平面向量测试题,高考经典试题,附详细答案

合集下载

平面向量题目及详细答案.doc

平面向量题目及详细答案.doc

A + 2 = 2mA2一cos2 a = m +22,设± = k代入方程组可得<mkm 4-2 = 2mk2m2 - cos2a = m + 2sina 平面向量高考经典试一、选择题1.(全国1文理)已知向量方=(-5,6),方= (6,5),则Z与方A.垂直B.不垂直也不平行C.平行且同向D.平行且反向解.己知向量a = (-5,6), & = (6,5), = —30 + 30 = 0,则U与片垂直,2、(山东文5)已知向量G = (1, 〃),b = (—1, 〃),若2a -b与b垂直,则a =( )A. 1B. y/2C. 2D. 4【分析】:2a-b = (3,n),由2a-b^jb垂直可得:(3,〃)・(—1,〃) = -3 + 〃2 =o=> 〃 = ±右,a = 2 o3、(广东文4理10)若向量履满足修|=|方|二1 3,5的夹角为60。

,则溢+混=解析:aa + a-b= l + lxlx—=—,2 24、(天津理10)设两个向量。

=(A + 2, /i? 一cos2Q)和方=(m, y + sin a),其中人,a为一一人实数.若。

=2上则-的取值范围是mA. [-6,1]B. [4,8]C. (-oo,l]D. [-1,6][分析】由« = (/! +2, A2 - cos2a) ,h = (tn,— + sin a = 2片,可得2去〃7化简得2k ] - cos2a = + 2sin cr,再化简得{2-kJ 2-k2 + 4 ] 一cos2a + ------ 2 sin。

= 0 再令一— = t代入上式得、k - 2) k — 2 k — 2(sin2。

一顶 + (16产 +18/ + 2) = 0 可得一(16产 +18, + 2)c [0,4]解不等式得Z G[-1,--]8(B)\bc^ = ba-bc则入= 2 (A)-■) 1 (B)- ■) (号2 (D)-- ■)解.在左ABC 中,己知D 是AB 边上一点,若AD=2DB , cB=-G5 + XCB,则3CD = CA + AD = CA+-^B = CA + -(CB-CA)=-CA^-CB , 4X=-,选 A 。

平面向量专题练习(带答案详解)

平面向量专题练习(带答案详解)

平面向量专题练习(带答案详解) 平面向量专题练(附答案详解)一、单选题1.已知向量 $a=(-1,2)$,$b=(1,1)$,则 $a\cdot b$ 等于()A。

3 B。

2 C。

1 D。

02.已知向量 $a=(1,-2)$,$b=(2,x)$,若 $a//b$,则 $x$ 的值是()A。

-4 B。

-1 C。

1 D。

43.已知向量 $a=(1,1,0)$,$b=(-1,0,2)$,且 $ka+b$ 与 $2a-b$ 互相垂直,则 $k$ 的值是()A。

1 B。

5/3 C。

3/5 D。

7/54.等腰直角三角形 $ABC$ 中,$\angle ACB=\frac{\pi}{2}$,$AC=BC=2$,点 $P$ 是斜边 $AB$ 上一点,且 $BP=2PA$,那么 $CP\cdot CA+CP\cdot CB$ 等于()A。

-4 B。

-2 C。

2 D。

45.设 $a,b$ 是非零向量,则 $a=2b$ 是成立的()A。

充分必要条件 B。

必要不充分条件 C。

充分不必要条件 D。

既不充分也不必要条件6.在 $\triangle ABC$ 中 $A=\frac{\pi}{3}$,$b+c=4$,$E,F$ 为边 $BC$ 的三等分点,则 $AE\cdot AF$ 的最小值为()A。

$\frac{8}{3}$ B。

$\frac{26}{9}$ C。

$\frac{2}{3}$ D。

$3$7.若 $a=2$,$b=2$,且 $a-b\perp a$,则 $a$ 与 $b$ 的夹角是()A。

$\frac{\pi}{6}$ B。

$\frac{\pi}{4}$ C。

$\frac{\pi}{3}$ D。

$\frac{\pi}{2}$8.已知非零向量 $a,b$ 满足 $|a|=6|b|$,$a,b$ 的夹角的余弦值为 $\frac{1}{3}$,且 $a\perp (a-kb)$,则实数 $k$ 的值为()A。

18 B。

高中数学平面向量经典练习题(附答案)

高中数学平面向量经典练习题(附答案)

D、m= -2+2 3,n= 2 +2 3
12、已知向量a与b, 3a + b = 6,a − 3b = 8,若则a ⊥ b,则 + 的值是( )
A、2
B、9
C、 6
D、 10
13、在△APD 中,AC=CD,AB=2BC,点 E 在 PA 上,H 在 PD 上,F 是 EH 的中
点,G 是 PC 与 EH 的交点,则 =(
3 23
2
解得:a=2b
已知 C 是 AD 的中点,设 = n ,
所以
=
2
+2
设 S = t KS,
-----------------------------------------⑤
得:
= 2tb
+(1-t) b
-----------------------⑦
由⑤、⑦式中对应系数相等,2tb = 2 (1 − t) b = 2
( + )·( + )=0 ------------------------⑨
由⑦,⑧,⑨,得:
cos( + , + )= ( + )·(3 + )
+ ∙3 +
=0 所以:向量 + , + 的夹角为 90°
故答案为:C
第 18 题 解: 已知 2 − 3 = 7 等号两边同时平方,得: 4 2- 12 ∙ +9 2 = 7 将 = 2, · =3 代入上式, 4·22-12·3+9 2 = 7 化简得: = 3

=

=(3,2)
8、已知向量 , 满足 = 3 , ⊥(2 + 3 ),则向量 与 的夹角

平面向量经典练习题(含答案)

平面向量经典练习题(含答案)

高中平面向量经典练习题【编著】黄勇权一、填空题1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。

2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。

3、已知点A(1,2),B(2,1),若→AP=(3,4),则→BP= 。

4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。

5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。

6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。

7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。

8、在△ABC中,D为AB边上一点,→AD =12→DB,→CD =23→CA + m→CB,则m= 。

9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。

10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD上,且→AP= 2→PD,则点C的坐标是()。

二、选择题1、设向量→OA=(6,2),→OB=(-2,4),向量→OC垂直于向量→OB,向量→BC平行于→OA,若→OD +→OA=→OC,则→OD坐标=()。

A、(11,6)B、(22,12)C、(28,14)D、(14,7)2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标()A、(4 , 2)B、(3,1)C、(2,1)D、(1,0)3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。

A、90°B、60°C、30°D、0°4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()A、 15B、 14C、 13D、 115、在菱形ABCD中,∠DAB=60°,|2·→0C +→CD|=4,则,|→BC+→CD|=______.A、12B、8C、4D、26题、7题、8、若向量a=(3,4),向量b=(2,1),则a在b方向上的投影为________.A、2B、4C、8D、169题、10、已知正方形ABCD的边长为2,E为CD的中点,则→AE·→BD=.A、-1B、1C、-2D、2三、解答题1、在△ABC中,M是BC的中点,AM=3,BC=10,求→AB·→AC的值。

平面向量练习题附答案

平面向量练习题附答案

平面向量练习题一.填空题;1. BA CD DB AC +++等于________.2.若向量a =3,2,b =0,-1,则向量2b -a 的坐标是________.3.平面上有三个点A 1,3,B 2,2,C 7,x ,若∠ABC =90°,则x 的值为________.4.向量a 、b 满足|a |=1,|b |=2,a +b ⊥2a -b ,则向量a 与b 的夹角为________.5.已知向量a =1,2,b =3,1,那么向量2a -21b 的坐标是_________. 6.已知A -1,2,B 2,4,C 4,-3,Dx ,1,若AB 与CD 共线,则|BD |的值等于________.7.将点A 2,4按向量a =-5,-2平移后,所得到的对应点A ′的坐标是______. 8. 已知a=1,-2,b=1,x,若a ⊥b,则x 等于______9. 已知向量a,b 的夹角为 120,且|a|=2,|b|=5,则2a-b ·a=______10. 设a=2,-3,b=x,2x,且3a ·b=4,则x 等于_____11. 已知BC CD y x BC AB 且),3,2(),,(),1,6(--===∥DA ,则x+2y 的值为_____ 12. 已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC +的最小值是 .14.将圆222=+y x 按向量v =2,1平移后,与直线0=++λy x 相切,则λ的值为 .二.解答题;1.设平面三点A 1,0,B 0,1,C 2,5.1试求向量2AB +AC 的模; 2试求向量AB 与AC 的夹角; 3试求与BC 垂直的单位向量的坐标.2.已知向量a =θθcos ,sin R ∈θ,b =3,31当θ为何值时,向量a 、b 不能作为平面向量的一组基底2求|a -b |的取值范围3.已知向量a 、b 是两个非零向量,当a +t b t ∈R 的模取最小值时,1求t 的值2已知a 、b 共线同向时,求证b 与a +t b 垂直4. 设向量)2,1(),1,3(-==OB OA ,向量OC 垂直于向量OB ,向量BC 平行于OA ,试求OD OC OA OD ,时=+的坐标.5.将函数y=-x 2进行平移,使得到的图形与函数y=x 2-x -2的图象的两个交点关于原点对称.如图求平移向量a 及平移后的函数解析式.6.已知平面向量).23,21(),1,3(=-=b a 若存在不同时为零的实数k 和t,使 .,,)3(2y x b t a k y b t a x ⊥+-=-+=且1试求函数关系式k =ft2求使ft >0的t 的取值范围.参考答案1.02.-3,-4°21,321.6.73.7.-3,2.8.-210.31-12. 90°13.2-14.51--或1∵ AB =0-1,1-0=-1,1,AC =2-1,5-0=1,5.∴ 2AB +AC =2-1,1+1,5=-1,7.∴ |2AB +AC |=227)1(+-=50.2∵ |AB |=221)1(+-=2.|AC |=2251+=26,AB ·AC =-1×1+1×5=4. ∴ cos θ =||||AC AB ACAB ⋅=2624⋅=13132. 3设所求向量为m =x ,y ,则x 2+y 2=1. ①又 BC =2-0,5-1=2,4,由BC ⊥m ,得2 x +4 y =0. ②由①、②,得⎪⎪⎩⎪⎪⎨⎧-==.55552y x 或⎪⎪⎩⎪⎪⎨⎧==.-55552y x ∴ 552,-55或-552,55即为所求.13.解1要使向量a 、b 不能作为平面向量的一组基底,则向量a 、b 共线∴ 33tan 0cos 3sin 3=⇒=-θθθ 故)(6Z k k ∈+=ππθ,即当)(6Z k k ∈+=ππθ时,向量a 、b 不能作为平面向量的一组基底 2)cos 3sin 3(213)3(cos )3(sin ||22θθθθ+-=-+-=-b a 而32cos 3sin 332≤+≤-θθ∴ 132||132+≤-≤-b a14.解1由2222||2||)(a bt a t b tb a +⋅+=+ 当的夹角)与是b a b a b b a t αα(cos ||||||222-=⋅-=时a+tbt ∈R 的模取最小值2当a 、b 共线同向时,则0=α,此时||||b a t -= ∴0||||||||||||)(2=-=-⋅=+⋅=+⋅b a a b b a a b tb a b tb a b∴b ⊥a +t b18.解:设020),,(=-=⋅∴⊥=x y OB OC OBOC y x OC ① 又0)1()2(3)2,1(,//=+---+=x y y x BC OA BC 即:73=-x y ②联立①、②得⎩⎨⎧==7,14y x ………10分 )6,11(),7,14(=-==∴OA OC OD OC 于是.19.解法一:设平移公式为⎩⎨⎧-'=-'=k y y h x x 代入2x y -=,得到k h hx x y h x k y +-+-=-'-=-'2222.)(即,把它与22--=x x y 联立, 得⎪⎩⎪⎨⎧--=+-+-=22222x x y k h hx x y设图形的交点为x 1,y 1,x 2,y 2,由已知它们关于原点对称,即有:⎩⎨⎧-=-=2121y y x x 由方程组消去y 得:02)21(222=++-+-k h x h x . 由.2102212121-==++=+h x x h x x 得且又将11,y x ,),(22y x 分别代入①②两式并相加,得:.22221222121-+--++-=+k h x hx x x y y241)())((0211212-+-+-+-=∴k x x x x x x . 解得)49,21(.49-==a k . 平移公式为:⎪⎪⎩⎪⎪⎨⎧-'=+'=4921y y x x 代入2x y -=得:22+--=x x y .解法二:由题意和平移后的图形与22--=x x y 交点关于原点对称,可知该图形上所有点都可以找到关于原点的对称点在另一图形上,因此只要找到特征点即可.22--=x x y 的顶点为)49,21(-,它关于原点的对称点为49,21-,即是新图形的顶点.由于新图形由2x y -=平移得到,所以平移向量为49049,21021=-=-=--=k h 以下同解法一.20.解:1.0)(])3[(.0,2=+-⋅-+=⋅∴⊥b t a k b t a y x y x 即 ).3(41,0)3(4,1,4,02222-==-+-∴===⋅t t k t t k b a b a 即 2由ft >0,得.303,0)3()3(,0)3(412><<-->+>-t t t t t t t 或则即。

