最新人教版小学数学六年级下册《圆锥的体积》教案设计
人教版数学六年级下册圆锥的体积教案推荐3篇
人教版数学六年级下册圆锥的体积教案推荐3篇〖人教版数学六年级下册圆锥的体积教案第【1】篇〗教学目标:1、知识与技能理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。
2、过程与方法通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。
3、情感态度与价值观渗透知识是互相转化的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。
教学重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。
教学难点:理解圆锥体积公式的推导过程。
教具学具:不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。
教学流程:一、创设情境,提出问题师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。
促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?生:我选择底面的;生:我选择高是的;生:我选择介于二者之间的。
师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?生:只要求出冰淇淋的体积就可以了。
师:冰淇淋是个什么形状?(圆锥体)生:你会求吗?师:通过这节课的学习,相信这个问题就很容易解答了。
下面我们一起来研究圆锥的体积。
并板书课题:圆锥的体积。
二、设疑激趣,探求新知师:那么你能想办法求出圆锥的体积吗?(学生猜想求圆锥体积的方法。
)生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。
师:如果这样,你觉得行吗?教师根据学生的回答做出最后的评价;生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?小组中大家商量。
生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。
小学六年级数学《圆锥的体积》教案(优秀8篇)
小学六年级数学《圆锥的体积》教案(优秀8篇)小学六年级数学《圆锥的体积》教案篇一教学目标:1、通过动手操作参与实验,发现等底等高的圆柱体和圆锥体之间的关系,从而得出圆锥体的体积公式。
2、能运用公式解答有关的实际问题。
3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。
教学重点:通过实验的方法,得到计算圆锥体积的公式。
教学难点:运用圆锥体积公式正确地计算体积。
教学过程:一、创设情境,引发猜想在一个闷热的中午,小白兔买了一个圆柱形的雪糕,狐狸买了一个圆锥形的雪糕,这两个雪糕是等底等高的。
这是狐狸要用它的雪糕和小白兔换。
你觉得小白兔有没有上当?如果狐狸用两个雪糕和小白兔换你觉得公平吗?假如你是小白兔,狐狸有几个雪糕你才肯和它换呢?把你的想法与小组的同学交流一下,再向全班同学汇报。
小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。
二、自主探索,操作实验1、出示学习提纲(1)利用手中的学具,动手操作,通过试验,你发现圆柱的体积与圆锥体积之间有什么关系?(2)你们小组是怎样进行实验的?(3)你能根据实验结果说出圆锥体的体积公式吗?(4)要求圆锥体积需要知道哪两个条件?2、小组合作学习3、回报交流结论:圆锥的体积是等底等高的圆柱体积的1/3.公式:V=1/3Sh4、问题解决小白兔和狐狸怎样交换才能公平合理呢?它需要什么前提条件?5、运用公式解决问题教学例题1和例题2三、巩固练习1、圆锥的底面积是5,高是3,体积是()2、圆锥的底面积是10,高是9,体积是()3、求下面各圆锥的体积.(1)底面面积是7.8平方米,高是1.8米.(2)底面半径是4厘米,高是21厘米.(3)底面直径是6分米,高是6分米.4、判断对错,并说明理由.(1)圆柱的体积相当于圆锥体积的3倍.()(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1.()(3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.()四、拓展延伸一个圆锥的底面周长是31?4厘米,高是9厘米,它的体积是多少立方厘米?五、谈谈收获六、作业小学六年级数学《圆锥的体积》教案篇二【教学内容】圆锥的体积(1)(教材第33页例2)。
人教版数学六年级下册圆锥的体积教学设计3篇
人教版数学六年级下册圆锥的体积教学设计3篇〖人教版数学六年级下册圆锥的体积教学设计第【1】篇〗教学目标:1、通过动手操作实验,推导出圆锥体体积的计算公式。
2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。
3、通过学生动脑、动手,培养学生的观察、分析的综合能力。
教具准备:等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。
教学过程设计:一、复习旧知,做好铺垫。
1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积高)2、口算下列圆柱的体积。
(1)底面积是5平方厘米,高6厘米,体积=?(2)底面半径是2分米,高10分米,体积=?(3)底面直径是6分米,高10分米,体积=?3、认识圆锥(课件演示),并说出有什么特征?二、沟通知识、探索新知。
教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。
这节课我们就来研究圆锥的体积。
(板书课题)1、探讨圆锥的体积计算公式。
