2018年人教版八年级数学下学期期末考试测试试卷(含答案)8
2017-2018学年第二学期期末八年级数学试题(含答案)
2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
2018年浙江省余姚市八年级下学期期末考试数学试卷(人教版)word版含答案
2018年浙江省余姚市八年级下学期期末考试数学试卷一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,只有一个是正确的,请将正确答案填写在括号中。
1、如果分式x11有意义,那么x 的取值范围是( ) A 、x >1 B 、x <1 C 、x ≠1 D 、x =12. 命题“两点之间线段最短”是( )A.角的定义B.假命题C.公理D.定理 3、一直角三角形两边分别为3和5,则第三边为( ) A 、4 B 、34 C 、4或34 D 、2 4、用两个全等的等边三角形,可以拼成下列哪种图形( ) A 、矩形 B 、菱形 C 、正方形 D 、等腰梯形5. 若一个多边形的内角和等于720度,则这个多边形的边数是( ) A.5 B.6 C.7 D.86、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考( )A 、众数B 、平均数C 、加权平均数D 、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为( ) A 、120cm B 、360cm C 、60cm D 、320cm第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为( ) A 、16 B 、14 C 、12 D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为( )A 、100B 、150C 、200D 、300 10、下列命题正确的是( )A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
2017-2018学年八年级(下)期末数学试卷(含答案)
2017-2018学年八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.02.下列根式中,与是同类二次根式的是()A.B.C.D.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.25.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG 10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=.15.代数式a+2﹣+3的值等于.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.20.解分式方程:(1)=(2)=﹣1.21.先化简,再求值:(1﹣)÷,其中a=﹣1.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为().25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.0【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x+1=0,且3x﹣2≠0,再解即可.【解答】解:由题意得:x+1=0,且3x﹣2≠0,解得:x=﹣1,故选:A.2.下列根式中,与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B是中心对称图形.故选:B.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.2【考点】二次根式的性质与化简.【分析】首先根据x的范围确定x﹣3与x﹣2的符号,然后即可化简二次根式,然后合并同类项即可.【解答】解:∵1<x≤2,∴x﹣3<0,x﹣2≤0,∴原式=3﹣x+(2﹣x)=5﹣2x.故选C.5.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=.故选C.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先判断出﹣k2﹣2<0的符号,再根据反比例函数的性质进行比较.【解答】解:∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.【考点】反比例函数的图象.【分析】首先设出函数关系式,根据图象可以计算出k的取值范围,再根据k的取值范围选出答案即可.【解答】解:设函数关系式为y=(k≠0),当函数图象经过A(1,2)时,k=1×2=2,当函数图象经过B(﹣2,﹣2)时,k=(﹣2)×(﹣2)=4,由图象可知要求的函数解析式的k的取值范围必是:2<k<4,故选:C.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.【分析】由四边形ABCD是正方形,可得AB=AD,由DE⊥AG,BF∥DE,易证得BF⊥AG,又由同角的余角相等,可证得∠BAF=∠ADE,则可利用AAS判定△AED ≌△BFA;由全等三角形的对应边相等,易证得DE﹣BF=EF;有两角对应相等的三角形相似,可证得△BGF∽△DAE;利用排除法即可求得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,AD∥BC,∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠DEF=∠BFE=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE,∴△AED≌△BFA(AAS);故A正确;∴DE=AF,AE=BF,∴DE﹣BF=AF﹣AE=EF,故B正确;∵AD∥BC,∴∠DAE=∠BGF,∵DE⊥AG,BF⊥AG,∴∠AED=∠GFB=90°,∴△BGF∽△DAE,故C正确;∵DE,BG,FG没有等量关系,故不能判定DE﹣BG=FG正确.故选D.10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4【考点】翻折变换(折叠问题);矩形的性质.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC===4.故选D.二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为4.【考点】射影定理.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率=频数÷数据总和计算出成绩在90.5~95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是=0.4.故本题答案为:0.4.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= 2.【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再根据中线的定义即可求出BD的长.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF=AD,∵EF=1,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.15.代数式a+2﹣+3的值等于4.【考点】二次根式有意义的条件.【分析】根据二次根式的意义先求出a的值,再对式子化简.【解答】解:根据二次根式的意义,可知,解得a=1,∴a+2﹣+3=1+3=4.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3.【考点】分式的化简求值.【分析】将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为=,约分即可.【解答】解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.【考点】反比例函数综合题.【分析】先求出Q的坐标为(0,﹣2),P点坐标为(,0),易证Rt△OQP ∽Rt△MRP,根据三角形相似的性质得到==,分别求出PM、RM,得到OM的长,从而确定R点坐标,然后代入(k>0)求出k的值.【解答】解:对于y=x﹣2,令x=0,则y=﹣2,∴Q的坐标为(0,﹣2),即OQ=2;令y=0,则x=,∴P点坐标为(,0),即OP=;∵Rt△OQP∽Rt△MRP,而△OPQ与△PRM的面积是4:1,∴==,∴PM=OP=,RM=OQ=1,∴OM=OP+PM=,∴R点的坐标为(,1),∴k=×1=.故答案为.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE 时,EP+BP=8.【考点】相似三角形的判定与性质.【分析】如图,延长EF交BQ的延长线于G.首先证明PB=PG,EP+PB=EG,由EG∥BC,推出==2,即可求出EG解决问题.【解答】解:如图,延长EF交BQ的延长线于G.∵EG∥BC,∴∠G=∠GBC,∵∠GBC=∠GBP,∴∠G=∠PBG,∴PB=PG,∴PE+PB=PE+PG=EG,∵CQ=EC,∴EQ=2CQ,∵EG∥BC,∴==2,∵BC=4,∴EG=8,∴EP+PB=EG=8,故答案为8三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.【考点】二次根式的混合运算;分式的混合运算.【分析】(1))原式各项化为﹣3﹣3+2﹣,合并同类二次根式即可得到结果.(2)先计算括号里面的分式的减法,再分式的除法的方法计算.【解答】(1)解:(1)原式=﹣3﹣3+2﹣=﹣1﹣3;(2)原式=﹣=.20.解分式方程:(1)=(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母,得x+2=3,解得:x=1经检验,x=1是增根,原方程无解;(2)去分母,得3(5x﹣4)=﹣(4x+10)﹣3(x﹣2),解得:x=,经检验,x=是原方程的解.21.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据良的天数除以良的天数所占的百分比,可得样本容量,根据样本容量乘以轻微污染所占的百分比求出轻微污染的天数,可得答案;(2)根据一年的时间乘以优良所占的百分比,可得答案;(3)根据根据一年中优的天数比上一年的天数,可得答案.【解答】解:(1)样本容量3÷5%=60,60﹣12﹣36﹣3﹣2﹣1=6,条形统计图如图:(2)这一年空气质量达到“优”和“良”的总天数为:365×=292;(3)随机选取这一年内某一天,空气质量是“优”的概率为:=.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(3,5),B′(5,5),C′(7,3);(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).【考点】作图﹣位似变换.【分析】(1)利用位似图形的性质得出变化后图形即可;(2)利用已知图形得出对应点坐标;(3)利用各点变化规律,进而得出答案.【解答】解:(1)如图所示:四边形TA′B′C′即为所求;(2)A′(3,5),B′(5,5),C′(7,3);故答案为:(3,5),(5,5),(7,3);(3)在(1)中,∵A(2,3),B(3,3),C(4,2),A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);∴D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).故答案为:(2a﹣1,2b﹣1).25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A点坐标代入代入y=(x>0),求出m的值为2,再将(2,2)代入y=kx﹣k,求出k的值,即可得到一次函数的解析式;(2)根据图象即可求得;(3)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.【解答】解:(1)将A(m,2)代入y=(x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2,则一次函数解析式为y=2x﹣2;(2)∵A(2,2),∴当0<x≤2时,y1≥y2;(3)∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为B(0,﹣2),S△ABP=S△ACP+S△BPC,∴×2CP+×2CP=4,解得CP=2,则P点坐标为(3,0),(﹣1,0).26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.【考点】分式方程的应用.【分析】(1)设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,根据小明和小丽能买到相同数量的笔记本建立方程求出其解就可以得出结论;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,根据小明和小丽能买到相同数量的笔记本建立方程就可以得出m与a的关系,就可以求出结论.【解答】解:(1))设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,由题意,得,解得:x=1.6.此时=7.5(不符合题意),所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,由题意,得,解得:a=m,∵a为正整数,∴m=4,8,12.∴a=3,6,9.当时,(不符合题意)∴a的值为3或9.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.【考点】相似形综合题.【分析】(1)根据点A、C的坐标求出AC的长,根据题意求出点B的坐标,利用待定系数法求出过点A,B的直线的函数表达式;(2)过点B作BD⊥AB,交x轴于点D,根据相似三角形的性质列出比例式,计算即可;(3)分PQ∥BD时和PQ⊥AD时两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:(1)∵点A(﹣3,0),C(1,0),∴AC=4,又BC=AC,∴BC=3,∴B点坐标为(1,3),设过点A,B的直线的函数表达式为:y=kx+b,则,解得,,∴直线AB的函数表达式为:y=x+;(2)如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ABD=∠ACB,∴△ADB∽△ABC,∴D点为所求,∵△ADB∽△ABC,∴,即=,解得,CD=,∴,∴点D的坐标为(,0);(3)在Rt△ABC中,由勾股定理得AB==5,如图2,当PQ∥BD时,△APQ∽△ABD,则=,解得,m=,如图3,当PQ⊥AD时,△APQ∽△ADB,则=,解得,m=,所以若△APQ与△ADB相似时,m=或.。
2018年深圳市八年级下学期数学期末试卷含解析
2018年深圳市八年级下学期数学期末试卷含解析2018年广东省深圳市八年级下学期数学试卷一、选择题(共12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)如果分式$\frac{5}{x+3}$有意义,则x的取值范围是()。
A。
$x=-3$ B。
$x>-3$ C。
$x\neq-3$ D。
$x<-3$2.(3分)如图,图形中,既是轴对称图形又是中心对称图形的是()。
图片省略]。
XXX$3.(3分)已知实数a,b,若a>b,则下列结论错误的是()。
A。
$a+6>b+6$ B。
$a-2>b-2$ C。
$-2a>-2b$ D。
$a^2>b^2$4.(3分)将点A(1,-1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()。
