女性控尿过程中大脑激活

合集下载

女性尿失禁

女性尿失禁

女性尿失禁尿失禁,系指患者尿液不由自主的从尿道流出,可发于任何季节,但以秋冬季节表现严重。

尿失禁是任何年龄及性别人士都可能患的疾病,但以老人和女性为多。

一些女性朋友,在咳嗽、运动、大笑时不由自主的出现尿液漏出,或老想小便、小便次数明显增多、有时突然想小便来不及找厕所就有小便溺出等等情况时,就要警惕你可能属于女性尿失禁。

女性尿失禁患病人数多,约占成年人的20%以上。

一项调查显示北京社区发病率为 46.5%(94人/202人),以中老年女性更为常见,随着老龄化社会的到来,女性尿失禁的问题更加突出,严重影响患者的生活质量。

美国泌尿科医学会的统计显示,有一半以上的女性都有过尿失禁的困扰,其中又有近一半的女性尿失禁患者影响生活质量。

如患者常常说:我担心咳嗽或大喷嚏会引起尿失禁,每到一处我最关心的是厕所在哪里,我感到沮丧、压抑、我不敢离家时间太长,我担心别人取笑我、我担心随年龄增长加重、我控制饮水、影响性生活等。

一项研究表明,67%患者影响性生活,近1/3患者在性生活时发生漏尿。

如果尿失禁已影响到你的生活应该积极治疗,越早治疗效果越好。

一、女性尿失禁的病因正常的储尿及排尿都是在膀胱压力与尿道压力相互协调下进行的。

膀胱充盈达到一定程度,产生压力,反射到大脑,通过主观意识控制,通过尿道排出。

正常排尿需要大脑、神经、膀胱、尿道、盆底肌肉的共同作用。

任何原因造成储尿期的膀胱压力过高或尿道阻力下降,都会造成尿失禁。

1、生产损伤:多次生育、尿道膨出、子宫下垂等。

这是由于分娩的时候,盆腔肌肉受到不同程度的损伤,对盆腔内一些器官的支撑能力就下降,所以这样也能导致压力性尿失禁。

临床发现经阴道生产的尿失禁比剖腹生产发生率高。

2、精神因素:因为工作紧张、压力大、焦虑情绪或神经性膀胱而造成膀胱肌肉的反应过敏,无法抑制膀胱收缩而引起尿失禁。

3、雌激素水平降低:更年期后女性雌激素水平降低使尿道粘膜变薄,张力下降。

4、肥胖:年龄大,腹部脂肪堆积腹压增高对膀胱产生较大的压力。

排尿及其调节

排尿及其调节

排尿及其调节肾脏制造尿液是个连续不断的过程。

由于膀胱具有暂时贮存尿液的功能,膀胱的排尿则是间歇地进行的。

正常的排尿是一种受意识控制的神经反射性活动。

这种活动,需要完善的神经系统及健全的控制排尿的肌肉功能。

本文就膀胱的排尿及其调节概述如下。

膀胱及尿道的神经支配共有三组神经与排尿活动有关1.盆神经(副交感神经)起自脊髓骶段2~4节侧柱,其发出的节前纤维经盆神经到达膀胱附近或膀胱壁内的神经节,短小的节后纤维支配着逼尿肌和尿道内括约肌及后尿道肌,其传出的冲动可引起逼尿肌收缩和尿道内括约肌的松弛,从而促成膀胱排尿。

盆神经中的传入纤维主要是传导膀胱胀满的信息,然后经骶部中枢上传至大脑皮质,以控制排尿活动。

如这一对神经受损伤,则影响逼尿肌等的活动,从而使正常的排尿活动不能进行。

2.腹下神经(交感神经)起自脊髓胸段第12节和腰段1~2节的侧柱,主要支配膀胱三角区血管和尿道内括约肌,其传出的冲动除使膀胱三角区血管收缩外,对膀胱逼尿肌的活动无明显作用,但能增强尿道内括约肌的紧张性,以阻止排尿。

如这一对神经损伤,对膀胱的正常排尿活动影响较小。

3.阴部神经(躯体神经)起自脊髓骶段2~4节的前角细胞,支配会阴的横纹肌和尿道外括约肌,其传出神经能使外括约肌收缩,保持关闭状态,而阻止排尿;其感觉纤维主要是接受尿道的感觉(包括痛觉),上传至大脑皮质。

由于阴部神经属于躯体神经,能接受大脑随意控制,从而可随意控制尿道外括约肌,达到控制排尿。

如这时神经损伤,则于排尿开始后不能立即随意中断尿流。

排尿反射及其调节排尿过程是一种复杂的反射活动。

正常情况下,当膀胱胀满到一定程度(正常成人膀胱内尿量达100~150毫升时),膀胱内压力才开始稍有上升。

随着尿量的蓄积,膀胱壁在逐渐升高的压力影响下而扩张,当膀胱量达到400~500毫升时,其压力足以刺激膀胱壁内的牵张感受器,发出冲动经盆神经感觉纤维,传入到脊髓骶段(2~4节)的初级排尿中枢,同时,再经薄束上传到脑干和大脑皮质(旁中央小叶),并产生尿意,大脑皮质仍下达冲动,可能经皮质脊髓束下传到脊髓骶段排尿中枢,再经盆神经中的传出神经(副交感神经)传出冲动,即可引起膀胱逼尿肌收缩、尿道内括约肌松弛,尿液被逼入后尿道;此时又可引起另一反射,即进入后尿道的尿液刺激了尿道感受器,冲动经盆神经再次传到脊髓的排尿中枢,进一步加强其活动,并发出抑制性冲动至骶段2~4节前角细胞,抑制阴部神经,使尿道外括约肌开放;此时提肛肌和会阴松弛亦可使后尿道缩短变宽,尿道阻力变小,加之腹壁肌收缩和隔肌下降,增加腹内压,使膀胱内压进一步升高,于是尿液由于强大的膀胱内压(可高达150厘米水柱)而顺利、迅速地从膀胱排出。

针刺配合微针刀治疗女性压力性尿失禁的疗效观察

针刺配合微针刀治疗女性压力性尿失禁的疗效观察

针刺配合微针刀治疗女性压力性尿失禁的疗效观察
周贤华;陈茜茜;张亚君;徐雪琴;倪靓靓;林楠;梅玲明
【期刊名称】《浙江中医杂志》
【年(卷),期】2022(57)10
【摘要】压力性尿失禁(SUI)是指正常情况下无小便漏出,在腹腔内压异常增加时(如咳嗽、喷嚏、大笑或运动时)小便自行漏出的现象。

SUI是中年或老年女性的多发病,随着社会发展,我国老年人口比例不断增加,女性SUI患者明显增多,严重影响妇女的生活质量和身心健康,甚至还可能引发精神抑郁、心理障碍等疾患。

中医学认为心主藏神,肾主藏志、主骨生髓通于脑,脑为主宰,排尿受神志控制,通过脑-心-肾轴机制调控。

现代医学认为,大脑是控尿的高级中枢,脊髓则为中级中枢。

基于此,从中医学的整体观出发,本观察采用针刺配合微针刀松解治疗女性SUI患者,取得较满意的疗效。

现报告如下。

【总页数】2页(P757-758)
【作者】周贤华;陈茜茜;张亚君;徐雪琴;倪靓靓;林楠;梅玲明
【作者单位】三门县人民医院
【正文语种】中文
【中图分类】R69
【相关文献】
1.超微针刀、针刺加自血疗法治疗颈源性过敏性鼻炎疗效观察
2.经会阴盆底超声评估排针针刺治疗女性压力性尿失禁疗效的价值
3.芒针断续波交替针刺
"腹四穴、骶四穴"治疗老年女性压力性尿失禁的临床观察4.透明质酸钠配合微针刀及手法拉伸治疗膝骨关节炎疗效观察5.针刀与针刺配合艾灸治疗网球肘临床疗效对比观察
因版权原因,仅展示原文概要,查看原文内容请购买。

中老年女性的难言之隐

中老年女性的难言之隐

中老年女性的难言之隐作者:陈日益来源:《家庭医学·下半月》2017年第05期50岁的王女士一年前就发现自己在用力咳嗽、打喷嚏、走路、尿急或收腹的时候,常会有少量尿液漏出。

但漏出尿液不多。

她认为这不是什么大毛病,再加上羞于看医生,所以一直没有去医院检查。

近段时间,王女士漏尿现象越来越严重,常常弄得裤裆湿漉漉的,偶尔还出现尿频、尿急、尿痛等不适症状。

她不得已找了位好姐妹陪自己到医院。

经过尿流动力学等相关检查,被确诊为中度“压力性尿失禁”(俗称“漏尿”),需住院手术治疗。

一般女性的尿道长约4厘米,上接膀胱;在膀胱颈口环绕着尿道内括约肌(又称“膀胱颈括约肌”),它是人体控制小便的一道“阀门”。

正常情况下,随着膀胱里的尿液越积越多,达到一定量时人便会产生尿意。

小便时,在大脑神经的调节下,“阀门”打开(尿道内括约肌松弛),尿液从尿道排出体外;若是不方便或没时间小便,尽管膀胱内尿液较多,控尿“阀门”也不会擅自打开引起“漏尿”。

