -2)2+4,所以此时3≤s ≤4.综上函数的值域为[-3,4],即输出的s 属于[-3,4]. 【答案】 A1.若本例的判断框中的条件改为“t ≥1?”,则输出的s 的范围是________.解析:由程序框图得分段函数s =⎩⎪⎨⎪⎧3t ,t ≥1,4t -t 2,t <1.所以当1≤t ≤3时,s =3t ∈[3,9],当-1≤t <1时,s =4t -t 2=-(t -2)2+4,所以此时-5≤s <3.综上函数的值域为[-5,9],即输出的s 属于[-5,9]. 答案:[-5,9]2.本例框图不变,若输出s 的值为3,求输入的t 的值.解:由本例解析知s =⎩⎪⎨⎪⎧3t ,t <14t -t 2,t ≥1, 则3t =3,所以t =1(舍), 4t -t 2=3,所以t =1或3.应用顺序结构和条件结构的注意点(1)顺序结构顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.(2)条件结构利用条件结构解决算法问题时,重点是判断框,判断框内的条件不同,对应的下一图框中的内容和操作要相应地进行变化,故要重点分析判断框内的条件是否满足.[提醒] 条件结构的运用与数学的分类讨论有关.设计算法时,哪一步要分类讨论,哪一步就需要用条件结构.[通关练习]1.阅读如图所示的程序框图,若输入x 为3,则输出的y 的值为( )A .24B .25C .30D .40解析:选D.a =32-1=8,b =8-3=5,y =8×5=40.2.给出一个如图所示的程序框图,若要使输入的x 值与输出的y 值相等,则这样的x 值的个数是( )A .1B .2C .3D .4解析:选C.由程序框图知y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5,由已知得⎩⎪⎨⎪⎧x ≤2,x 2=x 或⎩⎪⎨⎪⎧2<x ≤5,2x -3=x 或⎩⎪⎨⎪⎧x >5,1x=x .解得x =0或x =1或x =3, 这样的x 值的个数是3.循环结构(高频考点)循环结构是高考命题的一个热点问题,多以选择题、填空题的形式呈现,试题难度不大,多为容易题或中档题.高考对循环结构的考查主要有以下三个命题角度: (1)由程序框图求输出的结果或输入的值; (2)完善程序框图; (3)辨析程序框图的功能.[典例引领]角度一 由程序框图求输出的结果或输入的值(1)(优质试题·高考全国卷Ⅱ)执行如图的程序框图,如果输入的a =-1,则输出的S=( )A .2B .3C .4D .5(2)(优质试题·高考全国卷Ⅲ)执行如图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A.5 B.4C.3 D.2【解析】(1)运行程序框图,a=-1,S=0,K=1,K≤6成立;S=0+(-1)×1=-1,a =1,K=2,K≤6成立;S=-1+1×2=1,a=-1,K=3,K≤6成立;S=1+(-1)×3=-2,a=1,K=4,K≤6成立;S=-2+1×4=2,a=-1,K=5,K≤6成立;S=2+(-1)×5=-3,a=1,K=6,K≤6成立;S=-3+1×6=3,a=-1,K=7,K≤6不成立,输出S=3.选择B.(2)S=0+100=100,M=-10,t=2,100>91;S=100-10=90,M=1,t=3,90<91,输出S,此时,t=3不满足t≤N,所以输入的正整数N的最小值为2,故选D.【答案】(1)B(2)D角度二完善程序框图(优质试题·高考全国卷Ⅰ)如图程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2【解析】程序框图中A=3n-2n,故判断框中应填入A≤1 000,由于初始值n=0,要求满足A=3n-2n>1 000的最小偶数,故执行框中应填入n=n+2,选D.【答案】 D角度三辨析程序框图的功能如图所示的程序框图,该算法的功能是()A.计算(1+20)+(2+21)+(3+22)+…+(n+1+2n)的值B.计算(1+21)+(2+22)+(3+23)+…+(n+2n)的值C.计算(1+2+3+…+n)+(20+21+22+…+2n-1)的值D.计算[1+2+3+…+(n-1)]+(20+21+22+…+2n)的值【解析】初始值k=1,S=0,第1次进入循环体时,S=1+20,k=2;当第2次进入循环体时,S=1+20+2+21,k=3,…;给定正整数n,当k=n时,最后一次进入循环体,则有S=1+20+2+21+…+n+2n-1,k=n+1,终止循环体,输出S=(1+2+3+…+n)+(20+21+22+…+2n-1),故选C.【答案】 C与循环结构有关问题的常见类型及解题策略(1)已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.(2)完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.(3)对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.[提醒](1)注意区分当型循环和直到型循环.(2)循环结构中要正确控制循环次数.(3)要注意各个框的顺序.[通关练习]1.(优质试题·高考天津卷)阅读如图所示的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为()A .0B .1C .2D .3解析:选C.第一次循环,24能被3整除,N =243=8>3;第二次循环,8不能被3整除,N=8-1=7>3;第三次循环,7不能被3整除,N =7-1=6>3;第四次循环,6能被3整除,N =63=2<3,结束循环,故输出N 的值为2.选择C.2.(优质试题·宝鸡市质量检测(一)) 阅读如图所示的程序框图,运行相应的程序.若输入x 的值为1,则输出S 的值为( ) A .64 B .73 C .512D .585解析:选B.程序框图执行过程如下:x =1,S =0,S =1,S <50⇒x =2,S =9,S <50⇒x =4,S =73>50,跳出循环,输出S =73.3.(优质试题·广东省五校协作体联考)已知函数f (x )=ax 3+12x 2在x =-1处取得极大值,记g (x )=1f ′(x ).执行如图所示的程序框图,若输出的结果S >2 0162 017,则判断框中可以填入的关于n 的判断条件是( )A .n ≤2 016?B .n ≤2 017?C .n >2 016?D .n >2 017?解析:选 B.f ′(x )=3ax 2+x ,则f ′(-1)=3a -1=0,解得a =13,g (x )=1f ′(x )=1x 2+x =1x (x +1)=1x -1x +1,g (n )=1n -1n +1,则S =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1,因为输出的结果S >2 0162 017,分析可知判断框中可以填入的判断条件是“n ≤2 017?”,选B.基本算法语句[典例引领](1)设计一个计算1×3×5×7×9×11×13的算法,下面给出了程序的一部分,则在①处不能填入的数是( )A .13B .13.5C .14D .14.5(2)表示函数y =f (x )的程序如图所示则关于函数y =f (x )有下列结论:。
高中数学复习:算法与程序框图
一般格式 ③ INPUT “提示内容”;变量 ④ PRINT “提示内容”;表达式 ⑤ 变量=表达式
教材研读 栏目索引
功能 输入信息 输出常量、变量的值和系统信息 将表达式的值赋给变量
(2)条件语句的格式及框图 a.IF-THEN格式
b.IF-THEN-ELSE格式
教材研读 栏目索引
(3)循环语句的格式及框图 a.UNTIL语句
教材研读 栏目索引
5.如图所示的程序框图的运行结果为
.
答案 2.5
6.执行如图所示的程序框图,则输出的A=
教材析 i=0,A=2;
A=2+ 1= 5,i=1;
22
2 12
A=2+ = ,i=2;
55
5 29
A=2+12=12 ,i=3;
A=2+
12 29
=
70 29
考点突破 栏目索引
规律方法 顺序结构和条件结构的运算方法 (1)顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按 从上到下的顺序进行的. (2)条件结构中条件的判断关键是明确条件结构的功能,然后根据 “是”的分支成立的条件进行判断.对于条件结构,无论判断框中的条 件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支.
2.程序框图
(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示 算法的图形. (2)基本的程序框有终端框(起止框),输入、输出框,处理框(执行框),判断框.