A。
(-2,1) B。
(-2,-1) C。
(2,1) D。
(2,-1)5.(3分)若一个多边形的内角和是1080度,则这个多边形的边数为()。
A。
6 B。
7 C。
8 D。
106.(3分)下列多项式中,可以提取公因式的是()。
A。
$ab+cd$ B。
$mn+m^2$ C。
$x^2-y^2$ D。
$x^2+2xy+y^2$7.(3分)DE平分∠ADC,AD=8,BE=3,如图,在▱ABCD中,则▱ABCD的周长是()。
图片省略]。
A。
16 B。
14 C。
26 D。
248.(3分)下列命题中,错误的是()。
A。
过n边形一个顶点的所有对角线,将这个多边形分成(n-2)个三角形。
B。
三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点。
C。
三角形的中线将三角形分成面积相等的两部分。
D。
一组对边平行另一组对边相等的四边形是平行四边形9.(3分)如图,在△ABC中,∠ACB=90°,分别以点A 和点B为圆心以相同的长(大于AB)为半径作弧,两弧相交于点M和N点,作直线MN交AB于点D,交BC于点E,若AC=3,BC=4,则BE等于()。
浙江省杭州市萧山区2018学年初二第二学期期末考试数学试卷(含答案)
萧山区2018学年第二学期期末教学质量检测八年级数学 试题卷一、选择题(本题有10小题,每小题3分,共30分)1、计算:22-)(=( )A. 2B. -2C. ±2D. 42、中国传统扇文化有着深厚的底蕴,下列扇面图形既是轴对称图形又是中心对称图形的是( )A. B. C. D.3、若x=1是方程x 2-2mx+3=0的解,则m 的值为( )A. 25B. 2C. 21D. -24、已知平行四边形ABCD 中,∠A+∠C=200°,则∠B 的度数是( )A. 60°B. 80°C. 100°D. 160°5、对于一组数据:85,95,85,80,80,85,下列说法不正确的是( )A. 平均数为85B. 众数为85C. 中位数为82.5D. 方差为25 6、已知反比例函数x k y(k 为常数,且k ≠0)的图象经过点(3,4),则该函数图象必不经过点( )A. (2,6)B. (-1,-12)C. (21,24)D. (-3,8)7、若m=37-4,则( )A. 1.5<m <2B. 2<m <2.5C. 2.5<m <3D. 3<m <3.58、据统计,湘湖景区跨湖桥遗址参观人数2016年为10.8万人次,2018年为16.8万人次,设该景点2016-2018年参观人次的年平均增长率为x ,则可列方程( )A. 10.8(1+x )=16.8B. 10.8(1+2x )=16.8C. 10.8(1+x )2=16.8D. 10.8[(1+x )+(1+x )2]=16.89、如图,点A ,B ,E 在同一条直线上,正方形ABCD ,BEFG 的面积分别为m ,n ,H 为线段DF 的中点,则BH 的长为( )A. 222n m +B. 222n m +C. 22222n m + D. )(n m +22 10、已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数32的图象上,且x 1<x 2<x 3,( )A. 若y 3<y 1<y 2,则x 1+x 2+x 3>0B. 若y 1<y 3<y 2,则x 1x 2x 3<0C. 若y 2<y 3<y 1,则x 1+x 2+x 3>0D. 若y 2<y 1<y 3,则x 1x 2x 3<0二、填空题:本题有6小题,每小题3分,共18分.11.当x=54时,二次根式√x +1的值为 . 12. 甲、乙两地某10天的日平均气温统计图如图所示.则甲、乙两地这10天的日平均气温的方差大小关系为:S 甲2 S 乙2.(用>,=,<填空)13. 当0<m <3时,一元二次方程x 2+mx+m=0的根的情况是 .14.如图,在平面直角坐标系xoy 中,矩形ABCD 的边AB 在x 轴上,AO=2,BO=3,BC=4.将正方形沿箭头方向推,使点D 落在y 轴正半轴上点D’处,则点C 的对应点C ’的坐标为 .15.如图,△OAB 的顶点A 在双曲线y=6x (x >0)上,顶点B 在双曲线y=-4x (x <0)上,AB 中点P 恰好落在y 轴上,则△OAB 的面积为 .16.在菱形ABCD 中,∠A=60°,对角线BD=3,以BD 为底边作顶角为120°的等腰三角形BDE ,则AE 的长为 .三、解答题:本题有7小题,共52分.解答应写出文字说明,证明过程或推演步骤.17.(本题满分6分)计算:(1)√18-4√12; (2)(1-√2)2+√24÷√3.18.(本题满分6分)选用适当的方法解下列方程:(1)(x -2)2-9=0; (2)x (x+4)=x+4.19.(本题满分7分)为了解某校八年级150名女生的身高情况,从中随机抽取10名女生,测得身高并绘制如下条形统计图.(1)求出这10名女生的身高的中位数和众数;(2)依据样本估计该校八年级全体女生的平均身高;(3)请你依据这个样本,在该校八年级中,设计一个挑选50名女生组成方队的方案(要求选中女生的身高尽可能接近).20.(本题满分7分)关于x的方程ax2+bx+c=0(a≠0).(1)已知a,c异号,试说明此方程根的情况.(2)若该方程的根是x1=-1,x2=3,试求方程a(x+2)2+bx+2b+c=0的根.21.(本题满分8分)如图,在正方形ABCD中,E,F分别为AB,AD上的点,且AE=AF,点M是EF的中点,连结CM.(1)求证:CM⊥EF.,请直接写出CM的长.(2)设正方形ABCD的边长为2,若五边形BCDEF的面积为23822.(本题满分8分)的图象交于点A(a,3),B(-1,b).已知一次函数y1=3x-3的图象与反比例函数y2=mx(1)求a,b的值和反比例函数的表达式.(2)设点P(h,y1),Q(h,y2)分别是两函数图象上的点.①试直接写出当y1>y2时h的取值范围;②若y2- y1=3,试求h的值.23.(本题满分10分)如图,矩形ABCD中,BC>AB,E是AD上一点,△ABE沿BE折叠,点A恰好落在线段CE上的点F处.(1)求证:CF=DE;(2)设AB=m.AD,试求∠AB E的度数;①若m=√32②设AE=k,试求m与k满足的关系式.AD。
2017-2018学年第二学期期末调研考试八年级数学试题及答案(含评分标准与解析)
2017—2018学年度第二学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
题号 一 二 三20 21 22 23 24 25 26 得分一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中.) 题号1 2 3 4 5 6 7 8 答案 题号 9 10 11 12 13 14 15 16 答案1. 下列根式中,不能与3合并的是………………………….……………………( )A .13 B .13C .23D .12 2.下表记录了甲、乙、丙、丁四名同学参加该市 “我们身边的感动”演讲比赛学校选拔赛,最近几次成绩的平均数与方差如下表:甲 乙 丙 丁 平均数(分) 90 80 85 80方差 2.4 3.6 5.4 2.4根据表中数据,要从中选择一名成绩好且发挥稳定的同学参加市级比赛,应该选择…( ) A .甲 B .乙 C .丙 D .丁3.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为…………………………………………………………………………( ) A .y=x+2 B .y=x 2+2 C .2y x =+ D .12y x =+ 4.下列计算正确的是…………………………………………………………………( ) A .4646⨯= B .4610+= C .()21515-=- D .40522÷=5.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是………( ) A .平均数 B .中位数 C .众数 D .方差 6.矩形ABCD 的对角线AC 、BD 交于点O ,以下结论不一定...成立的是……………( ) 总分 核分人A .∠BCD=90°B .AC ⊥BD C .AC=BD D .OA=OB7.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则这组数据的中位数是…( ) A .2 B .3 C .5 D .7 8.已知:2xy =,521x y -=-,则(x+1)(y ﹣1)的值为……………………( ) A .42- B .622- C .62 D .无法确定9.在四边形ABCD 中AC 、BD 相交于点O ,下列说法错误..的是……………………( ) A .AB ∥CD ,AD=BC ,则四边形ABCD 是平行四边形B .AO=CO ,BO=DO 且AC ⊥BD ,则四边形ABCD 是菱形 C .AO=OB=OC=OD ,则四边形ABCD 是矩形D .∠A=∠B=∠C=∠D 且AB=BC ,则则四边形ABCD 是正方形10.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC ,那么这四个三角形中,不是..直角三角形的是……………………………………………( ) A . B . C . D .11.关于函数y=﹣x ﹣2的图象,有如下说法:①图象过(0,﹣2)点;②图象与x 轴交点是(﹣2,0);③从图象知y 随x 增大而增大;④图象不过第一象限;⑤图象是与y=﹣x 平行的直线.其中正确说法有………( ) A .2个 B .3个 C .4个 D .5个 12.如图,在△ABC 中,∠ACB=90°,D 在BC 上,E 是AB 的中点,AD 、CE 相交于F ,且AD=DB .若∠B=20°,则∠DFE 等于……( ) A .30° B .40° C .50° D .60° 13.若式子()011k k -+-有意义,则一次函数y=(1﹣k )x+k ﹣1的图象可能是…( )A .B .C .D .14.平面直角坐标系中,O 是坐标原点,点A 的坐标是(4,0),点P 在直线y=﹣x+m 上,且AP=OP=4.则m 的值为……………………………………………………( ) A .223+或223- B .4或﹣4 C .23或23- D .423+或423-15.如图,在Rt△ABC中,∠ACB=90°,D为斜边AB的中点,动点P从B点出发,沿B→C→A运动.如图(1)所示,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则图(2)中Q点的坐标是……………………………()A.(4,4)B.(4,3)C.(4,6)D.(4,12)16.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E、F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=25.以上结论中,你认为正确的是………………………………………………………()A.①②③B.①③④C.①②④D.②③④二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.如图,函数y=ax+m和y=bx的图象相交于点A,则不等式bx≥ax+m的解集为.18.如图,平行四边形ABCD中,AE⊥BD于E,CF⊥BD于F,∠ABC=75°,∠DBC=30°,BC=2,则BD的长度为.19.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第3个等腰直角三角形A3B2B3顶点B3的横坐标为,第2018个等腰直角三角形A2018B2017B2018顶点B2018的横坐标为.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题共2小题,每小题4分,满分8分)(1)11484320.583⎛⎫⎛⎫---⎪ ⎪⎪ ⎪⎝⎭⎝⎭;(2)()()()215225382-+--+⨯.21.(本题满分9分)有一块边长为40米的正方形绿地ABCD,如图所示,在绿地旁边E处有健身器材,BE=9米.由于居住在A 处的居民去健身践踏了绿地(图中AE),小明想在A处树立一个标牌“少走米,踏之何忍”.请你计算后帮小明在标牌的处填上适当的数.22.(本题满分9分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)这20名学生每人植树量的众数是,中位数是;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(本题满分9分)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为点E.连接DE,则线段DE与线段AC有怎样的数量关系?请证明你的结论.24.(本题满分10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的14时,求出这时点M的坐标.25.(本题满分11分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)。
人教版八年级数学下册期末测试题 (24)
江西省南昌市2017-2018学年八年级(下)期末数学试卷(解析版)一、选择题(共8小题,每小题3分,满分24分)1.若+3=x,则x的取值范围是()A.x<3 B.x≤3 C.x>3 D.x≥32.在△ABC中,AB=2,BC=,AC=,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形3.在▱ABCD中,∠B=60°,则下列各式中,不能成立的是()A.∠D=60° B.∠C+∠D=180°C.∠A=120°D.∠C+∠A=180°4.如图,在菱形ABCD中,BE⊥AD于E,BF⊥CD于F,且AE=DE,则∠EBF的度数是()A.75°B.60°C.50°D.45°5.函数y=﹣2x+5(1≤x≤2)的图象是()A.直线B.射线C.线段D.曲线6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(﹣2,﹣3),(4,﹣6)B.(﹣2,3),(4,6) C.(2,﹣3),(﹣4,6)D.(2,3),(﹣4,6)7.某校乒乓球训练队共有9名队员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,13,15,则他们年龄的众数为()A.12 B.13 C.14 D.158.甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S甲2=1.44,S乙2=18.8,S丙2=25,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选()A.甲队B.乙队C.丙队D.哪一个都可以二、填空题(共6小题,每小题3分,满分18分)9.若是一个整数,则x可取的最小正整数是.10.一次函数y=mx+|m﹣1|的图象过点(0,2)且y随x的增大而减小,则m= .11.如图,在矩形ABCD中,AD=2AB,E是AD上一点,且BE=BC,则∠ECD的度数是.12.若直线y=2x﹣4与x轴交于点A,与y轴交于点B,则△AOB的面积是.13.若一组数据2,4,x,﹣1极差为7,则x的值可以是.14.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.三、解答题(共4小题,满分24分)15.计算:(2﹣)(2+)+(﹣1)2011(﹣π)0﹣()﹣1.16.一组数据2,3,4,x中,若中位数与平均数相同,求x的值.17.已知y=(k﹣1)x|k|﹣k是一次函数.(1)求k的值;(2)若点(2,a)在这个一次函数的图象上,求a的值.18.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.四、解答题(共24分)19.电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解答下列问题.