但如果这个“阀门”功能受损伤而丧失排尿的自控能力,一旦腹腔内压力突然增高(如剧烈咳嗽、开怀大笑、搬提重物、打喷嚏、跳跃等),就会使尿液不自主地流出尿道而发生“漏尿”。

造成女性压力性尿失禁原因,主要是很多女性由于妊娠多产或产道损伤造成盆底肌肉及阴道肌肉松弛,影响尿道控尿能力;有的是盆腔手术、阴道手术引起盆腔正常解剖结构改变,导致尿道控尿能力减弱;中年以后妇女卵巢功能减退,体内雌激素分泌减少,盆底肌肉松弛,尿道黏膜萎缩和肌群控尿能力下降;等。

此外,过度肥胖或长期便秘,腹压增加,导致对盆底支持结构压力过大,也会诱发压力性尿失禁。

根据临床症状程度,可将压力性尿失禁分为以下四度:Ⅰ度是咳嗽等腹压增高时,偶尔有尿失禁发生;Ⅱ度是任何屏气或用力时均可发生尿失禁;Ⅲ度是直立时即可发生尿失禁;Ⅳ度是直立或斜卧位时都可发生尿失禁。

由于医学知识的缺乏和传统观念的影响,不少女性认为出现压力性尿失禁是年龄增长的一种正常现象,或者羞于治疗,不愿前往医院就诊。

泌尿系统神经支配

泌尿系统神经支配

周围神经与泌尿系统相关的周围神经主要是骶丛分支阴部神经pudendal nerve:从骶丛发出后伴随阴部内动静脉出梨状肌下孔,绕坐骨棘穿坐骨小孔进坐骨直肠窝,贴此窝外侧壁向前分支分布于会阴部和外生殖器的肌肉和皮肤,其主要分支有:(1)肛(直肠下)神经anal nerve分布于肛门外括约肌及肛门部的皮肤(2)会阴神经perineal nerve分布于会阴诸肌(包括尿道外括约肌)和阴囊或大阴唇的皮肤(3)阴茎(阴蒂)背神经dorsal nerve of penis(clitoris)行于阴茎(阴蒂)的背侧,主要分布于阴茎(阴蒂)的海绵体和皮肤。

植物神经泌尿系统的神经支配以植物神经系统为主。

(一)肾:交感神经:胸6~12脊髓侧角--经内脏大小神经和腰内脏神经--腹腔丛、主动脉肾丛——沿肾血管周围神经丛分布作用:血管收缩副交感神经作用:迷走神经背核——迷走神经——腹腔丛、肾丛作用:血管舒张,肾盂收缩.(二)输尿管:交感神经:胸11~腰2脊髓侧角——内脏小神经和腰内脏神经——腹腔丛——肠系膜上下、肾丛—-输尿管丛作用:加强输尿管蠕动副交感神经:脊髓骶部副交感核——经盆内脏神经—-输尿管丛作用:抑制输尿管蠕动(三)膀胱:交感神经:腰1~腰2脊髓侧角——经白交通支——交感干—-腰内脏神经、腹主动脉丛、肠系膜下丛、腹下丛、盆丛——膀胱丛--膀胱作用:血管收缩、膀胱三角肌收缩、尿道内口关闭、对膀胱逼尿肌的作用很小副交感神经:骶2~4脊髓的骶副交感神经核——经2~4骶神经—-盆内脏神经——盆丛--膀胱丛作用:逼尿肌收缩尿道内括约肌松弛尿的排放:(一)输尿管的蠕动将肾盂内的尿液送入膀胱输尿管壁的平滑肌可发生每分钟1~5次的规则的周期性蠕动。

这种蠕动可以将肾盂中的尿液输入膀胱.输尿管的末端斜行穿过膀胱壁,该段输尿管在平时受膀胱壁的压迫而关闭,仅在蠕动波到达时才开放。

膀胱内压升高时,输尿管末端被压迫,尿液不会从膀胱倒流入输尿管和肾盂.(二)膀胱排空是一个反射性的正反馈过程膀胱和尿道的平滑肌受自主神经支配而尿道外括约肌受躯体神经支配膀胱的逼尿肌(detrusor muscle)和尿道内括约肌受交感神经和副交感神经的双重支配, 交感神经末梢释放的递质是去甲肾上腺素,后者通过B肾上腺素能受体使膀胱逼尿肌松弛,同时通过a肾上腺素能受体是尿道内括约肌收缩,故能阻抑膀胱内尿液的排放.副交感神经节后神经元末梢释放的递质为乙酰胆碱,后者激动逼尿肌的M型胆碱能受体,是逼尿肌收缩,但尿道内括约肌则舒张,故能促进排尿。

女性控尿机制中神经机制的研究进展及其在HIFU消融术中的应用

女性控尿机制中神经机制的研究进展及其在HIFU消融术中的应用
专题 研 究
2 0 1 5年 3期

治疗 中风失语效果肯定 。基于此研究 背景 , 本文 旨在通过随机对 著 , 具有统计学意义( P< 0 . 0 5 ) 。详见表 1 。 照研究探讨针刺加语言康复治疗 中风失语 的临床疗效 , 分析研究 表 1 两组患者治疗前后语言功能评分 比较[ n %) 】 针刺语 言相关组穴对失语症患者的中枢效应 。 回顾性分析本次临 组别 显效 有效 进步 无效 总有效 床诊疗 资料 , 现报道如下。 1 资 料 与 方 法 对照组0= 1 5 )5 ( 3 3 . 3 )3 ( 2 0 . 0 )2 ( 1 3 - 3 )5 ( 3 3 . 3 ) 1 0 ( 6 6 . 7 ) 1 . 1 一 般 资料 观察组( n = 2 5 )1 1 ( 4 4 . 0 )6 ( 2 4 . 0 )6 ( 2 4 . 0 )2 ( 8 . 0 ) 2 3 ( 9 2 . 0 ) 选取 2 0 1 0 年8 月至2 0 1 4 年8 月我院收治 的4 0 例 中风失语症 患 戈2 4. 1 6 7 4 者为研究对象 , 所有患者经脑C T 及MR I 检查确诊。排除心、 肝、 肾 等功能严重衰竭者 , B D A E 分级评分为0 的患者不予 纳入 。依据 随 P 0 . 0 4 1 2<O . 0 5 机化分组法分为对照组( 1 5 例) 和观察组( 2 5 例) 。 对照组 : 男1 0 例, 女5 例; 年龄4 2 至6 9 岁, 平 均( 5 8 . 5±2 . 8 ) 岁; 脑梗死 1 1 例, 脑 出血4 2 . 2 功能影像学实验结果 例。 观察组 : 男1 6 例, 女9 例; 年龄4 0 至7 0 岁, 平均( 5 9 . 2±3 . 2 ) 岁; 脑 电针针刺皮层下损伤患者左侧组穴 ,未见损伤处组织激活 , 梗死 1 9 例, 脑 出血6 例。 两组患者于一般资料方 面比较无统计学意 皮层损 伤患者 出现皮层脑组织激活 ; 健康志愿者脑功能 区激活簇 义, P>0 . 0 5 , 具 有 可 比性 。 数远远高于失语症患者 ; 研究 对象均于针刺左侧 目标 穴位 后双侧 1 . 2 研究方法 颞叶出现激活现象。 1 . 2 . 1 治 疗 方 法 3 讨论 对照组 : 单行语言功能训练治疗 。根据患者失语类型分别应 中医学关于中风的记载最早见于《 内经》 , 属 于“ 言謇 ” 范畴 。 用 复述性 、 衔接性 、 对镜等训练方法。 l O U d , 1 5 次为一疗程 。 《 中藏经》 曰: “ 心脾俱 中风 , 则舌强不能言 , 盖脾脉 络 胃挟咽 , 连舌 观察 组 : 于对 照组治疗基础上辅以针刺治疗。 取穴语言一区、 二区 本 , 散舌下 , 二脏受风 , 则舌本强硬而不语也。 ” 认 为内伤脏腑 为失 及三 区行针刺 , 通 电留针半小时 ; 取穴人 中、 神庭 、 廉泉 、 哑 门、 百 语 症发 病机制。本次研究主 以针刺法刺激 与舌有关联 的脏腑 经 会、 通里 ( 双侧 ) 、 涌泉行针 , 0 . 5 h / 1 次; 廉泉可通经活络 、 清 络放 血, 隔 日1 次 。三法连 同, l 5 天为一疗程。 心开窍 , 针刺金津及玉液 , 可活血化瘀 、 疏肝清热 、 活血化瘀。 本次 1 . 2 . 2 功 能影像学实验研究方法 研 究结果证实 , 针刺 辅 以语 言康复治疗 , 疗效肯定 , 值得 临床推 于治疗效果显效患者 中选取1 例皮层失语患者 、 l 例皮层下失 广 。 语 患者及 5 例健 康志 愿者 , 取通 里穴 、 悬钟穴行 针刺 1 个月 , 运用 回顾分析功 能影像 学实验结果 , 结果 显示 , 当电针针 刺左侧 f M R I 中的B O L D 技术分析皮质功能 区的激活情况 。 组穴, 皮层下损伤失语 症患者于皮下层并未见激活 , 皮层 损伤患 1 . 3 疗 效 判定 者皮层脑组 织出现激活现象 , 健康志愿者脑功能 区激活簇数远远 ① 显效 : 患者 口语表 达及 听力理解能力提升显著 , 语言功能 高 于失语症患者 ; 而上述 电针针刺对象者均于针刺左侧 目标穴位 评分 高于7 8 分; ②有效 : 患者 口语表 达及 听力理解能力有一定提 后双侧颞叶出现激活现象。可见 , 语言功能 由脑组织 中网络所控 升, 语言功能评分较之于治疗前提高3 O 分 以上 , 但未达7 8 分; ③进 制 , 而针刺组穴通里、 悬钟可改善患者语 言功能 。但是具体而 言 , 步; 语 言功能评分 提高5 至2 9 分; ④无效 : 未达上述标准 。 将①②③ 功能定位是相对而言的 , 语言功能的恢复机制还需进一步深入研 计人总有效 。 究。 1 . 4 统计 学方法 参考文献 : 采用卡方检验 。 【 1 】 张浪, 李小杏, 张鹏等 . 针刺结合语 言康复 治疗 中风后 失语研 究 2 结 果 进展Ⅱ 】 . 中华针 灸电子杂志, 2 0 1 4 ,  ̄ ) : 6 1 - 6 4 . 2 . 1 临床疗效 [ 2 ] 陆倩 , 康冰. 针刺 结合语言训练治疗中风后 失语症3 2 例临床观察 与对 照组 比较 , 观察组治疗效果显然优 于后者 , 对 比差异显 田. 河 南中医, 2 0 1 0 , 3 0 ( 2 ) : 1 7 9 — 1 8 1 .