3.三种基本逻辑结构
名称 顺序结构
条件结构
循环结构
教材研读 栏目索引
内 顺序结构是由若干个按 算法的流程根据条件 在一些算法中,会出现从某处开始,按照一
教材研读 栏目索引
高中数学_算法与程序框图
算法与程序框图知识图谱算法与程序框图知识精讲一.算法的概念1.算法的定义由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照一定规则,解决某一类问题的明确的和有限的步骤,称为算法.通常可以编成计算机程序,让计算机执行并解决问题.2.算法的特征:(1)有穷性:算法必须在执行有限步后结束,通常还理解为实际上能够容忍的合理限度;(2)确定性:算法的每一个步骤必须有确定的含义;(3)可行性:组成算法的每个步骤和操作必须是相当基本的,原则上都是能精确地执行的;(4)输入:有零个或多个输入;(5)输出:有一个或多个输出.二.算法的描述1.用自然语言;2.用数学语言;3.用算法语言(程序设计语言);4.用程序框图(流程图).三.程序框图的概念:用一些通用的图形符号构成的一张图来表示算法,称为程序框图(简称框图).1.常用图形符号:图形符号名称符号表示的意义起、止框框图的开始或结束输入、输出框数据的输入或者结果的输出处理框赋值、执行计算语句、结果的传送判断框根据给定条件判断流程线流程进行的方向连结点连结另一页或另一部分的框图四.算法的三种基本逻辑结构:顺序结构、条件(分支)结构和循环结构.1.顺序结构:最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的.如下图,只有在执行完A 框指定的操作后,才能接着执行B 框指定的操作;2.条件(分支)结构:在一个算法中,用来处理需要根据条件是否成立有不同的流向的结构.常见的条件结构的程序框图有下面两种形式:否否是是BA A P PB A3.循环结构:从某处开始,按照一定的条件反复执行某些步骤的情况,就是循环结构,其中反复执行的步骤称为循环体.常见的循环结构的框图对应为:否是A P三点剖析一.注意事项:1.在画程序框图时,从开始框沿箭头必须能到达结束框,特别是条件分支结构应沿每条支路都能到达结束框,流程线必须加箭头表示顺序.2.对于循环结构有如下需要注意的情况:(1)循环结构非常适合计算机处理,因为计算机的运算速度非常快,执行成千上万次的重复计算,只不过是一瞬间的事,且能保证每次的结果都正确;(2)循环结构要有中止循环体的条件,不能无休止的运算下去,循环结构中一定包含条件结构,如i n ≤就是中止循环的条件;(3)循环结构的关键是,要理解“累加变量”和“用1i 代替i ”,S 是一个累加变量,i 是计数变量,每循环一次,S 和i 都要发生变化,这两步要重复计算若干次;(4)一种循环结构是先判断i n ≤是否成立,若是,执行循环体;若否,则中止循环,像这样,每次执行循环体前对控制循环条件进行判断,条件满足时执行循环体,不满足则停止,称为当型循环.除了当型循环外,常用的循环结构还有直到型循环.二.方法点拨1.画程序框图的规则:(1)使用标准的框图的符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框外,大多数框图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号;(4)一种判断框是“是”与“不是”两分支的判断,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果;(5)在图形符号内描述的语言要非常简练清楚.2.画程序框图要注意的几点:(1)起、止框是任何流程不可少的,表示程序的开始和结束;(2)输入、输出框可以用在算法中任何需要输入、输出的位置;(3)算法中间要处理数据或计算,可分别写在不同的处理框内;(4)当算法要求你对两个不同的结果进行判断时,要写在判断框内;(5)一个算法步骤到另一个算法步骤用流程线连结;(6)如果一个框图需要分开来画,要在断开处画上连结点,并标出连结的号码.程序框图例题1、下列说法正确的是()A.算法就是某个问题的解题过程;B.算法执行后可以产生不同的结果;C.解决某一个具体问题算法不同结果不同;D.算法执行步骤的次数不可以为很大,否则无法实施.例题2、指出下列哪一个不是算法()A.解方程260x -=的过程是移项和系数化为1B.从济南到温哥华需要先乘火车到北京,再从北京乘飞机到温哥华C.解方程2210x x +-=D.利用公式2πS r =,计算半径为3的圆的面积为2π3⨯例题3、下列语句中是算法的个数为()①从济南到巴黎:先从济南坐火车到北京,再坐飞机到巴黎;②统筹法中“烧水泡茶”的故事;③测量某棵树的高度,判断其是否是大树;④已知三角形的一部分边长和角,借助正余弦定理求得剩余的边角,再利用三角形的面积公式求出该三角形的面积A.1B.2C.3D.4随练1、下面四种叙述能称为算法的是()A.在家里一般是妈妈做饭B.做米饭要需要刷锅.添水.加热这些步骤C.在野外做饭叫野炊D.做饭必需要有米随练2、下列关于算法的说法正确的有()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后产生确定的结果.A.1个B.2个C.3个D.4个随练3、早上从起床到出门需要洗脸刷牙(5min).刷水壶(2min).烧水(8min).泡面(3min).吃饭(10min).听广播(8min)几个步骤,下列选项中最好的一种算法为()A.s1洗脸刷牙s2刷水壶s3烧水s4泡面s5吃饭s6听广播B.s1刷水壶s2烧水的同时洗脸刷牙s3泡面s4吃饭s5听广播C.s1刷水壶s2烧水的同时洗脸刷牙s3泡面s4吃饭的同时听广播D.s1吃饭的同时听广播s2泡面s3烧水的同时洗脸刷牙s4刷水壶算法的三种逻辑结构和框图表示例题1、如果执行如图所示的程序框图,那么输出的a=()A.2B.12 C.﹣1 D.以上都不正确例题2、如果执行如图所示的程序框图,那么输出的a=()A.2B.12 C.﹣1 D.以上都不正确例题3、阅读右边的程序框图,运行相应的程序,输出的S的值是()A.26B.40C.57D.无法确定随练1、如图是某算法的流程图,则执行该算法输出的结果是S=____.随练2、执行如图所示的程序框图,如果输入a=2,那么输出的a值为()A.4B.16C.256D.log316随练3、执行如图所示的程序框图,则输出的k=()A.4B.5C.6D.7拓展1、算法的有穷性是指()A.算法最后包含输出B.算法的每个操作步骤都是可执行的C.算法的步骤必须有限D.以上都不正确2、下面对算法描述正确的一项是()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3、看下面的四段话,其中不是解决问题的算法的是()A.从上海到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母.去括号.移项.合并同类项.系数化为1C.方程210x -=有两个实根D.求12345++++的值,先计算123+=,再由于336+=,6410+=,10515+=,4、根据如图程序框图,输出k 的值为()A.3B.4C.5D.65、给出计算12+14+16+…+120的值的一个程序框图如图,其中判断框内应填入的条件是()A.i >10B.i <10C.i >20D.i <206、如图所示的流程图表示一函数,记作y=f (x ),若x 0满足f (x 0)<0,且f (f (x 0))=1,则x 0=____.。
高中数学算法与程序框图经典考点及例题讲解
算法与程序框图、基本算法语句考纲解读 1.根据程序框图,求输出结果;2.根据运行程序,补全框图.[基础梳理]1.算法算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.2.程序框图(1)程序框图的定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.通常,程序框图由程序框和流程线组成,一个或几个程序框的组合表示算法中的一个步骤;流程线带有方向箭头,按照算法进行的顺序将程序框连接起来.(2)程序框图中图形符号的意义○[三基自测]高考总复习·数学(理)第十章算法初步、统计、统计案例1.给出如图程序框图,其功能是()A.求a-b的值B.求b-a的值C.求|a-b|的值D.以上都不对答案:C2.如图所示的程序框图的运行结果是()A.2 B.2.5C.3.5 D.4答案:B3.阅读下边的程序框图,运行相应的程序,则输出i的值为()A.2B.3 C.4D.5答案:C4.(2017·高考全国卷Ⅱ)执行如图的程序框图,如果输入的a=-1,则输出的S=()A .2B .3C .4D .5答案:B考点一 三种结构与程序框图|方法突破命题点1 求程序运行后的结果或关系[例1] (1)(2016·高考全国卷Ⅰ)执行下面的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x(2)执行如图所示的程序框图,输出的S 的值为________.[解析] (1)运行程序,第1次循环得x =0,y =1,n =2,第2次循环得x =12,y =2,n=3,第3次循环得x =32,y =6,此时x 2+y 2≥36,输出x ,y ,满足C 选项.(2)S =sin 1×π3+sin 2×π3+sin 3×π3+sin 4×π3+sin5×π3+sin 6×π3+…+sin 2 017×π3 =⎝⎛sin1×π3+sin 2×π3+sin 3×π3+sin4×π3⎭⎫+sin 5×π3+sin 6×π3×336+sin 1×π3=32.