(1)分别写出当0≤x≤100和x>100时,y与x之间的函数关系式;(2)若该用户某月用电80度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?20.(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为A.平行四边形 B.菱形 C.矩形 D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形.②求四边形AFF′D的两条对角线的长.21.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:序号1 2 3 4 5 6项目笔试成绩85 92 84 90 84 80/分面试成绩90 88 86 90 80 85/分根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是分,众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.五、综合题(10分)22.如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.若+3=x,则x的取值范围是()A.x<3 B.x≤3 C.x>3 D.x≥3【分析】已知等式变形后,利用二次根式性质确定出x的范围即可.【解答】解:已知等式整理得: =|x﹣3|=x﹣3,∴x﹣3≥0,解得:x≥3,故选D【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.2.在△ABC中,AB=2,BC=,AC=,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【分析】根据勾股定理的逆定理即可判断.【解答】解:∵AB2+BC2=22+()2=7,AC2=()2=7,∴AB2+BC2=AC2,∴△ABC是直角三角形.故选B.【点评】本题考查勾股定理的逆定理.解题的关键是掌握利用勾股定理的逆定理的解题步骤,属于中考常考题型.3.在▱ABCD中,∠B=60°,则下列各式中,不能成立的是()A.∠D=60° B.∠C+∠D=180°C.∠A=120°D.∠C+∠A=180°【分析】由于平行四边形中相邻内角互补,对角相等,而∠A和∠C是对角,而它们和∠B是邻角,∠D和∠B 是对角,由此可以分别求出它们的度数,然后可以判断了.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AD∥BC,∴∠C+∠D=180°,∵∠B=60°,∴∠A=∠C=120°,∠D=60°.∴选项A、B、C正确,选项D错误.故选D.【点评】本题主要考查了平行四边形的性质;熟记平行四边形的对角相等,邻角互补是解决问题的关键.4.如图,在菱形ABCD中,BE⊥AD于E,BF⊥CD于F,且AE=DE,则∠EBF的度数是()A.75°B.60°C.50°D.45°【分析】连结BD,如图,先利用线段垂直平分线的性质得到BA=BD,再根据菱形的性质得AB=AD,AB∥CD,则可判断△ABD为等边三角形得到∠A=60°,再计算出∠ADC=120°,然后利用四边形内角和可计算出∠EBF的度数.【解答】解:连结BD,如图,∵BE⊥AD,AE=DE,∴BA=BD,∵四边形ABCD为菱形,∴AB=AD,AB∥CD,∴AB=AD=BD,∴△ABD为等边三角形,∴∠A=60°,∵AB∥CD,∴∠ADC=120°,∵BF⊥CD,∴∠EBF=360°﹣120°﹣90°﹣90°=60°.故选B.【点评】本题考查了菱形的性质:有一组邻边相等的平行四边形叫做菱形.熟练掌握菱形的性质(菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角).解决此题的关键是判断△ABD为等边三角形.5.函数y=﹣2x+5(1≤x≤2)的图象是()A.直线B.射线C.线段D.曲线【分析】由于一次函数y=﹣2x+5为直线,但当1≤x≤2时,函数y=﹣2x+5(1≤x≤2)的图象应该为线段.【解答】解:当x=1时,y=﹣2x+5=3;当x=2时,y=﹣2x+5=1,所以当1≤x≤2时,1≤y≤3,所以函数y=﹣2x+5(1≤x≤2)的图象是一条线段.故选C.【点评】本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(﹣2,﹣3),(4,﹣6)B.(﹣2,3),(4,6) C.(2,﹣3),(﹣4,6)D.(2,3),(﹣4,6)【分析】由于正比例函数图象上点的纵坐标和横坐标的比相同,找到比值相同的一组数即可.【解答】解:A、∵≠,∴两点不在同一个正比例函数图象上,故本选项错误;B、∵≠,∴两点不在同一个正比例函数图象上,故本选项错误;C、∵=,∴两点在同一个正比例函数图象上,故本选项正确;D、∵≠,∴两点不在同一个正比例函数图象上,故本选项错误.故选C.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.某校乒乓球训练队共有9名队员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,13,15,则他们年龄的众数为()A.12 B.13 C.14 D.15【分析】由于众数是一组实际中出现次数最多的数据,由此可以确定这组数据的众数.【解答】解:依题意得13在这组数据中出现四次,次数最多,∴他们年龄的众数为13.故选B.【点评】此题考查了众数的定义,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.8.甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S甲2=1.44,S乙2=18.8,S丙2=25,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选()A.甲队B.乙队C.丙队D.哪一个都可以【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.44,S乙2=18.8,S丙2=25,∴S甲2最小,∴他应选甲队;故选A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题(共6小题,每小题3分,满分18分)9.若是一个整数,则x可取的最小正整数是 3 .【分析】由于=2,则当x为3的完全平方数倍时,2为整数,于是可判断x可取的最小正整数为3.【解答】解: ==2,因为2为整数,而x为整数,所以x可取的最小正整数为3.故答案为3.【点评】本题考查了二次根式的性质与化简:利用使用=|a|化简二次根式.10.一次函数y=mx+|m﹣1|的图象过点(0,2)且y随x的增大而减小,则m= ﹣1 .【分析】首先根据一次函数与y轴的交点坐标为(0,b)可得|m﹣1|=2,解出m的值,再根据y随x的增大而减小可得m<0,进而即可确定出m的值.【解答】解:∵一次函数y=mx+|m﹣1|的图象过点(0,2),∴|m﹣1|=2,解得:m=3或﹣1,∵y随x的增大而减小,∴m<0,∴m=﹣1,故答案为:﹣1.【点评】此题主要考查了一次函数的性质,关键是掌握一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.y=kx+b与y轴交于(0,b).11.如图,在矩形ABCD中,AD=2AB,E是AD上一点,且BE=BC,则∠ECD的度数是15°.【分析】根据矩形性质得出∠D=∠ABC=90°,AD=BC,DC∥AB,根据AE=2AD,得出∠DEA=30°=∠EAB,求出∠EBA的度数,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴∠D=∠ABC=90°,AD=BC,DC∥AB,∵AB=2AD,∴∠DEA=30°,∵DC∥AB,∴∠DEA=∠EAB=30°,∵AE=AB,∴∠ABE=∠AEB=(180°﹣∠EAB)=75°,∵∠ABC=90°,∴∠EBC=90°﹣75°=15°,故答案为:15°.【点评】本题考查了矩形性质,三角形的内角和定理,平行线性质,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出∠ABC和∠EBA的度数,题目比较好,是一道综合性比较强的题目.12.若直线y=2x﹣4与x轴交于点A,与y轴交于点B,则△AOB的面积是 4 .【分析】由直线解析式可先求得A、B的坐标,从而可求得OA、OB,再利用三角形的面积公式可求得答案.【解答】解:在直线y=2x﹣4中,令y=0可得x=2,令x=0可得y=﹣4,∴A(2,0),B(0,﹣4),∴OA=2,OB=4,∴S△AOB=OAOB=×2×4=4,故答案为:4.【点评】本题主要考查一次函数与坐标轴的交点,掌握直线与坐标轴的交点坐标的求法是解题的关键.13.若一组数据2,4,x,﹣1极差为7,则x的值可以是﹣3或6 .【分析】分两种情况讨论,①x为最小数,②x为最大数,再由极差的定义,可得出x的值.【解答】解:①若x为这组数据的最小数,则4﹣x=7,解得:x=﹣3;②若x为这组数据的最大数,则x﹣(﹣1)=7,解得:x=6;故答案为:﹣3或6;【点评】本题考查了极差的知识,属于基础题,掌握极差的定义是解题的关键,注意分类讨论,不要漏解.14.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为2或2或2 .【分析】利用分类讨论,当∠APB=90°时,易得∠PAB=30°,利用锐角三角函数得AP的长;当∠ABP=90°时,分两种情况讨论,情况一:如图2易得BP,利用勾股定理可得AP的长;情况二:如图3,利用直角三角形斜边的中线等于斜边的一半得出结论.【解答】解:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=4,∴AP=ABsin60°=4×=2;当∠ABP=90°时(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP===2,在直角三角形ABP中,AP==2,情况二:如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=2,故答案为:2或2或2.【点评】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,分类讨论,数形结合是解答此题的关键.三、解答题(共4小题,满分24分)15.计算:(2﹣)(2+)+(﹣1)2011(﹣π)0﹣()﹣1.【分析】根据零指数幂、负整数指数幂和平方差公式得到原式=4﹣3+(﹣1)×1﹣2,然后进行乘法运算后合并即可.【解答】解:原式=4﹣3+(﹣1)×1﹣2=4﹣3﹣1﹣2=﹣2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.16.一组数据2,3,4,x中,若中位数与平均数相同,求x的值.【分析】先分三种情况讨论,当x≤2时,2<x<4时,x≥4时,再根据中位数与平均数相同,列出算式,求出x的值即可得出答案.【解答】解:当x≤2时,有=,解得x=1.当2<x<4时,有=,解得x=3.当x≥4时, =,解得x=5.则x的值为1或3或5.【点评】本题考查了平均数和中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.17.已知y=(k﹣1)x|k|﹣k是一次函数.(1)求k的值;(2)若点(2,a)在这个一次函数的图象上,求a的值.【分析】(1)由一次函数的定义可知:k﹣1≠0且|k|=1,从而可求得k的值;(2)将点的坐标代入函数的解析式,从而可求得a的值.【解答】解:(1)∵y是一次函数,∴|k|=1,解得k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.(2)将k=﹣1代入得一次函数的解析式为y=﹣2x+1.∵(2,a)在y=﹣2x+1图象上,∴a=﹣4+1=﹣3.【点评】本题主要考查的是一次函数的定义,依据一次函数的定义求得k的值是解题的关键.18.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.【分析】(1)根据菱形的四条边都相等,又∠A=60°,得到△ABD是等边三角形,∠ABD是60°;(2)先求出OB的长和∠BOE的度数,再根据30°角所对的直角边等于斜边的一半即可求出.【解答】解:(1)在菱形ABCD中,AB=AD,∠A=60°,∴△ABD为等边三角形,∴∠ABD=60°;(4分)(2)由(1)可知BD=AB=4,又∵O为BD的中点,∴OB=2(6分),又∵OE⊥AB,及∠ABD=60°,∴∠BOE=30°,∴BE=1.19.电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解答下列问题.(1)分别写出当0≤x≤100和x>100时,y与x之间的函数关系式;(2)若该用户某月用电80度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?【分析】(1)对0≤x≤100段,列出正比例函数y=kx,对x≥100段,列出一次函数y=kx+b;将坐标点代入即可求出.(2)根据(1)的函数解析式以及图标即可解答即可.【解答】解:(1)当0≤x≤100时,设y=kx,则有65=100k,解得k=0.65.∴y=0.65x.当x>100时,设y=ax+b,则有,解得∴y=0.8x﹣15.(2)当用户用电80度时,该月应缴电费0.65×80=52(元).当用户缴费105元时,由105=0.8x﹣15,解得x=150.∴该用户该月用电150度.【点评】本题主要考查一次函数的应用,关键考查从一次函数的图象上获取信息的能力.20.(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为 CA.平行四边形 B.菱形 C.矩形 D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形.②求四边形AFF′D的两条对角线的长.【分析】(1)根据矩形的判定,可得答案;(2)①根据菱形的判定,可得答案;②根据勾股定理,可得答案.【解答】解:(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为矩形,故选:C;(2)①证明:∵纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,∴AE=3.如图2:,∵△AEF,将它平移至△DE′F′,∴AF∥DF′,AF=DF′,∴四边形AFF′D是平行四边形.在Rt△AEF中,由勾股定理,得AF===5,∴AF=AD=5,∴四边形AFF′D是菱形;②连接AF′,DF,如图3:在Rt△DE′F中E′F=FF′﹣E′F′=5﹣4=1,DE′=3,∴DF===,在Rt△AEF′中EF′=EF+FF′=4+5=9,AE=3,∴AF′===3.【点评】本题考查了图形的剪拼,利用了矩形的判定,菱形的判定,勾股定理.21.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:序号1 2 3 4 5 6项目笔试成绩85 92 84 90 84 80/分面试成绩90 88 86 90 80 85/分根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是84.5 分,众数是84 分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.【分析】(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【解答】解:(1)把这组数据从小到大排列为,80,84,84,85,90,92,最中间两个数的平均数是(84+85)÷2=84.5(分),则这6名选手笔试成绩的中位数是84.5分,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84分;故答案为:84.5,84;(2)设笔试成绩和面试成绩各占的百分比是x,y,根据题意得:,解得:,笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分),则综合成绩排序前两名人选是4号和2号.