尿失禁,让她不敢开怀大笑

尿失禁,让她不敢开怀大笑

45快乐养生 2020.10尿失禁,让她不敢开怀大笑☉自贡市第一人民医院 李家泉可,通常需要坚持一段时间才能见效。

病情严重者试试悬吊术非手术治疗效果不佳或不能检查、不能耐受、预期效果不佳的患者,中重度压力性尿失禁、影响生活质量的患者,生活质量要求较高的患者,可以试试无张力尿道中段悬吊术。

该术式是利用高分子材料的吊带将过度活动的尿道中段施行无张力的悬吊,保存正常尿控结构,达到控尿效果,手术切口小,出血少,并发症少,治愈率达96%以上,是目前治疗压力性尿失禁的金标准。

虽然“吊带”手术是一个微创手术,手术过程并不复杂,仅有几个穿刺孔,术后基本看不到手术疤痕,但对医生的要求较高。

而且,准确的诊断是一切治疗的前提。

判断患者是不是压力性尿失禁,能否做“吊带”手术,这需要全面的检查,以及泌尿外科医生的准确判断。

特别是对于需要进行“吊带”手术的压力性尿失禁患者,更需要谨慎检查和诊断。

因为患者往往会伴发有其他类型的尿失禁,而且压力性尿失禁还是女性盆底脱垂临床症状中的一个方面,因此是否需要做“吊带”手术,何时做“吊带”手术,术后需要采取什么样的保养措施和对症治疗方式,都是需要泌尿专科医生来仔细斟酌的,这关系到手术成功与否,关系到手术疗效的持续时间。

所以中老年女性如果患有尿失禁,一定要及时到正规医院找专业医生进行诊治,以免贻误病情。

在我们周围,有一些女性不敢放声笑、不敢用力咳嗽,这不是因为她们温柔文静,而是因为她们患有一种疾病——压力性尿失禁。

为了避免难堪,她们只能选择“矜持”,身心却饱受折磨。

这到底是一种什么样的疾病?该如何治疗呢?中老年女性发病率高压力性尿失禁是怎么发生的呢?我们知道,在尿道的下端有一个环状的括约肌,控制尿液由膀胱向尿道排出。

正常情况下,当膀胱中储存了一定量的尿液,由大脑控制包括尿道括约肌在内的泌尿系统开始排尿。

泌尿系统中的任何一部分功能发生障碍,就有可能发生尿失禁。

压力性尿失禁在中老年女性中发病率很高,约为40%,主要是因为更年期后雌激素水平下降,而雌激素直接影响尿道括约肌的功能,当咳嗽、擤鼻、大笑或躯体运动时增加了膀胱的压力,就会导致尿失禁。

基于fNIRS_对女性不同膀胱状态下盆底肌收缩任务的前额叶激活情况

基于fNIRS_对女性不同膀胱状态下盆底肌收缩任务的前额叶激活情况

280新医学研究论著2024年4月第55卷第4期基于fNIRS 对女性不同膀胱状态下盆底肌收缩任务的前额叶激活情况徐正娴 潘伟婷 于灿灿 周星辰 石娇 王敏 陈尚杰【摘要】 目的 为探讨前额叶在人体控尿功能中发挥的作用提供神经影像学依据。

方法 利用近红外脑功能成像技术(fNIRS )收集20名健康成年女性志愿者膀胱充盈和空虚状态下盆底肌收缩时大脑前额皮层的血流动力学数据,并对数据进行相应的处理,通过分析各个通道所提取的氧合血红蛋白浓度的相对变化量所对应的Beta 值,对比前额叶不同脑区间激活情况差异。

结果 膀胱充盈状态下前额皮层共有30个通道激活,膀胱空虚状态下前额皮层共有8个通道激活(P 均< 0.05),其中共同激活通道有7个;相较于空虚状态,膀胱充盈时的前额叶激活更明显,且以右侧脑区激活为主,差异主要体现在右侧背外侧前额叶和额极(P 均< 0.05)。

结论 盆底肌收缩运动可以使大脑前额皮层被激活。

当膀胱处于充盈状态时大脑前额皮层可能会通过神经反射活动感知膀胱的压力变化,从而参与调控盆底肌的自主舒缩运动,实现其在人体控尿功能中的作用,其中右侧背外侧前额叶脑区在此过程中发挥的作用可能更为明显。

【关键词】 近红外脑功能成像技术;前额叶;盆底肌收缩;膀胱状态;女性fNIRS -based study of prefrontal cortex activation during pelvic floor muscle contraction in women under different bladder states Xu Zhengxian △, Pan Weiting , Yu Cancan , Zhou Xingchen , Shi Jiao , Wang Min , Chen Shangjie.△Graduate School , Bengbu Medical College , Bengbu 233000, ChinaCorresponding author: Chen Shangjie , E -mail:****************【Abstract 】Objective To provide a neuroimaging basis for exploring the role of the prefrontal cortex in human urinary control function. Methods Hemodynamic data from the prefrontal cortex of the brain during the task of pelvic floor muscle contraction from 20 healthy female volunteers were collected using functional near -infrared spectroscopy (fNIRS ) under two di ff erent states of bladder fi lling and emptying , and these data were processed accordingly to compare the di ff erences in the activation state among di ff erent brain compartments of the prefrontal cortex by analyzing the Beta values corresponding to the relative amount of changes in the concentration of oxyhemoglobin extracted from each individual channel. Results A total of 30 channels were activated duringbladder fi lling , whereas 8 channels were activated during bladder emptying (all P < 0.05), including 7 co -activated channels. The prefrontal cortex activation was more signi fi cant during bladder fi lling than bladder emptying , and the activation was predominantlyin the right prefrontal cortex , with the di ff erences mainly in the right dorsolateral prefrontal cortex and frontopolar cortex (all P < 0.05). Conclusions The prefrontal cortex can be activated by pelvic floor muscle contraction. Under the state of bladder fi lling , the prefrontal cortex may perceive the pressure change of the bladder through neural reflex activity and thus participate in the regulation of the voluntary pelvic floor muscle contraction , plays a role in human urinary control function. The right dorsolateral prefrontal cortex region possibly plays a more signi fi cant role in this process.【Key words 】 Functional near -infrared spectroscopy ; Prefrontal cortex ; Pelvic floor muscle contraction ; Bladder state ;Female基金项目:国家自然科学基金面上项目(81973922);深圳市宝安区卫生健康局区医学重点学科(2022-2025)专项作者单位:233000 蚌埠,蚌埠医学院研究生院(徐正娴,于灿灿,周星辰,陈尚杰);518000 深圳,深圳大学第二附属医院康复科(潘伟婷,石娇,陈尚杰);233000 蚌埠,蚌埠医学院第一附属医院康复科(王敏)通信作者:陈尚杰,E -mail:****************人脑高级中枢能够通过完整的反射弧接受来自膀胱壁上的压力感受器信号,并对其做出反馈参与调控人体的排尿和储尿行为。