[答案] (1)C (2)32[方法提升]命题点2 求输入量、循环条件或处理框[例2] (1)(2017·高考全国卷Ⅲ)执行如图所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .2(2)(2018·许昌调研)如图给出的是计算12+14+…+1100的值的一个程序框图,则图中判断框内(1)处和执行框中的(2)处应填的语句是( )A .i >100,n =n +1B .i >100,n =n +2C .i >50,n =n +2D .i ≤50,n =n +2[解析] (1)S =0+100=100,M =-10,t =2,100>91;S =100-10=90,M =1,t =3,90<91,输出S ,此时,t =3不满足t ≤N ,所以输入的正整数N 的最小值为2,故选D.(2)因为12,14,…,1100共50个数,所以算法框图应运行50次,所以变量i 应满足i >50,因为是求偶数的和,所以应使变量n 满足n =n +2.[答案] (1)D (2)C [方法提升]1.求输入变量的值的思路依据运行程序和输出结果,一般采用逆推法,建立方程或不等式,求解输入量. 2.求循环条件或处理框的思路结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.[跟踪训练]1.某程序框图如图所示,若输出的S =120,则判断框内为( ) A .k >4? B .k >5? C .k >6?D .k >7?解析:依题意,进行第一次循环时,k =1+1=2,S =2×1+2=4;进行第二次循环时,k =2+1=3,S =2×4+3=11;进行第三次循环时,k =3+1=4,S =2×11+4=26;进行第四次循环时,k =4+1=5,S =2×26+5=57;进行第五次循环时,k =5+1=6,S =2×57+6=120,此时结束循环,因此判断框内应为“k >5?”,选B.答案:B2.(2018·西安模拟)根据框图(如图所示),对大于2的整数n ,输出的数列的通项公式是( )A .a n =2nB .a n =2(n -1)C .a n =2nD .a n =2n -1解析:第一次运行:i =1,a 1=2×1=2,S =a 1=2;第二次运行:i =2,a 2=2×2=22,S =a 2=22; 第三次运行:i =3,a 3=2×22=23,S =a 3=23; 第四次运行:i =4,a 4=2×23=24,S =a 4=24; …所以a n =2n . 答案:C考点二 算法、框图与其他知识的交汇|方法突破命题点1 与函数的交汇[例3] 某流程图如图所示,现输入如下四个函数,则可以输出的函数是( ) A .f (x )=x 2 B .f (x )=|x |xC .f (x )=e x -e -xe x +e -xD .f (x )=1+sin x +cos x1+sin x -cos x[解析] 由框图可知输出函数为奇函数且存在零点,依次判断各选项,A 为偶函数,B 不存在零点,不符合,对于C ,由于f (-x )=e -x -e xe -x +e x =-f (x ),即函数为奇函数,且存在零点为x =0,对于D ,由于其定义域不关于原点对称,故其为非奇非偶函数,故选C.[答案] C命题点2 与数列的交汇[例4] 阅读如图所示的程序框图,运行相应的程序,输出的结果S =________.[解析] 由程序框图知,S 可看成一个数列{a n }的前2 018项的和,其中a n =1n (n +1)(n∈N *,n ≤2 018),∴S =11×2+12×3+…+12 018×2 019=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12 018-12 019=1-12 019=2 0182 019. [答案]2 0182 019命题点3 与不等式的交汇[例5] (2018·石家庄模拟)阅读程序框图(如图),如果输出的函数值在区间[1,3]上,则输入的实数x 的取值范围是( )A .{x ∈R |0≤x ≤log 23}B .{x ∈R |-2≤x ≤2}C .{x ∈R |0≤x ≤log 23,或x =2}D .{x ∈R |-2≤x ≤log 23,或x =2} 解析:依题意及框图可得,⎩⎪⎨⎪⎧ -2<x <2,1≤2x ≤3或⎩⎪⎨⎪⎧|x |≥2,1≤x +1≤3, 解得0≤x ≤log 23或x =2. [答案] C命题点4 与概率统计的交汇[例6]如图是某县参加2018年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数).图(2)是统计图(1)中身高在一定范围内学生人数的一个程序框图.现要统计身高在160~180 cm(含160 cm,不含180 cm)的学生人数,则在流程图中的判断框内应填写()图(1)图(2)A.i<6?B.i<7?C.i<8? D.i<9?[解析]统计身高在160~180 cm的学生人数,即求A4+A5+A6+A7的值.当4≤i≤7时,符合要求.[答案]C命题点5与向量的交汇[例7]阅读下面的程序框图,运行相应的程序,如果输入a=(1,-3),b=(4,-2),则输出的λ的值是()A.-4 B.-3C.-2 D.-1[解析]当λ=-4时,-4a+b=(0,10),b=(4,-2),λa+b与b既不平行也不垂直;当λ=-3时,-3a+b=(1,7),b=(4,-2),λa+b与b既不平行也不垂直;当λ=-2时,-2a +b =(2,4),b =(4,-2),λa +b 与b 垂直;循环结束,输出λ=-2.故选C.[答案] C命题点6 与三角函数的交汇[例8] 执行下面的程序框图,若输入a =cos 15°,b =sin 15°,则输出的a ⊗b 的值为( )A.6+22 B.64 C.6-22D.62[解析] 当a =cos 15°,b =sin 15°时,a >b ,所以a ⊗b =a -3b =cos 15°-3sin 15°=2cos(15°+60°)=2cos(45°+30°)=6-22.故选C. [答案] C [方法提升][跟踪训练]1.阅读如图所示的程序框图,如果输出的函数值在区间⎣⎡⎦⎤14,12内,那么输入的实数x 的取值范围是( )A .(-∞,-2]B .[-2,-1]C .[-1,2]D .[2,+∞)解析:该程序框图的作用是计算分段函数f (x )=⎩⎪⎨⎪⎧2x ,x ∈[-2,2],2,x ∈(-∞,-2)∪(2,+∞)的值域.因为输出的函数值在区间⎣⎡⎦⎤14,12内,故14≤2x ≤12,所以x ∈[-2,-1],选择B. 答案:B2.根据给出的程序框图,计算f (-1)+f (2)=( )A .0B .1C .2D .4解析:输入-1,满足x ≤0,所以f (-1)=4×(-1)=-4;输入2,不满足x ≤0,所以f (2)=22=4,即f (-1)+f (2)=0.答案:A3.(2018·黄冈模拟)随机抽取某中学甲、乙两个班各10名同学,测量它们的身高获得身高数据的茎叶图如左下图,在样本的20人中,记身高在[150,160),[160,170),[170,180),[180,190)的人数依次为A 1,A 2,A 3,A 4.右下图是统计样本中身高在一定范围内的人数的算法框图.若图中输出的S =18,则判断框应填________.解析:本题考查程序框图与统计交汇问题.由于i从2开始,也就是统计大于或等于160的所有人数,于是就要计算A2+A3+A4,因此,判断框应填i<5或i≤4.答案:i<5或i≤41.[考点一、二](2017·高考全国卷Ⅰ)如图所示的程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2解析:程序框图中A=3n-2n,故判断框中应填入A≤1 000,由于初始值n=0,要求满足A=3n-2n>1 000的最小偶数,故执行框中应填入n=n+2,选D.答案:D2.[考点一](2015·高考全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4 D.14解析:开始:a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,退出循环,输出a=2,故选B.答案:B3.[考点一、二](2016·高考全国卷Ⅱ)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7B.12C.17 D.34解析:由程序框图知,第一次循环:x=2,n=2,a=2,s=0×2+2=2,k=1;第二次循环:a=2,s=2×2+2=6,k=2;第三次循环:a=5,s=6×2+5=17,k=3.结束循环,输出s的值为17,故选C.答案:C4.[考点一、二](2016·高考全国卷Ⅲ)确执行如图所示的程序框图,如果输入的a=4,b =6,那么输出的n=()A.3 B.4C.5 D.6解析:运行程序框图,第1次循环,a=2,b=4,a=6,s=6,n=1;第2次循环,a =-2,b=6,a=4,s=10,n=2;第3次循环,a=2,b=4,a=6,s=16,n=3;第4次循环,a=-2,b=6,a=4,s=20,n=4,结束循环,故输出的n=4.答案:B。
[Word]算法框图知识点和练习
一、知识网络知识点一:算法与程序框图一、算法1.算法的概念:算法通常是指按一定规则解决某一类问题的明确和有限的步骤。
2.算法的描述方式有:自然语言、程序框图、程序语言。