【点评】此题考查了加权平均数,用到的知识点是中位数、众数、加权平均数的计算公式,关键灵活运用有关知识列出算式.五、综合题(10分)22.如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.由四边形CADF、CBEG是正方形,可得AD=CA,∠DAC=∠ABC=90°,又由同角的余角相等,求得∠ADD1=∠CAB,然后利用AAS证得△ADD1≌△CAB,根据全等三角形的对应边相等,即可得DD1=AB;(2)首先过点C作CH⊥AB于H,由DD1⊥AB,可得∠DD1A=∠CHA=90°,由四边形CADF是正方形,可得AD=CA,又由同角的余角相等,求得∠ADD1=∠CAH,然后利用AAS证得△ADD1≌△CAH,根据全等三角形的对应边相等,即可得DD1=AH,同理EE1=BH,则可得AB=DD1+EE1.(3)证明方法同(2),易得AB=DD1﹣EE1.【解答】(1)证明:∵四边形CADF、CBEG是正方形,∴AD=CA,∠DAC=∠ABC=90°,∴∠DAD1+∠CAB=90°,∵DD1⊥AB,∴∠DD1A=∠ABC=90°,∴∠DAD1+∠ADD1=90°,∴∠ADD1=∠CAB,在△ADD1和△CAB中,,∴△ADD1≌△CAB(AAS),∴DD1=AB;(2)解:AB=DD1+EE1.证明:过点C作CH⊥AB于H,∵DD1⊥AB,∴∠DD1A=∠CHA=90°,∴∠DAD1+∠ADD1=90°,∵四边形CADF是正方形,∴AD=CA,∠DAC=90°,∴∠DAD1+∠CAH=90°,∴∠ADD1=∠CAH,在△ADD1和△CAH中,,∴△ADD1≌△CAH(AAS),∴DD1=AH;同理:EE1=BH,∴AB=AH+BH=DD1+EE1;(3)解:AB=DD1﹣EE1.证明:过点C作CH⊥AB于H,∵DD1⊥AB,∴∠DD1A=∠CHA=90°,∴∠DAD1+∠ADD1=90°,∵四边形CADF是正方形,∴AD=CA,∠DAC=90°,∴∠DAD1+∠CAH=90°,∴∠ADD1=∠CAH,在△ADD1和△CAH中,,∴△ADD1≌△CAH(AAS),∴DD1=AH;同理:EE1=BH,∴AB=AH﹣BH=DD1﹣EE1.【点评】此题考查了正方形的性质与全等三角形的判定与性质.此题难度适中,注意数形结合思想的应用,注意掌握辅助线的作法.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图 8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题 9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a,那么,使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为14,且使关于x的不等式组⎩⎨⎧x+2≤a,1-x≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题。
河南省洛阳市2018-2019学年八年级(下)期末数学试卷(含解析)
河南省洛阳市2018-2019学年八年级第二学期期末数学试卷一、选择题(共10小题,30分)1.二次根式中x的取值范围是()A.x≥﹣2B.x≥2C.x≥0D.x>﹣22.估计+1的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间3.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A.众数B.方差C.平均数D.中位数4.在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有()A.3种B.4种C.5种D.6种5.下列式子一定成立的是()A.=a B.=C.=D.=26.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:(米)若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁7.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7%B.众数是15.3%C.平均数是15.98%D.方差是08.如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A.52B.48C.40D.209.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A.B.C.D.10.如图,在▱ABCD中,AB=4,BC=6.以点C为圆心,适当长为半径画弧,交BC于点E,交CD于点F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点P,射线CP交BA的延长线于点Q,则AQ的长是()A.1B.1C.2D.2二、填空题(共5小题,15分)11.已知直角三角形的两边的长分别是3和4,则第三边长为.12.如图,一次函数y=﹣x+1与y=2x+m的图象相交于点P(n,2),则关于x的不等式﹣x+1>2x+m>0的解集为.13.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是.14.已知:正方形ABCD的边长为8,点E、F分别在AD、CD上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.15.如图,△ACB和△DCE都是等腰直角三角形,CA=CB,CD=CE,∠ACB=∠DCE=90°,△ACB的顶点A在△DCE的斜边DE上,且AD=,AE=3,则AC=.三、解答题(共8个小题,共75分)16.(8分)计算下列各式的值:(1)÷×;(2)(1﹣)2﹣|﹣2|.17.(8分)如图,在矩形纸片ABCD中,已知边AB=3,BC=5,点E在边CD上,连接AE,将四边形ABCE 沿直线AE 折叠,得到多边形AB ′C ′E ,且B ′C ′恰好经过点D .求线段CE 的长度.18.(9分)老师随机抽査了本学期学生读课外书册数的情况,绘制成不完整的条形统计图和不完整的扇形统计图(如图所示).(1)补全条形统计图;(2)求出扇形统计图中册数为4的扇形的圆心角的度数;(3)老师随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后发现册数的中位数没改变,则最多补查了人 .19.(9分)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (﹣2,4),且与x 轴相交于点B ,与正比例函数y =2x 的图象相交于点C ,点C 的横坐标为1. (1)求一次函数y =kx +b 的解析式;(2)若点D 在y 轴上,且满足S △COD ═S △BOC ,请直接写出点D 的坐标.20.(10分)如图,▱ABCD中,点E是CD的中点,连接AE并延长交BC延长线于点F (1)求证:CF=AD;(2)连接BD、DF,①当∠ABC=90°时,△BDF的形状是;②若∠ABC=50°,当∠C FD=°时,四边形ABCD是菱形.21.(10分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?22.(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产.已知A、B两城分别有肥料210吨和290吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)设从A城运往C乡肥料x吨①用含x的代数式完成下表②设总运费为y元,写出y与x的函数关系式,并求出最少总运费;(2)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时从A城运往C乡肥料多少吨时总运费最少?23.(11分)(1)问题背景:如图1,△ABC中,AB=AC,点D是BC的中点,∠BAC=120°①若AB=AC=2,则BC=;②若AB=AC=a,则B C=.(用含a的式子表示);(2)迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C 三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;(3)拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.若AE=6,CE=3,请直接写出BF的长,BF=.参考答案与试题解析一、选择题(共10小题,30分)1.【分析】根据二次根式有意义的条件即可求出x的范围.【解答】解:由题意可知:x+2≥0,∴x≥﹣2,故选:A.【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.2.【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵32=9,42=16,∴,∴+1在4到5之间.故选:C.【点评】此题主要考查了估算无理数的能力,要求学生正确理解无理数的性质,进行估算,“夹逼法”是估算的一般方法,也是常用方法.3.【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:A.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.4.【分析】根据平行四边形的判定方法中,①②、②④、①③、③④均可判定是平行四边形.【解答】解:根据平行四边形的判定,符合条件的有4种,分别是:①②、②④、①③、③④.故选:B.【点评】本题考查了平行四边形的判定,平行四边形的判定方法共有五种,在四边形中如果有:1、四边形的两组对边分别平行;2、一组对边平行且相等;3、两组对边分别相等;4、对角线互相平分;5、两组对角分别相等.则四边形是平行四边形.本题利用了第1,2,3种来判定.5.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=|a|,不符合题意;B、当a≥0,b≥0时,=•,不符合题意;C、原式不一定成立,不符合题意;D、==2,符合题意,故选:D.【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.6.【分析】根据平均数和方差的意义解答.【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.【点评】本题考查了平均数和方差,熟悉它们的意义是解题的关键.7.【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.8.【分析】由勾股定理即可求得AB的长,继而求得菱形ABCD的周长.【解答】解:∵菱形ABCD中,BD=24,AC=10,∴OB=12,OA=5,在Rt△ABO中,AB==13,∴菱形ABCD的周长=4AB=52,故选:A.【点评】此题考查了菱形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的性质,属于中考常考题型.9.【分析】根据兔子的路程在一段时间内保持不变、乌龟比兔子所用时间少逐一判断即可得.【解答】解:由于兔子在途中睡觉,所以兔子的路程在一段时间内保持不变,所以D选项错误;因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A、C均错误;故选:B.【点评】本题主要考查函数图象,解题的关键是弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.10.【分析】利用基本作图得到∠BCQ=∠DCQ,再根据平行四边形的性质得到AB∥CD,所以∠Q =∠DCQ,从而得到∠Q=∠BCQ,所以BQ=BC=6,然后计算BQ﹣AB即可.【解答】解:由作法得CQ平分∠BCD,∴∠BCQ=∠DCQ,∵四边形ABCD为平行四边形,∴AB∥CD,∴∠Q=∠DCQ,∴∠Q=∠BCQ,∴BQ=BC=6,∴AQ=BQ﹣AB=6﹣4=2.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质.二、填空题(共5小题,15分)11.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.【点评】此题主要考查的是勾股定理的应用,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.12.【分析】先将点P(n,2)代入y=﹣x+1,求出n的值,再将P点坐标代入y=2x+m,求出m,进而求出y=2x+4与x轴的交点坐标,然后找出直线y=﹣x+1落在y=2x+m的上方且都在x轴上方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x+1的图象过点P(n,2),∴2=﹣n+1,解得n=﹣1,∴P(﹣1,2),将P(﹣1,2)代入y=2x+m,得2=﹣2+m,解得m=4,∴y=2x+4,当y=0时,2x+4=0,解得x=﹣2,∴y=2x+4与x轴的交点是(﹣2,0),∴关于x的不等式﹣x+1>2x+m>0的解集为﹣2<x<﹣1.故答案为﹣2<x<﹣1.【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.13.【分析】先根据众数的定义求出x=5,再根据中位数的定义求解可得.【解答】解:∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则数据为1、3、3、5、5、6,∴这组数据为=4,故答案为:4.【点评】本题主要考查众数和中位数,解题的关键是掌握众数和中位数的定义.14.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,∵AB=AD,∠BAE=∠D,AE=DF∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=8,CF=CD﹣DF=8﹣2=6∴BF==10∴GH=5故答案为:5【点评】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形两锐角互余等知识,掌握三角形全等的判定方法与正方形的性质是解题的关键.15.【分析】连接BE,根据题意可以证明△AEB是直角三角形,然后根据三角形全等和勾股定理即可证明AE2+AD2=2AC2,即可求AC的值.【解答】解:连接BE,∵△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,∴∠ECA+∠ACD=∠ACE+∠ECB=90°,∠CEA=∠CDE=45°,∠CAB=∠CBA=45°,∴∠DCA=∠ECB,且CE=CD,CA=CB∴△DCA≌△ECB(SAS),∴AD=BE,∠CEB=∠CDA,∴∠BEA=∠CEB+∠CDA=∠CEA+∠CDA=90°,∴△AEB是直角三角形,∴AE2+BE2=AB2,在Rt△ACB中,AC=BC,AC2+BC2=2AC2=AB2,∴2AC2=AE2+BE2,即AE2+AD2=2AC2;∵AD=,AE=3,∴AC=故答案为:【点评】本题考查全等三角形的判定与性质、等腰三角形的性质,解答本题的关键是找到AE2+AD2=2AC2.三、解答题(8个小题,共75分)16.【分析】(1)利用二次根式的乘除法则运算;(2)根据完全平方公式和绝对值的意义计算.【解答】解:(1)原式==;(2)原式=1﹣2+3+﹣2=2﹣.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.【分析】由矩形的性质可得AD=BC=5,AB=CD=3,∠B=∠C=90°,由折叠的性质可得AB=AB'=3,CE=C'E,B'C'=BC=5,∠B'=∠B=90°,∠C=∠C'=90°,由勾股定理可求B'D的长,可得C'D的长,由勾股定理可求CE的长.