(完整版)高中数学平面向量习题及答案

(完整版)高中数学平面向量习题及答案

第二章 平面向量一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则( ). A .AB 与AC 共线 B .DE 与CB 共线 C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是( ). A .向量AB 与BA 是两平行向量 B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OC =α OA +β OB ,其中 α,β∈R ,且α+β=1,则点C 的轨迹方程为( ).A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=0 4.已知a 、b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是( ). A .6πB .3π C .23π D .56π 5.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =( ). A .λ(AB +AD ),λ∈(0,1) B .λ(AB +BC ),λ∈(0,22) C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22) 6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =( ). A .EF +EDB .EF -DEC .EF +ADD .EF +AF7.若平面向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则向量a 的模为( ).(第1题)A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB =OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF(第10题)二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x =.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC+BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+m b)⊥(a-b),则实数m等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O 是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c =b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.参考答案一、选择题 1.B解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y ),OA =(3,1),OB =(-1,3),α OA =(3α,α),β OB =(-β,3β),又αOA +β OB =(3α-β,α+3β),∴ (x ,y )=(3α-β,α+3β),∴⎩⎨⎧βαβα33+=-=y x ,又α+β=1,由此得到答案为D .4.B解析:∵(a -2b )⊥a ,(b -2a )⊥b ,∴(a -2b )·a =a 2-2a ·b =0,(b -2a )·b =b 2-2a ·b =0,∴ a 2=b 2,即|a |=|b |.∴|a |2=2|a ||b |cos θ=2|a |2cos θ.解得cos θ=21. ∴ a 与b 的夹角是3π. 5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由 λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE , ∴ DF =DE +EF =EF +AF .(第6题)(第1题)7.C解析:由(a +2b )·(a -3b )=-72,得a 2-a ·b -6b 2=-72. 而|b |=4,a ·b =|a ||b |cos 60°=2|a |, ∴ |a |2-2|a |-96=-72,解得|a |=6. 8.D解析:由 OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA , 即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB , ∴ O 是△ABC 的三条高的交点. 9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |. ∴ 四边形ABCD 为梯形. 10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量. 二、填空题 11.-32. 解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又 A ,B ,C 三点共线,∴ 5(4-k )=-7(-k -4),∴ k =-32. 12.-1.解析:∵ M (-1,3),N (1,3), ∴ MN =(2,0),又a =MN ,∴ ⎩⎨⎧0=4-3-2=3+2x x x 解得⎩⎨⎧4=1=-1=-x x x 或∴ x =-1. 13.-25.解析:思路1:∵ AB =3,BC =4,CA =5,∴ △ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0, ∴ AB ·BC +BC ·CA +CA ·AB =BC ·CA +CA ·AB =CA ·(BC +AB ) =-(CA )2 =-2CA =-25.思路2:∵ AB =3,BC =4,CA =5,∴∠ABC =90°, ∴ cos ∠CAB =CA AB=53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0, BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16, CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9. ∴ AB ·BC +BC ·CA +CA ·AB =0―16―9=-25. 14.323. 解析:a +m b =(3+2m ,4-m ),a -b =(1,5). ∵ (a +m b )⊥(a -b ),∴ (a +m b )·(a -b )=(3+2m )×1+(4-m )×5=0 m =323. 15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF 交AC 于D(第13题)点E ,则OF =OA +OC ,又 OA +OC =-OB ,∴ OF =2OE =-OB .O 是△ABC 的重心. 16.答案:平行四边形.解析:∵ a +c =b +d ,∴ a -b =d -c ,∴BA =CD . ∴ 四边形ABCD 为平行四边形. 三、解答题 17.λ<-1.解析:设点P 的坐标为(x ,y ),则AP =(x ,y )-(2,3)=(x -2,y -3). AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7) =(3+5λ,1+7λ).∵ AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ). ∴ ⎩⎨⎧+=-+=-λλ713532y x 即⎩⎨⎧+=+=λλ7455y x要使点P 在第三象限内,只需⎩⎨⎧<+<+074055λλ 解得 λ<-1.18.DF =(47,2). 解析:∵ A (7,8),B (3,5),C (4,3), AB =(-4,-3),AC =(-3,-5).又 D 是BC 的中点, ∴ AD =21(AB +AC )=21(-4-3,-3-5) =21(-7,-8)=(-27,-4). 又 M ,N 分别是AB ,AC 的中点, ∴ F 是AD 的中点, ∴ DF =-FD =-21AD =-21(-27,-4)=(47,2). (第18题)19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a . ∴ AF ·ED =(a +21b )·(b -21a )=21b 2-21a 2+43a ·b . 又AB ⊥AD ,且AB =AD ,∴ a 2=b 2,a ·b =0. ∴ AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴ |2a -b |2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ. 又4sin θ-43cos θ=8(sin θcos3π-cos θsin 3π)=8sin (θ-3π),最大值为8, ∴ |2a -b |2的最大值为16,∴|2a -b |的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b |表示2a ,b 终点间的距离.|2a |=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ |的最大值为直径的长为4.(第19题)。

高中数学平面向量测试题及答案

高中数学平面向量测试题及答案

高中数学平面向量测试题及答案一、选择题1、下列哪一组向量是平行向量?A. (3,4)与(4,3)B. (3,4)与( - 4,- 3)C. (3,4)与( - 4,9)D. (3,4)与(7,8)2、下列哪一组向量是共线向量?A. (1,2)与(2,3)B. (1,1)与(2,2)C. (1,2)与( - 2,4)D. (1, - 1)与( - 2,2)3、下列哪一组向量是垂直向量?A. (1,2)与(2,1)B. (3,4)与(4,3)C. ( - 3,4)与(4, - 3)D.平面向量是数学中的一个重要概念,是解决许多实际问题的重要工具。

以下是一些经典的平面向量测试题,可以帮助大家了解和评估自己的平面向量水平。

给出平面向量的基本概念和性质,包括向量的表示、向量的模、向量的加法、减法和数乘等。

给出一个向量的坐标表示,包括在直角坐标系中的表示和在极坐标系中的表示。

给定两个向量 a和 b,求它们的数量积、夹角和模长。

给定一个向量 a,求它的单位向量、零向量和负向量。

给定一个平面向量场,求其中的平行向量、共线向量和线性无关向量。

给定一个三维平面向量场,求其中的法向量和切线向量。

给定一个向量的模长和夹角,求这个向量的坐标表示。

给定两个三维向量 a和 b,求它们在空间中的位置关系,如平行、共线和垂直等。

给定一个平面向量 a和一个非零向量 b,求 a和 b的垂直平分面和a和 b的中垂线。

给定一个向量的正交分解和极坐标表示,求这个向量的直角坐标表示和极坐标表示。

以上是平面向量经典测试题的一些例子,这些题目可以帮助大家巩固平面向量的基本概念和性质,提高解决实际问题的能力。

解释:平面向量是由两个数值和一个字母组成的,其中字母表示向量的方向,而数值表示向量的模长。

选项A符合这个要求,而其他选项都不符合。

解释:平面向量的基本运算包括加法、减法和数乘,而D选项中的“数乘和加法”实际上是包含了这三种运算,因此不是平面向量的运算。

(完整版)平面向量测试题(含答案)一

(完整版)平面向量测试题(含答案)一

必修 4 第二章平面向量教学质量检测一.选择题( 5 分× 12=60 分) :1.以下说法错误的是()A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量2.下列四式不能化简为AD 的是()A .(AB+CD)+BC;B .(AD+MB)+(BC+CM);C.MB+AD-BM; D .OC-OA+CD;3.已知a =( 3, 4),b =( 5, 12),a与b则夹角的余弦为()A.63B.65C.13D.13 6554.已知 a、 b 均为单位向量 ,它们的夹角为60°,那么 |a+ 3b| =()A .7B.10C.13D. 45.已知 ABCDEF 是正六边形,且AB = a , AE = b ,则BC=()( A )12( a b) (B)12(b a ) (C) a +12b(D)12(a b)6.设a,b为不共线向量,AB=a+2b,BC=-4a-b,CD=-5 a- 3 b , 则下列关系式中正确的是()(A)AD=BC(B)AD=2BC(C)AD=-BC(D)AD=-2BC7.设e1与e2是不共线的非零向量,且k e1+e2与e1+ k e2共线,则 k 的值是()( A) 1(B)-1(C)1(D)任意不为零的实数8.在四边形ABCD中,AB=DC,且AC·BD= 0,则四边形ABCD是()( A)矩形(B)菱形(C)直角梯形(D)等腰梯形9.已知 M (- 2, 7)、 N( 10,- 2),点 P 是线段 MN 上的点,且PN =-2PM,则P点的坐标为()( A )(-14,16)(B)(22,-11)(C)(6,1)(D)(2,4)10.已知a=( 1,2),b=(- 2,3),且 k a + b与a- k b垂直,则k=()(A)12(B) 21(C) 2 3(D) 32r r(2 x 3, x) 互相平行,其中r r)11、若平面向量a(1, x) 和 b x R .则a b (A.2或0;B.25;C.2或2 5;D. 2或10.12、下面给出的关系式中正确的个数是()① 0 a0 ② a b b a ③a2 a 2④(a b )c a (b c)⑤a b a b(A) 0(B) 1(C) 2(D) 3二. 填空题 (5 分× 5=25 分 ):13.若AB(3,4), A点的坐标为(-2,-1),则B点的坐标为.14.已知a(3, 4), b (2,3) ,则 2 | a | 3a b.15、已知向量 a 3, b (1,2) ,且a b ,则a的坐标是_________________。

平面向量经典练习题(含答案)

平面向量经典练习题(含答案)

高中平面向量经典练习题【编著】黄勇权一、填空题1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。

2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。

3、已知点A(1,2),B(2,1),若→AP=(3,4),则→BP= 。

4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。

5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。

6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。

7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。

8、在△ABC中,D为AB边上一点,→AD =12→DB,→CD =23→CA + m→CB,则m= 。

9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。

10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD上,且→AP= 2→PD,则点C的坐标是()。

二、选择题1、设向量→OA=(6,2),→OB=(-2,4),向量→OC垂直于向量→OB,向量→BC平行于→OA,若→OD +→OA=→OC,则→OD坐标=()。

A、(11,6)B、(22,12)C、(28,14)D、(14,7)2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标()A、(4 , 2)B、(3,1)C、(2,1)D、(1,0)3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。

A、90°B、60°C、30°D、0°4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()A、 15B、 14C、 13D、 115、在菱形ABCD中,∠DAB=60°,|2·→0C +→CD|=4,则,|→BC+→CD|=______.A、12B、8C、4D、26题、7题、8、若向量a=(3,4),向量b=(2,1),则a在b方向上的投影为________.A、2B、4C、8D、169题、10、已知正方形ABCD的边长为2,E为CD的中点,则→AE·→BD=.A、-1B、1C、-2D、2三、解答题1、在△ABC中,M是BC的中点,AM=3,BC=10,求→AB·→AC的值。

平面向量测试题-高考经典试题-附详细答案

平面向量测试题-高考经典试题-附详细答案

一、选择题1.已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向 2、已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( ) A .1BC .2D .43、若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ⋅+⋅=______;4、 设两个向量22(2,cos )a λλα=+-和(,sin ),2mb m α=+其中,,m λα为实数.若2,a b =则mλ的取值范围是(A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-5、在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅ (C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=6、在∆ABC 中,已知D 是AB 边上一点,若=2,=λ+31,则λ= (A)32(B)31 (C) -31(D) -327、设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若FC FB FA ++=0,则|FA|+|FB|+|FC|= (A)9 (B) 6(C) 4(D) 38、在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( ) A .23B .13C .13-D .23-9把函数e xy =的图像按向量(2)=,0a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x+B .e 2x-C .2ex -D .2ex +10、已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD =C.3AO OD =D.2AO OD =11、在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,2AB i j =+,3AC i k j =+,则k 的可能值有A 、1个B 、2个C 、3个D 、4个 12、对于向量,a 、b 、c 和实数错误!未找到引用源。

平面向量高考试题精选含详细答案)

平面向量高考试题精选含详细答案)