尿急的原理

尿急的原理

尿急的原理尿急是指由于膀胱内尿液的积聚和刺激,导致人体产生一种迫切的尿意或者失禁的情况。

尿急的原理主要涉及以下几方面:神经调节、膀胱肌肉和控制尿液排泄的尿道括约肌的功能失调以及其他因素。

首先,尿急与神经调节密切相关。

尿液的产生和排泄是由神经系统完成的。

当膀胱内积聚一定量的尿液时,尿液的刺激会通过传入感觉神经纤维进入脊髓,并传达到大脑皮层,引起尿意的感觉。

大脑通过下丘脑和脊髓的信号回馈到膀胱和尿道,进而控制膀胱肌肉收缩和尿道括约肌的放松。

然而,当这个神经调节系统发生功能障碍时,就会导致尿急的发生。

其次,膀胱肌肉的功能失调也是尿急的重要原因之一。

膀胱肌肉是膀胱内壁的肌肉层,它的收缩和松弛直接影响着尿液的储存和排泄。

正常情况下,膀胱肌肉应当在尿液积聚时保持松弛状态,只有在排尿时才会收缩推动尿液排出。

然而,当膀胱肌肉的控制出现问题时,它会过早地或频繁地收缩,导致膀胱内压力升高,从而引发尿急的感觉。

另外,尿道括约肌的功能异常也可能导致尿急。

尿道括约肌是位于尿道口的一圈肌肉,它能够控制尿液的排出。

在正常情况下,尿液在膀胱收缩的同时,尿道括约肌会自动放松,使尿液畅通无阻地排出。

然而,当尿道括约肌功能异常,无法及时放松或者过度收缩时,就会造成尿液排出受阻的情况,从而引起尿急。

此外,其他因素也可能导致尿急的发生。

一些疾病、药物、饮食和生活习惯等因素都可能对尿急产生影响。

例如,尿路感染、膀胱炎、结石、肿瘤等疾病会导致尿道和膀胱的刺激,进而引起尿急的发生。

某些药物如利尿剂和兴奋剂也可能干扰神经和肌肉的正常功能,从而造成尿急。

饮食过度刺激、咖啡因、酒精和辣椒等食物和饮料也可能刺激膀胱和尿道,引起尿急。

此外,长期憋尿和尿频、高龄、妊娠等因素也可能导致尿急的产生。

综上所述,尿急的原理涉及神经调节、膀胱肌肉和尿道括约肌的功能失调以及其他因素的影响。

进一步了解尿急的原理有助于预防和治疗尿急,为患者提供更加精确和有效的治疗方案。

神经系统与泌系统的相互作用

神经系统与泌系统的相互作用

神经系统与泌系统的相互作用神经系统与泌尿系统的相互作用神经系统和泌尿系统是人体内两个重要的系统,它们之间存在着紧密的相互作用关系。

神经系统通过调节泌尿系统的功能,维持机体内部环境的稳定。

而泌尿系统的正常功能也受到神经系统的调节和控制。

本文将从神经系统对泌尿系统的影响和泌尿系统对神经系统的影响两个方面来探讨神经系统与泌尿系统的相互作用。

一、神经系统对泌尿系统的影响1. 神经系统调节尿液生成:神经系统通过调节肾脏的血流量、肾小球滤过率、肾小管重吸收等过程来控制尿液的生成。

交感神经系统通过收缩肾动脉使肾脏的血流减少,减少尿液生成量;而副交感神经通过扩张肾动脉增加肾脏的血流,增加尿液生成量。

2. 神经系统调节尿液排泄:神经系统通过调节尿道的平滑肌和括约肌的收缩来控制尿液的排泄。

交感神经系统通过收缩尿道括约肌阻止尿液的排泄,而副交感神经则通过松弛尿道括约肌促进尿液的排泄。

3. 神经系统调节膀胱的充盈和排空:神经系统通过对膀胱平滑肌和括约肌的控制来调节膀胱的充盈和排空。

交感神经系统通过收缩膀胱平滑肌和括约肌使膀胱充盈,并抑制膀胱的排空;副交感神经则通过松弛膀胱平滑肌和括约肌促进膀胱的排空。

二、泌尿系统对神经系统的影响1. 尿液代谢产物的排泄:泌尿系统负责排泄体内的废物和代谢产物,其中包括尿素、尿酸等。

这些代谢产物如果在体内积聚过多会对神经系统产生毒性作用,而泌尿系统的正常排泄能够减轻这种毒性作用,保护神经系统的正常功能。

2. 水电解质平衡的调节:泌尿系统通过调节尿液的排泄量和浓度来维持体内水电解质的平衡。

正常的水电解质平衡对神经系统的正常功能至关重要,因为水分和电解质的失衡会对神经传导产生影响。

综上所述,神经系统与泌尿系统之间存在着密切的相互作用。

神经系统通过对泌尿系统的调节和控制,维持尿液的生成、排泄以及膀胱功能的正常运作。

而泌尿系统的正常功能又可以保护神经系统免受尿液代谢产物的毒性作用,并维持体内水电解质的平衡,从而维持神经系统的正常功能。

2.4 神经系统的分级调节(分层作业)(有解析)-高二生物同步备课系列(人教版2023选择性必修1)

2.4 神经系统的分级调节(分层作业)(有解析)-高二生物同步备课系列(人教版2023选择性必修1)

2.4 神经系统的分级调节(分层作业)(有解析)-高二生物同步备课系列(人教版2023选择性必修1)第二章神经调节第4节神经系统的分级调节一、单选题1.对下列实例分析正确的是()A.某人因意外车祸而使大脑受损,其表现症状是能够看懂文字和听懂别人谈话,但却不会说,这个人受损伤的部位是言语区的S区B.当盲人用手指“阅读”盲文时,参与此过程的高级神经中枢只有躯体感觉中枢和躯体运动中枢C.当你专心作答试题时,参与的高级中枢主要有大脑皮层H区和S 区D.某同学正在跑步,下丘脑和脑干未参与调节2.下列关于缩手反射及其反射弧的叙述,正确的是()A.该反射弧的效应器是指传入神经末梢及共支配的肌肉B.在缩手反射过程中兴奋在神经纤维上的传导是单向的C.神经递质由突触前膜释放进入下一个神经元内起作用D.指尖采血时手未缩回是因为脊髓神经中枢的控制作用3.在家兔动脉血压正常波动过程中,当血压升高时,其血管壁上的压力感受器感受到刺激可以反射性地引起心跳减慢和小血管舒张,从而使血压降低,仅由此调节过程判断,这一调节属于()A.神经调节,负反馈调节B.神经调节,免疫调节C.体液调节,负反馈调节D.体液调节,免疫调节4.控制排尿反射的高级神经中枢在大脑皮层,低级神经中枢位于脊髓,调节过程如图所示。

平时,膀胱壁肌肉舒张,尿道括约肌收缩,不会引起排尿。

下列说法正确的是A.成人“憋尿”时,c神经元释放的递质不会引起突触后膜产生电位变化B.如果在e处给予适宜的电刺激,会引起大脑皮层产生“尿意”C.膀胱壁内的感受器产生的兴奋在ab之间的神经纤维上单向传导D.膀胱充盈时引起反射并最终完成排尿属于负反馈调节5.肺牵张反射是肺扩张或缩小所引起的反射性呼吸运动。

包括两部分,最常见的是肺充气时引起吸气抑制效应,肺放气时引起吸气效应。

下列关于肺牵张反射的叙述错误的()A.神经中枢位于脊髓B.具有负反馈调节机制C.可防止剧烈运动时对肺造成损伤D.受大脑皮层一定程度的调控6.排尿是一种复杂的反射活动。

神经系统与泌尿系统相互作用的生物学机制

神经系统与泌尿系统相互作用的生物学机制

神经系统与泌尿系统相互作用的生物学机制神经系统和泌尿系统之间存在着密切的相互作用,它们通过神经递质、神经反射和神经调控等机制相互影响和调节,维持着人体内环境的稳定性。