3.算法的基本特征:①明确性:算法的每一步执行什么是明确的;②顺序性:算法的“前一步”是“后一步”的前提,“后一步”是“前一步”的继续;③有限性:算法必须在有限步内完成任务,不能无限制的持续进行;④通用性:算法应能解决某一类问题。
二、程序框图(一)程序框图基本概念程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用程序框名称功能起止框表示一个算法的起始和结束,是任何流程图不可少的。
输入、输出框表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置。
处理框赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。
算法初步算法与程序框图算法语句算法案例算法概念框图的逻辑结构输入语句赋值语句循环语句条件语句输出语句顺序结构循环结构条件结构判断框判断某一条件是否成立,成立时在出口处标“是”或“Y ”;不成立时标明“”或“N ”。
画程序框图的规则如下:①、使用标准的图形符号。
②框图一般按从上到下、从左到右的方向画。
③除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
④判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
⑤在图形符号内描述的语言要非常简练清楚。
(三)、程序框图的三种基本逻辑结构是:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构在程序框图中的体现就是用流程线将程序框自上而 下地连接起来,按顺序执行算法步骤。
如在示意图中,A 框和B框是依次执行的,只有在执行完A 框指定的操作后,才能接着执行B 框所指定的操作。
高考数学专题—算法与程序框图
高考数学专题—算法与程序框图一、基础知识要求1.算法与程序框图(1)算法:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤;(2)程序框图:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.三种基本逻辑结构及相应语句易错点:直到型循环是“先循环,后判断,条件满足时终止循环”;当型循环则是“先判断,后循环,条件满足时执行循环”;两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.二、算法与程序框图常见题型:(共4种题型:由程序框图求输出结果、由输出结果判断输入量的值、辨析程序框图的算法功能、完善程序框图)1、由程序框图求输出结果:已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.例1、【2020年高考江苏】如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.【答案】3-【解析】由于20x >,所以12y x =+=-,解得3x =-. 故答案为:3-例2、【广西南宁市第三中学2020届高三适应性月考卷】运行如图所示的程序算法,则输出的结果为A .2B .12C .13D .132【答案】A【解析】当2a =时, 1k =;当132a =时,3k =; 当132132a ==时,5k =;…;当132a =时,99k =,当2a =时,101k =,跳出循环; 故选:A .例3、【河北省衡水中学2020届高三下学期第二次调研数学】执行如图所示的程序框图,输出的结果是A .5B .6C .7D .8【答案】B【解析】1i =,12n =, 第一次循环: 8n =,2i =, 第二次循环:31n =,3i =, 第三次循环:123n =,4i =, 第四次循环:119n =,5i =,第五次循环:475n =,6i =,停止循环, 输出6i =. 故选B .例4、【广东省深圳市2020届高三下学期第二次调研数学】执行如图的程序框图,如果输入的k =0.4,则输出的n =A .5B .4C .3D .2【答案】C【解析】模拟程序的运行,可得k =0.4,S =0,n =1, S 11133==⨯, 不满足条件S >0.4,执行循环体,n =2,S 11113352=+=⨯⨯(1111335-+-)25=,不满足条件S >0.4,执行循环体,n =3,S 11111335572=++=⨯⨯⨯(11111133557-+-+-)37=, 此时,满足条件S >0.4,退出循环,输出n 的值为3. 故选:C .例5、【甘肃省西北师大附中2020届高三5月模拟试卷】“辗转相除法”是欧几里得《原本》中记录的一个算法,是由欧几里得在公元前300年左右首先提出的,因而又叫欧几里得算法.如图所示是一个当型循环结构的“辗转相除法”程序框图.当输入2020m =,303n =时,则输出的m 是A .2B .6C .101D .202【答案】C【解析】输入2020m =,303n =,又1r =. ①10r =>,202r =,303m =,202n =; ②2020r =>,3032021101÷=,101r =,202m =,101n ;③1010r =>,0r =,101m =,0n =; ④0r =,则0r >否,输出101m =.故选:C.例6、【重庆市第一中学2019-2020学年高三下学期期中数学】冰雹猜想也称奇偶归一猜想:对给定的正整数进行一系列变换,则正整数会被螺旋式吸入黑洞(4,2,1),最终都会归入“4-2-1”的模式.该结论至今既没被证明,也没被证伪. 下边程序框图示意了冰雹猜想的变换规则,则输出的i=A.4B.5C.6D.7【答案】B【解析】由题意,第一次循环,12S Z∉,35116S=⨯+=,011i=+=,1S≠;第二次循环,12S Z∈,11682S=⨯=,112i=+=,1S≠;第三次循环,12S Z∈,1842S=⨯=,213i=+=,1S≠;第四次循环,12S Z∈,1422S=⨯=,314i=+=,1S≠;第五次循环,12S Z∈,1212S=⨯=,415i=+=,1S=;此时输出5i=.故选:B例7、【重庆市南开中学2019-2020学年高三下学期线上期中数学】若某程序框图如图所示,则输出的S 的值是A .31B .63C .127D .255【答案】C【解析】第一次运行,1i =,0S =,8i <成立,则2011S =⨯+=,112i =+=; 第二次运行,2i =,1S =,8i <成立,则2113S =⨯+=,213i =+=; 第三次运行,3i =,3S =,8i <成立,则2317S =⨯+=,314i =+=; 第四次运行,4i =,7=S ,8i <成立,则27115S =⨯+=,415i =+=; 第五次运行,5i =,15S =,8i <成立,则215131S =⨯+=,516i =+=; 第六次运行,6i =,31S =,8i <成立,则231163S =⨯+=,617i =+=; 第七次运行,7i =,63S =,8i <成立,则2631127S =⨯+=,718i =+=; 第八次运行,8i =,127S =,8i <不成立, 所以输出S 的值为127. 故选:C .2、由输出结果判断输入量的值例8、【2020·黑龙江哈尔滨六中期中】执行如图所示的程序框图,若输出的结果是1516,则输入的a 为( )A .3B .6C .5D .4【解析】 (1)第1次循环,n =1,S =12;第2次循环,n =2,S =12+122;第3次循环,n =3,S =12+122+123;第4次循环,n =4,S =12+122+123+124=1516.因为输出的结果为1516,所以判断框的条件为n <4,所以输入的a 为4.故选D.例9、我国古代数学著作《周髀算经》有如下问题:“今有器中米,不知其数.前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S =1.5(单位:升),则输入k 的值为( )A .4.5B .6C .7.5D .9【解析】选B.由程序框图知S =k -k 2-k 2×3-k 3×4=1.5,解得k =6,故选B.例10、执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A.5B.4C.3D.2【答案】D【解析】程序运行过程如下表所示:此时故选D. 例11、【2020届华大新高考联盟高三4月教学质量测评数学】执行如图所示的程序框图,设输出数据构成集合A ,从集合A 中任取一个元素m ,则事件“函数()2f x x mx =+在[)0,+∞上是增函数”的概率为A .14B .12C .34D .35【答案】C【解析】当20x y =-⇒=; 当2111x y =-+=-⇒=-; 当1100x y =-+=⇒=; 当0113x y =+=⇒=; 当1128x y =+=⇒=; 当213x =+=,退出循环. 所以{}0,1,3,8A =-,又函数()2f x x mx =+在[)0,+∞上是增函数,所以002mm -≤⇒≥. 函数()2f x x mx =+在[)0,+∞上是增函数的概率为34. 故选:C .3、辨析程序框图的算法功能:对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.例12、执行右面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足 ( ) A.y=2x B.y=3x C.y=4x D.y=5x【答案】C【解析】由题图可知,x=0,y=1,n=1,执行如下循环: x=0,y=1,n=2;x=12,y=2,n=3;x=12+1=32,y=6,退出循环,输出x=32,y=6,验证可知,C 正确.