平面向量高测试题精选〔一〕一.选择题〔共14小题〕1. 〔2021?河北〕设D 为△ ABC 所在平面内一点,前二3五,那么〔〕A疝-仁小产:豆2. 〔2021?福建〕正_L 正,|标肝, |正|二t ,假设P 点是△ ABC 所在平面内一点,A. 13B. 15C. 19D. 213. 〔2021?四川〕设四边形 ABCCfe 平行四边形,|画二6, |面=4,假设点M N 满足就二3元,而二2说,那么标•疝二〔〕A. 20B. 15C. 9D. 64. 〔2021?安徽〕△ ABC 是边长为2的等边三角形,向量 E 满足靛=2;,AC =2a +b,那么以下结论正确的选项是〔 〕 A. | b|=1 B. alb C. a?b=1 D. 〔4a+b 〕,前5. 〔2021?陕西〕对任意向量!、b,以下关系式中不恒成立的是〔 〕A. |l^b |<|a || b|B, H-b |<|| ;| 一 |E||C. 〔 a+b 〕 2=| a+b | 2D. 〔a+b 〕 ? 〔 ; Y 〕<2 -百6. 〔2021?重庆〕假设非零向量 a, 七满足|1二组1:|可,且〔1-%〕 ± 〔 3a+2b 〕,那么3 !与E 的夹角为〔〕A. —B. —C. —D.冗 4 247. 〔2021?重庆〕非零向量 * b 满足|b|=4| J ,且a ,〔2a+b 〕那么占与b A J B J C _I D __L 3 2 368. 〔2021?湖南〕在平面直角坐标系中, O 为原点,A 〔- 1, 0〕, B 〔0,立〕,C 〔3, 0〕,动点D 满足|而|=1 ,那么| OA +OB +OD l 的取值范围是〔〕且」 .「|AB| |AC| 那么再•衣的最大值等于〔A. [4, 6]B. [V19-1, V19+1]C. [2 立,2书]D.[由-1,,+1]9. 〔2021?桃城区校级模拟〕设向量%,工满足| a |= |b |=1,二后二,V ■a- c, b-c>=60° ,那么l A的最大值等于〔〕A. 2B. Vs C .& D . 110. 〔2021?天津〕菱形ABCD勺边长为2, /BAD=120 ,点E、F分别在边BGDC上,施"前,谄.,假设凝?谆1赤?正谓,那么入+尸〔〕A. B.二 C.二D 二2 3 6 1211. 〔2021?安徽〕设,,E为非零向量,|而2|十,两组向量*,离,寓,巧和宝, 斤三,斤均由2个;和2个E排列而成,假设耳?宣+中卫+E?三+五?五所有可能取值中的最小值为4| a|2,那么!与芯的夹角为〔〕A 二B 二C 二D. 0 3 3612. 〔2021?四川〕平面向量最〔1, 2〕, b= 〔4, 2〕, c=m+b 〔mGR〕,且彳与1的夹角等于W与Z的夹角,那么m=〔〕A. - 2B. - 1C. 1D. 213. 〔2021?新课标I 〕设D, E, F分别为△ ABC的三边BC CA AB的中点,那么直+而=〔〕A 二B. 一DC. : D. 一:2 214. 〔2021?福建〕设M为平行四边形ABCD寸角线的交点,O为平行四边形ABCD 所在平面内任意一点,那么赢+5S+无+而5等于〔〕A. i"B. 2 i“C. 3 i"D. 4 i"二.选择题〔共8小题〕15. 〔2021?浙江〕设司、.为单位向量,非零向量岸x q+y., x、yGR假设司、同的夹角为30.,那么集的最大值等于_________________ .lb |16. 〔2021?北京〕点A 〔1, -1〕, B 〔3, 0〕, C 〔2, 1〕.假设平面区域D由所有满足点二次/+Nm〔1<入02, 0<医01〕的点P组成,那么D的面积为.17. 〔2021?湖南〕如图,在平行四边形ABC前,APIBD垂足为P,且AP=3,那么AP .正=.18. 〔2021?北京〕己知正方形ABCD勺边长为1,点E是AB边上的动点.那么而•百的值为.19. 〔2021?天津〕直角梯形ABC前,AD// BC / ADC=90 , AD=2 BC=1, P 是腰DC上的动点,那么|位+3瓦|的最小值为 .20. 〔2021?浙江〕平面向量五,百〔五产万,五卉万〕满足IT 1=1,且五与下的夹角为120.,那么|三|的取值范围是 .21. 〔2021?天津〕如图,在^ ABC中,ADLAB,前4菽那么AC ,箴=.22. 〔2021?天津〕假设等边△ ABC的边长为2加,平面内一点M满足而^^总正,那么6 3而,而=.三.选择题〔共2小题〕23. (2021?上海)定义向量0M= (a, b)的“相伴函数〞为f (x) =asinx+bcosx , 函数f (x) =asinx+bcosx的“相伴向量〞为赢=(a, b)(其中O为坐标原点).记平面内所有向量的“相伴函数〞构成的集合为S.(1)设g (x) =3sin (x+21) +4sinx ,求证:g (x) GS; 2(2)h (x) =cos (x+a ) +2cosx,且h (x) GS,求其“相伴向量〞的模;(3)M(a, b) (b乎0)为圆C: (x - 2) 2+y2=1上一点,向量超的“相伴函数〞f (x)在x=x.处取得最大值.当点M 在圆C上运动时,求tan2x.的取值范围._一、_________ 2 n...........................24. (2007?四川)设F I、F2分别是椭圆工+,=1的左、右焦点.4(I)假设P是第一象限内该椭圆上的一点,且西・后己二-总,求点P的作标;(II)设过定点M (0, 2)的直线l与椭圆交于不同的两点A、B,且/AO的锐角 (其中O为坐标原点),求直线l的斜率k的取值范围.平面向量高测试题精选(一)参考答案与试题解析一.选择题(共14小题)1 . (2021?河北)设D为△ ABC所在平面内一点,BC-3CD,那么( )A归工:岳B折,13 0 *s, 0八一 4 一 1 - r —1 4―1 —C—,'4'. D.解:由得到如图由仙二处+8口=标亨岸冠4 国-靛)=-掷号正;应选:A.2. (2021?福建)正1京,I店|[, |正|二t,假设P点是△ ABC所在平面内一点,,那么无•五的最大值等于(A. 13B. 15C. 19D. 21解:由题意建立如下图的坐标系, 可得 A (0, 0), B (工0) , C (0, t),・•・P (1, 4),PB= (-- 1, - 4) , pc= ( - 1 , t -4),PB*PC=- (1-1) - 4 (t -4) =17-(1+4t),t由根本不等式可得l+4t>2^T^=4,.•.17-(1+4t) < 17- 4=13,当且仅当上4t即t6时取等号, .二有•五的最大值为13, 应选:A.3. 〔2021?四川〕设四边形ABCDfe平行四边形,|画二6, |初=4,假设点M N满足而二3元,而二2前,那么氤,而i=〔A. 20B. 15C. 9D. 6解:「四边形ABCM平行四边形,点M N满足面i=3元,丽二2束,.二根据图形可得:= + ?--= . : . II,4 4洲二MI -蝴,V或•而二标?〔记-讪〕二俞-嬴•福.-1|2=・"2 . : •",・小।-r -.-,-1= :."21二卜,2. ;3 4 2 '| 'B|=6 , | -1||=4 ,..」「'/二,:::「12=12-3=9应选:C4. 〔2021?安徽〕△ ABC是边长为2的等边三角形,向量京E满足屈=2£AC=2g+b,那么以下结论正确的选项是〔〕A. | b|=1B. a±bC. a?b=1D. 〔4a+b〕,前解:由于三角形ABC的等边三角形,;,E满足靛=2;,应=2:+%,又正=7B+前, 所以‘:..;,・‘,所以-=2, - ;.=1X2Xcos120 =- 1,4a・b=4X 1X2Xcos120° =- 4,寸=4,所以狐・石+]士=0,即〔4a+b〕*B=0,即〔G+E〕•前=0,所以〔4;+芯〕1BC;应选D.5. 〔2021?陕西〕对任意向量!、b,以下关系式中不恒成立的是〔〕A. |a-b|<|;|| b|B. | a-b l<ll ^l -I bllC 〔髓〕2=| a+b| 2 D. 〔a+b〕? 〔a-b〕=?- b2解:选项A正确,丁 | a p b|=| 君|| b||cos < " Z>|,又|cosv;, b>| <1,,|.讶&G| %| 恒成立;选项B错误,由三角形的三边关系和向量的几何意义可得|g-E l >ll』-|芯|| ;选项C正确,由向量数量积的运算可得〔a+b〕2=|a+b|2;选项D正确,由向量数量积的运算可得〔彳+E〕?〔1-b〕二2-%2.应选:B6. 〔2021?重庆〕假设非零向量a, 七满足|』=竺|可,且〔:-%〕± 〔3a+2b〕,那么3!与E的夹角为〔〕A.三B.C. 12£D.冗4 2 4解:二 ( a - b) ± ( 3 a+2b),(5-b) ? ( 3 a+2b) =0,即 3.;— 2:,2- ? =0,即就=3;-2寸金2, 3即V a, E>=三, 4应选:A7. 〔2021?重庆〕非零向量b满足lbl=4| J,且a,〔2a+b〕那么祖与b的夹角为〔〕A二B二C三D三3 2 3 6解:由非零向量之,b满足lbl=4| a l ,且a,〔2a+b〕,设两个非零向量a, b的夹角为°,所以a? 〔 2 a+ b〕=0,即2$十| |b|C os9 =.,所以cos 9 =-.,9 Q0 ,九],所以eW;应选C.8. 〔2021?湖南〕在平面直角坐标系中, O为原点,A〔- 1, 0〕, B 〔0,右〕,C 〔3, 0〕,动点D满足l而l=1 ,那么l m+55+55l的取值范围是〔〕A. [4 , 6]B. [ V19- 1, V19+1] C . [2 遮,2<7] D.[邛-1,道+1]】解:•••动点D满足|而|=1 , C 〔3, 0〕,「•可设 D (3+cos 9 , sin 9 ) (6 q0 , 2 兀)).又 A ( - 1, 0), B (0,立),, + 1+ 1= 1 - - - - ■一』I 「+"+0」= 一::」二二二•,一F"船…,•:飞不、」=倔公斤京西河丁,〔其中sin 6二焉,8s小嚼- 1<sin 〔 9 +〔[〕〕 &1,•,•〔"-1〕 2= * - W748+2VV sin 〔 9 + 小〕< 8+2沂=〔^+1〕2,「.I OA+OB+OD|的取值范围是W7 - I,近+11.应选:D.9. 〔2021?桃城区校级模拟〕设向量I,工满足|l|=|b |=1,.泰-L V b-c>=60°,那么1看的最大值等于〔〕A. 2B.g C . & D . 1解:「I aI二I b |二1,乱〞二一, -W二.W, %的夹角为120° ,设赢二W, OB=b,0C=c那么不二^一与;CB=1一工贝4/AOB=120 ; / ACB=60丁./AOB+ ACB=180・•.A,O, B, C四点共圆.一2• • AB /. AB^/3由三角形的正弦定理得外接圆的直径当OC 为直径时,模最大,最大为 2 应选A10 . 〔2021?天津〕菱形 ABCD 勺边长为2, /BAD=120 ,点E 、F 分别在边BG DC 上,BE = k BC, DF =〔1DC,假设标?m =1, CE ?CF =- 贝U 入+医=〔〕3A. 'B. :C. ' D — 2 3 6 12解:由题意可得假设.•,?•, = 〔 ",+神〕?〔川+】,〕=",, '1+三二 + ■ - -,-i +^-D?' =2X2Xcos120° + 屈,■屈+ 入 75?菽+入标?医 7S = 一 2+4医+4入 + 入d X2X2Xcos120° =4入+4医一2入医—2=1, 「•4人+4d 一2入医=3①CE ?CF =- EC ?〔-而〕=EC*FC = 〔1 -入〕前?〔1 -医〕DC = 〔1 -入〕而?〔1 -医〕总=〔1 一入〕〔1 —医〕X2X2Xcos120° = 〔1一入一医+入医〕〔一2〕= - 2, 3即一人一〔1 +入[L = ~ —②.3 由①②求得入+医=总 故答案为:!11 .〔2021?安徽〕设己,b 为非零向量,| b|=2| a| ,两组向量工,器,工,V?和行, 々,¥3' V/均由2个日和2个b 排列而成,假设町?为+工2?方+工3?%+%?%所有可 能取值中的最小值为4|;|2,那么:与E 的夹角为〔解:由题意,设!与E 的夹角为民, 分类讨论可得]? y I + X?? y ?+工3?y § + Xq ?% =为?为+ a ?2+b ?b+b? b=10| 君| ,不满足2KA — B.3 C. D. 0②T^^T+T^r+F?丁+『??=:?;+:?%+%?:+Z?Z=5| a|1 2+4| a| 2cos 民,不满足;1 J12 J23 734 J4③7j?元+7;?卫+三?同+3?耳=4!?岸8| a| 2cos a =4| a| :满足题意,此时COS a」2・•. W与E的夹角为—. 3应选:B.12. (2021?四川)平面向量短(1, 2), b= (4, 2), c=m+b (m GR),且W与;的夹角等于W与E的夹角,那么m=( )A. - 2B. - 1C. 1D. 2解:二向量a= (1, 2), b= (4, 2),=m + = (m+4, 2m+2 ,又丁[与;的夹角等于1与Z的夹角,k I • | a | I c |* |b |•••飞一’ — f )lai |b|二’解得m=2应选:D13. (2021?新课标I )设D, E, F分别为△ ABC的三边BC CA AB的中点,那么冠+而= ( )A. . ।B. DC. :,D.2 2【解答】解::D, E, F分别为AABC的三边BC, CA, AB的中点, .•.而+而=(丽+丽+ ( FE+EC) =FB+EC=1 (屈+近)=15,应选:A14. 〔2021?福建〕设M为平行四边形ABCD寸角线的交点,O为平行四边形ABCD所在平面内任意一点,那么加+而+枳+而等于〔〕A. I"B. 2 i"C. 3 I" D〕. 4 I"解:丁0为任意一点,不妨把A点看成O点,那么加+无+权+玩=1+/+而+元,・「M是平行四边形ABCD勺对角线的交点,,0 + AB+AC+AD=2AC=4OM应选:D.二.选择题〔共8小题〕15. 〔2021?浙江〕设二司为单位向量,非零向量E=x6+y G,x、yGR.假设]、, 的夹角为30.,那么集的最大值等于 2 .Ib| -------解:为单位向量,T和U的夹角等于30° ,,U・£=1X1X cos30.二亚•「非零向量Z=x4+y',•./而后二J/+ 2工y T] W +产J X2+我盯旷,. 44=,.—=I」= | I 2 = I1 2 ,旧寸J+V^v+v? *+行中+,,l打巧工0〕V〔7垮〕£故当2=-立时,&取得最大值为2,x 2 |b故答案为2 .16. 〔2021?北京〕点A 〔1, -1〕, B 〔3, 0〕, C 〔2, 1〕.假设平面区域D由所有满足获:人五+P•豆〔1<入02, 0<医01〕的点P组成,那么D的面积为 3 .解:设P的坐标为〔x, y〕,那么靛二(2, 1), AC= (1, 2), AP= (x—1, y+1), < 7?二工m+U 正,\ - 1=2 + |A 宿万一/ 日_解N得,y+l= X+2Uy+11<?|工-当-1<2,- K入02, 0<医01, ..•点P坐标满足不等式组,04 - £工+"|^1<1作出不等式组对应的平面区域,得到如图的平行四边形CDE极其内部其中C (4, 2), D (6, 3), E (5, 1), F (3, 0)二|CF|二;一丁一卜:二 _ 二,,点E (5, 1)到直线CF: 2x—y—6=0的距离为d1上士工^1二■还V5 5「•平行四边形CDEF勺面积为S=|CF|X d=V^x2四=3,即动点P构成的平面区域D 5的面积为3故答案为:317. (2021?湖南)如图,在平行四边形ABC前,APIBD垂足为P,且AP=3,那么族•近二18 .【解答】解:设AC与BD交于点O,那么AC=2AO/APIBD AP=3,在Rt^APO中,AOcos/ OAP=AP=3・•・I 面cos /OAP=2|瓦| XcosZOAP=2|AP|=6 ,由向量的数量积的定义可知, 6•正二|6||正|cos/PAO=3 6=18故答案为:1818. (2021?北京)己知正方形ABCD勺边长为1,点E是AB边上的动点.那么DE-CB 的值为1 .【解答】解:由于血,后=而瓜=应卜iXlcosC正♦瓦>=5丁=1.故答案为:119. (2021?天津)直角梯形 ABC 前,AD// BG / ADC=90 , AD=2 BC=1, P是腰DC 上的动点,那么|位+3瓦|的最小值为 5 .解:如图,以直线 DA DC 分另U 为x, y 轴建立平面直角坐标系,那么 A (2, 0), B (1, a), C (0, a), D (0, 0)设 P (0, b) (0<b<a)那么m =(2, - b), PB = (1, a- b),PA+3PB = (5, 3a-4b)•- IPA+3PB l =/25+ (3a-4b) 2>5-故答案为5.20. (2021?浙江)平面向量 五,J (五通,五产下)满足|T 1=1,且五与 方-五的夹角为120° ,那么|无|的取值范围是 (0,当鸟_.3解:令用 屈二无、AC =T,如以下图所示:那么由萩书-五,又二云与E-W 的夹角为120° ,・ ./ABC=60又由AC=|下一-:| 向 G (0, ^p ] 故|五|的取值范围是(0, 二]故答案:(0,芋]21. (2021?天津)如图,在4ABC 中,ADLAB,前一画,|75 I =1,那么说・75=_立【解答】解:AC-A S=|AC IHADicosZDAC,■-n ,由正弦定理sinC sin60.得:..一•一■. .. ■:: II-,.-- . .A,,cos/DAC=sinZ BAQAC *AD= lAC |-|AD|cosZDAC= | AC|-cosZDAC= | AClsinZBAC ,在△ ABC中,由正弦定理得里L=变形得|AC|sin / BAC=|BC|sinB, sinB sin/BACAC*AD=| AC !* | AD|cosZEAC= | AC |-cosZDAC= | AC|sinZBAC ,二|BC|sinB= |BC|・-需-=V5,故答案为V3 •22. 〔2021?天津〕假设等边△ ABC的边长为273,平面内一点M满足而卫司+2而,那么6 3瓦,诬=-2 .解:以C点为原点,以AC所在直线为x轴建立直角坐标系,可得C 10,01, R 〔2"^,.〕,B〔V3,3〕,• • CB =三〕,CA二〔2^3 〕.〕,••乐翔翁二〔¥,y,“:■ , 1,"」1,MA*MB=〔亚,--〕?〔-近,-〕=-2.2 2 2 2故答案为:-2.三.选择题〔共2小题〕23. (2021?上海)定义向量 0M = (a, b)的“相伴函数〞为 f (x) =asinx+bcosx , 函数f (x) =asinx+bcosx 的“相伴向量〞为 赢=(a, b)(其中O 为坐标原点).记 平面内所有向量的“相伴函数〞构成的集合为 S.(1)设 g (x) =3sin (x+21) +4sinx ,求证:g (x) GS; 2(2)h (x) =cos (x+a ) +2cosx,且h (x) GS,求其“相伴向量〞的模; (3)M(a, b) (b 乎0)为圆C: (x - 2) 2+y 2=1上一点,向量超的“相伴函数〞 f (x)在x=x .处取得最大值.当点 M 在圆C 上运动时,求tan2x .的取值范围.【解答】 解:(1) g (x) =3sin (x+—) +4sinx=4sinx+3cosx ,其‘相伴向量'0M = (4, 3), g (x) GS.(2) h (x) =cos (x+a) +2cosx =(cosxcos a - sinxsin a ) +2cosx =-sin a sinx+ (cos a +2) cosx 函数 h (x)的‘相伴向量’ 丽=(-sin a , cos a +2).那么 | 皿=q (一式11al —= ( cos a+2)―2=5+4曲口 .(3) OM 的'相伴函数'f ( x) =asinx+bcosx= ^^^sin (x+([)),其中cos 小=> ^ sin 小=Va 2 + b Z —,kGZ 时,f (x)取到最大值,故 x0=2k % +—-小,kGZ. 2 2-'.tanx 0=tan (2k % +- -([)) =cot ([)—, 2 b2tan x 口tan2x 0二 1-tan x o 1-(① b 也为直线OM 勺斜率,由几何意义知:-q -VI, 0) u (0, a a 3a 2 + b 2当 x+([)=2k % +___= r a b令m=,贝U tan2x0=—mq —亚,0) U ( 0,立}.③川」 3 3rr当-亚0m<0 时,函数tan2xo=—J单调递减,,0< tan2xo<Vs;3IT当0Vm<立时,函数tan2x 0=—片单调递减,/.- 加&tan2x0<0.rr综上所述,tan2x°q -遮,0) U (0,a]. .............. 、 c 24. (2007?四川)设Fi、F2分别是椭圆工+/=1的左、右焦点.4(I)假设P是第一象限内该椭圆上的一点,且可■玩二-求点P的作标;(II)设过定点M (0, 2)的直线l与椭圆交于不同的两点A、B,且/AO的锐角(其中O为坐标原点),求直线l的斜率k的取值范围.】解:(I)易知a=2, b=1,钎我.•• Fi (一〃,0),F2(如,0) •设P 那么PF;・PF;二(-百一工,-y)(伤一小x +y =4 x2=i m联立,2 ,解得" 2 3n a,P?儿卜=4(n)显然x=0不满足题设条件.可设l V..V 2联立,瓦+y n = (kx+2) gn (1+£y=kx+2. 一12 * 16k1 • #1 K n- °,及i + 乂力一r.1^1+4/ 1上l+4k Z^△= (16k) 2-4? (1+4k2) ?12>016k2- (x, y) (x>0, y>0).2一/二K./- 3二- "1,又亍+yJl,£1,喙)•的方程为y=kx+2,设 A (x1, y., B (x2, Ik") z2+16kx+12=03 (1+4k2) >0, 4k2- 3>0,得①),又yM二(kxi+2) (kx2+2) =k2XiX2+2k(X1+X2) +4 ..xiX2+yiy2= (1 +k2) xiX2+2k (X1+X2) +4=(1+k2) ,—(--^5) +4 1+41 1+4 k 2_12 (1+ k2) 2k*16k .------------ 2- ------------ r+4l+4k2l+4k2l+4k2综①②可知••.k的取值范围是(-2, -亨)U (亨2)•。