教师:怎样推导圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积计算公式的?学生回答,教师板书:圆柱------(转化)------长方体圆柱体积计算公式--------(推导)长方体体积计算公式教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。
你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。
(1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)(学生得出:底面积相等,高也相等。
)教师:底面积相等,高也相等,用数学语言说就叫等底等高。
(板书:等底等高)(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用底面积高来求圆锥体体积行不行?(不行,因为圆锥体的体积小)教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)用水和圆柱体、圆锥体做实验。
2024年人教版数学六年级下册圆锥的体积优秀教案3篇
人教版数学六年级下册圆锥的体积优秀教案3篇〖人教版数学六年级下册圆锥的体积优秀教案第【1】篇〗义务教育教科书人教版小学数学六年级下册第三单元教材依据义务教育教科书人教版小学数学六年级下册第三单元《圆柱与圆锥》第五小节《圆锥的体积》。
指导思想《小学数学课程标准》指出:教学的任务是引导和帮助学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。
因此,在设计本节课时,我力求为学生创造一个自主探索与合作交流的环境,通过学生猜想、观察、操作、实验、证明等数学活动过程,体验数学问题的探索性和挑战性,使学生能够从情境中发现数学问题,学生会产生探究问题的需要,然后再通过自己的探索去发现和归纳公式,体验过程,解决问题。
设计理念本着在教师引导下学生积极主动合作探究的理念,本课以学生认识发展规律为主线,以引导猜想问题、发现问题、提出问题、探究解决问题、得出结论为基点,通过实际应用训练使学生在“认识—实践—再认识、再实践”中理解运用知识。
在教学策略上,本节课利用多媒体创设教学情境,充分激发学生学习的兴趣和欲望,让学生在猜想释疑、合作学习和实验操作中,自觉探究圆锥体积公式的推导过程,并运用规律解决实际问题,激发学生探究的兴趣,解决问题的乐趣,逐步提高学生探究知识应用知识解决实际问题的能力。
学情分析在学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识圆锥的特征了,有了一些推导体积公式的方法,具备了一定的空间观念和学习的方法,能够把新知识与旧知识建立起联系,解决实际问题。
圆锥体也是生活中常见的物体的形状,所以在教学时从学生的生活实际和已有的知识经验入手,通过自主、合作、动手操作探究知识,这样符合小学生认识事物的规律。
教材分析从教材的编写可以看出,教材加强了与现实生活的联系。
加强了在操作中对空间与图形问题的思考,使学生在经历观察、联想、猜测、操作实验、推理等过程中理解和掌握圆锥的体积的计算方法,进一步发展空间观念。
人教版数学六年级下册《圆锥的体积》教学设计
人教版数学六年级下册《圆锥的体积》教学设计一. 教材分析人教版数学六年级下册《圆锥的体积》是本册教材中的一个重要内容。
在学习本节课之前,学生已经掌握了长方体和正方体的体积计算方法,为本节课的学习打下了基础。
圆锥的体积计算公式是V = 1/3πr²h,其中V表示体积,r表示圆锥底面半径,h表示圆锥高。
本节课通过实例和实践活动,让学生理解和掌握圆锥体积的计算方法,并能够运用到实际问题中。
二. 学情分析六年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对长方体和正方体的体积计算方法有一定的了解。
但是,对于圆锥的形状和体积计算公式的理解还需要通过实践活动和实例来加深。
此外,学生可能对圆锥的底面半径和高在实际问题中的含义和作用还需要进一步引导和解释。
三. 教学目标1.让学生理解圆锥体积的概念,掌握圆锥体积的计算公式V = 1/3πr²h。
2.培养学生运用圆锥体积公式解决实际问题的能力。
3.发展学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.圆锥体积的概念和计算公式的理解。
2.圆锥底面半径和高在实际问题中的应用。
五. 教学方法1.实例教学:通过具体的实例,让学生理解和掌握圆锥体积的计算方法。
2.实践活动:让学生亲自动手操作,加深对圆锥体积计算公式的理解。
3.问题解决:引导学生运用圆锥体积公式解决实际问题,培养学生的应用能力。
六. 教学准备1.教具:圆锥模型、长方体模型、正方体模型。
2.学具:学生用书、练习本、圆锥模型。
3.多媒体课件:圆锥体积的计算方法、实例动画。
七. 教学过程1.导入(5分钟)教师通过展示长方体和正方体模型,引导学生回顾体积的概念和计算方法。
然后,教师展示圆锥模型,提问学生:“你们认为圆锥的体积应该如何计算呢?”让学生发表自己的观点。
2.呈现(10分钟)教师通过多媒体课件呈现圆锥体积的计算公式V = 1/3πr²h,同时解释圆锥底面半径和高在公式中的含义。
人教版数学六年级下册圆锥的体积教案(推荐3篇)
人教版数学六年级下册圆锥的体积教案(推荐3篇)人教版数学六年级下册圆锥的体积教案【第1篇】教材分析《圆锥的体积》是西师版义务教育课程标准实验教科书数学六年级下册的内容。
本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。
为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。
学情分析六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。