首先,神经系统可以通过神经递质的释放来调节泌尿系统的功能。

神经递质是一种化学物质,它可以在神经元之间传递信号,调控神经系统的活动。

在泌尿系统中,神经递质的释放可以影响尿液的生成、排泄和调节。

例如,肾脏中的多巴胺是一种常见的神经递质,它可以通过作用于肾小管细胞的多巴胺受体,增加尿液的生成和排泄。

另外,神经递质还可以通过与肾脏的其他调节因子相互作用,影响尿液的渗透浓度和电解质的吸收,进而调节体液的平衡。

其次,神经系统和泌尿系统之间存在着神经反射的作用。

神经反射是指神经系统对外界刺激的自动反应。

在泌尿系统中,还有一些反射弧通过神经系统来调节尿液的产生和排泄。

例如,当膀胱内充盈,压力升高时,会激活膀胱壁的感受器,传递信息至脊髓,再由脊髓传递至膀胱括约肌,引起排尿反射而排尿。

这种反射机制的存在,保证了尿液的顺畅排出,维持膀胱的正常功能。

另外,神经调控也是神经系统与泌尿系统相互作用的一种重要机制。

神经调控是指神经系统通过神经纤维或神经节对靶器官进行间接控制的过程。

在泌尿系统中,神经调控主要通过交感神经和副交感神经两个部位来进行。

交感神经能够通过释放去甲肾上腺素等神经递质来作用于肾脏,增加肾小管的重吸收,减少尿液的排泄,从而保持体液的平衡。

而副交感神经则负责调节膀胱的收缩和松弛,控制尿液的储存和排尿的过程。

此外,还有一些中枢神经系统调节泌尿系统的功能。

例如,下丘脑-垂体-肾上腺轴是神经内分泌系统的核心,它参与调节尿液的生成和排泄。

下丘脑通过分泌促肾上腺皮质激素和抗利尿激素,调控肾小管对水、钠等的重吸收和尿液的浓缩和稀释。

这样,身体在不同的环境中可以适应不同程度的尿液排泄和水平衡的调节。

综上所述,神经系统与泌尿系统之间相互作用的生物学机制主要包括神经递质的释放、神经反射、神经调控和中枢神经系统的调节。

2020-2021学年高中生物人教版必修一学案:2.4神经系统的分级调节

2020-2021学年高中生物人教版必修一学案:2.4神经系统的分级调节

第4节神经系统的分级调节1.通过实例阐述神经系统对躯体运动的分级调节。

2.举例说明神经系统对内脏活动的分级调节。

一、神经系统对躯体运动的分级调节1.躯体的运动,如膝跳反射、缩手反射等,不仅受到的控制,也受到的调节。

2.大脑的结构:大脑的表面覆盖着主要由神经元胞体及其树突构成的薄层结构——。

人的大脑有着丰富的(沟即为凹陷部分,回为隆起部分),这使得大脑在有限体积的颅腔内,可以具有更大的。

大脑通过与相连,发出的指令,可以通过脑干传到。

3.躯体运动分解调节:肌肉收缩等运动1.大脑是最高级中枢。

()2.脑与脊髓中的神经中枢分工明确,独立地调控机体的生命活动。

()二、神经系统对内脏活动的分级调节1.神经系统对内脏活动的调节与它对躯体运动的调节相似,也是通过进行的。

2.神经系统不同中枢对排尿反射的控制:排尿不仅受到的控制,也受到的调控。

脊髓对膀胱扩大和缩小的控制是由支配的:交感神经兴奋,不会导致膀胱缩小;,会使膀胱缩小。

而人之所以能有意识地控制排尿,是因为对进行着调控。

排尿反射的分级调节示意图3.脊髓是调节内脏活动的,通过它可以完成简单的内脏反射活动,如、、血管舒缩等。

4. 中也有许多重要的调节内脏活动的基本中枢,如调节呼吸运动的中枢,调节心血管活动的中枢等,--且受到损伤,各种生理活动即失调,严重时呼吸或心跳会停止。

5. 是调节内脏活动的较高级中枢,它也使内脏活动和其他生理活动相联系,以调节、、摄食等主要生理过程。

6. 是许多低级中枢活动的高级调节者,它对各级中枢的活动起调整作用,这就使得自主神经系统并不完全自主。

1.控制排尿反射的高级神经中枢位于大脑皮层。

()2.如果脊髓在胸部横断,会造成患者小便失禁,原因是下丘脑中的排尿中枢损坏。

()1.产生渴感的感受器和神经中枢分别存在于( )A.大脑皮层和下丘脑B.下丘脑和大脑皮层C.下丘脑的神经细胞和垂体D.肾上腺和下丘脑2.下列对动物和人体生理过程的叙述中,能体现神经系统的分级调节的是( )A.在大脑皮层形成的痛觉B.成年人可以有意识地控制排尿C.垂体分泌的促甲状腺激素能促进甲状腺分泌甲状腺激素D.用橡皮锤轻轻叩击膝盖下面的韧带,小腿突然抬起3.如图为各级中枢示意图。

排尿反射

排尿反射

正常的排尿生理:A. 储尿期膀胱壁的牵张感受器受到刺激,神经冲动(包括一般内脏感觉和本体感觉)经由髓鞘A-delta纤维沿盆神经传入骶髓(S2-4)。

B. 内脏感觉和本体感觉信息经过脊髓丘脑束和薄束传递到中脑导水管旁灰质区,在传递到脑桥背内侧的排尿中枢和腹外侧的储尿中枢,这样上位中枢神经系统对膀胱的充盈状态产生意识性的知觉,同时脑桥排尿中枢受到皮质高级中枢的制约。

C. 如果条件允许排尿,膀胱排空过程即被启动。

自主神经系统的副交神经在膀胱的排空过程中起主导作用。

1. 中枢神经系统的运动性神经冲动经顶盖脊髓束和网状脊髓束到达骶髓(S2-S4).灰质中的副交感神经下运动神经元(发出内脏传出纤维)。

2. 下运动神经元发出神经纤维经盆神经到达膀胱逼尿肌,启动逼尿肌收缩,促使膀胱排空。

3. 排尿过程的控制由副交感神经系统发挥作用,节前和节后纤维的神经传递都是胆碱能递质。

膀胱平滑肌的受体是毒蕈碱。

4. 膀胱壁的一般内脏感觉和本体感觉传入神经元和骶髓中的副交感下运动神经元有突触联系,这是局部脊髓排尿反射的基础。

5. 排尿时,上位中枢传出纤维抑制交感神经系统冲动的传递。

胸腰段的交感神经中枢受到抑制,腹下神经放电停止,使膀胱颈、后尿道松弛,促进膀胱的排空。

6. 脑桥排尿中枢兴奋性冲动到达骶髓抑制性中间神经元,发出抑制性冲动经阴部神经,使尿道外扩约肌松弛。

失去该抑制性作用可使尿道扩约的张力升高,导致发生上运动神经元性膀胱。

7. 中枢神经系统(从头部到骶髓)损伤的早期可导致逼尿肌无反射和尿道扩约肌张力的提高(由于失去上运动神经元的抑制性作用所致)。

膀胱失去随意排尿的能力,手法排空膀胱也有一定的困难。

几周后,局部脊髓排尿反射建立,但不能完全排空膀胱,导致大量残尿的产生。

这样的膀胱被称为上运动神经元性膀胱或者自动性膀胱或反射性膀胱。

D. 如果排尿的条件不够成熟,储尿过程继续。

自主神经系统的交感神经在储尿过程中发挥主导作用。

女性排尿控制的解剖学基础和生理学机制

女性排尿控制的解剖学基础和生理学机制

女性排尿控制的解剖学基础和生理学机制女性排尿控制的解剖学和生理学机制一直是很有争议的问题。

争论的焦点是尿道括约肌的解剖构成、组织形态和生理功能,以及膀胱颈和盆底结构在排尿控制中的作用。

早在200年前即有学者描述了尿道横纹括约肌的存在,但此后有学者认为这块肌肉是盆底肌肉的一部分,否认人体有独立的尿道括约肌存在。

直到近50年来,多个学科从不同角度的研究极大地丰富了这一领域的知识。

胚胎发育学、解剖学、现代影像学、神经生理学、以及临床尿流动力学的研究越来越清楚地揭示了参与排尿控制的解剖结构和这些结构发挥作用的确切机制。

这些新的认识改进了泌尿科医生对尿失禁和排尿障碍等问题的理解,也将有助于提高外科治疗的疗效和避免并发症的发生。

一般认为,尿道括约肌可以分为横纹肌括约肌(rhabdosphincter外括约肌)和平滑肌括约肌(1essosphincter内括约肌)。

也有一些学者认为尿道的固有膜和盆底结构,甚至膀胱三角区和膀胱逼尿肌也参与构成尿道括约肌。

经验表明,了解一个器官或系统的解剖和功能的有效方法是完整地了解它的胚胎发育过程、组织形态学、神经支配和生理学特点、以及它和周围结构的关系。

本文将综述这些研究进展,从而获得尿道括约肌结构和生理功能的清晰概念。

尿道括约肌的胚胎发育、组织分化和发育象其他的器官一样,尿道括约肌也有一个在胚胎发育期逐渐成型的过程。

泄殖腔和下尿路的组织胚胎学研究发现,横纹肌括约肌最早在胚胎12-15mmCRL(第五周)时,以未分化的间叶细胞致密斑的形式出现在尿道的两侧。

耻骨直肠肌随着缸管膜的开通出现于20-30mmCRL(7th—8thweek)的胚胎。

到胚胎31-45 mm时, the puborectali, 1evator ani, and bullbocavernosus muscles已经发育出分化好的横纹肌细胞,而尿道周围的肌性细胞仍保持未分化状态。