(完整版)《平面向量》测试题及答案

(完整版)《平面向量》测试题及答案

(完整版)《平面向量》测试题及答案《平面向量》测试题一、选择题1.若三点P (1,1),A (2,-4),B (x,-9)共线,则()A.x=-1B.x=3C.x=29D.x=512.与向量a=(-5,4)平行的向量是()A.(-5k,4k )B.(-k 5,-k 4)C.(-10,2)D.(5k,4k) 3.若点P 分所成的比为43,则A 分所成的比是()A.73B. 37C.- 37D.-73 4.已知向量a 、b ,a ·b=-40,|a|=10,|b|=8,则向量a 与b 的夹角为() A.60° B.-60° C.120° D.-120° 5.若|a-b|=32041-,|a|=4,|b|=5,则向量a ·b=() A.103B.-103C.102D.106.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( )A.? ????79,73B.? ????-73,-79C.? ????73,79D.? ????-79,-737.已知向量a=(3,4),b=(2,-1),如果向量(a+x )·b 与b 垂直,则x 的值为() A.323B.233C.2D.-52 8.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是() A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,-21) 9.设四边形ABCD 中,有DC =21,且||=|BC |,则这个四边形是() A.平行四边形 B.矩形 C.等腰梯形 D.菱形10.将y=x+2的图像C 按a=(6,-2)平移后得C ′的解析式为()A.y=x+10B.y=x-6C.y=x+6D.y=x-1011.将函数y=x 2+4x+5的图像按向量a 经过一次平移后,得到y=x 2的图像,则a 等于() A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1)12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是() A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 二、填空题13.设向量a=(2,-1),向量b 与a 共线且b 与a 同向,b 的模为25,则b= 。