学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。
因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。
但是我校是处于城镇边缘的农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。
教学目标1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。
2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。
3、体会数学与生活的密切联系,感受探究成功的快乐。
教学重点和难点重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。
难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。
教学过程一、复习准备1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?2、圆锥有什么特点?(同时出示幻灯)3、在这个圆锥体中,几号线段是圆锥体的高。
4、引入:看来,同学们对于圆锥体的特征掌握得很好。
你们想不想继续研究圆锥呢?1.长方体、正方体、圆柱。
2.一个顶点;一个侧面,展开是一个扇形;一个底面,是圆形;一条高,从顶点到底面圆心的垂直距离。
3.学生手势出示4.想复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。
六年级数学下册《圆锥的体积》教案【精选9篇】
六年级数学下册《圆锥的体积》教案【精选9篇】小学数学《圆锥的体积》教案篇一教学目标1.在操作和探究中理解并掌握圆锥的体积计算公式。
2.引导学生探究、发现,培养学生的观察、归纳等能力。
3.在实验中,培养学生的数学兴趣,发展学生的空间观念。
教学重点圆锥体积的计算公式的推导过程。
教学难点圆锥体积计算公式的理解。
教学过程一、情景铺垫,引入课题教师出示画面,画面中两个小孩正在商店里买蛋糕,蛋糕有圆柱形和圆锥形两种。
圆柱形蛋糕的标签上写着底面积16cm2,高20cm,单价:40元/个;圆锥形的蛋糕标签上写着底面积16cm2,高60cm,单价:40元/个。
出示问题:到底选哪种蛋糕划算呢?教师:图上的两个小朋友在做什么?他们遇到什么困难了?他们应该选哪种蛋糕划算呢?谁能帮他们解决这个问题?学生明白首先要求出圆锥形蛋糕的体积。
教师:怎样计算圆锥的体积?这节课我们一起研究圆锥体积的计算方法。
揭示课题。
板书课题:圆锥的体积二、自主探究,感悟新知1.提出猜想,大胆质疑教师:谁来猜猜圆锥的。
体积怎么算?2.分组合作,动手实验教师:圆锥的体积和圆柱的体积之间究竟有没有关系呢?如果有关系的话,它们之间又是一种什么关系?通过什么办法才能找到它们之间的关系呢?带着这些问题,请同学们分组研究,通过实验寻找答案。
教师布置任务并提出要求。
每个小组的桌上都有准备好的器材:等底等高空心的或实心的圆柱和圆锥、河沙或水、水槽等不同的器材,以及一张可供选用的实验报告单。
四人小组的成员分工合作,利用提供的器材共同想办法解决问题,找出圆锥体积的计算方法。
并可根据小组研究方法填写实验报告单。
学生小组合作探究,教师巡视指导,参与学生的活动。
3.教师用展示实验报告单教师:你们采用了哪些方法研究等底等高的圆柱和圆锥之间的关系?通过实验,你们发现了什么?方案一:用空心的圆锥装满水,再把水倒在与这个圆锥等底等高的空心圆柱形容器中,倒了三次,刚好装满圆柱形容器,因为圆柱的体积=底面积×高,所以圆锥的体积=1/3×圆柱的体积。
六年级下册数学教案--圆锥的体积人教版
六年级下册数学教案圆锥的体积人教版教案:圆锥的体积一、教学内容1. 理解圆锥体积的概念,掌握圆锥体积的计算公式。
2. 学会使用适当的单位进行圆锥体积的测量和计算。
3. 能够应用圆锥体积的知识解决实际问题。
二、教学目标1. 学生能够理解圆锥体积的概念,并掌握圆锥体积的计算公式。
2. 学生能够运用圆锥体积的知识解决实际问题。
3. 学生能够培养观察、思考、合作的能力。
三、教学难点与重点1. 难点:理解圆锥体积的概念,掌握圆锥体积的计算公式。
2. 重点:学生能够运用圆锥体积的知识解决实际问题。
四、教具与学具准备1. 教具:圆锥模型、沙子、量杯。
2. 学具:学生自己的圆锥模型、计算器、练习本。
五、教学过程1. 引入:我们之前学习了圆柱的体积,今天我们要学习的是与圆柱相似的圆锥的体积。
请大家拿出自己的圆锥模型,观察一下圆锥的特点。
2. 讲解:我们来理解一下圆锥体积的概念。
圆锥体积是指圆锥所占空间的大小。
它的计算公式是:圆锥体积 = 底面积× 高× 1/3。
这里的底面积是指圆锥底面的面积,高是指从圆锥顶点到底面的垂直距离。
3. 示范:我来给大家示范一下如何计算圆锥的体积。
假设这个圆锥的底面半径是r,高是h,那么它的体积就是:πr²h × 1/3。
这里用到了圆的面积公式πr²。
4. 练习:请大家拿出自己的圆锥模型,尝试计算一下它的体积。
如果有困难,可以和同学互相帮助。
5. 应用:现在我们来解决一个实际问题。
假设我们有一个圆锥形的花坛,底面半径是3米,高是4米,请大家计算一下这个花坛的体积。
六、板书设计圆锥体积 = 底面积× 高× 1/3七、作业设计1. 题目:计算下面圆锥的体积。
圆锥的底面半径是5米,高是8米。
2. 答案:圆锥体积= πr²h × 1/3= π × 5² × 8 × 1/3= 3.14 × 25 × 8 × 1/3= 3.14 × 200 × 1/3= 628 × 1/3= 209.33(立方米)八、课后反思及拓展延伸通过今天的学习,大家应该对圆锥体积有了更深入的理解。
《圆锥的体积》数学教案(优秀9篇)