例13、执行如图所示的程序框图,输出的结果为 ( )A.(-2,2)B.(-4,0)C.(-4,-4)D.(0,-8)【答案】B【解析】x=1,y=1,k=0,进入循环:s=1-1=0,t=1+1=2,x=0,y=2,k=0+1=1<3;s=0-2=-2,t=0+2=2,x=-2,y=2,k=1+1=2<3;s=-2-2=-4,t=-2+2=0,x=-4,y=0,k=2+1=3≥3,跳出循环,输出(x,y),即(-4,0).例14、执行下面的程序框图,如果输入的N=4,那么输出的S=( )A.1+12+13+14B.1+12+13×2+14×3×2C.1+12+13+14+15D.1+12+13×2+14×3×2+15×4×3×2 【答案】B【解析】由程序框图依次计算可得,输入N=4, T=1,S=1,k=2; T=12,S=1+12,k=3; T=13×2,S=1+12+13×2,k=4; T=14×3×2,S=1+12+13×2+14×3×2,k=5; 此时k 满足k>N,故输出S=1+1+1+1.例15、如果执行下边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B,则( )A.A+B 为a 1,a 2,…,a N 的和B. A+B2为a 1,a 2,…,a N 的算术平均数C.A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D.A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数 【答案】C【解析】随着k 的取值不同,x 可以取遍实数a 1,a 2,…,a N ,依次与A,B 比较,A 始终取较大的那个数,B 始终取较小的那个数,直到比较完为止,故最终输出的A,B 分别是这N 个数中的最大数与最小数.例16、【2020届清华大学中学生标准学术能力诊断性测试高三5月测试数学】下列程序框图的算法思想源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入16a =,10b =,则程序中需要做减法的次数为A .6B .5C .4D .3【答案】C【解析】由16a =,10b =,满足a b ,满足a b >,则16106a =-=;满足a b ,不满足a b >,则1064b =-=; 满足a b ,满足a b >,则642a =-=; 满足a b ,不满足a b >,则422b =-=; 不满足ab ,则输出2a =;则程序中需要做减法的次数为4, 故选:C .4、完善程序框图:完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.例17、【2020届河南省商丘周口市部分学校联考高三5月质量检测数学】宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:“松长六尺,竹长两尺,松日自半,竹日自倍,何日竹逾松长?”如图是解决此问题的一个程序框图,其中a 为松长、b 为竹长,则矩形框与菱形框处应依次填A .2a a a =+;a b <B .2aa a =+;a b < C .2a a a =+;a b ≥ D .2aa a =+;a b > 【答案】B【解析】松日自半,则表示松每日增加原来长度的一半,即矩形框应填2aa a =+;何日竹逾松长,则表示竹长超过松长,即松长小于竹长,即菱形框应填ab <. 故选:B例18、【2019·全国1·理T8文T9】下图是求12+12+12的程序框图,图中空白框中应填入( )A.A=12+A B.A=2+1A C.A=11+2AD.A=1+12A【答案】A【解析】执行第1次,A=12,k=1≤2,是,第一次应该计算A=12+12=12+A ,k=k+1=2;执行第2次,k=2≤2,是,第二次应该计算A=12+12+12=12+A,k=k+1=3;执行第3次,k=3≤2,否,输出,故循环体为A=12+A,故选A. 例19、【2018·全国2·理T7文T8】为计算S=1-12+13−14+…+199−1100,设计了右侧的程序框图,则在空白框中应填入( ) A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4【答案】B【解析】由于N=0,T=0,i=1,N=0+11=1,T=0+11+1=12,i=3,N=1+13,T=12+14,i=5…最后输出S=N-T=1-12+13−14+…+199−1100,一次处理1i 与1i+1两项,故i=i+2. 例20、下面程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入( ) A.A>1 000和n=n+1 B.A>1 000和n=n+2 C.A ≤1 000和n=n+1 D.A ≤1 000和n=n+2【答案】D【解析】因为要求A 大于1 000时输出,且程序框图中在“否”时输出,所以“”中不能填入A>1 000,排除A,B.又要求n 为偶数,且n 初始值为0,所以“”中n 依次加2可保证其为偶数,故选D.例21、执行下面的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为( ) A.x>3B.x>4C.x ≤4D.x ≤5【答案】B【解析】因为输入的x 的值为4,输出的y 的值为2,所以程序运行y=log 24=2. 故x=4不满足判断框中的条件,所以空白判断框中应填x>4.例22、【2020年高考浙江】设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,则xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则y x∈S .下列命题正确的是A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素 【答案】A【解析】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8ST =,包含4个元素,排除选项D ; 若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项C ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128S T =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈, 若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍.若12p ≥,则32311p p p p p <<,故322111,p pp p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆.若q T ∈, 则31q S p ∈,故131,1,2,3,4i q p i p ==,故31,1,2,3,4i q p i +==,即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =, 此时{}234456711111111,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确.例23、【2020年高考全国II 卷理数】0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)m i i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是A .11010B .11011C .10001D .11001【答案】C【解析】由i m i a a +=知,序列i a 的周期为m ,由已知,5m =,511(),1,2,3,45i i k i C k a a k +===∑对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=≤∑52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足; 对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足; 对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足; 故选:C。
算法与程序框图
通过逐步构建解决方案,并在构建过程中进 行验证和剪枝的算法。
算法的应用场景
数学领域:诸如求解方程、优化 问题等。如牛顿迭代法、梯度下 降法等。
工程领域:包括信号处理、控制 系统等问题。如卡尔曼滤波算法 、PID控制算法等。
计算机科学领域:包括数据排序 、图形渲染、人工智能等问题。 如快速排序算法、Dijkstra最短路 径算法等。
KMP算法
通过预处理模式串,计算出一个next数组,用于在匹配失败时快速跳过一些不可能匹配的字符,从而 提高字符串匹配的效率。程序框图中可使用两个指针、一个循环结构和一个条件判断表示KMP算法过 程,同时需要额外的计算过程来预处理模式串并生成next数组。
06
算法与程序框图的未来 发展
量子计算对算法与程序框图的影响
程序框图的基本元素
01
起止框
表示程序的开始和结束。
处理框
02
03
判断/决策框
表示程序中的一个处理步骤或操 作。
表示程序中的条件判断或决策点 。
程序框图的基本元素
01
流程线:表示程序的执行流程或 控制流。
02
连接点:用于连接跨越较大空间 的流程线。