(完整版)平面向量综合检测、解析及答案

(完整版)平面向量综合检测、解析及答案

平面向量综合检测、分析及答案一、选择题:本大题共 12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1. 平面向量a与b的夹角为 60°,a=(2,0),|b| =1,则 | a+2b| = ()A. 3B.2 3C.4D.12分析: | a+2b| =( a+2b) 2=4+4+4=2 3.答案: B2. 已知 |a| =1,|b| =6,a·(b -a) =2,则向量 a 与 b 的夹角是 ()ππA. 6B. 4ππC. 3D. 2分析:由 a·(b-a)=2得 a·b=2+1=3=6×cos<a,b>,∴cos<a,1b>=2,又<a,b>∈[0,π],π∴<a,b>=3.答案: C3.一质点遇到平面上的三个力 F1、F2、F3( 单位:牛顿 ) 的作用而处于均衡状态.已知 F1、F2 成 60°角,且 F1、F2 的大小分别为 2 和 4,则 F3 的大小为()A.2 7B.2 5C.2D.6分析:由题意得 F1+F2+F3=0.答案: A4.(2009 ·福建福州模拟 ) 把一颗骰子扔掷两次,并记第一次出现的点数为 a,第二次出现的点数为b,向量 m= (a ,b) ,n=(1,2) ,则向量 m与向量 n 不共线的概率为 ()15A. 12B. 12711C.12D. 12分析: m 与 n 共线的情况共有三种: m =(1,2) ,m =(2,4) ,m =(3,6) ,3 11故 m 与 n 不共线的概率 P =1-36=12.答案: D5. 已知向量 a =(λ2+6和 j =(0,1) ,若 a ·j =- 3,3 ,λ) ,i =(1,0)且向量 a 与 i 的夹角为 θ,则 cos θ 的值为 ()3 3A .- 2 B. 2 1 1 C .-2 D. 2答案: Buuur uuur uuur uuur)6.四边形 ABCD 中,AB · BC =0,且 AB = DC,则四边形 ABCD 是( A .平行四边形 B .矩形 C .菱形 D .正方形 uuuruuuruuur分析:由AB =可知为平行四边形,由 AB ·BC =0 知∠=DCABCDABC90°,故 ABCD 为矩形.答案: B7.设 a 与 b 是两个不共线向量,且向量a +λb 与- (b -2a) 共线,则λ= ( )1A .0B .- 21C .- 2D.2分析:由题意得 a +λb =- k ( b -2a ) ∴2k =1,,=- k1∴λ=- 2. 答案: B8. 设向量 a ,b 知足: |a| =3,|b| =4,a ·b =0,以 a ,b ,a -b 的模为第2页共 8页分析:三角形的内切圆半径为 1,将圆平移,最多有 4 个公共点. 答案: B9.设 a ,b ,c 是非零向量,以下命题中正确的选项是 ( )A .( a ·b ) ·c =a ·(b ·c )B .| a -b | 2=| a | 2-2| a || b | +| b | 2C .若 | a | =| b | =| a +b | ,则 a 与 b 的夹角为 60°D .若 | a | =| b | =| a -b | ,则 a 与 b 的夹角为 60°分析:A 、B 明显不正确. 由平行四边形法例可知, 若| a | =| b | =| a +b | ,可知 <a ,b >=120°,故 C 不正确.答案为 D.答案: D10. 设 a 、b 、c 是单位向量,且 a ·b =0,则 (a -c) ·(b -c) 的最小值为()A .- 2B. 2-2C .- 1D .1- 2分析:( a -c ) ·(b -c ) =a ·b -b ·c +c 2-a ·c =1-( a +b ) · c ,又 a ·b=0,| a | =| b | =1,∴|a +b | = 2.设 a +b 与 c 的夹角为 θ,则上式= 1-2cos θ当 cos θ=1 时( a -c ) ·(b -c ) 获得最小值 1- 2. 答案: Duuur uuuruuur11.点 O 在△ABC 内部且知足 OA +2 OB +2 OC=0,则 △ABC 的面积与△OBC 的面积之比为 ( )5A.4 B .3 C .4 D .5uuuruuuruuur1 uuuruuur1 uuur分析:由 OA +2 OB +2OC =0,∴2( OB + OC ) =4AO ,∴△ABC△OBC底边 BC 的高之比为 5 1,∴ S △ABC S △OBC =5 1.答案: D12.在直角 △ABC 中,CD 是斜边 AB 上的高,则以下等式不建立的是( )uuur2uuuruuurA .| AC | =AC· AB uuur2uuuruuurB .|BC | =BA · BCuuur 2uuuruuurC .| AB | =AC · CDuuurD .| CD |uuur uuuruuur uuur2 (ACgAB )(BA gBC ) =uuur 2ABuuur uuur uuur分析:∵AB ·AC =| ACuuur uuur uuur uuur(AC gAB )(BA gBC )同理:uuur 2AB| 2 uuuruuur 2,故 B 建立.故 A 建立,又 BA ·BC ] =| BC |uuur uuurACBA=uuur 2ABuuuruuur uuuruuur又| AC |·|BC | =| AB || CD |uuuruuuruuuruuur uuuruuur 2ACACuuur 2∴|CD |2 =uuur2,故 D 也正确.,又AC ·CD =| CD≠|| ,故AB AB选 C.答案: Cm13.设两个向量 a =( λ+2,λ2-cos2α) 和 b =(m ,2+sin α) ,此中λλ, m ,α 为实数,若 a =2b ,则 m 的取值范围是 ()A .[ -6,1]B .[4,8]C .[ -1,1]D .[ -1,6]+ =①,分析:由 a =2b 知2 2m,2-2= + ②)cos m 2sin , =2m -2,∴2-m = cos 2 +2sin又 cos 2α+2sin α=- (sin α-1) 2+2∴- 2≤cos 2 α+2sin α≤2,即- 2≤ λ2-m ≤2,由 λ=2m -22 1 -2≤(2 m -2) -m ≤2,得 4≤m ≤2λ 2m -22∴==2- ∈[ -6,1] . mm m答案: A二、填空题:本大题共 4 小题,每题 5 分,共 20 分.把答案填在题中横线上.uuur uuur uuur uuuruuuur14.在? ABCD 中, AB =a ,AD =b ,AN=3 NC ,M 为 BC 的中点,则 MNuuur uuur分析:由 AN =3 NC 得 4 AN =3 AC =3( a +b ) .uuuur1AM =a +2b ,uuuur 3111∴ MN =4( a +b ) -( a +2b ) =- 4a +4b .1 1答案:- 4a +4b711715.向量 c 与 a =( 2,2) ,b =( 2,- 2) 的夹角相等,且 |c| =1,则 c =________.x2+ 2=分析:设 c =( x ,y ) ,由题意得:y 1,得 =bgcagcx= 4 , x=-455 ,y= 3 y=- 355434 3答案: ( 5,- 5) 或( -5,5)16.已知点 G 为△ABC 的重心,过 G 作直线与 AB 、AC 两边分别交于 M 、Nuuuur uuur uuur uuur 1 1两点,且 AM =xAB , AN = y AC ,则 + =________.xyuuur1 uuuruuur1 1 uuuur1 uuur1分析: AG =3( AB + AC ) =3( x AM +y AC ) ,∵M 、N 、G 三点共线, ∴3x11 1+3y =1,即 x +y =3.答案: 317. 如图,在平面斜坐标系 xOy 中, ∠xOy =60°,平面上任一点 P 在斜uuur OPuuur轴方向同样的单位向量 ) ,则点 P 的斜坐标为 (x ,y) .若点 P 知足 |OP| =1,则点 P 在斜坐标系 xOy 中的轨迹方程是 ________.uuuruuur22122又| OP | =1,∴ x +y +2xy ×2=1,即 x +y +xy =1. 答案: x2+y2+xy =1三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.uuur uuur uuur uuur uuur18.(10 分) 在△ ABC 中, AB · AC = | AB - AC | =2,求|AB|2 +| AC|2. 解:由题意可知uuur uuuruuurABgAC 2uuur 2 uuur2=8.2 uuur uuur uuur 得| AB | +| AC| AB2 ABgAC AC 4uuuruuuruuuruuur uuur19.(12 分) 如图 |OA| =|OB|=1,| OC|=3,∠AOB =60°,OB ⊥ OC.uuuruuuruuur设 OC =x OA +y OB,求 x 、y 的值.uuur uuur uuur解: ∵ OC =x OA +y OB uuur 2uuur uuur uuur uuur①∴ OB · OC =x OA · OB+y OBuuur 2uuur uuur uuuruuurOC =x OA· OC +y OB · OC ②将①②联立得12x +y =0332×( - 2 ) x =3 得 x =-2,y =1π20.(12 分 ) 已知 a ,b 知足 |a| =3,|b| = 1,a 与 b 的夹角为 3 ,求 2a+3b 与 a -b 的夹角的余弦值.1 3解: ∵a ·b =| a || b |cos< a ,b >=3×1× 2=2又(2 a +3b ) 2=4a 2+9b 2+12a ·b =36+9+18=63, ∴|2 a +3b | =3 7.同理可得 | a -b | = 7 ∵ (2 a +3b ) ·(a -b ) =2a 2+a ·b -3b 23 33 =18+2-3= 2+ · -333b )211(2 a( a b ) =∴cos 〈 (2 a +3b ) ,( a -b ) 〉=a -b | = .|2 a +3b ||37·7 1421.(12 分) (2009 ·上海 ) 已知 △ABC 的角 A 、B 、C 所对的边分别为 a ,b ,c ,设 m =(a ,b) ,n =(sinB ,sinA) ,p =(b -2,a -2)(1) 若 m ∥n ,求证 △ABC 为等腰三角形;π(2) 若 m ⊥p ,边长 c =2,∠C = 3 ,求 △ABC 的面积. 解: (1) 证明:∵ m ∥n ,∴ a sin A =b sin B .由正弦定理得 a 2=b 2,a =b ,∴△ ABC 为等腰三角形. (2) ∵m ⊥p ,∴ m ·p =0. 即 a ( b -2) +b ( a -2) =0 ∴a +b =ab由余弦定理得 4=a 2+b 2-ab =( a +b ) 2-3ab 即( ab )2-3ab -4=0,∴ ab =4 或 ab =- 1( 舍)11 π∴S △ABC =2ab sin C =2×4×sin 3 = 3.uuur uuuruuur22.(12 分) 已知 OA =(3 ,- 4) , OB = (6 ,- 3) , OC=(5 -m ,- 3-m).(1) 若点 A 、B 、C 不可以组成三角形,务实数 m 知足的条件;(2) 若△ABC 为直角三角形,务实数 m 的值.解: (1) uuur uuur∵ OA =(3 ,- 4) , OB =(6 ,- 3)uuurOC =(5 -m ,-3-m ) .若 A 、B 、C 三点不可以组成三角形, 则这三点共线,uuur∵ AB =(3,1)uuur1AC =(2 -m,1-m ) ,∴ 3(1 - m ) =2-m ,得 m =2(2) ∵△ ABC 为直角三角形.uuuruuur7若∠ A =90°,则 AB · AC =0,∴ 3(2 - m ) +(1 -m ) =0,得 m =4.uuuruuuruuur若∠ B =90°,则 AB · BC =0,又 BC =( -1-m ,- m )3∴ 3( -1-m ) +( -m ) =0 得 m =- 4.uuur uuur若∠ C =90°,则 BC ⊥ AC .1± 5∴(2 -m ) ·( - 1-m ) +(1 -m ) ·( -m ) =0,得 m =2731±5综上得 m=4或 m=-4或 m=223.(12 分) 已知 a=(1,2) ,b=( -2,1) ,k、t 为正实数, x=a+(t2 +1 11)b ,y=-k a+t b(1)若 x⊥y,求 k 的最大值;(2)能否存在 k、t ,使 x∥y?若存在,求出 k 的取值范围,若不存在,说明原因.解: x=a+( t 2+1) b=(1,2)+( t 2+1)(-2,1)=(-2t2-1,t2+3)1111y=-k a+t b=-k(1,2)+t(-2,1)1 2 2 1=( -k-t,-k+t )2 1 22 2 1(1) 若x⊥y,则x·y= 0,即:( -2t-1) ·( -k-t ) +( t+3)( -k+t )=0t111整理得:k=t2+1=1≤2(当且仅当t=t即t=1时“=”建立)故k maxt+t1=2.(2)假定存在正实数 k、t ,使 x∥y,则221212( -2t-1)(-k+t ) -( t+3)( -k-t ) =0t 2+113整理得k+t=0,即t+t +k=0∵k、t 为正实数,故知足上式的k、t 不存在.即不存在这样的正实数k、t 使 x∥y.。