【解答】解:∵四边形ABCD是矩形∴AD=BC=5,AB=CD=3,∠B=∠C=90°∵将四边形ABCE沿直线AE折叠,得到多边形AB′C′E,∴AB=AB'=3,CE=C'E,B'C'=BC=5,∠B'=∠B=90°,∠C=∠C'=90°∵B'D==4,∴C 'D =B 'C '﹣B 'D =1,∵DE 2=C 'E 2+C 'D 2,∴(3﹣CE )2=CE 2+1,∴CE =【点评】本题考查了折叠变换,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键. 18.【分析】(1)由6册人数及其所占百分比求出总人数,再根据各册数的人数和等于总人数可得5册人数,再;补全条形统计图(2)用360°乘以对应人数所占比例即可得;(3)由4册和5册的人数和为14,中位数没有改变知总人数不能超过27,据此可得答案.【解答】解:(1)∵被调查的总人数为6÷25%=24(人),∴5册的人数为24﹣(5+6+4)=9(人),如图所示:(2)扇形统计图中册数为4的扇形的圆心角的度数为360°×=75°;(3)∵4册和5册的人数和为14,中位数没有改变,∴总人数不能超过27,即最多补查了3人.故答案为:3. 【点评】本题考查了统计图与中位数,熟练掌握条形统计图与扇形统计图是解题的关键. 19.【分析】(1)利用一次函数图象上点的坐标特征可求出点C 的坐标,根据点A 、C 的坐标,利用待定系数法即可求出k 、b 的值;(2)利用一次函数图象上点的坐标特征可求出点B 的坐标,设点D 的坐标为(0,m ),根据三角形的面积公式结合S △COD =S △BOC ,即可得出关于m 的一元一次方程,解之即可得出m 的值,进而可得出点D 的坐标.【解答】解:(1)∵当x =1时,y =2x =2,∴点C 的坐标为(1,2).将A (﹣2,4)、C (1,2)代入y =kx +b ,得:,解得:.∴一次函数的解析式为y =﹣x +;(2)当y =0时,有﹣x +=0,解得:x =4,∴点B 的坐标为(4,0).设点D 的坐标为(0,m ),∵S △COD =S △BOC ,即×1×|m |=××4×2,解得:m =±4,∴点D 的坐标为D (0,4)或D (0,﹣4).【点评】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出k 、b 的值;(2)利用三角形的面积公式结合结合S △COD =S △BOC ,找出关于m 的一元一次方程. 20.【分析】(1)根据平行四边形的性质得到AD ∥BC ,得到∠DAE =∠CFE ,根据全等三角形的判定和性质即可得到结论;(2)①根据矩形的判定定理得到▱ABCD 是矩形,得到AC =BD ,等量代换即可得到结论; ②根据菱形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAE =∠CFE ,∵点E 是CD 的中点,∴DE =CE ,在△ADE与△FCE中,,∴△ADE≌△FCE(AAS),∴AD=CF;(2)①△BDF是等腰三角形,∵∠ABC=90°,∴▱ABCD是矩形,∴AC=BD,∵AD=CF,∴四边形ADFC是平行四边形,∴DF=AC,∴BD=DF,∴△BDF是等腰三角形;②当∠CFD=65°时,四边形ABCD是菱形,∵▱ABCD是菱形,∴AD=CD,∵AD=CF,∴CD=CF,∵∠ABC=50°,∴∠DCF=50°,∴∠CFD=(180°﹣50°)=65°.故答案为:等腰三角形,65.【点评】本题考查了菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定和性质定理是解题的关键.21.【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,此题得解.【解答】解:(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,,解得:,∴该一次函数解析式为y=﹣0.1x+60.(2)∵当y=﹣0.1x+60=8时,x=520,即行驶520千米时,油箱中的剩余油量为8升.当x=450千米时,解得y=15升.∴75﹣(520﹣450)=5千米,即油箱中的剩余油量为8升时,距离加油站5千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是5千米.【点评】本题考查一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,根据点的坐标利用待定系数法求出一次函数解析式是解题的关键.22.【分析】(1)①根据题意即可完成表格;②用含x的代数式分别表示出从A运往运往D乡的肥料吨数,从B城运往C乡肥料吨数,及从B城运往D乡肥料吨数,根据:运费=运输吨数×运输费用,得一次函数解析式,利用一次函数的性质得结论;(2)列出当A城运往C乡的运费每吨减少a(0<a<6)元时的一次函数解析式,利用一次函数的性质讨论,并得结论.【解答】解:(1)①由从A城运往C乡肥料x吨,可得从A城运往D乡肥料为(210﹣x)吨;从B城运往C乡肥料(240﹣x)吨,从B城运往C乡肥料(50+x)吨;故答案为:210﹣x;240﹣x;50+x;②y=20x+25(210﹣x)+15(240﹣x)+24(x+50)=4x+10050,由于y=4x+10050是一次函数,k=4>0,y随x的增大而增大.因为x≥0,所以当x=0时,运费最少,最少运费是10050元;(2)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,所以y=(20﹣a)x+25(210﹣x)+15(240﹣x)+24(x+50)=(4﹣a)x+10050,当0<a<4时,∵4﹣a>0∴当x=0时,运费最少是10050元;当4<a<6时,∵4﹣a<0,∴当x最大时,运费最少.即当x=210时,运费最少.当a=4时,不管A城运往D乡多少吨(不超过210吨),运费都是10050元.【点评】本题考查了一次函数的应用.根据题意列出一次函数解析式是关键.注意到(2)需分类讨论.23.【分析】(1)①由等腰三角形的性质得出∠B=∠C=30°,AD⊥BC,BD=CD,由直角三角形的性质得出AD=AB=1,BD=AD=,即可得出BC=2AD=2;②由等腰三角形的性质得出∠B=∠C=30°,AD⊥BC,BD=CD,由直角三角形的性质得出AD=AB=,BD=AD=a,即可得出BC=2AD=a;(2)①由SAS证明△ADB≌△AEC即可;②由全等三角形的性质得出BD=CE,由三角函数得出DH=A D•cos30°=AD,由等腰三角形的性质得出DH=HE,即可得出结论;(3)证明A、D、E、C四点共圆,由圆周角定理得出∠ADC=∠AEC=120°,证明△EFC是等边三角形,得出EF=CE=3,AH=HE=3,求出HF=HE+EF=6,在Rt△BHF中,由三角函数即可得出结果.【解答】(1)问题背景:解:①∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵点D是BC的中点,∴AD⊥BC,BD=CD,∴AD=AB=1,BD=AD=,∴BC=2AD=2;故答案为:2;②∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵点D是BC的中点,∴AD⊥BC,BD=CD,∴AD=AB=,BD=AD=a,∴BC=2AD=a;故答案为:a;(2)迁移应用:①证明:∵△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,∴AB=AC,AD=AE,∠BAD=∠CAE,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS);②解:结论:CD=AD+BD.理由如下:如图2中,作AH⊥CD于H.∵△ADB≌△AEC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.(3)拓展延伸:解:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,∴EF=CE=3,AE=6,∴AH=HE=3,∴HF=HE+EF=6,在Rt△BHF中,∵∠BFH=30°,∴=cos30°,∴BF==4;故答案为:4.【点评】本题是四边形综合题目,考查了全等三角形的判定和性质、等腰三角形的性质、四点共圆、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是灵活应用所学知识解决问题,学会添加辅助圆解决问题,属于中考压轴题.。
2019-2020年八年级下学期期末考试数学试卷含答案(人教版)
2018-2019学年度八年级下学期期末考试数学试卷第Ⅰ卷 选择题(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“垃圾分类,从我做起”,以下四幅图案分别代表四类可回收垃圾,其中是中心对称图形的是( )A .B .C .D .2.下列各式由左边到右边的变形中,属于分解因式的是( )A .()a x y ax ay -=-B .22()()a b a b a b -=+-C .243(4)3x x x x -+=-+D .211()a a a a +=+3. 下列实数中,能够满足不等式30x -<的正整数是( )A .-2B .3C .4D .24. 小颖一家自驾某地旅行,手机导航系统推荐了两条线路,线路一全程75km ,线路二全程90km ,汽车在线路二上行驶的平均车速是线路一上平均车速的1.8倍,且线路二的用时比线路一的用时少半小时,若汽车在线路一上行驶的平均速度为/xkm h ,则下面所列方程正确的是( )A .759011.82x x =+B .759011.82x x =-C .759011.82x x =+D .759011.82x x =- 5. 小贤的爸爸在钉制平行四边形框架时,采用了一种方法:如图,将两根木条AC BD 、的中点重叠,并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是( )A .两组对边分别平行的四边形是平行四边形B .两组对角分别相等的四边形是平行四边形C .两组对边分别相等的四边形是平行四边形D .对角线互相平分的四边形是平行四边形6. 如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于点D ,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )A .EF BE CF =+B .点O 到ABC ∆各边的距离相等C .90BOC A ∠=+∠oD .设OD m =,AE AF n +=,则12AEFS mn ∆= 7. 已知不等式组122123x a x x -≥⎧⎪+-⎨>⎪⎩的解集如图所示(原点未标出,数轴的单位长度为1),则 a 的值为( )A .4B .3C .2D .18. 已知21x y -=,2xy =,则322344x y x y xy -+的值为( )A .-2B .1C .-1D .29. 某n 边形的每个外角都等于与它相邻内角的14,则n 的值为( ) A .7 B .8 C .10 D .910. 如图,点C 是线段BE 的中点,分别以BC CE 、为边作等腰ABC ∆和等腰CDE ∆,90BAC CDE ∠=∠=o ,连接AD BD AE 、、,且BD AE 、相交于点G ,CG 交AD 于点F ,则下列说法中,不正确的是( )A .CF 是ACD ∆的中线B .四边形ABCD 是平行四边形C .AE BD = D .AG 平分CAD ∠第Ⅱ卷 非选择题(共90分)二、填空题(共5个小题,每题3分,满分15分,将答案填在答题纸上)11. 分式a a b +与22b a b-的最简公分母是 . 12. 因式分解:252x x -= .13.如图,已知一块直角三角板的直角顶点与原点O 重合,另两个顶点A ,B 的坐标分别为(1,0)-,(0,3),现将该三角板向右平移使点A 与点O 重合,得到'OCB ∆,则点B 的对应点'B 的坐标为 .14. 如图,两个完全相同的正五边形ABCDE ,AFGHM 的边DE ,MH 在同一直线上,且有一个公共顶点A ,若正五边形ABCDE 绕点A 旋转x 度与正五边形AFGHM 重合,则x 的最小值为 .15. 如图,在平行四边形ABCD 中,8AB =,12BC =,120B ∠=o ,E 是BC 的中点,点P 在平行四边形ABCD 的边上,若PBE ∆为等腰三角形,则EP 的长为 .三、解答题:本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(1)解不等式:922x x +>(2)解方程:11293331x x =+--17. 如图,在ABCD 中,点E ,F 分别在边BC ,AD 上,且DF BE =.求证:四边形AECF 是平行四边形.18. 如图,在ABC ∆中,AB AC =,36A ∠=o ,DE 是AC 的垂直平分线.(1)求证:BCD ∆是等腰三角形.(2)若BCD ∆的周长是a ,BC b =,求ACD ∆的周长.(用含a ,b 的代数式表示)19. 在如图所示的网格上按要求画出图形,并回答问题.(1)将ABC ∆平移,使得点A 平移到图中点D 的位置,点B 、点C 的对应点分别为点E 、点F ,请画出DEF ∆.(2)画出ABC ∆关于点D 成中心对称的111A B C ∆.(3)DEF ∆与111A B C ∆是否关于某个点成中心对称?如果是,请在图中画出这个对称中心,并记作点O .20. 数学课后,小玲和同桌小娟各自拿出自己的漂亮的正方形手帕,她们俩各有一条方格手帕和一条绣花手帕,如图,小玲说:“我的方格手帕的边长比你的方格手帕的边长大0.6cm .”小娟说:“我的绣花手帕的边长比你的绣花手帕的边长大0.6cm .”设小玲的两块手帕的面积和为1S ,小娟的两块手帕的面积和为2S ,请同学们运用因式分解的方法算一算2S 与1S 的差.21. 如图1,将线段AB 平移至DC ,使点A 与点D 对应,点B 与点C 对应,连接AD 、BC .(1)填空:AB 与CD 的位置关系为 ,BC 与AD 的位置关系为 .(2)如图2,若G 、E 为射线DC 上的点,AGE GAE ∠=∠,AF 平分DAE ∠交直线CD 于F ,且30FAG ∠=o ,求B ∠的度数.22. 学校广播站要招聘一名播音员,擅长诵读的小龙想去应聘,但是不知道是否符合应聘条件,于是在微信上向好朋友亮亮倾诉,如图所示的是他们的部分对话内容,面对小龙的问题,亮亮也犯了难.(1)请聪明的你用所学的方程知识帮小龙计算一下,他是否符合学校广播站的应聘条件?(2)小龙和奶奶各读一篇文章,已知奶奶所读文章比小龙所读文章至少多了3200个字,但奶奶所用的时间是小龙的2倍,则小龙至少读了多少分钟?23. 定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC ∆中,90A ∠=o ,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .观察猜想(1)线段PM 与PN “等垂线段”(填“是”或“不是”)猜想论证(2)ADE ∆绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.拓展延伸(3)把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PM 与PN 的积的最大值.试卷答案一、选择题1-5: CBDAD 6-10:CADCD二、填空题11. 2()()a b a b +- 12. (52)x x - 13. 14. 14415. 6、、三、解答题16.(1)解:去分母得94x x +>移项、合并得39x ->-解得3x <所以不等式的解集为3x <(2)解:去分母得1316x =-+ 解得43x =- 经检验,43x =-是分式方程的解.17.证明:∵四边形ABCD 是平行四边形∴//AF EC ,AD BC =∵DF BE =∴AD DF BC BE -=-∴AF EC =∴四边形AECF 是平行四边形18.