输入/输出框:表示程序的输入和 输出。
03
这些基本元素通过各种组合和连 接,可以描述出各种复杂的程序
快速排序
采用分治思想,选取一个基准元素,将列表中小于基准的元 素放到左侧,大于基准的元素放到右侧,然后递归地对左右 两侧子序列进行快速排序。程序框图中可使用递归和条件判 断表示快速排序过程。
图论算法的程序框图表示
深度优先搜索
从某个起始节点开始,沿着一条路径尽 可能深入地搜索,直到路径无法继续为 止,然后回溯到前一个节点,继续深度 优先搜索。程序框图中可使用栈和条件 判断表示深度优先搜索过程。
高二数学期末考必背知识点:算法与程序框图
高二数学期末考必背知识点:算法与程序框图在中国古代把数学叫算术,又称算学,最后才改为数学。
为大家推荐了高二数学期末考必背知识点,请大家仔细阅读,希望你喜欢。
1.算法的概念(1)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等。
在数学中,现代意义的算法是指可以用计算机来解决的某一类问题的程序和步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成。
(2)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏。
不重是指不是可有可无的、甚至无用的步骤,不漏是指缺少哪一步都无法完成任务。
②逻辑性:算法从开始的第一步直到最后一步之间做到环环相扣。
分工明确,前一步是后一步的前提,后一步是前一步的继续。
③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行。
(3)算法的描述:自然语言、程序框图、程序语言。
2.高中二年级数学必修三算法与程序框图程序框图(1)程序框图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;(2)构成程序框的图形符号及其作用(3)程序框图的构成一个程序框图包括以下几部分:实现不同算法功能的相对应的程序框;带箭头的流程线;程序框内必要的说明文字。
3.高中二年级数学必修三算法与程序框图几种重要的结构(1)顺序结构顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。
它是由若干个依次执行的步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
见示意图和实例:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
如在示意图中,A 框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作。
(2)条件结构如下面图示中虚线框内是一个条件结构,此结构中含有一个判断框,算法执行到此判断给定的条件P是否成立,选择不同的执行框(A框、B框)。
算法与程序框图考点与题型归纳
算法与程序框图考点与题型归纳一、基础知识1.算法(1)算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.(2)应用:算法通常可以编成计算机程序,让计算机执行并解决问题.2.程序框图程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.3.三种基本逻辑结构(1)顺序结构定义由若干个依次执行的步骤组成程序框图(2)条件结构定义算法的流程根据条件是否成立有不同的流向,条件结构就是处理这种过程的结构程序框图(3)循环结构定义从算法某处开始,按照一定的条件反复执行某些步骤,反复执行的步骤称为循环体程序框图直到型循环结构先循环,后判断,条件满足时终止循环.当型循环结构先判断,后循环,条件满足时执行循环.三种基本逻辑结构的适用情境(1)顺序结构:要解决的问题不需要分类讨论. (2)条件结构:要解决的问题需要分类讨论.(3)循环结构:要解决的问题要进行许多重复的步骤,且这些步骤之间有相同的规律.考点一 顺序结构和条件结构[例1] (2019·沈阳质检)已知一个算法的程序框图如图所示,当输出的结果为0时,输入的实数x 的值为( )A .-3B .-3或9C .3或-9D .-3或-9[解析] 当x ≤0时,y =⎝⎛⎭⎫12x-8=0,x =-3;当x >0时,y =2-log 3x =0,x =9.故x =-3或x =9,选B.[答案] B[例2] 某程序框图如图所示,现输入如下四个函数,则可以输出的函数为( )A .f (x )=cos x x ⎝⎛⎭⎫-π2<x <π2,且x ≠0 B .f (x )=2x -12x +1C .f (x )=|x |xD .f (x )=x 2ln(x 2+1)[解析] 由程序框图知该程序输出的是存在零点的奇函数,选项A 、C 中的函数虽然是奇函数,但在给定区间上不存在零点,故排除A 、C.选项D 中的函数是偶函数,故排除D.选B.[答案] B[解题技法] 顺序结构和条件结构的运算方法(1)顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.解决此类问题,只需分清运算步骤,赋值量及其范围进行逐步运算即可.(2)条件结构中条件的判断关键是明确条件结构的功能,然后根据“是”的分支成立的条件进行判断.(3)对于条件结构,无论判断框中的条件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支.[题组训练]1.半径为r 的圆的面积公式为S =πr 2,当r =5时,计算面积的流程图为( )解析:选D 因为输入和输出框是平行四边形,故计算面积的流程图为D.2.运行如图所示的程序框图,可输出B=______,C=______.解析:若直线x+By+C=0与直线x+3y-2=0平行,则B=3,且C≠-2,=1,解得C=±2,若直线x+3y+C=0与圆x2+y2=1相切,则|C|12+(3)2又C≠-2,所以C=2.答案:32考点二循环结构考法(一)由程序框图求输出(输入)结果[例1](2018·天津高考)阅读如图所示的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1B.2C.3 D.4[解析] 输入N 的值为20, 第一次执行条件语句,N =20, i =2,Ni =10是整数,∴T =0+1=1,i =3<5;第二次执行条件语句,N =20,i =3,N i =203不是整数,∴i =4<5;第三次执行条件语句,N =20,i =4,Ni =5是整数,∴T =1+1=2,i =5,此时i ≥5成立,∴输出T =2. [答案] B[例2] (2019·安徽知名示范高中联考)执行如图所示的程序框图,如果输出的n =2,那么输入的 a 的值可以为( )A .4B .5C .6D .7[解析] 执行程序框图,输入a ,P =0,Q =1,n =0,此时P ≤Q 成立,P =1,Q =3,n =1,此时P ≤Q 成立,P =1+a ,Q =7,n =2.因为输出的n 的值为2,所以应该退出循环,即P >Q ,所以1+a >7,结合选项,可知a 的值可以为7,故选D.[答案] D[解题技法] 循环结构的一般思维分析过程 (1)分析进入或退出循环体的条件,确定循环次数.(2)结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.(3)辨析循环结构的功能. 考法(二) 完善程序框图[例1] (2018·武昌调研考试)执行如图所示的程序框图,如果输入的a 依次为2,2,5时,输出的s 为17,那么在判断框中可以填入( )A .k <n?B .k >n?C .k ≥n?D .k ≤n?[解析] 执行程序框图,输入的a =2,s =0×2+2=2,k =1;输入的a =2,s =2×2+2=6,k =2;输入的a =5,s =2×6+5=17,k =3,此时结束循环,又n =2,所以判断框中可以填“k >n ?”,故选B.[答案] B[例2] (2018·全国卷Ⅱ)为计算S =1-12+13-14+…+199-1100,设计了如图所示的程序框图,则在空白框中应填入( )A .i =i +1B .i =i +2C .i =i +3D .i =i +4[解析] 由题意可将S 变形为S =⎝⎛⎭⎫1+13+…+199-⎝⎛⎭⎫12+14+…+1100,则由S =N -T ,得N =1+13+…+199,T =12+14+…+1100.据此,结合N =N +1i ,T =T +1i +1易知在空白框中应填入i =i +2.故选B.[答案] B[解题技法] 程序框图完善问题的求解方法 (1)先假设参数的判断条件满足或不满足;(2)运行循环结构,一直到运行结果与题目要求的输出结果相同为止; (3)根据此时各个变量的值,补全程序框图.[题组训练]1.(2018·凉山质检)执行如图所示的程序框图,设输出的数据构成的集合为A ,从集合A 中任取一个元素a ,则函数y =x a ,x ∈[0,+∞)是增函数的概率为( )A.47B.45C.35D.34解析:选C 执行程序框图,x =-3,y =3;x =-2,y =0;x =-1,y =-1;x =0,y =0;x =1,y =3;x =2,y =8;x =3,y =15;x =4,退出循环.则集合A 中的元素有-1,0,3,8,15,共5个,若函数y =x a ,x ∈[0,+∞)为增函数,则a >0,所以所求的概率为35.2.(2019·珠海三校联考)执行如图所示的程序框图,若输出的n 的值为4,则p 的取值范围是( )A.