(完整版)平面向量测试题及详解

(完整版)平面向量测试题及详解

平面向量第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。

)1.(文)(2011·北京西城区期末)已知点A (-1,1),点B (2,y ),向量a =(1,2),若AB →∥a ,则实数y 的值为( )A .5B .6C .7D .8[答案] C[解析] AB →=(3,y -1),∵AB →∥a ,∴31=y -12,∴y =7.(理)(2011·福州期末)已知向量a =(1,1),b =(2,x ),若a +b 与4b -2a 平行,则实数x 的值为( )A .-2B .0C .1D .2[答案] D[解析] a +b =(3,x +1),4b -2a =(6,4x -2), ∵a +b 与4b -2a 平行,∴36=x +14x -2,∴x =2,故选D.2.(2011·蚌埠二中质检)已知点A (-1,0),B (1,3),向量a =(2k -1,2),若AB →⊥a ,则实数k 的值为( )A .-2B .-1C .1D .2[答案] B[解析] AB →=(2,3),∵AB →⊥a ,∴2(2k -1)+3×2=0,∴k =-1,∴选B.3.(2011·北京丰台期末)如果向量a =(k,1)与b =(6,k +1)共线且方向相反,那么k 的值为( )A .-3B .2C .-17D.17[答案] A[解析] 由条件知,存在实数λ<0,使a =λb ,∴(k,1)=(6λ,(k +1)λ),∴⎩⎪⎨⎪⎧k =6λ(k +1)λ=1,∴k =-3,故选A.4.(文)(2011·北京朝阳区期末)在△ABC 中,M 是BC 的中点,AM =1,点P 在AM 上且满足AP →=2PM →,则P A →·(PB →+PC →)等于( )A .-49B .-43C.43D.49[答案] A[解析] 由条件知,P A →·(PB →+PC →)=P A →·(2PM →) =P A →·AP →=-|P A →|2=-⎝⎛⎭⎫23|MA →|2=-49.(理)(2011·黄冈期末)在平行四边形ABCD 中,E 、F 分别是BC 、CD 的中点,DE 交AF 于H ,记AB →、BC →分别为a 、b ,则AH →=( )A.25a -45bB.25a +45b C .-25a +45bD .-25a -45b[答案] B[解析] AF →=b +12a ,DE →=a -12b ,设DH →=λDE →,则DH →=λa -12λb ,∴AH →=AD →+DH →=λa+⎝⎛⎭⎫1-12λb , ∵AH →与AF →共线且a 、b 不共线,∴λ12=1-12λ1,∴λ=25,∴AH →=25a +45b .5.(2011·山东潍坊一中期末)已知向量a =(1,1),b =(2,n ),若|a +b |=a ·b ,则n =( ) A .-3 B .-1 C .1 D .3[答案] D[解析] ∵a +b =(3,1+n ),∴|a +b |=9+(n +1)2=n 2+2n +10, 又a ·b =2+n ,∵|a +b |=a ·b ,∴n 2+2n +10=n +2,解之得n =3,故选D.6.(2011·烟台调研)已知P 是边长为2的正△ABC 边BC 上的动点,则AP →·(AB →+AC →)( ) A .最大值为8 B .是定值6 C .最小值为2 D .与P 的位置有关[答案] B[解析] 设BC 边中点为D ,则 AP →·(AB →+AC →)=AP →·(2AD →)=2|AP →|·|AD →|·cos ∠P AD =2|AD →|2=6.7.(2011·河北冀州期末)设a ,b 都是非零向量,那么命题“a 与b 共线”是命题“|a +b |=|a |+|b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件[答案] B[解析] |a +b |=|a |+|b |⇔a 与b 方向相同,或a 、b 至少有一个为0;而a 与b 共线包括a 与b 方向相反的情形,∵a 、b 都是非零向量,故选B.8.(2011·甘肃天水一中期末)已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角为( ) A .30° B .60° C .120° D .150°[答案] C[解析] 由条件知|a |=5,|b |=25,a +b =(-1,-2),∴|a +b |=5,∵(a +b )·c =52,∴5×5·cos θ=52,其中θ为a +b 与c 的夹角,∴θ=60°.∵a +b =-a ,∴a +b 与a 方向相反,∴a 与c 的夹角为120°.9.(文)(2011·福建厦门期末)在△ABC 中,∠C =90°,且AC =BC =3,点M 满足BM →=2MA →,则CM →·CB →等于( )A .2B .3C .4D .6[答案] B[解析] 解法1:如图以C 为原点,CA 、CB 为x 轴、y 轴建立平面直角坐标系,则A (3,0),B (0,3),设M (x 0,y 0),∵BM →=2MA →,∴⎩⎪⎨⎪⎧ x 0=2(3-x 0)y 0-3=2(-y 0),∴⎩⎪⎨⎪⎧x 0=2y 0=1,∴CM →·CB →=(2,1)·(0,3)=3,故选B. 解法2:∵BM →=2MA →,∴BM →=23BA →,∴CB →·CM →=CB →·(CB →+BM →)=|CB →|2+CB →·⎝⎛⎭⎫23BA → =9+23×3×32×⎝⎛⎭⎫-22=3.(理)(2011·安徽百校联考)设O 为坐标原点,点A (1,1),若点B (x ,y )满足⎩⎪⎨⎪⎧x 2+y 2-2x -2y +1≥0,1≤x ≤2,1≤y ≤2,则OA →·OB →取得最大值时,点B 的个数是( )A .1B .2C .3D .无数[答案] A[解析] x 2+y 2-2x -2y +1≥0,即(x -1)2+(y -1)2≥1,画出不等式组表示的平面区域如图,OA →·OB →=x +y ,设x +y =t ,则当直线y =-x 平移到经过点C 时,t 取最大值,故这样的点B 有1个,即C 点.10.(2011·宁夏银川一中检测)a ,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b (λ1,λ2∈R ),则A 、B 、C 三点共线的充要条件为( )A .λ1=λ2=-1B .λ1=λ2=1C .λ1·λ2+1=0D .λ1λ2-1=0[答案] D[分析] 由于向量AC →,AB →有公共起点,因此三点A 、B 、C 共线只要AC →,AB →共线即可,根据向量共线的条件可知存在实数λ使得AC →=λAB →,然后根据平面向量基本定理得到两个方程,消去λ即得结论.[解析] ∵A 、B 、C 共线,∴AC →,AB →共线,根据向量共线的条件知存在实数λ使得AC →=λAB →,即a +λ2b =λ(λ1a +b ),由于a ,b 不共线,根据平面向量基本定理得⎩⎪⎨⎪⎧1=λλ1λ2=λ,消去λ得λ1λ2=1.11.(文)(2011·北京学普教育中心)设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量运算a ⊕b =(a 1,a 2)⊕(b 1,b 2)=(a 1b 1,a 2b 2).已知m =⎝⎛⎭⎫2,12,n =⎝⎛⎭⎫π3,0,点P (x ,y )在y =sin x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊕OP →+n (其中O 为坐标原点),则y =f (x )的最大值及最小正周期分别为( )A .2;πB .2;4π C.12;4π D.12;π [答案] C[解析] 设点Q (x ′,y ′),则OQ →=(x ′,y ′),由新定义的运算法则可得: (x ′,y ′)=⎝⎛⎭⎫2,12⊕(x ,y )+⎝⎛⎭⎫π3,0 =⎝⎛⎭⎫2x +π3,12y , 得⎩⎨⎧x ′=2x +π3y ′=12y,∴⎩⎪⎨⎪⎧x =12x ′-π6y =2y ′,代入y =sin x ,得y ′=12sin ⎝⎛⎭⎫12x ′-π6,则 f (x )=12sin ⎝⎛⎭⎫12x -π6,故选C. (理)(2011·华安、连城、永安、漳平一中、龙海二中、泉港一中六校联考)如图,在矩形OACB 中,E 和F 分别是边AC 和BC 的点,满足AC =3AE ,BC =3BF ,若OC →=λOE →+μOF →其中λ,μ∈R ,则λ+μ是( )A.83B.32C.53 D .1[答案] B[解析] OF →=OB →+BF →=OB →+13OA →,OE →=OA →+AE →=OA →+13OB →,相加得OE →+OF →=43(OA →+OB →)=43OC →,∴OC →=34OE →+34OF →,∴λ+μ=34+34=32.12.(2011·辽宁沈阳二中阶段检测)已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=-12,则△ABC 的形状为( )A .等腰非等边三角形B .等边三角形C .三边均不相等的三角形D .直角三角形 [答案] A[分析] 根据平面向量的概念与运算知,AB →|AB →|表示AB →方向上的单位向量,因此向量AB →|AB →|+AC→|AC →|平行于角A 的内角平分线.由⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0可知,角A 的内角平分线垂直于对边,再根据数量积的定义及AB →|AB →|·AC →|AC →|=-12可求角A .[解析] 根据⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0知,角A 的内角平分线与BC 边垂直,说明三角形是等腰三角形,根据数量积的定义及AB →|AB →|·AC →|AC →|=-12可知A =120°.故三角形是等腰非等边的三角形.[点评] 解答本题的关键是注意到向量AB →|AB →|,AC →|AC →|分别是向量AB →,AC →方向上的单位向量,两个单位向量的和一定与角A 的内角平分线共线.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(文)(2011·湖南长沙一中月考)设平面向量a =(1,2),b =(-2,y ),若a ∥b ,则|3a +b |等于________.[答案]5[解析] 3a +b =(3,6)+(-2,y )=(1,6+y ), ∵a ∥b ,∴-21=y2,∴y =-4,∴3a +b =(1,2),∴|3a +b |= 5.(理)(2011·北京朝阳区期末)平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=________.[答案] 2 3[解析] a ·b =|a |·|b |cos60°=2×1×12=1,|a +2b |2=|a |2+4|b |2+4a ·b =4+4+4×1=12, ∴|a +2b |=2 3.14.(2011·华安、连城、永安、漳平、龙海、泉港六校联考)已知a =(2+λ,1),b =(3,λ),若〈a ,b 〉为钝角,则λ的取值范围是________.[答案] λ<-32且λ≠-3[解析] ∵〈a ,b 〉为钝角,∴a ·b =3(2+λ)+λ=4λ+6<0, ∴λ<-32,当a 与b 方向相反时,λ=-3,∴λ<-32且λ≠-3.15.(2011·黄冈市期末)已知二次函数y =f (x )的图像为开口向下的抛物线,且对任意x ∈R 都有f (1+x )=f (1-x ).若向量a =(m ,-1),b =(m ,-2),则满足不等式f (a ·b )>f (-1)的m 的取值范围为________.[答案] 0≤m <1[解析] 由条件知f (x )的图象关于直线x =1对称,∴f (-1)=f (3),∵m ≥0,∴a ·b =m +2≥2,由f (a ·b )>f (-1)得f (m +2)>f (3), ∵f (x )在[1,+∞)上为减函数,∴m +2<3,∴m <1,∵m ≥0,∴0≤m <1.16.(2011·河北冀州期末)已知向量a =⎝⎛⎭⎫sin θ,14,b =(cos θ,1),c =(2,m )满足a ⊥b 且(a +b )∥c ,则实数m =________.[答案] ±522[解析] ∵a ⊥b ,∴sin θcos θ+14=0,∴sin2θ=-12,又∵a +b =⎝⎛⎭⎫sin θ+cos θ,54,(a +b )∥c , ∴m (sin θ+cos θ)-52=0,∴m =52(sin θ+cos θ),∵(sin θ+cos θ)2=1+sin2θ=12,∴sin θ+cos θ=±22,∴m =±522.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(2011·甘肃天水期末)已知向量a =(-cos x ,sin x ),b =(cos x ,3cos x ),函数f (x )=a ·b ,x ∈[0,π].(1)求函数f (x )的最大值;(2)当函数f (x )取得最大值时,求向量a 与b 夹角的大小. [解析] (1)f (x )=a ·b =-cos 2x +3sin x cos x =32sin2x -12cos2x -12=sin ⎝⎛⎭⎫2x -π6-12. ∵x ∈[0,π],∴当x =π3时,f (x )max =1-12=12.(2)由(1)知x =π3,a =⎝⎛⎭⎫-12,32,b =⎝⎛⎭⎫12,32,设向量a 与b 夹角为α,则cos α=a ·b |a |·|b |=121×1=12, ∴α=π3.因此,两向量a 与b 的夹角为π3.18.(本小题满分12分)(2011·呼和浩特模拟)已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,离心率为2,且过点(4,-10).(1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证MF 1→·MF 2→=0.[解析] (1)解:∵e =2,∴可设双曲线方程为x 2-y 2=λ, ∵过(4,-10)点,∴16-10=λ,即λ=6, ∴双曲线方程为x 2-y 2=6.(2)证明:F 1(-23,0),F 2(23,0),MF 1→=(-3-23,-m ),MF 2→=(-3+23,-m ),∴MF 1→·MF 2→=-3+m 2,又∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0, ∴MF 1→·MF 2→=0,即MF 1→⊥MF 2→.19.(本小题满分12分)(2011·宁夏银川一中月考,辽宁沈阳二中检测)△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,向量m =(2sin B,2-cos2B ),n =(2sin 2(π4+B2),-1),m ⊥n .(1)求角B 的大小;(2)若a =3,b =1,求c 的值.[分析] 根据向量关系式得到角B 的三角函数的方程,解这个方程即可求出角B ,根据余弦定理列出关于c 的方程,解这个方程即可.[解析] (1)∵m ⊥n ,∴m ·n =0, ∴4sin B ·sin 2⎝⎛⎭⎫π4+B 2+cos2B -2=0, ∴2sin B [1-cos ⎝⎛⎭⎫π2+B ]+cos2B -2=0, ∴2sin B +2sin 2B +1-2sin 2B -2=0, ∴sin B =12,∵0<B <π,∴B =π6或56π.(2)∵a =3,b =1,∴a >b ,∴此时B =π6,方法一:由余弦定理得:b 2=a 2+c 2-2ac cos B , ∴c 2-3c +2=0,∴c =2或c =1. 方法二:由正弦定理得b sin B =asin A,∴112=3sin A ,∴sin A =32,∵0<A <π,∴A =π3或23π, 若A =π3,因为B =π6,所以角C =π2,∴边c =2;若A =23π,则角C =π-23π-π6=π6,∴边c =b ,∴c =1. 综上c =2或c =1.20.(本小题满分12分)(2011·山东济南一中期末)已知向量a =⎝⎛⎭⎫cos 3x 2,sin 3x2,b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈[π2,π].(1)求a ·b 及|a +b |;(2)求函数f (x )=a ·b +|a +b |的最大值,并求使函数取得最大值时x 的值. [解析] (1)a ·b =cos 3x 2cos x 2-sin 3x 2sin x 2=cos2x ,|a +b |=⎝⎛⎭⎫cos 3x 2+cos x 22+⎝⎛⎭⎫sin 3x 2-sin x 22 =2+2⎝⎛⎭⎫cos 3x 2cos x 2-sin 3x 2sin x2 =2+2cos2x =2|cos x |, ∵x ∈[π2,π],∴cos x <0,∴|a +b |=-2cos x .(2)f (x )=a ·b +|a +b |=cos2x -2cos x =2cos 2x -2cos x -1=2⎝⎛⎭⎫cos x -122-32 ∵x ∈[π2,π],∴-1≤cos x ≤0,∴当cos x =-1,即x =π时f max (x )=3.21.(本小题满分12分)(2011·河南豫南九校联考)已知OA →=(2a sin 2x ,a ),OB →=(-1,23sin x cos x +1),O 为坐标原点,a ≠0,设f (x )=OA →·OB →+b ,b >a .(1)若a >0,写出函数y =f (x )的单调递增区间;(2)若函数y =f (x )的定义域为[π2,π],值域为[2,5],求实数a 与b 的值.[解析] (1)f (x )=-2a sin 2x +23a sin x cos x +a +b =2a sin ⎝⎛⎭⎫2x +π6+b , ∵a >0,∴由2k π-π2≤2x +π6≤2k π+π2得,k π-π3≤x ≤k π+π6,k ∈Z .∴函数y =f (x )的单调递增区间是[k π-π3,k π+π6](k ∈Z )(2)x ∈[π2,π]时,2x +π6∈[7π6,13π6],sin ⎝⎛⎭⎫2x +π6∈[-1,12] 当a >0时,f (x )∈[-2a +b ,a +b ]∴⎩⎪⎨⎪⎧ -2a +b =2a +b =5,得⎩⎪⎨⎪⎧a =1b =4, 当a <0时,f (x )∈[a +b ,-2a +b ]∴⎩⎪⎨⎪⎧ a +b =2-2a +b =5,得⎩⎪⎨⎪⎧ a =-1b =3综上知,⎩⎪⎨⎪⎧ a =-1b =3或⎩⎪⎨⎪⎧a =1b =4 22.(本小题满分12分)(2011·北京朝阳区模拟)已知点M (4,0),N (1,0),若动点P 满足MN →·MP →=6|PN →|.(1)求动点P 的轨迹C 的方程;(2)设过点N 的直线l 交轨迹C 于A ,B 两点,若-187≤NA →·NB →≤-125,求直线l 的斜率的取值范围.[解析] 设动点P (x ,y ),则MP →=(x -4,y ),MN →=(-3,0),PN →=(1-x ,-y ).由已知得-3(x -4)=6(1-x )2+(-y )2,化简得3x 2+4y 2=12,得x 24+y 23=1. 所以点P 的轨迹C 是椭圆,C 的方程为x 24+y 23=1. (2)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为y =k (x -1),设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1 消去y 得(4k 2+3)x 2-8k 2x +4k 2-12=0.因为N 在椭圆内,所以Δ>0. 所以⎩⎪⎨⎪⎧ x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2.因为NA →·NB →=(x 1-1)(x 2-1)+y 1y 2=(1+k 2)(x 1-1)(x 2-1)=(1+k 2)[x 1x 2-(x 1+x 2)+1]=(1+k 2)4k 2-12-8k 2+3+4k 23+4k 2=-9(1+k 2)3+4k 2, 所以-187≤-9(1+k 2)3+4k 2≤-125.解得1≤k 2≤3. 所以-3≤k ≤-1或1≤k ≤ 3.。