《圆锥的体积》数学教案(优秀9篇)【教学目标:】1、使学生探索并初步掌握圆锥体积的计算方法和推导过程;2、使学生会应用公式计算圆锥的体积并解决一些实际问题;3、提高学生实践操作、观察比较、抽象概括的能力,发展空间观念;【教学重点:】使学生初步掌握圆锥体积的计算方法并解决一些实际问题。
【教学难点:】探索圆锥体积的计算方法和推导过程。
【教具准备:】1、多媒体课件。
2、等底等高、等底不等高、等高不等底的圆锥和圆柱,沙、米,实验报告单;【教学过程:】一、创设情境,发现问题1、故事引入:爱迪生是一位伟大的发明家,他的一生有1000多项发明,当人们都说他是天才的时候,他却谦虚的说:天才=99%的汗水和1%的灵感。
孩子们,请记住这句话吧,你的未来一定会很出色的哦。
今天这节课我们就从爱迪生的一个小故事开始吧,有一天爱迪生让他的助手测量一个灯泡的体积,由于灯泡的形状很不规则,助手苦苦思考,还是没有答案,爱迪生用了一个非常巧妙的办法他将灯泡里装满水,然后将水倒入量筒中(教师拿出圆柱体量筒作演示),就得出了灯泡的体积。
你能说说爱迪生这样做的理由吗?师:因为圆柱体的体积等于底面积高。
(板书)2、提出问题,明确方向。
爱迪生帮他的助手解决了这个问题,现在请同学们帮打谷场上的农民伯伯们一个忙(用多媒体显示一堆圆锥体的小麦堆)请大家算算这堆小麦的体积。
看看谁是未来的爱迪生生:利用爱迪生的方法,利用一个圆柱体或长方体大桶来装这堆谷子,就能求出这堆谷子的体积了。
师:长方体的体积公式是什么呢?生:长宽高师:非常棒,其实呀不管是爱迪生,还是未来的爱迪生都是运用转化这一重要的数学思想来解决新的问题,今天我们同样能不能用转化的数学思想找到一种简单而又科学合理的方法计算出圆锥的体积的计算公式呢?板书:圆锥体积二、讨论问题,提出方案1、现在请同桌互相讨论一下,可以采取什么办法找到手中圆锥的体积。
比一比,哪个学习小组的方法多,方法好。
各小组汇报:把圆锥投入装了水的长方体、正方体或圆柱体的容器中,求出上升部分水的体积。
2024年人教版数学六年级下册圆锥的体积教学设计精选3篇
人教版数学六年级下册圆锥的体积教学设计精选3篇〖人教版数学六年级下册圆锥的体积教学设计第【1】篇〗教学内容:九年义务教育六年制小学数学第十二册P32页。
教学目标:1、通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。
2、通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。
3、进一步培养学生将所学知识运用和服务于生活的能力。
教学重点:灵活运用圆柱圆锥的有关知识解决实际问题。
教学难点:同教学难点。
设计理念:练习的过程是学生将所学知识内化、升华的过程,练习过程中既有基础知识的合理铺垫,又有不同程度的提高,练习的内容有明显的阶梯性。
力求使不同层次的学生都学有收获。
教学步骤、教师活动、学生活动一、复习铺垫、内化知识。
1. 圆锥体的体积公式是什么?我们是如何推导的?2.圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。
(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。
(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。
(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。
圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。
3.求下列圆锥体的体积。
(1)底面半径4厘米,高6厘米。
(2)底面直径6分米,高8厘米。
(3)底面周长31.4厘米.高12厘米。
4、教师根据学生练习中存在的问题,集体评讲。
同座位的同学先说一说圆锥体积公式的推导过程。
学生独立练习,互相批改,指出问题。
学生交流一下这几题在解题时要注意什么?二、丰富拓展、延伸练习。
1.拓展练习:(1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?(2)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?2.完成31页第5题。
讨论下列问题:(1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?(2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?3.分组讨论:圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?学生分组讨论,教师参与其中,以有疑问的方式参与讨论。
六年级数学下册 圆锥的体积教案 人教新课标版
六年级数学下册圆锥的体积教案人教新课标版第一章:圆锥体积的概念1. 教学目标1.1 了解圆锥体积的概念,掌握圆锥体积的计算公式。
1.2 能够运用圆锥体积的知识解决实际问题。
1.3 培养学生的空间想象能力和思维能力。
2. 教学内容2.1 圆锥体积的概念2.2 圆锥体积的计算公式3. 教学步骤3.1 引入:通过实物展示,让学生观察和触摸圆锥体,引导学生思考圆锥体积的概念。
3.2 讲解:讲解圆锥体积的概念,介绍圆锥体积的计算公式。
3.3 练习:让学生运用圆锥体积的知识解决实际问题,巩固所学内容。
4. 教学评价4.1 课堂问答:检查学生对圆锥体积概念的理解。
4.2 练习题:检查学生运用圆锥体积知识解决实际问题的能力。
第二章:圆锥体积的计算1. 教学目标1.1 掌握圆锥体积的计算方法。
1.2 能够正确计算圆锥体积。
1.3 培养学生的计算能力和思维能力。
2. 教学内容2.1 圆锥体积的计算方法2.2 圆锥体积的计算公式3. 教学步骤3.1 引入:通过复习上节课的内容,引导学生思考圆锥体积的计算方法。
3.2 讲解:讲解圆锥体积的计算方法,介绍圆锥体积的计算公式。
3.3 练习:让学生进行圆锥体积的计算练习,巩固所学内容。
4. 教学评价4.1 课堂问答:检查学生对圆锥体积计算方法的理解。