⎝⎛⎦⎤34,78B.⎝⎛⎭⎫516,+∞C.⎣⎡⎭⎫516,78D.⎝⎛⎦⎤516,78解析:选A S =0,n =1;S =12,n =2;S =12+122=34,n =3;满足条件,所以p >34,继续执行循环体;S =34+123=78,n =4;不满足条件,所以p ≤78.输出的n 的值为4,所以34<p ≤78,故选A.3.(2019·贵阳适应性考试)某程序框图如图所示,若该程序运行后输出的值是137,则整数a 的值为( )A .6B .7C .8D .9解析:选A 先不管a 的取值,直接运行程序.首先给变量S ,k 赋值,S =1,k =1,执行S =S +1k (k +1),得S =1+11×2,k =2;执行S =1+11×2+12×3,k =3;……继续执行,得S =1+11×2+12×3+…+1k (k +1)=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1k -1k +1=2-1k +1,由2-1k +1=137得k =6,所以整数a =6,故选A.考点三 基本算法语句[典例] 执行如图程序语句,输入a =2cos 2 019π3,b =2tan 2 019π4,则输出y 的值是( )A .3B .4C .6D .-1[解析] 根据条件语句可知程序运行后是计算y =⎩⎪⎨⎪⎧a (a +b ),a <b ,a 2-b ,a ≥b ,且a =2cos 2 019π3=2cos π=-2,b =2tan 2 019π4=2tan 3π4=-2.因为a ≥b ,所以y =a 2-b =(-2)2-(-2)=6, 即输出y 的值是6. [答案] C[变透练清]1. 执行如图所示的程序,输出的结果是________.i =11S =1DOS =S*ii =i -1LOOP UNTIL i<9PRINT S END解析:程序反映出的算法过程为 i =11⇒S =11×1,i =10; i =10⇒S =11×10,i =9; i =9⇒S =11×10×9,i =8;i =8<9退出循环,执行“PRINT S ”. 故S =990. 答案:9902.阅读如图所示的程序.的值是________. 解析:由题意可得程序的功能是计算并输出a =⎩⎪⎨⎪⎧2+a ,a >2,a ×a ,a ≤2的值, 当a >2时,由2+a =9得a =7; 当a ≤2时,由a 2=9得a =-3, 综上知,a =7或a =-3. 答案:-3或7[课时跟踪检测]1.(2019·湖北八校联考)对任意非零实数a ,b ,定义a *b 的运算原理如图所示,则(log 222)*⎝⎛⎭⎫18-23=( )。
算法与程序框图 - 简单 - 讲义
算法与程序框图知识讲解一、算法的概念概念:由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照一定规则解决某一类问题的明确的和有限的步骤,称为算法(algorithm).通常可以编成计算机程序,让计算机执行并解决问题.二、算法的特征1.有穷性:算法必须在执行有限步后结束,通常还理解为实际上能够容忍的合理限度;2.确定性:算法的每一个步骤必须有确定的含义;3.可行性:组成算法的每个步骤和操作必须是相当基本的,原则上都是能精确地执行的;4.输入:有零个或多个输入;5.输出:有一个或多个输出.三、算法的描述描述:自然语言、数学语言、算法语言(程序设计语言)、程序框图(流程图).四、算法的三种基本逻辑结构1.顺序结构:最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的.如下左图,只有在执行完A框指定的操作后,才能接着执行B框指定的操作;2.条件(分支)结构:在一个算法中,用来处理需要根据条件是否成立有不同的流向的结构.常见的条件结构的程序框图有下面两种形式:3.循环结构:从某处开始,按照一定的条件反复执行某些步骤的情况,就是循环结构,其中反复执行的步骤称为循环体.常见的循环结构的框图对应为:五、程序框图的概念及常用图形符号1.概念:用一些通用的图形符号构成的一张图来表示算法,称为程序框图(简称框图).2.常用图形符号:典型例题一.选择题(共4小题)1.(2015•重庆)执行如图所示的程序框图,则输出s的值为()A.B.C.D.【解答】解:模拟执行程序框图,可得s=0,k=0满足条件k<8,k=2,s=满足条件k<8,k=4,s=+满足条件k<8,k=6,s=++满足条件k<8,k=8,s=+++=不满足条件k<8,退出循环,输出s的值为.故选:D.2.(2015•重庆)执行如图所示的程序框图,若输出k的值为8,则判断框图可填入的条件是()A.s≤B.s≤C.s≤D.s≤【解答】解:模拟执行程序框图,k的值依次为0,2,4,6,8,因此S=(此时k=6),因此可填:S.故选:C.3.(2015•天津)阅读如图所示的程序框图,运行相应的程序,则输出i的值为()A.2 B.3 C.4 D.5【解答】解:模拟执行程序框图,可得S=10,i=0i=1,S=9不满足条件S≤1,i=2,S=7不满足条件S≤1,i=3,S=4不满足条件S≤1,i=4,S=0满足条件S≤1,退出循环,输出i的值为4.故选:C.4.(2015•陕西)根据如图框图,当输入x为6时,输出的y=()A.1 B.2 C.5 D.10【解答】解:模拟执行程序框图,可得x=6x=3满足条件x≥0,x=0满足条件x≥0,x=﹣3不满足条件x≥0,y=10输出y的值为10.故选:D.二.填空题(共3小题)5.(2017•启东市校级模拟)运行下面的一个流程图,则输出的S值是35.【解答】解:经过第一次循环得到结果为n=3,s=3,此时满足判断框的条件经过第二次循环得到结果为n=5,s=3+5,此时满足判断框的条件经过第三次循环得到结果为n=7,s=3+5+7,此时满足判断框的条件经过第四次循环得到结果为n=9,s=3+5+7+9,此时满足判断框的条件,经过第四次循环得到结果为n=11,s=3+5+7+9+11,此时不满足判断框的条件,执行输出s,即输出s=3+5+7+9+11=35故答案为:356.(2012•江苏)图是一个算法流程图,则输出的k的值是5.【解答】解:1﹣5+4=0>0,不满足判断框.则k=2,22﹣10+4=﹣2>0,不满足判断框的条件,则k=3,32﹣15+4=﹣2>0,不成立,则k=4,42﹣20+4=0>0,不成立,则k=5,52﹣25+4=4>0,成立,所以结束循环,输出k=5.故答案为:5.7.(2017春•阜宁县校级期中)阅读如图的流程图,则输出S=30.【解答】解:根据题意,模拟程序框图的运行过程,知该程序框图的运行是计算S=12+22+…+n2;当i=4+1=5>4时,S=12+22+32+42=30;输出S=30.故答案为:30.三.解答题(共2小题)8.写出求一元二次方程ax2+bx+c=0的根的算法.【解答】解:求一元二次方程ax2+bx+c=0的根的算法步骤是;第一步,输入3个系数a,b,c;第二步,计算△=b2﹣4ac;第三步,判断△≥0是否成立,若是,则计算p=﹣,q=,否则,输出“方程没有实数根”,结束算法;第四步,判断△=0是否成立,若是,则输出x1=x2=p,否则,计算x1=p+q,x2=p ﹣q,并输出x1,x2.9.高一(2)班共有54名学生参加数学竞赛,现已有他们的竞赛分数,请设计一个将竞赛成绩优秀学生的平均分输出的算法(规定90分以上为优秀).【解答】解:算法如下:第一步:i=0,n=0,S=0第二步:输入一个成绩a第三步:若a>90,则S=S+a,n=n+1否则,执行第四步。
算法与程序框图(优秀经典公开课比赛课件)
考点一 框图的含义
例1 如图11-1-7所示的流程 图是将一系列指令和问题用 框图的形式排列而成的,箭头 将告诉你下一步到哪一个程 序框图.阅读下边的流程图,并 回答下面的问题.
返回目录
(1)程序框图表示了怎样的算法?
(2)若a>b>c,则输出的数是
则输出的数1
3,b=
返回目录
(5) y1=3,即2a+b=3,
①
y2=-2,即-3a+b=-2.
②
由①②解得a=1,b=1,
∴f(x)=x+1.
∴当x取5时,5a+b=f(5)=5×1+1=6.
(6)输入的x值越大,输出的函数值ax+b越大,因 为f(x)=x+1是R上的增函数.
(7)令f(x)=x+1=0得x=-1,因而当输入的值为-1时, 输出的函数值为0.
返回目录
【评析】求分段函数值的算 法应用到条件分支结构,因此 在程序框图的画法中需要引 入判断框,要根据题目的要求 引入判断框的个数,而判断框 内的条件不同,对应的下一图 框中的内容或操作就相应地 进行变化.例如,此题还可以 画成如图所示的程序框图.
返回目录
*对应演练*
在音乐唱片超市里,每张唱片售价25元,顾客如果购 买5张以上(含5张)唱片,则按九折收费;如果顾客 买10张以上(含10 张)唱片,则按照八五折收费,请设 计一个完成计费工作的算法,画出程序框图.
(2)此题的程序框图也可用后面的循环结构框图表 示.
返回目录
*对应演练*
已知平面内的一点 P0(x0,y0)和直线 l:Ax+By+C=0,求 点P0(x0,y0)到直线l 的距离d,画出程序 框图.
算法与程序框图PPT优秀课件
算法与程序框图
算法 程序框图
算法的三种基本逻辑 结构和框图表示
顺序结构 条件分支结构
循环结构
算法
可以理解为由基本运算及规定的运 算顺序所构成的完整的解题步骤,或
者看成按照要求设计好的有限的确切
的计算序列,并且这样的步骤或序列
能够一类问题解决.
自然语言、数学语言、形式语言、框图。
程序框图 用一些通用图形符号构成一张图来 表示算法,这种图称作程序框图 (简称框图).