但这个尿道腹侧的间叶细胞致密斑与膀胱颈附近的耻骨直肠肌关系密切并呈攀状向远端延伸,呈现为成对的未分化细胞致密斑存在于尿道两侧。

膀胱充盈时大脑更聪明 多喝水或助做明智决定文档

膀胱充盈时大脑更聪明 多喝水或助做明智决定文档

荷兰研究人员发现,当一个人膀胱充盈时,做出的决定更明智。

如果你正在为是否购买一个昂贵的物品犹豫不决,不如先喝杯水,休息一下,一会儿再决定。

这一研究结果发表于最新一期《心理学》杂志。

自控实验特文特大学心理学家米丽娅姆·图克和同事一起实验。

他们找来一些志愿者,分成两组。

一组志愿者要喝下5杯总共750毫升水,另一组志愿者从5个不同的杯子中随便小口喝几口水。

四十分钟后,水差不多到达志愿者膀胱,研究人员开始测试他们的自我控制能力。

研究人员给出8种选择,分别包括虽小但可以立即得到以及贵重些但一段时间后才能得到的东西。

比如,他们要志愿者选择,是愿意当场拿走16美元,还是35天后拿走30美元。

研究结果显示,膀胱充盈,即喝下750毫升水的志愿者,更多选择等待一段时间后拿更大的“报酬”。

个中原理图克说,大脑发出的控制信号并没有明确目标,它会同时控制所有部分,这也就会“无意识地增加”对其他方面的控制。

换句话说,大脑在控制膀胱时,也会控制人的冲动想法。

她称,膀胱充盈时,“人们更有能力控制只能带来短时快感的冲动,转而倾向做出对长期有利的选择”。

她说:“当你膀胱充盈时,可能做出更好选择。

也许在考虑股票下一步怎么投资时,你应该先喝一杯水。

”图克还建议:“一些商店应当增设洗手间,供顾客使用。

这样一来,他们上完厕所后,更有可能头脑发热,买一台更大的电视回家。

”开会偶得图克和同事的进一步实验表明,仅想想“小便”这个词,就能产生膀胱充盈带来的同样效果。

图克说,她在参与一次冗长会议后产生做这种研究的想法。

她回忆说,那次会议太长,以至于她不得不为保持清醒,连喝5杯咖啡。

“所有咖啡都到了我的膀胱,这让我不禁想知道,当人们经受高水平膀胱控制时会发生什么?”因此,图克设计这一实验,以观察对身体需求的自控能力能否延伸到其他领域。

这一实验所得到的结论与先前实验结论相左。

心理学家先前研究后认为,被迫“抑制自己”的人会感受到更大压力,更难以自控。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Brain (1998),121,2033–2042Brain activation during micturition in womenBertil F.M.Blok,Leontien M.Sturms and Gert HolstegeDepartment of Anatomy and Embryology,Faculty of Correspondence to:Bertil F .M.Blok,Department of Medical Sciences,University of Groningen,Groningen,Anatomy and Embryology,Faculty of Medical Sciences,The NetherlandsUniversity of Groningen,Oostersingel 69,9713EZ Groningen,The Netherlands.E-mail:b.f.m.blok @med.rug.nlSummaryExperiments in the cat have led to a concept of how the CNS controls micturition.In a previous study this concept was tested in a PET study in male volunteers.It was demonstrated that specific brainstem and forebrain areas are activated during micturition.It was unfortunate that this study did not involve women,because such results are important for understanding urge incontinence,which occurs more frequently in women than in men.Therefore,a similar study was done in 18right-handed women,who were scanned during the following four conditions:(i)15min prior to micturition (urine with-holding);(ii)during micturition;(iii)15min after micturi-tion;and (iv)30min after micturition.Of the 18volunteers,10were able to micturate during scanning and eight were not,despite trying vigorously.Micturition appeared to be associated with significantly increased blood flow in the right dorsal pontine tegmentum and theKeywords :pontine micturition centre;M-region;pontine storage centre;L-region;anterior cingulate gyrus;inferior frontal gyrusAbbreviations :BA ϭBrodmann area;PAG ϭperiaqueductal grey;PMC ϭpontine micturition centre;rCBF ϭregional cerebral blood flow;SPM ϭstatistical parametric mappingIntroductionMicturition or urination is a co-ordinated action between the urinary bladder and its external urethral sphincter.When the bladder contracts,the sphincter relaxes.Although the motor neuronal cell groups of both bladder and sphincter are located in the sacral spinal cord,their co-ordination takes place in the pons.This brainstem organization is best shown in patients with spinal cord injuries above the sacral level.They have great difficulty emptying the bladder,because when their bladder contracts their urethral sphincter also contracts,a disorder called detrusor–sphincter dyssynergia.Such disorders never occur in patients with neurological lesions rostral to the pons,which indicates that the co-ordinating neurons are located in the pontine tegmentum (Blaivas,1982).As early as 1925,Barrington showed in the cat that the neurons involved in the control of micturition are probably ©Oxford University Press 1998right inferior frontal gyrus.Decreased blood flow was found in the right anterior cingulate gyrus during urine withholding.The eight volunteers who were not able to micturate during scanning did not show significantly increased regional cerebral blood flow in the right dorsal,but did so in the right ventral pontine tegmentum.In the cat this region controls the motor neurons of the pelvic floor.In the same unsuccessful micturition group,increased blood flow was also found in the right inferior frontal gyrus.In all 18volunteers,decreased blood flow in the right anterior cingulate gyrus was found during the period when they had to withhold their urine prior to the micturition condition.The results suggest that in women and in men the same specific nuclei exist in the pontine tegmentum responsible for the control of micturition.The results also indicate that the cortical and pontine micturition sites are more active on the right than on the left side.located in the dorsolateral part of the pontine tegmentum,because bilateral lesions in this area produced an inability to empty the bladder,leading to urinary retention.Tracing studies in cat (Holstege et al.,1979)and rat (Loewy et al.,1979)revealed that a distinct cell group in the dorsal pontine tegmentum,called Barrington’s area or the pontine micturition centre (PMC)or M-region,projects to the sacral cord intermediolateral cell column.Blok and Holstege (1997)have shown that this projection is excitatory in nature and contacts dendrites and somata of parasympathetic preganglionic bladder motor neurons.Electrical or chemical stimulation in the PMC produces bladder contractions (Holstege et al.,1986;Mallory et al.,1991)and bilateral destruction of the PMC leads to chronic urinary retention (Griffiths et al.,1990).Another area,important during the filling phase,is located2034 B.F.M.Blok et al.more ventrally and laterally in the dorsolateral pontine tegmentum.This area,called the L-region,maintains direct projections to the nucleus of Onuf in the sacral cord(Holstege et al.,1979,1986).In the cat(Sato et al.,1978;Kuzuhara et al.,1980),monkey(Roppolo et al.,1985)and humans (Onufrowicz,1899;Schro¨der,1981),Onuf’s nucleus contains motor neurons innervating the pelvicfloor,including the anal and urethral sphincters.Stimulation of the L-region in the cat results in a contraction of the pelvicfloor,including the external urethral sphincter(Holstege et al.,1986).Bilateral lesions in the L-region cause an extreme form of‘urge’incontinence(Griffiths et al.,1990).Experiments in the cat have led to a concept about the basic micturition control systems in the CNS(Fig.1). Information about the degree of bladderfilling is conveyed by the pelvic nerve to neurons in the lumbosacral cord (Morgan et al.,1981),which in turn project to the periaqueductal grey(PAG)(Noto et al.,1991;Blok et al., 1995;Vanderhorst et al.,1996).When the bladder isfilled to such a degree that voiding is appropriate,the PAG activates neurons in the PMC(Blok and Holstege,1994),which in turn excite the sacral preganglionic parasympathetic bladder motor neurons and inhibit the bladder sphincter motor neurons.The bladder excitation is achieved by way of the direct projection to the parasympathetic motor neurons(Blok and Holstege,1997),and the sphincter inhibition by way of PMC projections to GABAergic interneurons in the sacral cord dorsal grey commissure(Blok et al.,1997a;Blok and Holstege,1998).These GABA cells in turn project to the motor neurons in Onuf’s nucleus(Konishi et al.,1985; Nadelhaft et al.,1996).A recent PET study(Blok and Holstege,1995,1996;Blok et al.,1997c)in healthy human male volunteers revealed the same brainstem areas to be associated with micturition as in the cat.Thefirst example is the dorsal pontine tegmentum,where the PMC is located in the cat(see also Fukuyama et al.,1996).Other activated areas are the midbrain PAG,the hypothalamus,the right inferior frontal gyrus and the right anterior cingulate gyrus. Withholding of urine,despite vigorous attempts to micturate, was associated with increased regional cerebral bloodflow (rCBF)in the ventral pontine tegmentum,an area corresponding to the L-region in the cat,and in the inferior frontal gyrus and anterior cingulate gyrus,all regions on the right side only.PET scan studies are important for our understanding of the micturition control system and its abnormalities.A PET scan study on micturition in women is needed because in women the incidence of neurogenic-related micturition disorders is much greater than in men(Resnick et al.,1989). In particular urge incontinence,in which a patient senses the urge to void but is unable to delay micturition long enough to reach a toilet,is most frequently seen in the elderly population,mostly females(Jewett et al.,1981;Haschek, 1984;Resnick et al.,1989).Since animal studies(e.g. Raisman and Field,1971;Gorski et al.,1978;Breedlove, 1980)have provided ample evidence for importantsex Fig.1Schematic overview of pathways between spinal and supraspinal structures involved in the control of micturition based on experiments in cats and men.The locations of the micturition control areas(see text)in the brainstem and diencephalon were used in the null hypotheses for the present study in women. Ascending(sensory-related)and descending(motor-related) pathways are indicated on the respective left and right sides only. BCϭbrachium conjunctivum;CAϭanterior commissure;ICϭinferior colliculus;OCϭoptic chiasm;PONϭpontine nuclei;SCϭsuperior colliculus;S2ϭsecond sacral segment; (ϩ)ϭexcitatory effect;(Ϫ)ϭinhibitory effect.differences in the structural organization of neuronal cell groups in the CNS,the present study in women was designed to identify the brain regions involved in micturition and to compare the results with the PET scanfindings in men,and the anatomical and physiologicalfindings in the cat. MethodExperimental designThe volunteers were adult women between20and51years of age(mean27years).The subjects completed a general health questionnaire.V olunteers reporting a history of neuro-logical,psychiatric or gastroenterological illness werePET study on micturition in women2035excluded from the study(nϭ3).The remaining18 subjects were right-handed,and gave their written informed consent according to the declaration of Helsinki.The protocol of the study was approved by the research ethics committee of the University Hospital of Groningen. During each scan the lights were dimmed,the subjects had their eyes closed