4.2 计算题:检查学生计算圆锥体积的能力。
第三章:圆锥体积的实际应用1. 教学目标1.1 能够运用圆锥体积的知识解决实际问题。
1.2 培养学生的实际应用能力和思维能力。
1.3 培养学生的团队合作能力。
2. 教学内容2.1 圆锥体积的实际应用3. 教学步骤3.1 引入:通过展示实际问题,引导学生思考如何运用圆锥体积的知识解决问题。
3.2 讲解:讲解圆锥体积在实际问题中的应用,引导学生进行团队合作解决问题。
3.3 练习:让学生运用圆锥体积的知识解决实际问题,巩固所学内容。
4. 教学评价4.1 课堂问答:检查学生对圆锥体积实际应用的理解。
(完整版)新人教版小学数学六年级下册《圆锥的体积》精品教案
新人教版小学数学六年级下册《圆锥的体积》精品教案一、教学内容:人教版教材六年级下册25——26页,例2、例3及相关的练习。
二、教学目标:1、结合具体情境和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。
2、经历“类比猜想——验证推理”探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并能解决一些简单的实际问题。
3、培养学生动手操作、观察分析的能力,在探究中体验学习的乐趣。
三、教学重点:理解、掌握圆锥体积计算的公式,能运用公式正确地计算圆锥的体积。
四、教学难点:圆锥体积公式的推导五、教学要素:1、已有的知识和经验:体积、圆锥的特点、圆柱的体积计算公式。
2、原型:铅锤,若干圆柱和圆锥、长方体和正方体。
3、探究的问题:(1)如何推导圆锥的体积?(2)圆锥的体积和圆柱的体积有什么关系?(3)圆锥的体积应该怎样计算?六、教学过程:(一)唤起与生成1.圆锥有哪些特点?让学生结合上节课的学习,说出圆锥具有四个一(即一个圆形底面、一个侧面、一个顶点、一条高)的特点。
2.切入:研究圆锥的体积计算公式,揭示课题:圆锥的体积(二)探究与解决1.提出问题,引发联想:(出示一个圆锥形的铅锤),你有办法知道这个铅锤的体积吗?学生可能会借助盛水的量杯来测量铅锤的体积等等。
(引导学生评价测量的方法,引起认知冲突)有没有求圆锥体积的计算方法?2.类比猜想,提出假设:(1)让学生观察课前准备的立体图形,要探究圆锥的体积公式,你会想到哪种立体图形?为什么?引导学生类比发现:圆柱和圆锥的底面都是圆形的,侧面都是曲面,它们都有高等等。
(教师针对学生的回答予以肯定。
)以前我们是怎样探究长方体和圆柱的体积计算公式的?学生进一步大胆猜想:圆锥的体积可能和圆柱的体积有关系;如果把圆锥转化成圆柱,就有可能求出圆锥体积的计算公式。
(教师对学生的回答给予评价。
)既然圆锥的体积可能和圆柱的体积有关系。
你觉得它们之间会存在怎样的关系?学生提出假设:圆锥的体积可能会比圆柱的体积小;圆锥的体积可能是圆柱体积的一半等等。
人教版数学六年级下册圆锥的体积教学设计(精推3篇)
人教版数学六年级下册圆锥的体积教学设计(精推3篇)〖人教版数学六年级下册圆锥的体积教学设计第【1】篇〗教学内容:第25~26页,例2、例3及练习四的第3~8题。
教学目的:1、过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。
2、已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。
3、过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。
教学重点:掌握圆锥体积的计算公式。
教学难点:正确探索出圆锥体积和圆柱体积之间的关系教具准备:每生准备一组等底等高的圆柱和圆锥模具,大米,水,沙子等教学过程:一、复习1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)2、圆柱体积的计算公式是什么?指名学生回答,并板书公式:圆柱的体积=底面积高。
二、新课1、教学圆锥体积的计算公式。
(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的.(2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?组织学生实验分组合作学习(4)先在圆锥里装满水,然后倒入圆柱。
让学生注意观察,倒几次正好把圆柱装满?(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。
)(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的)学生叙述实验过程并总结结论,得出计算公式板书:圆锥的体积=1/3圆柱的体积=1/3底面积高,字母公式:V=1/3Sh2、教学练习四第3题(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。
人教版六年级下册数学《圆锥的体积》教案
人教版六年级下册数学《圆锥的体积》教案《圆锥的体积》教案(一)教学目标1、知识目标:使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。
.2、能力目标:培养学生初步的空间观念,动手操作能力和逻辑思维能力。
3、情感目标:向学生渗透知识间可以相互转化的辩证唯物主义思想,让学生学习将新知识转化为原有知识的学习方法.教学重难点教学重点:圆锥的体积计算教学难点:圆锥的体积计算公式的推导.教学工具ppt课件教学过程一、导入新课1、出示铅锤师:同学们,我们刚认识了圆锥,在学习“圆锥的认识”时认识了这个物体—铅锤。
铅锤的外形是圆锥形的,这个铅锤所占空间的大小叫做这个铅锤的体积。
问:你们有没有办法来测量这个铅锤的体积?生:排水法师:同学们回答很积极,想到了之前学过的排水法,那咱们对这个方法进行一下评价(学生想到了,并不是所有的圆锥都可以用排水法来测量体积。