平面向量高考试题含详细答案

平面向量高考试题含详细答案

平面向量高考试题含详细答案TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】平面向量高考试题精选(一)一.选择题(共14小题)1.(2015•河北)设D为△ABC所在平面内一点,,则()A.B.C.D.2.(2015•福建)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.213.(2015•四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.64.(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥5.(2015•陕西)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣26.(2015•重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π7.(2015•重庆)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D.8.(2014•湖南)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值范围是()A.[4,6]B.[﹣1,+1] C.[2,2]D.[﹣1,+1] 9.(2014•桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于()A.2 B. C. D.110.(2014•天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.11.(2014•安徽)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若•+•+•+•所有可能取值中的最小值为4||2,则与的夹角为()A.B.C.D.012.(2014•四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1 D.213.(2014•新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.14.(2014•福建)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A.B.2C.3D.4二.选择题(共8小题)15.(2013•浙江)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于.16.(2013•北京)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.17.(2012•湖南)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=.18.(2012•北京)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为.19.(2011•天津)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为.20.(2010•浙江)已知平面向量满足,且与的夹角为120°,则||的取值范围是.21.(2010•天津)如图,在△ABC中,AD⊥AB,,,则=.22.(2009•天津)若等边△ABC的边长为,平面内一点M满足=+,则=.三.选择题(共2小题)23.(2012•上海)定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f (x)=asinx+bcosx的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量的“相伴函数”f (x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.24.(2007•四川)设F1、F2分别是椭圆=1的左、右焦点.(Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.平面向量高考试题精选(一)参考答案与试题解析一.选择题(共14小题)1.(2015•河北)设D为△ABC所在平面内一点,,则()A.B.C.D.解:由已知得到如图由===;故选:A.2.(2015•福建)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.21解:由题意建立如图所示的坐标系,可得A(0,0),B(,0),C(0,t),∵,∴P(1,4),∴=(﹣1,﹣4),=(﹣1,t﹣4),∴=﹣(﹣1)﹣4(t﹣4)=17﹣(+4t),由基本不等式可得+4t≥2=4,∴17﹣(+4t)≤17﹣4=13,当且仅当=4t即t=时取等号,∴的最大值为13,故选:A.3.(2015•四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.6解:∵四边形ABCD为平行四边形,点M、N满足,,∴根据图形可得:=+=,==,∴=,∵=•()=2﹣,2=22,=22,||=6,||=4,∴=22=12﹣3=9故选:C4.(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选D.5.(2015•陕西)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣2解:选项A正确,∵||=|||||cos<,>|,又|cos<,>|≤1,∴||≤||||恒成立;选项B错误,由三角形的三边关系和向量的几何意义可得||≥|||﹣|||;选项C正确,由向量数量积的运算可得()2=||2;选项D正确,由向量数量积的运算可得()•()=2﹣2.故选:B6.(2015•重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π解:∵(﹣)⊥(3+2),∴(﹣)•(3+2)=0,即32﹣22﹣•=0,即•=32﹣22=2,∴cos<,>===,即<,>=,故选:A7.(2015•重庆)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D.解:由已知非零向量满足||=4||,且⊥(),设两个非零向量的夹角为θ,所以•()=0,即2=0,所以cosθ=,θ∈[0,π],所以;故选C.8.(2014•湖南)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值范围是()A.[4,6]B.[﹣1,+1] C.[2,2]D.[﹣1,+1]】解:∵动点D满足||=1,C(3,0),∴可设D(3+cosθ,sinθ)(θ∈[0,2π)).又A(﹣1,0),B(0,),∴++=.∴|++|===,(其中sinφ=,cosφ=)∵﹣1≤sin(θ+φ)≤1,∴=sin(θ+φ)≤=,∴|++|的取值范围是.故选:D.9.(2014•桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于()A.2 B. C. D.1解:∵,∴的夹角为120°,设,则;=如图所示则∠AOB=120°;∠ACB=60°∴∠AOB+∠ACB=180°∴A,O,B,C四点共圆∵∴∴由三角形的正弦定理得外接圆的直径2R=当OC为直径时,模最大,最大为2故选A10.(2014•天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.解:由题意可得若•=(+)•(+)=+++=2×2×cos120°++λ•+λ•μ=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.•=﹣•(﹣)==(1﹣λ)•(1﹣μ)=(1﹣λ)•(1﹣μ)=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣λ﹣μ+λμ=﹣②.由①②求得λ+μ=,故答案为:.11.(2014•安徽)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若•+•+•+•所有可能取值中的最小值为4||2,则与的夹角为()A.B.C.D.0解:由题意,设与的夹角为α,分类讨论可得①•+•+•+•=•+•+•+•=10||2,不满足②•+•+•+•=•+•+•+•=5||2+4||2cosα,不满足;③•+•+•+•=4•=8||2cosα=4||2,满足题意,此时cosα=∴与的夹角为.故选:B.12.(2014•四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1 D.2解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D13.(2014•新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.【解答】解:∵D,E,F分别为△ABC的三边BC,CA,AB的中点,∴+=(+)+(+)=+=(+)=,故选:A14.(2014•福建)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A.B.2C.3D.4解:∵O为任意一点,不妨把A点看成O点,则=,∵M是平行四边形ABCD的对角线的交点,∴=2=4故选:D.二.选择题(共8小题)15.(2013•浙江)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于2.解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为 2.16.(2013•北京)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为3.解:设P的坐标为(x,y),则=(2,1),=(1,2),=(x﹣1,y+1),∵,∴,解之得∵1≤λ≤2,0≤μ≤1,∴点P坐标满足不等式组作出不等式组对应的平面区域,得到如图的平行四边形CDEF及其内部其中C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|==,点E(5,1)到直线CF:2x﹣y﹣6=0的距离为d==∴平行四边形CDEF的面积为S=|CF|×d=×=3,即动点P构成的平面区域D的面积为3故答案为:317.(2012•湖南)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=18.【解答】解:设AC与BD交于点O,则AC=2AO∵AP⊥BD,AP=3,在Rt△APO中,AOcos∠OAP=AP=3∴||cos∠OAP=2||×cos∠OAP=2||=6,由向量的数量积的定义可知,=||||cos∠PAO=3×6=18故答案为:1818.(2012•北京)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为1.【解答】解:因为====1.故答案为:119.(2011•天津)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为5.解:如图,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0)设P(0,b)(0≤b≤a)则=(2,﹣b),=(1,a﹣b),∴=(5,3a﹣4b)∴=≥5.故答案为5.20.(2010•浙江)已知平面向量满足,且与的夹角为120°,则||的取值范围是(0,].解:令用=、=,如下图所示:则由=,又∵与的夹角为120°,∴∠ABC=60°又由AC=由正弦定理得:||=≤∴||∈(0,]故||的取值范围是(0,]故答案:(0,]21.(2010•天津)如图,在△ABC中,AD⊥AB,,,则=.【解答】解:,∵,∴,∵,∴cos∠DAC=sin∠BAC,,在△ABC中,由正弦定理得变形得|AC|sin∠BAC=|BC|sinB,,=|BC|sinB==,故答案为.22.(2009•天津)若等边△ABC的边长为,平面内一点M满足=+,则=﹣2.解:以C点为原点,以AC所在直线为x轴建立直角坐标系,可得,∴,,∵=+=,∴M,∴,,=(,)•(,)=﹣2.故答案为:﹣2.三.选择题(共2小题)23.(2012•上海)定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f (x)=asinx+bcosx的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量的“相伴函数”f (x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.【解答】解:(1)g(x)=3sin(x+)+4sinx=4sinx+3cosx,其‘相伴向量’=(4,3),g(x)∈S.(2)h(x)=cos(x+α)+2cosx=(cosxcosα﹣sinxsinα)+2cosx=﹣sinαsinx+(cosα+2)cosx∴函数h(x)的‘相伴向量’=(﹣sinα,cosα+2).则||==.(3)的‘相伴函数’f(x)=asinx+bcosx=sin(x+φ),其中cosφ=,sinφ=.当x+φ=2kπ+,k∈Z时,f(x)取到最大值,故x0=2kπ+﹣φ,k∈Z.∴tanx0=tan(2kπ+﹣φ)=cotφ=,tan2x0===.为直线OM的斜率,由几何意义知:∈[﹣,0)∪(0,].令m=,则tan2x0=,m∈[﹣,0)∪(0,}.当﹣≤m<0时,函数tan2x0=单调递减,∴0<tan2x0≤;当0<m≤时,函数tan2x0=单调递减,∴﹣≤tan2x0<0.综上所述,tan2x0∈[﹣,0)∪(0,].24.(2007•四川)设F1、F2分别是椭圆=1的左、右焦点.(Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.】解:(Ⅰ)易知a=2,b=1,.∴,.设P(x,y)(x>0,y>0).则,又,联立,解得,.(Ⅱ)显然x=0不满足题设条件.可设l的方程为y=kx+2,设A(x1,y1),B(x2,y2).联立∴,由△=(16k)2﹣4•(1+4k2)•12>016k2﹣3(1+4k2)>0,4k2﹣3>0,得.①又∠AOB为锐角,∴又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4∴x1x2+y1y2=(1+k2)x1x2+2k(x1+x2)+4===∴.②综①②可知,∴k的取值范围是.。