解:(1)∵AB AC =,36A ∠=o ∴180722AB ACB -∠∠=∠==oo∵DE 是AC 的垂直平分线∴AD DC =∴36ACD A ∠=∠=o∵CDB ∠是ADC ∆的外角∴72CDB ACD A ∠=∠+∠=o∴B CDB ∠=∠∴CB CD =∴BCD ∆是等腰三角形.(2)∵AD CD CB b ===,BCD ∆的周长是a∴AB a b =-∵AB AC =∴AC a b =-∴ACD ∆的周长AC AD CD a b b b a b =++=-++=+19.解:(1)如图,DEF ∆即为所求.(2)如图,111A B C ∆即为所求.(3)是,如图,点O 即为所求.20.解:222221(29.821.2)(29.221.8)S S -=+-+ 2222(29.821.8)(29.221.2)=---(29.821.8)(29.821.8)(29.221.2)(29.221.2)=+--+-51.6850.48=⨯-⨯(51.650.4)8=-⨯9.6=(2cm )21.解:(1)//AB CD ,//AD BC(2)∵//AB CD∴BAG G ∠=∠∵G EAG ∠=∠∴EAG BAG ∠=∠∵AF 平分DAE ∠∴FAE FAD ∠=∠∴2BAD FAG ∠=∠∵30FAG ∠=o∴60BAD ∠=o∵//BC AD∴180B BAD ∠+∠=o∴120B ∠=o22.解:(1)设小龙每分钟读x 个字,则小龙奶奶每分钟读(50)x -个字 根据题意,得1050130050x x=- 解得260x =经检验,260x =是所列方程的解,并且符合实际问题的意义. ∵学校广播站招聘的条件是每分钟250-270字∴小龙符合学校广播站的应聘条件.(2)设小龙读了y 分钟,则小龙奶奶读了2y 分钟, 由题意知(26050)22603200y y -⨯-≥解得20y ≥∴小龙至少读了20分钟.23.解:(1)是(2)由旋转知BAD CAE ∠=∠∵AB AC =,AD AE =∴ABD ∆≌ACE ∆(SAS )∴ABD ACE ∠=∠,BD CE = 利用三角形的中位线得12PN BD =,12PM CE =, ∴PM PN =由中位线定理可得//PM CE ,//PN BD∴DPM DCE ∠=∠,PNC DBC ∠=∠∵DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠∴MPN DPM DPN DCE DCB DBC ∠=∠+∠=∠+∠+∠ BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠∵90BAC ∠=o∴90ACB ABC ∠+∠=o∴90MPN ∠=o∴PM 与PN 为“等垂线段”(3)PM 与PN 的积的最大值为49. 提示:12PM PN BD ==∴BD 最大时,PM 与PN 的积最大 ∴点D 在BA 的延长线上∴14BD AB AD =+=∴7PM =∴249PM PN PM •==。
2018-2019学年上海市闵行区八年级(下)期末数学试卷(附答案解析)
2018-2019学年上海市闵行区八年级(下)期末数学试卷副标题题号一二三四总分得分一、选择题(本大题共4小题,共12.0分)1.用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形,矩形,正方形);(2)矩形;(3)正方形;(4)等腰三角形,一定可以拼成的图形是()A. B. C. D.2.已知直线y=kx+b与直线y=-2x+5平行,那么下列结论正确的是()A. ,B. ,C., D. ,3.下列方程没有实数根的是()A. B. C.D.4.下列等式正确的是()A. B.C. D.二、填空题(本大题共7小题,共14.0分)5.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.D、E分别为边BC、AC上一点,将△ADE沿着直线AD翻折,点E落在点F处,如果DF⊥BC,△AEF是等边三角形,那么AE=______.6.一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为______.7.一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二,三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值11.56万元,如果设这辆车第二、三年的年折旧率为x,那么根据题意,列出的方程为______.8.已知一次函数y=2(x-2)+b的图象在y轴上的截距为5,那么b=______.9.在梯形ABCD中,AD∥BC,如果AD=4,BC=10,E、F分别是边AB、CD的中点,那么EF=______.10.已知方程-=2,如果设=y,那么原方程可以变形为关于y的整式方程是______.11.已知▱ABCD的周长为40,如果AB:BC=2:3,那么AB=______.三、计算题(本大题共1小题,共6.0分)12.已知直线y=kx+b经过点A(-20,5)、B(10,20)两点.(1)求直线y=kx+b的表达式;(2)当x取何值时,y>5.四、解答题(本大题共5小题,共38.0分)13.如图,在梯形ABCD中,AD∥BC,AB=CD,BC=10,对角线AC、BD相交于点O,且AC⊥BD,设AD=x,△AOB的面积为y.(1)求∠DBC的度数;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)如图1,设点P、Q分别是边BC、AB的中点,分别联结OP,OQ,PQ.如果△OPQ是等腰三角形,求AD的长.14.已知:如图,在▱ABCD中,设=,=.(1)填空:=______(用、的式子表示)(2)在图中求作+.(不要求写出作法,只需写出结论即可)15.如图,在菱形ABCD中,DE⊥AB,垂足为点E,且E为边AB的中点.(1)求∠A的度数;(2)如果AB=4,求对角线AC的长.16.如图,在△ABC中,∠C=90°,D为边BC上一点,E为边AB的中点,过点A作AF∥BC,交DE的延长线于点F,联结BF.(1)求证:四边形ADBF是平行四边形;(2)当D为边BC的中点,且BC=2AC时,求证:四边形ACDF为正方形.17.解方程组:答案和解析1.【答案】A【解析】解:拿两个“90°、60°、30°的三角板一试可得,用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(4)等腰三角形.而正方形需特殊的直角三角形:等腰直角三角形.故选:A.两个全等的直角三角形直角边重合拼成的四边形一定是平行四边形;直角边重合拼成的三角形一定是等腰三角形;斜边重合拼成的四边形一定是长方形.拿两个全等的三角板动手试一试就能解决.本题考查了图形的剪拼,培养学生的动手能力,有些题只要学生动手就能很快求解,注意题目的要求有“一定”二字.2.【答案】C【解析】解:∵直线y=kx+b与直线y=-2x+5平行,∴k=-2,b≠5.故选:C.利用两直线平行问题得到k=-2,b≠5即可求解.本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.3.【答案】B【解析】解:A、x3+2=0,x3=-2,x=-,即此方程有实数根,故本选项不符合题意;B、x2+2x+2=0,△=22-4×1×2=-4<0,所以此方程无实数根,故本选项符合题意;C、=x-1,两边平方得:x2-3=(x-1)2,解得:x=2,经检验x=2是原方程的解,即原方程有实数根,故本选项不符合题意;D、-=0,去分母得:x-2=0,解得:x=2,经检验x=2是原方程的解,即原方程有实数根,故本选项不符合题意;故选:B.根据立方根的定义即可判断A;根据根的判别式即可判断B;求出方程x2-3=(x-1)2的解,即可判断C;求出x-2=0的解,即可判断D.本题考查了解无理方程、解分式方程、解一元二次方程、根的判别式等知识点,能求出每个方程的解是解此题的关键.4.【答案】D【解析】解:∵+=,∴+-=-=,故选:D.根据三角形法则即可判断;本题考查平面向量的三角形法则,解题的关键是熟练掌握三角形法则,属于中考常考题型.5.【答案】4【解析】解:如图:∵折叠∴∠EAD=∠FAD,DE=DF∴∠DFE=∠DEF∵△AEF是等边三角形∴∠EAF=∠AEF=60°∴∠EAD=∠FAD=30°在Rt△ACD中,AC=6,∠CAD=30°∴CD=2∵FD⊥BC,AC⊥BC∴AC∥DF∴∠AEF=∠EFD=60°∴∠FED=60°∵∠AEF+∠DEC+∠DEF=180°∴∠DEC=60°∵在Rt△DEC中,∠DEC=60°,CD=2∴EC=2∵AE=AC-EC∴AE=6-2=4故答案为4由题意可得∠CAD=30°,∠AEF=60°,根据勾股定理可求CD=2,由AC∥DF,则∠AEF=∠EFD=60°,且DE=DF,可得∠DEF=∠DFE=60°,可得∠DEC=60°根据勾股定理可求EC的长,即可求AE的长.本题考查了翻折问题,等边三角形的性质,勾股定理,求∠CED 度数是本题的关键.6.【答案】【解析】解:∵小敏第一次从布袋中摸出一个红球的概率为,第二次从布袋中摸出一个红球的概率为,∴两次摸出的球都是红球的概率为:=.故答案为:.小敏第一次从布袋中摸出一个红球的概率为,第二次从布袋中摸出一个红球的概率为,据此可得两次摸出的球都是红球的概率.本题主要考查了概率的计算,用到的知识点为:概率=所求情况数与总情况数之比.7.【答案】20(1-20%)(1-x)2=11.56【解析】解:设这辆车第二、三年的年折旧率为x,有题意,得20(1-20%)(1-x)2=11.56.故答案是:20(1-20%)(1-x)2=11.56.设这辆车第二、三年的年折旧率为x,则第二年这就后的价格为20(1-20%)(1-x)元,第三年折旧后的而价格为20(1-20%)(1-x)2元,与第三年折旧后的价格为11.56万元建立方程.一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.56万元建立方程是关键.8.【答案】9【解析】解:∵y=2(x-2)+b=2x+b-4,且一次函数y=2(x-2)+b的图象在y轴上的截距为5,∴b-4=5,解得:b=9.故答案为:9.将原函数解析式变形为一般式,结合一次函数图象在y轴上的截距,即可得出关于b的一元一次方程,解之即可得出结论.本题考查了一次函数图象上点的坐标特征,牢记截距的定义是解题的关键.9.【答案】7【解析】解:∵E,F分别是边AB,CD的中点,∴EF为梯形ABCD的中位线,∴EF=(AD+BC)=(4+10)=7.故答案为7.根据梯形中位线定理得到EF=(AD+BC),然后把AD=4,BC=10代入可求出EF的长.本题考查了梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.10.【答案】3y2+6y-1=0【解析】解:设=y,原方程变形为:-y=2,化为整式方程为:3y2+6y-1=0,故答案为3y2+6y-1=0.根据=y,把原方程变形,再化为整式方程即可.本题考查了用换元法解分式方程,掌握整体思想是解题的关键.11.【答案】8【解析】解:∵平行四边形ABCD的周长为40cm,AB:BC=2:3,可以设AB=2a,BC=3a,∴AB=CD,AD=BC,AB+BC+CD+AD=40,∴2(2a+3a)=40,解得:a=4,∴AB=2a=8,故答案为:8.根据平行四边形的性质推出AB=CD,AD=BC,设AB=2a,BC=3a,代入得出方程2(2a+3a)=40,求出a的值即可.本题考查了平行四边形的性质和解一元一次方程等知识点的应用,关键是根据题意得出方程2(2a+3a)=40,用的数学思想是方程思想,题目比较典型,难度也适当.12.【答案】解:(1)根据题意得,解得,所以直线解析式为y=x+15;(2)解不等式x+15>5得x>-20,即x>-20时,y>5.【解析】(1)利用待定系数法求一次函数解析式;(2)解不等式x+15>5即可.本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.13.【答案】解:(1)过点D作AC的平行线DE,与BC的延长线交于E点.∵梯形ABCD中,AD∥BC,AC∥DE,∴四边形ACED为平行四边形,AC=DE,AD=CE,∵AB=CD,∴梯形ABCD为等腰梯形,∴AC=BD,∴BD=DE,又AC⊥BD,∴∠BOC=90°∵AC∥DE∴∠BDE=90°,∴△BDE是等腰直角三角形,∴∠DBC=45°.(2)由(1)可知:△BOC,△AOD都是等腰直角三角形,∵AD=x,BC=10,∴OA=x,OB=5,∴y=•OA•OB=•x×5=x(x>0).(3)如图2中,①当PQ=PO=BC=5时,∵AQ=QB,BP=PC=5,∴PQ∥AC,PQ=AC,∴AC=10,∵OC=5,∴OA=10-5,∴AD=OA=10-10.②当OQ=OP=5时,AB=2OQ=10,此时AB=BC,∠BAC=∠BCA=45°,∴∠ABC=90°,同理可证:∠DCB=90°,∴四边形ABCD是矩形,不符合题意,此种情形不存在.③当OQ=PQ时,AB=2OQ,AC=2PQ,∴AB=AC,∴∠ABC=∠ACB=45°,∴∠BAC=90°=∠BOC,显然不可能,综上所述,满足条件的AD的值为10-10.【解析】(1)过点D作AC的平行线DE,与BC的延长线交于E点,只要证明△BDE是等腰直角三角形即可解决问题;(2)由(1)可知:△BOC,△AOD都是等腰直角三角形,由题意OA=x,OB=5,根据y=•OA•OB计算即可;(3)分三种情形讨论即可解决问题;本题考查四边形综合题、梯形、等腰直角三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.14.【答案】-【解析】解:(1)∵=+,=,=.∴=-.故答案为-.(2)连接BD.∵=+,=,∴=+.∴即为所求;(1)根据三角形法则可知:=+,延长即可解决问题;(2)连接BD.因为=+,=,即可推出=+.本题考查作图-复杂作图、平行四边形的性质、平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】解:连接AC,BD(1)∵四边形ABCD是菱形∴AD=AB∵E是AB中点,DE⊥AB∴AD=DB∴AD=DB=AB∴△ADB是等边三角形∴∠A=60°(2)∵四边形ABCD是菱形∴AC⊥BD,∠DAC=∠DAB=30°,AO=CO,DO=BO∵AD=BA=4∴DO=2,AO=DO=2∴AC=2【解析】(1)根据线段垂直平分线的性质可得DB=AD,即可证△ADB是等边三角形,可得∠A=60°(2)由题意可得∠DAC=30°,AC⊥BD,可得DO=2,AO=2,即可求AC的长.本题考查了菱形的性质,熟练运用菱形性质解决问题是本题的关键.16.【答案】(1)证明:∵AF∥BC,∴∠AFE=∠BDE,在△AEF与△BED中,,∴△AEF≌△BED,∴AF=BD,∵AF∥BD,∴四边形ADBF是平行四边形;(2)解:∵CD=DB,AE=BE,∴DE∥AC,∴∠FDB=∠C=90°,∵AF∥BC,∴∠AFD=∠FDB=90°,∴∠C=∠CDF=∠AFD=90°,∴四边形ACDF是矩形,∵BC=2AC,CD=BD,∴CA=CD,∴四边形ACDF是正方形.【解析】(1)根据平行线的性质得到∠AFE=∠BDE,根据全等三角形的性质得到AF=BD,于是得到结论;(2)首先证明四边形ACDF是矩形,再证明CA=CD即可解决问题;本题考查了全等三角形的判定和性质,平行四边形的判定,矩形的判定和性质,正方形的判定,三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:由①得:(x+2y)2=9,x+2y=±3,由②得:x(x+y)=0,x=0,x+y=0,即原方程组化为:,,,,解得:,,,,所以原方程组的解为:,,,.【解析】先把原方程组的每个方程化简,这样原方程组转化成四个方程组,求出每个方程组的解即可.本题考查了解二元一次方程组和解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.。