比如一些庞大的圆锥形物体)2、PPT出示圆锥形麦堆和圆锥形的高大的建筑物像这种比较大的圆锥形的物体就不适合用排水法测量体积,所以我们需要找到一个解决此类问题的普遍的方法。
出示课题圆锥的体积二、探究新知1、回忆师:我们学过那些形状的物体的体积的计算方法生:长方体正方体圆柱体(学生边说,师边PPT出示图片)师:我们在推导圆柱体体积的计算方法的时候是将圆柱体转化长方体或者正方体,转化前后体积不变,你觉得圆锥体和哪种形状的物体有关系呢?生:圆柱体师:为什么?生:圆锥体和圆柱体都有圆形的底面2、猜测师:既然大家都认为圆锥体和圆柱体由一定的关系,你能大胆猜测一下,圆锥体和圆柱体的体积之间有怎样的关系么?(学生猜测,找学生说说猜测的结果)3、验证师:有了猜测我们就通过实验来验证咱们的猜测(利用学具进行验证,一边实验,一边填写实验记录单)(找学生读一读表格中需要填写的内容,并提问,比较圆柱和圆锥的时候,是比较的什么?为学生的实验操作做一个引领。
操作过程6-8分钟)4、实验后讨论,并分组汇报实验结果(在实验中我设置了两次不同的实验,第一次是等底等高的圆柱和圆锥,第二次是等底不等高的圆柱和圆锥,以便对比得出结论,并不是所有的圆柱和圆锥都符合3倍关系,是有前提条件的)5、结论通过操作发现:圆锥的体积是同它等底等高的圆柱体积的 1/3板书:圆柱的体积 = 底面积× 高圆锥的体积 = 底面积× 高÷3三、运用知识1、PPT出示填空和判断师:我们学会了求圆锥的体积的计算方法,现在我们利用所学知识来解决生活中的实际问题。
人教版数学六年级下册圆锥的体积教学设计(推荐3篇)
人教版数学六年级下册圆锥的体积教学设计(推荐3篇) 人教版数学六年级下册圆锥的体积教学设计【第1篇】设计意图:本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,旨在让学生理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。
我的设计是“颠倒课堂”的一次尝试,旨在让学生晚上在家观看教学视频,进行深层次的掌握学习,一次学不会,还可以反复学习,直到学会为止。
这是与传统的“白天在课室听老师讲课,晚上回家做作业”的方式正好相反的课堂模式。
教学目标:1、理解掌握求圆锥体积的计算公式和推导过程,会运用公式计算圆锥的体积。
2、会应用公式计算圆锥的体积并解决一些实际问题。
3、帮助学生建立空间观念,培养学生抽象的逻辑思维能力,激发学生的想象力。
教学重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题教学难点:圆锥体积计算方法和推导过程。
教学过程:一、复习铺垫:1、揭示课题:今天我们一起来探究如何计算圆锥的体积。
2、以旧引新:我们知道,圆柱的体积=底面积×高,字母公式:V=Sh。
如何计算圆锥的体积呢?圆柱的底面是圆的,圆锥的底面也是圆的,圆锥的体积与圆柱的体积有没有关系呢?二、实验操作:1、请看接下来的2个实验:2、实验准备:2组等底等高的圆柱、圆锥容器;水与沙子。
3、播放视频:实验一:我们将圆锥容器装满水,再往圆柱容器里面倒(倒3次),3次正好装满。
实验二:我们将圆柱容器装满沙,再往圆锥容器里面倒(倒3次),3次正好装满。
4、通过实验你们发现了什么?三、公式推导:1、通过两次的实验我们可以得出结论:圆柱的体积是与它等底等高的圆锥体积的3倍;也就是说圆锥的体积是与它等底等高的圆柱体积的。
2、写成公式:圆锥的体积=与它等底等高的圆柱体积×;因为圆柱的体积=底面积×高,所以圆锥的体积=底面积×高×;写成字母公式:V= Sh。
人教版数学六年级下册圆锥的体积教案(推荐3篇)
人教版数学六年级下册圆锥的体积教案(推荐3篇)人教版数学六年级下册圆锥的体积教案【第1篇】一、回顾旧知识1、回顾长方体、正方体和圆柱的体积计算公式。
2、你能说出圆锥各部分的名称吗?设计意图:通过对旧知的自主整理,回忆起与本课学习的有关知识,为本课的学习做好铺垫。
二、创设情景,激发兴趣师:笑笑过生日请同学吃,看!(课件出示大小不一样两种冰淇淋)这些冰淇淋的形状近似于我们已学过的哪种图形(圆锥)。
如果它们的价钱相同,你认为应该买哪种最划?为什么?师:这个问题要考虑的就是圆锥的体积。
今天,我们就一起来学习“圆锥的体积”。
(板书:圆锥的体积。
)设计意图:以生活中的数学的形式进行设置情景,从生活中引入数学,引疑激趣,激发学生好奇心和求知欲。
三、大胆猜想,实验探究活动一:圆锥的体积与什么有关系?1、猜想:圆锥的体积与底面大小和高有关系。
2、简单验证:课件出示几组圆锥,一组等底不等高,另一组等高不等底。
3、集体小结:圆锥体积的大小与它的底面大小和高有关系。
4、再次提出问题:圆锥体积的大小与它的底面大小和高有什么关系?设计意图:活动一要求学生结合生活经验和已有的知识经验去判断,通过活动一,点出本节课要探究的问题,先让生发现影响圆锥的体积的因素,接着再研究具体的关系。
活动一为活动二的探究活动的开展作好铺垫。
活动二:圆锥体积的大小与它的底面大小和高有什么关系?1、大胆猜想:?计算公式:V=Sh图片师:通过上面的猜想发现圆锥的体积计算公式与圆柱一样,那实际真的一样吗?那我们就一起来研究一下。
师:要研究圆锥体积的大小与它的底面大小和高之间的关系,直接研究方便吗?要借助什么物体?预设:借助与圆锥等底等高的圆柱。
(学生得出:底面积相等,高也相等。
)?师:底面积相等,高也相等,在数学上就叫"等底等高"。
?师:选择与圆锥等底等高的圆柱使得控制变量较少,实验好操作。
其他变量不变,就只要看两个变量之间的关系,便于观察得出结论。
2024年人教版数学六年级下册圆锥的体积教学设计3篇
人教版数学六年级下册圆锥的体积教学设计3篇〖人教版数学六年级下册圆锥的体积教学设计第【1】篇〗【教学内容】人教版六年级下册数学教材第33、34页“圆锥的体积”,“做一做”及练习六第4~7题。
【设计理念】:新课程标准指出:培养学生的创新意识和实践能力要成为数学教学的一条重要目的。