平面向量测试题,高考经典试题,附详细答案

平面向量测试题,高考经典试题,附详细答案

平面向量测试题,高考经典试题,附详细答案平面向量高考经典试题一、多项选择题1.(全国1文理)已知向量a?(?5,6),b?(6,5),则a与ba、垂直B.不垂直也不平行C.平行且方向相同D.平行且反向解.已知向量a?(?5,6),b?(6,5),a?b??30?30?0,则a与b垂直,选a。

2.(山东文5)已知载体a?(1,n),b?(?1,n),如果2A?B垂直于B,那么a?()a.1b、二,c.2d、四,【答案】:c【分析】:2a?b=(3,n),由2a?b与b垂直可得:(3,n)?(?1,n)??3.氮气?0牛顿??3,a?2.3、(广东文4理10)若向量a,b满足|a|?|b|?1,a,b的夹角为60°,则a?a?ab?=______;答:32;解析:a?a?a?b?1?1?1?12?32,4.(天津李10)设定两个向量a?(??2,?2?cos2?)B呢?(m,m2?罪恶?),哪里M如果是一个实数,它是一个实数吗?那么呢?M的取值范围为a.[?6,1]b、 [4,8]c.(??,1]d、 [?1,6]【答案】a[分析]由一位?(??2,?2?cos2?),B(m,m2?罪恶?),A.2B,你能得到吗2.200万??公里?2.200万??2.cos2??M2英寸设定M?K进入方程式?排除k2m2?cos2??M2分钟?(2?2k?2去m化简得??cos2sin?,再化简得?2?k2?k??214?2?2再令2??cos2sin??0?t代入上式得??k?2?k?2k?2?21(sin2??1)2?(16t2?18t?2)?0可得?(16t2?18t?2)?[0,4]解不等式得t?[?1,?]811因而?1解得?6?k?1.故选aK285.(山东李11)直角?在ABC中,CD是斜边AB上的高度,那么下面的公式不成立(a)ac?ac?ab(b)bc?ba?bc(c)ab?ac?cd(d)cd?22222(ac?ab)?(ba?bc)ab2[答]:C[分析]:AC?交流电?ab?交流电?(ac?ab)?0交流电?卑诗省?0,a 是正确的,B也是正确的。

平面向量高考经典试题

平面向量高考经典试题

平面向量高考经典试题一、选择题1.(全国1文理)已知向量(5,6)a =- ,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向解.已知向量(5,6)a =- ,(6,5)b =,30300a b ⋅=-+= ,则a 与b 垂直,选A 。

2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1B .C .2D .4【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)30n n n n ⋅-=-+=⇒= 2=a 。

3、(广东文4理10)若向量,a b满足||||1a b ==,,a b的夹角为60°,则a a a b⋅+⋅=______;答案:32;解析:1311122a a a b⋅+⋅=+⨯⨯=,4、(天津理10) 设两个向量22(2,cos )a λλα=+- 和(,sin ),2m b m α=+ 其中,,m λα为实数.若2,a b = 则mλ的取值范围是( )A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A【分析】由22(2,cos )a λλα=+- ,(,sin ),2m b m α=+ 2,a b = 可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km m k m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A5、(山东理11)在直角A B C ∆中,C D 是斜边AB 上的高,则下列等式不成立的是(A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅(C )2ABAC CD =⋅(D ) 22()()AC AB BA BC C DAB⋅⨯⋅= 【答案】:C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅,通过等积变换判断为正确.6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则λ= (A)32 (B)31 (C) -31 (D) -32解.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则22()33C D C A A D C A A B C A C B C A =+=+=+- =1233C A C B + ,4 λ=32,选A 。

高中数学平面向量测试题及答案

高中数学平面向量测试题及答案

平面向量测试题一、选择题:1。

已知ABCD 为矩形,E 是DC 的中点,且−→−AB =→a ,−→−AD =→b ,则−→−BE =( ) (A ) →b +→a 21 (B ) →b -→a 21 (C ) →a +→b 21 (D) →a -→b 212.已知B 是线段AC 的中点,则下列各式正确的是( )(A) −→−AB =-−→−BC (B ) −→−AC =−→−BC 21(C ) −→−BA =−→−BC (D ) −→−BC =−→−AC 213.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( ) (A ))(21→→-b a (B ) )(21→→-a b (C ) →a +→b 21 (D ) )(21→→+b a4.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD = -5→a -3→b ,则下列关系式中正确的是 ( )(A )−→−AD =−→−BC (B)−→−AD =2−→−BC (C )−→−AD =-−→−BC(D )−→−AD =-2−→−BC5.将图形F 按→a =(h ,k )(其中h 〉0,k 〉0)平移,就是将图形F( ) (A ) 向x 轴正方向平移h 个单位,同时向y 轴正方向平移k 个单位。

(B ) 向x 轴负方向平移h 个单位,同时向y 轴正方向平移k 个单位。

(C ) 向x 轴负方向平移h 个单位,同时向y 轴负方向平移k 个单位。

(D) 向x 轴正方向平移h 个单位,同时向y 轴负方向平移k 个单位。

6.已知→a =()1,21,→b =(),2223-,下列各式正确的是( )(A) 22⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛→→b a (B ) →a ·→b =1 (C ) →a =→b (D ) →a 与→b 平行 7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是( ) (A ) 1 (B ) -1 (C) 1± (D ) 任意不为零的实数8.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是( ) (A) 矩形 (B ) 菱形 (C) 直角梯形 (D ) 等腰梯形9.已知M (-2,7)、N(10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P 点的坐标为( )(A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D) (2,4)10.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( ) (A) 21±-(B ) 12±(C ) 32±(D) 23±11.把函数2)sin(3--=πx y 的图象经过按→a 平移得到x y sin =的图象,则→a =( )(A) ()2,3π-(B) ()2,3π(C ) ()2,3--π(D) ()2,3-π12.△ABC 的两边长分别为2、3,其夹角的余弦为31 ,则其外接圆的半径为( ) (A )229(B )429(C )829(D )922二、填空题:13.已知M 、N 是△ABC 的边BC 、CA 上的点,且−→−BM =31−→−BC ,−→−CN =31−→−CA ,设−→−AB=→a ,−→−AC =→b ,则−→−MN = 14.△ABC 中,C A B cos sin sin =,其中A 、B 、C 是△ABC 的三内角,则△ABC 是三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量高考经典试题一、选择题1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向 2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( ) A .1B .2C .2D .43、(广东文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ⋅+⋅=______;答案:32;4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(,sin ),2mb m α=+其中,,m λα为实数.若2,a b =则mλ的取值范围是 (A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-5、(山东理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅ (C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则=(A)32 (B)31(C) -31 (D) -32 7、(全国2理12)设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若++=0,则|FA|+|FB|+|FC|=(A)9 (B) 6 (C) 4 (D) 38、(全国2文6)在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( )A .23B .13C .13-D .23-9(全国2文9)把函数e xy =的图像按向量(2)=,0a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x+B .e 2x-C .2ex -D .2ex +10、(北京理4)已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( )A.AO OD = B.2AO OD =C.3AO OD =D.2AO OD =11、(上海理14)在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,2AB i j =+,3AC i k j =+,则k 的可能值有A 、1个B 、2个C 、3个D 、4个 12、(福建理4文8)对于向量,a 、b 、c 和实数错误!未找到引用源。

,下列命题中真命题是A 若错误!未找到引用源。

,则a =0或b =0B 若错误!未找到引用源。

,则λ=0或a =0C 若错误!未找到引用源。

=错误!未找到引用源。

,则a =b 或a =-bD 若错误!未找到引用源。

,则b =c 13、(湖南理4)设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( ) A .⊥a bB .∥a bC .||||=a bD .||||≠a b14、(湖南文2)若O 、E 、F 是不共线的任意三点,则以下各式中成立的是 A .EF OF OE =+ B. EF OF OE =- C. EF OF OE =-+ D. EF OF OE =--15、(湖北理2)将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为( )A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭16、(湖北文9)设a =(4,3),a 在b 上的投影为225,b 在x 轴上的投影为2,且|b|<1,则b 为 A.(2,14)B.(2,-72) C.(-2,72) D.(2,8)答案:选B17、(浙江理7)若非零向量,a b 满足+=a b b ,则( ) A.2>2+a a b B.22<+a a b C.2>+2b a bD. 22<+b a b18、(浙江文9) 若非零向量,a b 满足-=a b b ,则( ) A.22>-b a b B.22<-b a b C.2>-2a a bD.2<-2a a b19、(海、宁理2文4)已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( )A.(21)--, B.(21)-,C.(10)-,D.(12)-,20、(重庆理10)如图,在四边形ABCD 中,||||||4,0,AB BD DC AB BD BD DC →→→→→→→++=⋅=⋅=→→→→=⋅+⋅4||||||||DC BD BD AB ,则→→→⋅+AC DC AB )(的值为( )A.2B. 22C.4D.24BACD21、(重庆文9)已知向量(4,6),(3,5),OA OB ==且,//,OC OA AC OB ⊥则向量OC 等于(A )⎪⎭⎫⎝⎛-72,73(B )⎪⎭⎫⎝⎛-214,72 (C )⎪⎭⎫ ⎝⎛-72,73(D )⎪⎭⎫ ⎝⎛-214,7222、(辽宁理3文4)若向量a 与b 不共线,0≠a b ,且⎛⎫⎪⎝⎭a a c =a -b a b ,则向量a 与c 的夹角为( )A .0B .π6C .π3D .π223、(辽宁理6)若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( ) A .(12)--,B .(12)-,C .(12)-,D .(12),24、(辽宁文7)若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =--的图象,则向量a =( ) A .(12)-,B .(12),C .(12)-,D .(12)-,25、(四川理7文8)设(,1)A a ,(2,)B b ,(4,5)C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为( )(A )453a b -= (B )543a b -= (C )4514a b += (D )5414a b +=26、(全国2理9)把函数y =e x的图象按向量a =(2,3)平移,得到y =f (x )的图象,则f (x )= (A) e x -3+2(B) e x +3-2(C) e x -2+3(D) e x +2-3二、填空题1、(天津文理15) 如图,在ABC ∆中,120,2,1,BAC AB AC D ∠=︒==是边BC 上一点,2,DC BD =则AD BC =__________. .2、(安徽文理13) 在四面体O-ABC 中,,,,OA a OB b OC c D ===为BC 的中点,E为AD 的中点,则OE = (用a ,b ,c 表示)3、(北京文11)已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是.4、(上海文6)若向量a b ,的夹角为60,1a b ==,则()a ab -= .5、(江西理15)如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为.6、(江西文13)在平面直角坐标系中,正方形OABC 的对角线OB 的两端点分别为(00)O ,,(11)B ,,则AB AC =.三、解答题:1、(,海南17)(本小题满分12分)如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个侧点C 与D .现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB ..2、(福建17)(本小题满分12分) 在ABC △中,1tan 4A =,3tan 5B =. (Ⅰ)求角C 的大小;(Ⅱ)若ABC △最大边的边长为17,求最小边的边长.本小题主要考查两角和差公式,用同角三角函数关系等解斜三角形的基本知识以及推理和运算能力,满分12分.BAONCM3、(广东16)(本小题满分12分) 已知△ABC 顶点的直角坐标分别为)0,()0,0()4,3(c C B A 、、. (1)若5=c ,求sin ∠A 的值; (2)若∠A 是钝角,求c 的取值范围.4、(广东文16)(本小题满分14分)已知ΔABC 三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c ,0). (1)若0AB AC =,求c 的值;(2)若5c =,求sin ∠A 的值5、(浙江18)(本题14分)已知ABC △1,且sin sin A B C +=.(I )求边AB 的长; (II )若ABC △的面积为1sin 6C ,求角C 的度数. ,6、(山东20)(本小题满分12分)如图,甲船以每小时海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105︒的方向1B 处,此时两船相距20海里.当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120︒方向的2B 处,此时两船相距,问乙船每小时航行多少海里?7、(山东文17)(本小题满分12分)在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ; (2)若52CB CA =,且9a b +=,求c .8、(上海17)(本题满分14分)在ABC △中,a b c ,,分别是三个内角A B C ,,的对边.若4π,2==C a ,5522cos=B ,求ABC △的面积S .9、(全国Ⅰ文17)(本小题满分10分)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)若a =,5c =,求b .10、(全国Ⅱ17)(本小题满分10分)在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.。

相关文档
最新文档