2018年八年级下册数学期末试卷及答案(新人教版) - 副本
2017-2018级八年级期末测试一、选择题(本题共 小题,满分共 分) .二次根式21、 、 、⌧ 、240x 、22y x +中,最简二次根式有( )个。
✌、 个 、 个 、 个 、个⌧的取值范围为( )✌、⌧♏ 、⌧♊ 、⌧♏或⌧♊ 、⌧♏且⌧♊.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )✌. , , .1113,4,5222 . , , .114,7,822 、在四边形✌中, 是对角线的交点,能判定这个四边形是正方形的是( )(✌)✌,✌∥ ,✌ ( )✌∥ ,∠✌∠ ( )✌,✌⊥ ( )✌, ,✌、如下左图,在平行四边形✌中, = ,✌☜平分 ✌交 于点☜, ☞ ✌☜交✌☜于点☞,则 =( )1FEDCBA✌. . . . 、表示一次函数⍓=❍⌧ ⏹与正比例函数⍓=❍⏹⌧☎❍、⏹是常数且❍⏹♊✆图象是( )(第 题)如图所示,函数x y =1和34312+=x y 的图象相交于(- , ),( , )两点.当21y y >时,⌧的取值范围是( )✌.⌧<- .— <⌧< .⌧> . ⌧<- 或⌧> 、 在方差公式()()()[]2222121x x x x x x nS n -++-+-=中,下列说法不正确的是( )✌ ⏹是样本的容量 n x 是样本个体 x 是样本平均数 是样本方差、多多班长统计去年 ~ 月❽书香校园❾活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )(✌)极差是 ( )众数是 ( )中位数是 ( )每月阅读数量超过 的有 个月、如上右图,在 ✌中,✌ ,✌ , , 为边 上一动点, ☜⊥✌于☜, ☞⊥✌于☞, 为☜☞中点,则✌的最小值为【 】✌.54 .5210203040506070809012345678某班学生 ~ 月课外阅读数量折线统计图3670585842287583本数月份12345678M PFECBA(第 题)ADO.53 .65二、填空题(本题共 小题,满分共 分).48 1-⎝⎭)13(3- 23-.边长为 的大正方形中有两个小正方形,若两个小正方形的面积分别为 , ,则 的值为( ) 平行四边形✌的周长为 ♍❍,对角线✌、 相交于点 ,若△ 的周长比△✌的周长大 ♍❍,则 = ♍❍。
-2018学年浙江省杭州市经济开发区八年级(下)期末数学试卷
2017-2018学年浙江省杭州市经济开发区八年级(下)期末数学试卷一.选择题(本题有10小题,每小题3分,共30分)1.(3分)要使二次根式丁嬴有意义,自变量x的取值范围是()A. x>4B. xv 4C. x>4D. x<42. (3分)下列手机软件图标中,既是轴对称图形又是中心对称图形的是(3. (3分)用反证法证明命题:若整数系数一元二次方程ax2+bx+c= 0 (aw0)有有理根,那么a、b、c中至少有一个是偶数时,下列假设中正确的是()A.假设a、b、c都是偶数B.假设a、b、c至多有一个是偶数C.假设a、b、c都不是偶数D.假设a、b、c至多有两个是偶数4.(3分)已知平行四边形ABCD中,/ B = 4/A,则/ C=()A.18°B.36°C.72°D.144°5.(3分)关于x的一元二次方程k/-2x+1 = 0有实数根,则k的取值范围是()A. k< - 1B. k<1C. k>—1 且kw0D. kW1 且kw0,八、一 .......................................................................................................................................................................................................................... 一—- …6.(3分)已知A (1, y1)、B (2, y2)、C ( - 3, y3)都在反比例函数y—1的图象上,则y1、y2、y3的大小关系的是()A. y2>y1>y3B. y1 >y2>y3C. y3>y2>y1D. y1 >y3>y27.(3分)用配方法解方程x2-2x- 5=0时,原方程应变形为()A. (x+1)2=6B. (x+2)2=9C. (x— 1)2=6D. (x— 2) 2 = 98.(3 分)下列命题:①在函数:y= - 2x- 1; y= 3x; y=~; y= - ; y — ? (xv 0)中,x xy随x增大而减小的有3个函数;②对角线互相垂直平分且相等的四边形是正方形;③反比例函数图象是两条无限接近坐标轴的曲线,它只是中心对称图形;二.填空题(本题有6个小题,每小题 4分,共24分)11. (4分)五边形内角和的度数是 .12. (4分)已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中13. (4 分)如图,在?ABCD 中,AD= 2AB, CE 平分/ BCD 交 AD 边于点 E,且 AE= 3,贝"ABCDX 2、X 3的方差为S 2,则数据X 1+2, X 3+2, X 3+2的方差为S 3+2.其中是真命题的个数是 ( A. 1个B. 2个C. 3个D. 4个9. (3分)如图,在菱形 ABCD 中,AB= 4, /A=120° ,点 P, Q, K 分别为线段 BC,)CD,D. 2 :;+210. (3分)如图,矩形纸片 ABCD, AB= 3, AD=5,折叠纸片,使点 A 落在BC 边上的折痕为PQ,当点E 在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点 P 、E 处, Q 分别在AB 、AD 边上移动,则点 E 在BC 边上可移动的最大距离为()C. 4D. 5④已知数据X I 、宽为20m的矩形花园, 现要在花园中修建等宽的小道, 剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为米.y=2x和函数y=—的图象交于15.A、B两点,过点A作AE,x轴于点E,若4AOE的面积为4, P是坐标平面上的点,且以点B、O、E、P为顶点的四边,满足条件的P点坐标是16. (4分)如图,在菱ABCD中,边长为10, /A=60° .顺次连结菱形ABCD各边中点, 形可得四边形A1B1C1D1; 顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3c3D3;按此规律继续下去…则四边形A2B2C2D2的周长是,四边形A2019B2019c2019D2019的周长是三.解答题(本题有7小题,共66分)17.(6分)计算:(1)(-V6) 2-亚云+1(T)2⑵闻十第一布1内26.18.(8分)解方程:(1)x2 - 3x+1 = 0;(2)x (x+3) - ( 2x+6) = 0.19.(8分)某市篮球队到市一中选拔一名队员.教练对王亮和李刚两名同学进行5次3分投篮测试,每人每次投10个球,下图记录的是这两名同学5次投篮中所投中的个数.(1)请你根据图中的数据,填写下表;姓名平均数众数方差王亮7李刚7(2)你认为谁的成绩比较稳定,为什么(3)若你是教练,你打算选谁简要说明理由.20.(10分)已知,如图,在^ ABC中,D是BC边上的一点,E是AD的中点,过点A作BC 的平行线交与BE的延长线于点F,且AF= DC,连结CF.(1)求证:四边形ADCF是平行四边形;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.21.(10分)物美商场于今年年初以每件25元的进价购进一批商品. 当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元22.(12分)已知,如图,。
2017-2018学年八年级(下)期末数学试卷含答案解析
2017-2018学年八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列关于x的函数中,是正比例函数的为()A.y=x2 B.y= C.y= D.y=2.(3分)下列四组线段中,不能作为直角三角形三条边的是()A.3cm,4cm,5cm B.2cm,2cm,2cmC.2cm,5cm,6cm D.5cm,12cm,13cm3.(3分)图中,不是函数图象的是()A.B.C.D.4.(3分)平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等5.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁6.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或47.(3分)将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是()A.y=2x﹣1 B.y=2x+2 C.y=2x﹣2 D.y=2x+18.(3分)在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图.师生捐款金额的平均数和众数分别是()A.20,20 B.32.4,30 C.32.4,20 D.20,309.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5 B.k≤5,且k≠1 C.k<5,且k≠1 D.k<510.(3分)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映S与x之间的函数关系式的是()A.B.C.D.二、填空题(本题共24分,每小题3分)11.(3分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式.12.(3分)在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B 之间的距离应为米.13.(3分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是.14.(3分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是.15.(3分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为.16.(3分)方程x2﹣8x+15=0的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是.17.(3分)已知直线y=2x+2与x轴、y轴分别交于点A,B.若将直线y=x向上平移n个单位长度与线段AB有公共点,则n的取值范围是.18.(3分)在一节数学课上,老师布置了一个任务:已知,如图1,在Rt△ABC中,∠B=90°,用尺规作图作矩形ABCD.同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:①分别以点A,C为圆心,大于AC长为半径画弧,两弧分别交于点E,F,连接EF交AC于点O;②作射线BO,在BO上取点D,使OD=OB;③连接AD,CD.则四边形ABCD就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是.三、解答题(本题共46分,第19-21,24题,每小题4分,第22,23,25-28题,每小题4分)19.(4分)用配方法解方程:x2﹣6x=1.20.(4分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,求线段EC,CH的长.21.(4分)已知关于x的一元二次方程(m﹣1)x2﹣(m+1)x+2=0,其中m≠1.(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值.22.(5分)2017年5月5日,国产大飞机C919首飞圆满成功.C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑.目前,C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.表1中国国际航空根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表223.(5分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.24.(4分)有这样一个问题:探究函数y=+1的图象与性质.小明根据学习一次函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是;(2)下表是y与x的几组对应值.求出m的值;(3)如图,在平面直角坐标系xOy中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质.25.(5分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC 的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.26.(5分)如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,﹣1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形.请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)27.(5分)如图,在△ABD中,AB=AD,将△ABD沿BD翻折,使点A翻折到点C.E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.28.(5分)在平面直角坐标系xOy中,已知点M(a,b)及两个图形W1和W2,若对于图形W1上任意一点P(x,y),在图形W2上总存在点P'(x',y'),使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形W2是图形W 1关于点M的关联图形,此时三个点的坐标满足x'=,y'=.(1)点P'(﹣2,2)是点P关于原点O的关联点,则点P的坐标是;(2)已知,点A(﹣4,1),B(﹣2,1),C(﹣2,﹣1),D(﹣4,﹣1)以及点M(3,0)①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列关于x的函数中,是正比例函数的为()A.y=x2 B.y= C.y= D.y=【解答】解:A、是二次函数,故此选项错误;B、是反比例函数,故此选项错误;C、是正比例函数,故此选项正确;D、是一次函数,故此选项错误;故选:C.2.(3分)下列四组线段中,不能作为直角三角形三条边的是()A.3cm,4cm,5cm B.2cm,2cm,2cmC.2cm,5cm,6cm D.5cm,12cm,13cm【解答】解:A、32+42=52,能构成直角三角形,不符合题意;B、22+22=(2)2,能构成直角三角形,不符合题意;C、22+52≠62,不能构成直角三角形,符合题意;D、52+122=132,能构成直角三角形,不符合题意.故选:C.3.(3分)图中,不是函数图象的是()A.B.C.D.【解答】解:由函数的定义可知,对于每一个自变量的x的取值,都有唯一的y 值与其对应,选项A中当x=1时,有两个y值与其对应,故选项A中的图象不是函数图象,故选:A.4.(3分)平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等【解答】解:平行四边形的对角相等,对角线互相平分,对边平行且相等.故选:D.5.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选:B.6.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或4【解答】解:∵x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,∴(﹣2)2+a×(﹣2)﹣a2=0,即a2+3a﹣4=0,整理,得(a+4)(a﹣1)=0,解得a1=﹣4,a2=1.