在教学中激发学生学习数学的好奇心,不断追求新知,要启发学生能够自主发现问题和提出问题,在观察、猜想、操作、推理、归纳、总结的过程中创造性地解决问题,掌握知识、发展空间观念,从而培养学生的综合素质能力。
【学情分析】学生已在前面的自主探究学习活动中掌握了圆柱的体积计算,在教学中采用放手让学生观察、发现问题、提出问题、猜测、操作、小组合作探讨的形式,让学生自主探索,运用学过的圆柱知识迁移到圆锥,得出结论。
所以对于本节课的学习,一定会激发学生的求知欲望和积极性,从而达到教学目的。
【教学目标】1、知识与技能:理解圆锥的体积公式的推导,初步掌握圆锥体积的计算公式。
能运用公式求圆锥的体积,并且能运用这一知识解决生活中简单的实际问题。
2、过程与方法:通过“发现问题——提出问题——直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,培养学生分析、推理的能力和抽象概括的能力。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活。
能积极参与数学活动,培养学生合作探究的意识及能力。
【教学重点】理解圆锥体积公式,并能运用公式求圆锥的体积,发展学生的空间观念。
【教学难点】圆锥体积公式的推导及应用。
【学具准备】等底等高的圆柱和圆锥各8个,水槽8个(装有适量的水),多媒体课件。
【教学过程】一、复习1、说出圆锥有什么特征?(课件出示)2、圆柱体积的计算公式是什么?指名学生回答,并板书公式:“圆柱的体积=底面积×高”。
二、导人新课出示一个圆锥体实物,你想知道它的体积吗?板书课题::圆锥的体积三、探究新知1、师:同学们,看到这个课题,想一想,你能提出什么数学问题?学生自主提出问题,师生共同筛选出本节课将探究的几个问题:圆锥的体积是指什么?圆锥的体积与圆柱的体积有没有关系?如果有,有什么关系?圆锥的体积怎么计算?2、学生自主说出圆锥的体积的意义。
人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)
人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)人教版数学六年级下册第13课圆锥的体积教学设计【第1篇】一、教学内容《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。
二、教材分析本课属于属于空间与图形知识的教学,是小学阶段几何知识的重难点部分。
”六年级学生在经过小学六年的学习,已经具有了一定的空间想象能力和动手能力。
三、教学目标1、通过动手操作参与实验,发现等底等高的圆柱与圆锥体积之间的关系,从而得出圆锥体积的计算公式。
2、能运用公式解答有关的实际问题。
四、教学重难点教学重点:圆锥体积的计算公式教学难点:圆锥的体积公式推导。
五、课前准备课件六、教学过程一、谈话引入今天,我们来学习圆锥的体积公式是怎样推导出来的?二、自主探索,操作实验下面,我们一起来做个小实验(1)取一个圆柱体的容器和圆锥体的容器各一个。
让学生观察一下,得出:这两个容器等底等高。
(2)往圆锥体容器中装满水,倒入圆柱体的容器中,一连倒入三次,这时候圆柱体的容器中装满水。
(3)这两个容器等底等高,通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?引导学生观察:圆柱的体积的三分之一等于圆锥的体积,而圆柱的体积等于底面积乘高,圆柱体积的三分之一用底面积乘高乘三分之一表示,因为圆柱体积的三分之一等于圆锥的体积,所以推导出圆锥的体积等于底面积乘高乘三分之一。
用字母表示:v=1/3sh三、练习填空1、圆锥的体积=(),用字母表示是()。
2、圆柱体积的与和它()的圆锥的体积相等。
3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。
学生练习,教师总结。
四、巩固练习:求下面各圆锥的体积,只列算式。
(单位:厘米)观察第一个图形告诉底面半径和高,要先求出底面积,然后根据圆锥的体积公式带入数字。
第二个图形告诉底面直径和高,要先求出底面半径,再求底面积,然后根据圆锥的体积公式带入数字。
六年级下册数学《圆锥的体积》教案人教版
在学生小组讨论环节,我发现学生们对于圆锥体积在实际生活中的应用有着丰富的想象力,他们能够提出许多有趣的问题和解决方案。但在引导学生们思考问题时,我意识到有些问题可能过于开放,导致学生们在讨论过程中稍显迷茫。因此,我需要在设计讨论主题时,更加注重问题的针对性和引导性。
五、教学反思
在今天的教学中,我发现学生们对圆锥体积的概念和计算方法表现出浓厚的兴趣。通过引入日常生活中的实际问题,学生们能够更好地理解圆锥体积的应用,这让我感到很高兴。然而,我也注意到在推导圆锥体积公式的过程中,部分学生对于空间观念的建立还存在一定的困难。
在讲授圆锥体积公式时,我尝试通过实验和图示来引导学生观察、思考,帮助他们理解圆锥与圆柱体积之间的关系。这样的教学方法似乎对学生们的理解有所帮助,但仍有个别学生对此感到困惑。我想在今后的教学中,可以更多地运用动画、实物模型等辅助工具,让学生更直观地感受圆锥体积的形成过程。
-圆锥体积公式的推导:在教学过程中,教师需要通过直观演示和逐步引导,让学生理解圆锥与圆柱体积的关系,从而推导出圆锥体积的公式。可以通过动画、实物操作等多种方式帮助学生理解。
-实际问题中的数学建模:教师需要指导学生如何从复杂的生活问题中提取关键信息,建立数学模型。例如,计算沙堆的体积时,需要指导学生测量沙堆的底面半径和高,然后应用圆锥体积公式进行计算。
-圆锥体积公式的推导:如何从实验和观察中抽象出圆锥体积的计算公式,是学生理解的难点。
新人教版六年级下册数学教案:圆锥的体积
新人教版六年级下册数学教案:圆锥的体积教学目标:1. 理解圆锥的概念,能够识别圆锥的各个要素;2. 理解圆锥的体积公式,并能够应用公式计算圆锥的体积;3. 能够解决与圆锥体积相关的问题。
教学准备:1. 教师准备白板、黑板笔、教科书、圆锥模型等教具;2. 学生准备铅笔、橡皮、练习纸等学具。