――[阿萨·赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉·海兹利特]
116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯·里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可·汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰·夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯·米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子]
高考数学 《算法与程序框图》
算法与程序框图主标题:算法与程序框图副标题:为学生详细的分析算法与程序框图的高考考点、命题方向以及规律总结。
关键词:算法,框图难度:2重要程度:4考点剖析:1.了解算法的含义,了解算法的思想.2.理解程序框图的三种基本逻辑结构:顺序、条件、循环.3.了解程序框图,了解工序流程图(即统筹图).4.能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用.5.了解结构图,会运用结构图梳理已学过的知识,整理收集到的资料信息.命题方向:算法初步属于新课标的新增内容,是高考的热点,每年均有考查,一般以程序框图和算法语句为主.多以选择题、填空题形式出现,一般为中等偏易题,规律总结:1.在设计一个算法的过程中要牢记它的五个特征:概括性、逻辑性、有穷性、不唯一性、普遍性.2.在画程序框图时首先要进行结构的选择.若所要解决的问题不需要分情况讨论,只用顺序结构就能解决;若所要解决的问题要分若干种情况讨论时,就必须引入条件结构;若所要解决的问题要进行许多重复的步骤,且这些步骤之间又有相同的规律时,就必须引入变量,应用循环结构.3.程序框图的条件结构和循环结构分别对应算法语句的条件语句和循环语句,两种语句的阅读理解是复习重点.知识梳理1.算法与程序框图(1)算法的定义:算法是指按照一定规则解决某一类问题的明确和有限的步骤.(2)程序框图:①程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.②程序框图通常由程序框和流程线组成.③基本的程序框有终端框(起止框)、输入、输出框、处理框(执行框)、判断框. (3)三种基本逻辑结构: 名称 内容顺序结构 条件结构循环结构定义由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构算法的流程根据条件是否成立有不同的流向,条件结构就是处理这种过程的结构从某处开始,按照一定的条件反复执行某些步骤的情况,反复执行的步骤称为循环体程序框图2.基本算法语句(1)输入、输出、赋值语句的格式与功能: 语句 一般格式功能 输入 语句 INPUT “提示内容”;变量输入信息输出 语句 PRINT “提示内容”;表达式 输出常量、变量的值和系统信息赋值 语句变量=表达式 将表达式所代表的值赋给变量(2)条件语句的格式及框图: ①IF -THEN 格式:②IF -THEN -ELSE 格式:(3)循环语句的格式及框图:①UNTIL语句:②WHILE语句:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九章 算法初步
算法与程序框 图
1.了解算法的含义,了解算 法的思想. 2.理解程序框图的三种基本 逻辑结构:顺序、条件 分支、循环. 3.理解几种基本算法语句— —输入语句、输出语句、 赋值语句、条件语句、 循环语句的含义.
选择题:2017· 课标Ⅰ,8 选择题:2017· 课标Ⅱ,8 选择题:2017· 课标Ⅲ,7 选择题:2016· 课标Ⅰ,9 选择题:2016· 课标Ⅲ,7 选择题:2015· 课标Ⅰ,9
输出语句 PRINT 赋值语句
考向1
程序框图的执行问题 程序框图是历年课标全国卷的必考点,其中循环结构考
查频率高,多以选择题、填空题的形式出现,难度不大,分值 为5分.常以以下命题角度呈现:①条件结构与分段函数相结
合;②当型循环结构或直到型循环结构的结果输出问题.
例1 (2017· 课标Ⅱ,8)执行如图所示的程序框图,如果输入的a =-1,则输出的S= ( )
A.2
Байду номын сангаас
B.3
C.4
D.5
【解析】
a=-1,S=0,K=1,满足K≤6;
S=-1,a=1,K=2,满足K≤6;
S=1,a=-1,K=3,满足K≤6; S=-2,a=1,K=4,满足K≤6; S=2,a=-1,K=5,满足K≤6; S=-3,a=1,K=6,满足K≤6; S=3,a=-1,K=7,不满足K≤6. 故输出的S=3. 【答案】 B
题时是不同的,它们恰好相反.
2.解决程序框图问题要注意的几个常用变量 (1)计数变量:用来记录某个事件发生的次数,如i=
i+1.
(2)累加变量:用来计算数据之和,如S=S+i. (3)累乘变量:用来计算数据之积,如p=p×i.
3.输入、输出、赋值语句的格式与功能 语句 输入语句 INPUT 一般格式 “提示内容”;变量 “提示内容”;表达式 ⑦_____________ 变量=表达式 功能 输入信息 输出常量、变量 的值和系统信息 将表达式的值赋 给变量
考向2
程序框图的补充与完善 在不完整的程序框图中,填补一些条件或内容,是高考
考查算法知识的一种重要题型,此类试题要求学生要有比较扎
实的算法初步的基本知识,以及综合分析问题和解决问题的能
力,难度中等.
例2 (2017· 课标Ⅰ,8)如图所示的程序框图是为了求出满足3n- 2n>1 000的最小偶数n,那么在 中,可以分别填入 和 两个空白框 ( )
( C )
3 A. s ≤ 4 11 C.s≤12
5 B. s ≤ 6 25 D.s≤24
【解析】
由程序框图知,k 的值依次为 0,2,4,6,8,因此
1 1 1 11 1 1 1 1 25 s=2+4+6=12时条件成立, s=2+4+6+8=24时条件不成立, 11 因此可填 s≤12.
A.A>1 000和n=n+1
B.A>1 000和n=n+2 C.A≤1 000和n=n+1 D.A≤1 000和n=n+2 【解析】 本题求解的是满足3n-2n>1 000的最小偶数n,可判 断出循环结构为当型循环结构,即满足条件要执行循环体,不 满足条件要输出结果,所以判断语句应为A≤1 000,另外,所 求为满足不等式的偶数解,因此 中语句应为n=n+2,
变式训练
(2016· 课标Ⅰ,9)执行如图的程序框图,如果输入 ( C )
的x=0,y=1,n=1,则输出x,y的值满足
A.y=2x
C.y=4x
B.y=3x
D.y=5x
【解析 】
1- 1 第 1 次循环: n= 1, x= 0+ = 0, y=1× 1= 1,不 2
满足 x2+ y2≥ 36; 2- 1 1 第 2 次循环: n= 2, x= 0+ = , 2 2 y= 2× 1= 2,不满足 x2+ y2≥ 36; 1 3- 1 3 第 3 次循环: n= 3, x= + = , y= 3× 2= 6,满足 x2+ y2≥ 2 2 2 3 36,结束循环,输出 x= , y= 6,故 x, y 满足 y= 4x. 2
56 算法与程序框图
1.常用程序框及其功能
2.三种基本逻辑结构 名称 内容 顺序结构 由若干个按 ⑤_____ 先后 顺序 执行的步骤 组成,这是 任何一个算 法都离不开 的基本结构 条件结构 循环结构
定义
算法的流程根据 条件⑥________ 是否成立 有不同的流向, 条件结构就是处 理这种过程的结 构
从某处开始,按照 一定的条件反复执 行某些步骤的情况 这就是循环结构, 反复执行的步骤称 为循环体
(1)
(1)
程序 框图
(2)
(2)
1.当型循环与直到型循环的区别 直到型循环是“先循环,后判断,条件满足时终止 循环”;当型循环则是“先判断,后循环,条件满足时
执行循环”.两者的判断框内的条件表述在解决同一问
1.解决“结果输出型”问题的思路 (1)要明确程序框图的顺序结构、条件结构和循环结 构.注意区分当型循环和直到型循环,循环结构中要正确控制 循环次数,要注意各个框的顺序. (2)要识别运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.
2.确定控制循环变量的思路
结合初始条件和输出结果,分析控制循环的变量应满足的 条件或累加、累乘的变量的表达式.
故选D.
【答案】 D
程序框图的补充与完善问题的求解方法 (1)先假设参数的判断条件满足或不满足; (2)运行循环结构,一直到运行结果与题目要求的输出结 果相同为止; (3)根据此时各个变量的值,补全程序框图.
变式训练
(2015· 重庆,7)执行如图所示的程序框图,若输出
k的值为8,则判断框内可填入的条件是