and did not move.Each scanning session consisted of four measurements and lasted1.5h in total.Experimental protocol and trainingThe volunteers were scanned during the following four conditions:(i)filled bladder,(ii)micturition,(iii)empty bladder and(iv)empty bladder.Eight seconds before the second scan and15s after the injection of the H2150bolus, the right indexfinger of the volunteer was touched to let her know that she could start micturition.Prior to the other three scans no specific assignment was given.The urine was collected with a special urological device(Femicep bedpan; SIMS Portex Inc.,Hythe,UK)attached to a plastic urine reservoir.The device was positioned close to the urethral orifice during all four scans.Thefloor of the Femicep bedpan was equipped with a self-made battery-driven urine detector, which,during the second condition,indicated the onset of micturition with a small red light.A few days before the scanning session,the volunteers were asked to practise at home,urinating horizontally using the Femicep bedpan.When individual practice was successful, the PET scan session during micturition was simulated at the subjects’home under the guidance of one of the authors (L.M.S.).V olunteers who were not able to micturate during this session at home were excluded from the study.They were asked to volunteer in a PET study on the voluntary control of the pelvicfloor musculature(Blok et al.,1997b). About70min prior to thefirst condition of the actual scanning session,the urine volume of the bladder was measured with the use of an ultrasonic device,called the Bladder Manager(Diagnostic Ultrasound Corporation, Seattle,Wash.,USA).If the Bladder Manager indicated that the bladder was hardlyfilled(Ͻ250ml)and the volunteer affirmed that she did not have a sensation of afilled bladder, she was asked to drink an additional glass of water.When there was successful micturition during condition2,the bladder volume was measured for a second time to determine the residual urine volume.When the bladder appeared to containϾ200ml,the subject was asked to micturate again. One volunteer was unable to do so,and she was catheterized by a trained physician.Catheterization also took place in the eight volunteers in whom micturition during condition2was not successful.Data acquisitionThe subject was placed in a horizontal position in the PET camera(Siemens-CTI951/31,Knoxville,Tenn.,USA)parallel to and5cm below the OM(orbitomeatal)line, as determined by external examination.An individually constructed head mould was used to prevent substantial changes in head position.Because of the technical characteristics of the PET camera,the most caudal limit of the scanned area was the pons and the most rostral was the cingulate gyrus,which meant that images were obtained from an axialfield of view of28mm below to48mm above the intercommissural plane.This implied,for example,that the sensorimotor cortex could not be investigated.In order to correct for absorption ofγ-radiation by surrounding tissue,a20-min transmission scan was made at the beginning of the scanning session.The relative attenuation factors,obtained from this scan,were used for correcting the subsequent emission scans and for image reconstruction. After the transmission scan,the subjects were given 1.85GBq of H215O diluted in saline for each of the four scans.The H215O bolus,followed by40ml saline,was injected in the right brachial vein using an automatic pump.Data acquisition continued for90s and began23s after the beginning of the injection,at which time the peak in radioactivity was assumed to have reached the cerebral circulation.To allow the radiation to return to the background level,there was an interval of15min between the injections. Data analysisThe data of each scan were summed and the resulting images were centred to prevent loss of information during sampling. Prior to the statistical procedure the data were sampled to a voxel size of2.2ϫ2.2ϫ2.4mm.The data were further analysed using the statistical parametric mapping(SPM) procedure(SPM95from the Wellcome Department of Cognitive Neurology,London,UK)implemented in Matlab (Mathworks,Sherborn,Mass.,USA)on a SPARC workstation (Sun Microsystems,Bagshot,UK).The SPM95software was used for anatomical realignment,normalization,smoothing and statistical analysis.Realignment corrected the images for the translational and rotational movements of the head,using thefirst scan as reference.Normalizing spatial transformation matches each scan to a reference or template,which conforms to the stereotaxic standard space(Talairach and Tournoux,1988). Finally,the images were smoothed with a Gaussianfilter of 8ϫ8ϫ8mm3(full width half maximum in the x,y and z axes,respectively).This relatively smallfilter was used because the main part of the study was aimed at the relatively small brainstem and diencephalon sites that have been found to be involved in the central control of micturition in men (Blok et al.,1997c).Statistical analysisThe differences in global activity within and between subjects were removed by ANCOV A(analysis of covariance)on a pixel-by-pixel basis with global count as the covariate.For2036 B.F.M.Blok et al.each pixel in stereotaxic space,the ANCOV A generated a condition-specific adjusted mean rCBF value(normalized to 50ml/dl/min)and an associated adjusted error variance.A repeated measures ANCOV A was used for the comparison of the four conditions.The following contrasts for both groups were planned: (i)scan2(successful/unsuccessful micturition)minus scan 3(empty bladder),(ii)scan2(successful/unsuccessful micturition)minus scan1(filled bladder)and(iii)scan1 (filled bladder)minus the other conditions.The differences between conditions were assessed by weighting each condition with an appropriate contrast.The significance of each contrast was assessed with a statistic whose distribution had Student’s t distribution under the null hypothesis.For each contrast a t statistic was computed for every voxel to form a statistical parametric map[SPM{t}; Friston et al.,1991].Finally,the SPM{t}was transformed to the unit normal distribution(SPM{Z}).Since the location of the expected micturition related areas was predicted a priori on the basis of the PET study in males, an uncorrected threshold of PϽ0.001was used for these areas.Trends towards activation in the expected micturition control areas were reported when they reached a significance level of PϽ0.005or a Z value of 2.5.This level of significance gives sufficient protection against false positives (Kosslyn et al.,1994;Warburton et al.,1996).The activation in brain areas other than those predicted to be activated during micturition was considered statistically significant only after correction for multiple comparisons. This correction is necessary because,with so many voxel-by-voxel comparisons,many t values will reach a conventional level of significance by chance.The problem was resolved by using a Bonferroni-like correction for the number of voxels studied and reporting only those voxels that achieved a corrected level of significance of PϽ0.05 after such a correction(Friston et al.,1991).ResultsTen of the18volunteers were able to micturate within15s after the beginning of scan2.The collected urine volume of this group of volunteers was423Ϯ97ml(meanϮSD). One successful volunteer,who urinated320ml of urine during the second scan,had to be catheterized to remove a urine volume of380ml prior to scan3.The results obtained in this group will be referred to as‘successful micturition’. The other eight volunteers tried to micturate during scanning but did not succeed(the‘unsuccessful micturition’group). Of the unsuccessful micturition group,all were catheterized (urine volume780Ϯ162ml).The data from the two groups are reported separately.Successful micturition groupIn the10subjects who were able to micturate during scanning,the sites showing significant activation(uncorrected PϽ0.001)in brain areas previously implicated in micturition control are presented in Table1.During micturition(scan2),the right dorsal pontine tegmentum(Fig.2,left)and the right inferior frontal gyrus were significantly activated compared with the empty bladder condition(scan3).Using the same comparison,trends towards activation(uncorrected P value between0.001and 0.005)were observed in the most caudal extension of the PAG(uncorrected PϽ0.002)and the rostral hypothalamus (uncorrected PϽ0.004).Other regions,previously not implicated in micturition control,were not found to be significantly activated(corrected PϽ0.05).Comparing the micturition condition(scan2)with thefilled bladder condition(scan1),increased rCBF was observed in the right inferior frontal gyrus with micturition(Fig.3).A trend towards activation was found in the dorsal pontine tegmentum(uncorrected PϽ0.005).With this comparison, other regions that have not previously been implicated in micturition control were not found to be significantly activated (corrected PϽ0.05).The rCBF in the right anterior cingulate gyrus(Fig.3)was significantly decreased during thefilled bladder condition(scan1)compared with the micturition condition(scan2),but also compared with the empty bladder conditions(scans3and4).Similar significant decreases in rCBF(corrected PϽ0.05) were observed during micturition(scan2)compared with the other three conditions in the left medial frontal gyrus and the right inferior frontal gyrus.Interestingly,the right anterior insula and/or the right frontal operculum were strongly activated(corrected PϽ0.003)during thefilled bladder condition(scan1)compared with the empty bladder conditions,and,to a lesser degree, compared with the micturition condition(Z scoreϭ4.3). Unsuccessful micturition groupIn the eight subjects who were unable to micturate during scanning,the sites showing significant activation are presented in Table paring the second condition (unsuccessful micturition;scan2)with the condition whilst the bladder was empty(scan3),significantly increased rCBF (uncorrected PϽ0.001)was found in the right ventral pontine tegmentum(Fig.2,right)and