教学过程:步骤一:导入新知1. 教师出示一些圆锥的图片,引导学生观察并提出对圆锥的基本认识,如“圆锥是由一个圆锥面和一个顶点组成的”。
2. 教师向学生介绍圆锥体积的概念,并告诉学生圆锥体积的计算方法。
步骤二:讲解圆锥的体积公式1. 教师用黑板绘制一个圆锥,标注出底面半径r和圆锥的高h。
2. 教师向学生介绍圆锥的体积公式:V = 1/3 * 底面积 * 高,也可以记作 V = 1/3 * π * r² * h。
3. 教师引导学生理解公式中的各个要素的意义,例如底面积指的是圆的面积,高指的是圆锥的高度。
步骤三:练习与巩固1. 教师出示一些实际问题,引导学生运用圆锥体积的公式进行计算,例如:“一个圆锥的底面半径是5 cm,高是8 cm,求它的体积是多少?”2. 学生们进行个别或小组练习,解决类似的问题。
步骤四:拓展探究1. 教师出示一些需要发散性思维的问题,例如:“如果圆锥的底面积是固定的,它的体积会受到什么因素的影响?”2. 学生们进行思考和讨论,并归纳总结出结论。
步骤五:归纳总结1. 教师向学生归纳总结圆锥体积的计算公式,并强调理解公式中各个要素的重要性。
2. 学生们记录下归纳总结的内容,做到知识点概念清晰、表达准确。
步骤六:拓展应用1. 教师出示一些更加复杂的实际问题,学生们利用圆锥体积的公式进行计算和解决问题。
2. 学生们进行个别或小组练习,提高解决实际问题的能力。
步骤七:课堂小结1. 教师进行课堂小结,复习本节课的重点内容,并解答学生的疑问。
2. 教师布置相关的作业,巩固和拓展学生的知识。
教学反思:通过本节课的教学,学生们能够对圆锥的概念和体积有一定的了解,能够应用体积公式解决一些实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新人教版小学数学六年级下册《圆锥
的体积》教案设计
设计说明
《数学课程标准》指出:“学生学习应当是一个生动活泼的、主动且富有个性的过程。
除接受学习外,动手实践、自主探索与合作交流同样是学习数学的重要方式。
”根据六年级学生基本都有较强的实验操作能力和空间想象能力这一特点,在教学圆锥体积计算公式的推导时,一改以前教师演示或在教师指令下做试验的方式,采取给学生提供材料和机会,引导学生自主探究的学习方式进行教学。
具体表现在以下几个方面:
1.注意激发学生的求知欲。
上课伊始,通过精心设计的问题引发学生深入思考,激发学生的学习兴趣。
在推导公式的过程中,通过引导学生探讨试验方法,使学生的学习兴趣保持高涨。
在解决问题时,通过“扶”而不是“包办代替”,使学生在自主分析问题、解决问题中,真实感受到成功的喜悦。
2.注意以学生为学习活动的主体。
教学中,为学生提供动脑、动手的空间,使学生充分参与获取知识的全过程,在分组观察、实验操作、测量等基础上,自主推导出圆锥的体积计算公式。
3.在学习过程中教给学生科学的探究方法。
“提出问题——直觉猜想——试验探究——合作交流——试验验证——得出结论——实践运用”是探究学习的一个基本方法,教学中,为学生搭建探究学习的平台,促使学生在这样的过程中掌握知识,获得广泛的数学活动经验和思想方法,发展学生的反思意识和自我评价意识。
同时,课堂中,启发学生提问、猜想、动手实践,培养学生解决问题的能力。
课前准备
教师准备PPT课件铅锤
学生准备等底、等高的圆柱形容器和圆锥形容器沙子或水
教学过程
⊙问题导入
1.提问激趣。
师:怎样计算这个铅锤的体积?(出示铅锤)
预设
生:可以用“排水法”。
把铅锤放入盛水的量杯中(水未溢出),根据水面的先后变化求出铅锤的体积。
师:怎样求出沙堆的体积?(课件出示例3沙堆图)
预设
生1:用“排水法”好像不行。
生2:把圆锥形沙堆改变形状,堆成正方体,测出它的棱长后计算它的体积。
生3:把圆锥形沙堆改变形状,堆成长方体,测出它的长、宽、高后计算它的体积。
生4:把圆锥形沙堆改变形状,堆成圆柱,测出它的底面周长和高,求出它的底面积后计算它的体积。
2.导入新知。
师:大家都想到了用“转化”的方法求这堆沙子的体积,但如果我们在计算沙堆体积之前,必须把沙子重新堆放成以前学过的几何形体,这样做又麻烦又不容易成功,看来我们还需要寻求一种更普遍、更科学、更便利的求圆锥的体积的方法。
(板书课题:圆锥的体积)
设计意图:通过提出问题,引发学生的认知冲突,激发学生的求知欲,培养学生自主探究的意识,感受学习数学的必要性。
⊙探究新知
1.猜一猜:圆锥的体积可能与哪种立体图形的体积有关?
(学生大胆猜想,可能与圆柱的体积有关)
2.探究圆锥的体积要借助一个什么样的圆柱来研究这一问题呢?
学生经过讨论、交流并说出观点:应该选择一个与这个圆锥等底、等高的圆柱更为合适。
3.课件出示等底、等高的圆柱和圆锥。
引导学生想一想它们的体积之间会有什么样的关系。
4.方法指导。
议一议:怎样借助等底、等高的圆柱和圆锥来探究圆柱和圆锥的体积之间的关系呢?
(各组同学准备好等底、等高的圆柱、圆锥形容器)
预设
生1:把圆柱形容器装满水,再倒入圆锥形容器中,看可以正好装满几个圆锥形容器。
生2:把圆锥形容器装满沙子,再倒入圆柱形容器中,看正好几次可以倒满。
生3:选用一组等底、等高的圆柱模型和圆锥模型,先用“排水法”分别求出圆柱和圆锥的体积,再算出圆柱体积是圆锥体积的几倍,并发现两者之间的关系。
5.操作交流。
(1)分组试验。
请同学们分组试验。
(学生试验,教师巡视指导)
(2)交流、汇报。
师:谁能汇报一下自己小组的试验结果?
预设
生:在圆柱和圆锥的底面积相等、高相等的情况下,将圆锥形容器装满沙子向圆柱形容器里倒,倒了3次,正好倒满。
师:通过试验,你发现等底、等高的圆柱和圆锥的体积之间有什么关系?
预设
生1:圆锥的体积是与它等底、等高的圆柱的体积的。
生2:圆柱的体积是与它等底、等高的圆锥的体积的3倍。
6.推导公式。
师:结合自己的试验结果,说一说计算圆锥的体积时需要知道什么条件。
预设
生1:需要知道与圆锥等底、等高的圆柱的体积是多少。
生2:知道圆锥的底面积和高也可以求出圆锥的体积。
师:你认为圆锥的体积计算公式是什么?。