a trend towards significant activation(PϽ0.002)in the right inferior frontal parison of thefirst condition(withholding of urine)with the unsuccessful micturition condition(scan2) showed a significant decrease in rCBF(uncorrected PϽ0.001)in the right anterior cingulate gyrus.A similar decrease was also found in a comparison with the empty bladder conditions(scans3and4).A trend towards significant activation(PϽ0.004)was found in the right inferior frontal gyrus,but not in the ventral pontine tegmentum.The ventral pontine tegmentum was also strongly activated (corrected PϽ0.05)during thefilled bladder condition(scan 1)compared with the empty bladder conditions(scans3and 4).The right anterior insula and/or the right frontal operculumPET study on micturition in women2037 Table1Regional differences in cerebral bloodflow during successful micturitionCoordinates of peak activation(mm)Z scorex y zMicturition,successful(scan2)minus empty bladder(scan3)Increased rCBFRight inferior frontal gyrus(BA44and45)ϩ52ϩ24ϩ12 3.1 Dorsal pontine tegmentumϩ12Ϫ36Ϫ28 3.6 Periaqueductal greyϩ2Ϫ38Ϫ24 2.8 HypothalamusϪ8ϩ10Ϫ8 2.6 Decreased rCBFRight inferior frontal gyrus(BA44and45)ϩ46ϩ14ϩ24 4.3Left medial frontal gyrusϪ42ϩ40ϩ20 3.6 Micturition,successful(scan2)minus withholding urine(scan1)Increased rCBFRight inferior frontal gyrus(BA45and46)ϩ52ϩ22ϩ4 4.4* Right anterior cingulate gyrus(BA24and32)ϩ14ϩ30ϩ16 3.6 Dorsal pontine tegmentumϩ16Ϫ40Ϫ28 2.5 Decreased rCBFRight inferior frontal gyrus(BA44and45)ϩ46ϩ14ϩ20 4.7* Left medial frontal gyrusϪ42ϩ40ϩ20 4.5* Withholding urine(scan1)minus micturition,successful(scan2)Increased rCBFRight frontal operculum and/or anterior insulaϩ38ϩ10ϩ8 4.3 Decreased rCBFRight anterior cingulate gyrus(BA24and32)ϩ18ϩ38ϩ8 3.9 Withholding urine(scan1)minus empty bladder(scan3)Increased rCBFRight frontal operculum and/or anterior insulaϩ38ϩ10ϩ12 5.1* Decreased rCBFRight anterior cingulate gyrus(BA24and32)ϩ16ϩ32ϩ12 3.8 Peak activations are indicated by x,y and z coordinates according to the stereotaxic atlas of Talairach and Tournoux(1988).BAϭestimated Brodmann area.*Significant after multiple comparisons correction with a threshold of corrected PϽ0.05.were also strongly activated(corrected PϽ0.005)during thefilled bladder condition(scan1)compared with the empty bladder conditions(scan3and4),but not in comparison with the unsuccessful micturition condition(scan2). DiscussionThe present study was designed to determine the brain regions activated during micturition in women and to compare the results with those obtained in the previous study in men.It appeared that the micturition-related brain regions in the pons and cerebral cortex in men and women are the same, and that the PAG and the hypothalamus,which have been found to be significantly activated during micturition in men, showed trends towards increased activation in women.It should be stated that the axialfield of view of the camera did not involve the more superior parts of the cerebral cortex. Areas related to micturitionDorsal pontine tegmentumA distinct area in the dorsal pontine tegmentum was activated during micturition(scan2)when compared with the empty bladder condition(scan3).The location of this pontine area is similar to that of the pontine region found to be activated in men.Since this dorsal pontine region in the cat represents the pontine micturition centre,it seems most likely that a similar group of neurons in the dorsal pons exists in humans (men and women).Right inferior frontal gyrusThe activation of the right inferior frontal gyrus during micturition(scan2)in comparison with a full(scan1)or empty bladder(scan3)is the same in men and women, although it is much less extensive in women.The inferior frontal gyrus,in addition to the dorsolateral prefrontal cortex, is involved in attention mechanisms(Pardo et al.,1991)and response selection(Jenkins et al.,1994).With respect to micturition,the area might play a role in deciding whether or not micturition can take place.The observation that this region is activated during micturition is in agreement with specific involvement of the right prefrontal cortex in micturition control(Kuroiwa et al.,1987;Griffiths,1998). Right anterior cingulate gyrusThe right anterior cingulate gyrus showed a significantly decreased rCBF during the withholding of urine condition2038 B.F .M.Blok etal.Fig.2Left :significant differences in rCBF in the right dorsal pontine tegmentum (indicated by pmc ϭpontine micturition centre)after the comparison between conditions ‘successful micturition’(scan 2)and ‘empty bladder’(scan 3).Right :significant differences in rCBF in the right ventral pontine tegmentum (indicated by L-region)after the comparison between the conditions ‘unsuccessful micturition’(scan 2)and ‘empty bladder’(scan 3).The threshold used for display is uncorrected P Ͻ0.005.The number Ϫ28refers to the distance in millimetres relative to the horizontal plane through the anterior and posterior commissures (z direction).The numbers on the colour scale refer to the corresponding Z scores.Areas with significant activity are superimposed on averaged MRI scans (from six normal subjects)which have been transformed stereotactically to fit a standard atlas.L ϭleft side of the brain;R ϭright side.(scan 1)compared with the successful micturition (scan 2)and empty bladder (scans 3and 4)conditions.This observation is similar to that in the PET study on micturition in men.Possibly,the decrease of rCBF in the right cingulate gyrus during the withholding of urine results in a decrease in the urge to void.Another argument in favour of the anterior cingulate gyrus playing a role in micturition control is that lesions in the forebrain have been reported to cause urge incontinence (Andrew and Nathan,1964;Maurice-Williams,1974).Moreover,studies using SPECT (single photon emission computed tomography)scanning indicate that urge incontinence is associated with hypoperfusion of the right forebrain (Griffiths,1998).Areas related to continence Ventral pontine tegmentumEight of the 18volunteers were unable to micturate when requested,although they tried vigorously (scan 2).In this group the ventral pontine tegmentum showed increased rCBF during scan 2in comparison with scan 3(empty bladder condition).During scan 2,the volunteers were not successful in their attempt to micturate,probably for emotional reasons.Despite a full bladder they contracted their urethral sphincter and withheld their urine.The location of the activated region in the ventral pons is similar to the region which showed increased rCBF in the group of male volunteers,who were also unable to micturate during scanning.In the cat this samepontine region corresponds with the L-region,which is involved in continence control (see Introduction).Interestingly,this same area in the ventral pontine tegmentum also showed strongly increased rCBF during the filled bladder condition (scan 1)compared with the empty bladder conditions (scans 3and 4).Activation of the ventral pons,including the L-region,is probably responsible for the increased activity of the striated urethral sphincter during the continence phase in order to keep the bladder closed.This sphincter activity is at its highest just prior to micturition when the bladder is filled (de Groat,1990).However,although in the successful group one would expect an increased rCBF in the ventral pons during the filled bladder condition (scan 1)compared with the empty bladder conditions (scans 3and 4),such an increase was not found.Right inferior frontal gyrusThe right inferior frontal gyrus was activated during unsuccessful micturition (scan 2)in women.This result is similar to that observed in the previous PET study in men.The importance of the right inferior frontal gyrus in attention mechanisms and response selection has been discussed in the previous paragraph.Right anterior cingulate gyrusIn a similar manner to the successful micturition group,in the unsuccessful group the right anterior cingulate gyrusPET study on micturition in women2039Fig.3Significant differences in rCBF in cortical areas after the comparison between the conditions ‘successful micturition’(scan 2)and ‘urine withholding’(scan 1).Note the activations in the right anterior cingulate gyrus (acg)in z planes ϩ8to ϩ16,and the right inferior frontal gyrus (gfi)in z planes 0to ϩ12.For other details see legend to Fig.2.showed decreased rCBF during scan 1compared with the second scan.This finding is identical to that obtained in the PET study in men who were not able to micturate during scanning.Insular and opercular activation during filled bladder conditionThe right frontal operculum and/or the right anterior insula were significantly activated (corrected for multiple comparisons)during the filled bladder condition (scan 1)compared with the other three conditions in the successful micturition group,and with the empty bladder condition in the unsuccessful micturition group.In the previous PET study on micturition in men we did not comment on activation related to the filled bladder condition (Blok et al.,1997).In retrospect,unpublished results of this studyrevealed that the rCBF in the right anterior insula was also increased during the filled bladder phase (peak activation x ϭϩ32mm,y ϭϩ24mm,z ϭϩ12mm;Z score ϭ4.1)compared with the empty bladder condition,which is similar to the findings in the present study in women.However,in men this activation was not significant for multiple comparisons (corrected P Ͻ0.05).In a recent PET study (Aziz et al.,1997)the right human anterior insula was associated with the processing of non-painful and painful sensation from the oesophagus.Possibly,the bladder-filling information is another example of visceral sensation processed by the anterior insula.Alternatively,activation of the right human insula results in increased sympathetic tone (Oppenheimer et al.,1992).Activation of sympathetic fibres has been shown to inhibit mechanoreceptor discharge in the bladder wall (Vaughan and Satchell,1992).The result is a relaxation of the bladder wall。

相关文档
最新文档