即a的值是1或﹣4.故选:A.7.(3分)将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是()A.y=2x﹣1 B.y=2x+2 C.y=2x﹣2 D.y=2x+1【解答】解:将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是y=2x﹣2.故选:C.8.(3分)在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图.师生捐款金额的平均数和众数分别是()A.20,20 B.32.4,30 C.32.4,20 D.20,30【解答】解:由图可知,平均数是(6×10+13×20+20×30+8×50+3×100)÷50=32.4(元).捐款30元的有20人,人数最多,故众数是30元.故选:B.9.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5 B.k≤5,且k≠1 C.k<5,且k≠1 D.k<5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,∴,解得:k≤5且k≠1.故选:B.10.(3分)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映S与x之间的函数关系式的是()A.B.C.D.【解答】解:∵点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0),∴S==2y=2(6﹣x)=﹣2x+12,x>0且x<6,∴0<S<12,故选:B.二、填空题(本题共24分,每小题3分)11.(3分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式y=﹣x+1.【解答】解:设该一次函数的解析式为y=kx+b.∵y随着x的增大而减小,∴k<0,取k=﹣1.∵点(0,1)在一次函数图象上,∴b=1.故答案为:y=﹣x+1.12.(3分)在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B 之间的距离应为32米.【解答】解:∵D、E分别是CA,CB的中点,∴DE是△ABC的中位线,∴DE∥AB,且AB=2DE,∵DE=16米,∴AB=32米.故答案为:32.13.(3分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是x<3.【解答】解:当x<3时,kx+6>x+b,即不等式kx+6>x+b的解集为x<3.故答案为:x<3.14.(3分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是8.【解答】解:如图所示:∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,∴可得AD=AB,故△ABD是等边三角形,则AB=AD=4,故BO=DO=2,则AO==2,故AC=4,则菱形ABCD的面积是:×4×4=8.故答案为:8.15.(3分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为x2=(x﹣4)2+(x ﹣2)2.【解答】解:根据勾股定理可得:x2=(x﹣4)2+(x﹣2)2,即x2=x2﹣8x+16+x2﹣4x+4,解得:x1=2(不合题意舍去),x2=10,10﹣2=8(尺),10﹣4=6(尺).答:门高8尺,门宽6尺,对角线长10尺.故答案为:x2=(x﹣4)2+(x﹣2)2.16.(3分)方程x2﹣8x+15=0的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是或.【解答】解:解方程x2﹣8x+15=0得:x=3或5,即直角三角形的两边为3或5,当5为直角边时,第三边为:=;当5为斜边时,第三边为:=4;故答案为:4或.17.(3分)已知直线y=2x+2与x轴、y轴分别交于点A,B.若将直线y=x向上平移n个单位长度与线段AB有公共点,则n的取值范围是.【解答】解:∵直线y=2x+2与x轴、y轴分别交于点A,B,∴A(﹣1,0),B(0,2),将直线y=x向上平移n个单位长度后得到:直线y=x+n,当直线y=x+n经过点A时,0=﹣+n,即n=,当直线y=x+n经过点B时,2=0+n,即n=2,又∵直线y=x+n与线段AB有公共点,∴n的取值范围是.故答案为:.18.(3分)在一节数学课上,老师布置了一个任务:已知,如图1,在Rt△ABC中,∠B=90°,用尺规作图作矩形ABCD.同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:①分别以点A,C为圆心,大于AC长为半径画弧,两弧分别交于点E,F,连接EF交AC于点O;②作射线BO,在BO上取点D,使OD=OB;③连接AD,CD.则四边形ABCD就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【解答】解:作①的理由:到线段两端距离相等的点在线段的垂直平分线上,作②的理由:对角线互相平分的四边形是平行四边形,作③的理由:有一个角是直角的平行四边形是矩形.故答案为:到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形三、解答题(本题共46分,第19-21,24题,每小题4分,第22,23,25-28题,每小题4分)19.(4分)用配方法解方程:x2﹣6x=1.【解答】解:配方,得x2﹣6x+9=1+9整理,得(x﹣3)2=10,解得x 1=3﹣,x2=3+.20.(4分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,求线段EC,CH的长.【解答】解:∵BC=9,BE:EC=2:1,∴EC=3,设CH=x,则DH=9﹣x,由折叠可知EH=DH=9﹣x,在Rt△ECH中,∠C=90°,∴EC2+CH2=EH2.即32+x2=(9﹣x)2,解得x=4,∴CH=4.21.(4分)已知关于x的一元二次方程(m﹣1)x2﹣(m+1)x+2=0,其中m≠1.(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值.【解答】(1)证明:在方程(m﹣1)x2﹣(m+1)x+2=0中,△=[﹣(m+1)]2﹣4×2(m﹣1)=m2﹣6m+9=(m﹣3)2,∵(m﹣3)2≥0恒成立,∴方程(m﹣1)x2﹣(m+1)x+2=0总有实根;…(2分)(2)解:(m﹣1)x2﹣(m+1)x+2=(x﹣1)[(m﹣1)x﹣2]=0,=1,x2=.解得:x∵方程(m﹣1)x2﹣(m+1)x+2=0的两根均为正整数,且m是整数,∴m﹣1=1或m﹣1=2,∴m=2或m=3.22.(5分)2017年5月5日,国产大飞机C919首飞圆满成功.C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑.目前,C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.表1根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表2【解答】解:表2补充如下:20个数据从小到大排列后,第10、11个数据都是20,所以中位数是(20+20)÷2=20,数据20出现了10次,次数最多,所以众数是20.23.(5分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.【解答】(1)证明:如图1,∵点E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.在△EAF和△EDC,∴△EAF≌△EDC,∴AF=DC,∵AF=BD,∴BD=DC,即D是BC的中点;(2)解:如图2,∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC,在Rt△ABD中,AD==12,∴矩形AFBD的面积=BD•AD=60.24.(4分)有这样一个问题:探究函数y=+1的图象与性质.小明根据学习一次函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是x≠0;(2)下表是y与x的几组对应值.求出m的值;(3)如图,在平面直角坐标系xOy中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质该函数没有最大值或该函数没有最小值.【解答】解:(1)x≠0;故答案是:x≠0.(2)令,∴;(3)如图;(4)答案不唯一,可参考以下的角度:①该函数没有最大值或该函数没有最小值;②该函数在值不等于1;③增减性.25.(5分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.【解答】(1)证明:∵平行四边形ABCD,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE.∵OB=OE,∴∠OBE=∠OEB.∵∠OBE+∠OEB+∠ODE+∠OED=180°,∴∠OEB+∠OED=90°.∴DE⊥BE;(2)解:∵OE=OD,OF2+FD2=OE2,∴OF2+FD2=OD2.∴△OFD为直角三角形,且∠OFD=90°.在Rt△CED中,∠CED=90°,CE=3,DE=4,∴CD2=CE2+DE2.∴CD=5.又∵,∴.在Rt△CEF中,∠CFE=90°,CE=3,,根据勾股定理得:.26.(5分)如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,﹣1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形.请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)【解答】解:(1)∵B(0,3),C(0,﹣1).∴BC=4;(2)∵DB=DC,∴点D在线段BC的垂直平分线上,∵B(0,3),C(0,﹣1),∴线段BC的中点为(0,1),∴D点纵坐标为1,∵点D在直线AC上,∴1=﹣x﹣1,解得x=﹣2,∴D点坐标为(﹣2,1);(3)∵B(0,3),D(﹣2,1),∴可设直线BD解析式为y=mx+3,∴1=﹣2m+3,解得m=,∴直线BD解析式为y=x+3,∴可设P点坐标为(t,t+3),∵A(﹣,0),B(0,3),∴BP==|t|,AP==2,AB=2,当以A、B、P三点为顶点的三角形是等腰三角形时,有BP=AP、BP=AB和AP=AB 三种情况,①当BP=AP时,则有|t|=2,解得t=﹣,此时P点坐标为(﹣,2);②当BP=AB时,则有|t|=2,解得t=3或t=﹣3,此时P点坐标为(3,+3)或(﹣3,3﹣);③当AP=AB时,则有2=2,解得t=0(此时与B点重合,舍去)或t=﹣3,此时P点坐标为(﹣3,0);综上可知存在满足条件的点P,其坐标为(﹣,2)或(3,+3)或(﹣3,3﹣)或(﹣3,0).27.(5分)如图,在△ABD中,AB=AD,将△ABD沿BD翻折,使点A翻折到点C.E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.【解答】解:(1)如图所示:(2)判断:∠DFC=∠BAE.证明:∵将△ABD沿BD翻折,使点A翻折到点C.∴BC=BA=DA=CD.∴四边形ABCD为菱形.∴∠ABD=∠CBD,AD∥BC.又∵BE=BE,∴△ABE≌△CBE(SAS).∴∠BAE=∠BCE.∵AD∥BC,∴∠DFC=∠BCE.∴∠DFC=∠BAE.(3)如图,连接CG,AC.由轴对称的性质可知,EA=EC,∴EA+EG=EC+EG,根据EC+EG≥CG可知,CG长就是EA+EG的最小值.∵∠BAD=120°,四边形ABCD为菱形,∴∠CAD=60°.∴△ACD为边长为2的等边三角形.又∵G为AD的中点,∴DG=1,∴Rt△CDG中,由勾股定理可得CG=,∴EA+EG的最小值为.28.(5分)在平面直角坐标系xOy中,已知点M(a,b)及两个图形W1和W2,若对于图形W1上任意一点P(x,y),在图形W2上总存在点P'(x',y'),使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形W2是图形W 1关于点M的关联图形,此时三个点的坐标满足x'=,y'=.(1)点P'(﹣2,2)是点P关于原点O的关联点,则点P的坐标是(﹣4,4);(2)已知,点A(﹣4,1),B(﹣2,1),C(﹣2,﹣1),D(﹣4,﹣1)以及点M(3,0)①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.【解答】解:(1)∵点P'(﹣2,2)是点P关于原点O的关联点,∴点P'是线段PO的中点,∴点P的坐标是(﹣4,4);故答案为:(﹣4,4);(2)①如图1,连接AM,并取中点A′;同理,画出B′、C′、D′;∴正方形A′B′C′D′为所求作.②如图2,设N(0,n).∵正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分,∴关联图形的中心Q落在直线y=﹣x上,∵正方形ABCD的中心为E(﹣3,0),∴Q(,),∴代入得:=﹣,解得:n=3.。
2018新人教版八年级下册数学期末试卷及答案
最新2018年新人教版八年级数学(下)期末检测试卷(含答案)一、选择题(本题共10小题,满分共30分) 1.二次根式21、错误!、错误!、错误!、240x 、22y x +中,最简二次根式有()个。
A 、1 个B 、2 个C 、3 个D 、4个 2。
若式子23x x --有意义,则x 的取值范围为().A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222 C .3,4, 5 D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD,AB=CD (B)AD ∥BC ,∠A=∠C (C)AO=BO=CO=DO,AC ⊥BD (D )AO=CO,BO=DO,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121xx x x x x nS n -++-+-= 中,下列说法不正确的是( )A 。
n 是样本的容量B 。
是样本个体C 。
是样本平均数D 。
S 是样本方差9、多多班长统计去年1~8月“书香校园"活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65二、填空题(本题共10小题,满分共30分)M PFE CBAB C A D O11.48-133-⎛⎫ ⎪ ⎪⎝⎭+)13(3-—30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD =cm 。
2018-2019学年上海市普陀区第二学期八年级期末试卷(含答案)
普陀2018学年第二学期八年级数学学科期末考试卷(考试时间:90分钟,满分:100分)一、单项选择题(本大题共6题,每题2分,满分12分)1.下列函数中,一次函数是().A .y x =B .y kx b =+C .11y x =+D .22y x x =-2.下列方程中,有实数根的方程是().A .4160x +=B .2230x x ++=C .2402x x -=-D 0+=3.在同一平面直角坐标系中的图像如图所示,则关于21k x k x b <+的不等式的解为().A .1x >-B .2x <-C .1x <-D .无法确定4.下列事件中,属于随机事件的是().A .凸多边形的内角和为500︒B .凸多边形的外角和为360︒C .四边形绕它的对角线交点旋转180︒能与它本身重合D .任何一个三角形的中位线都平行于这个三角形的第三边5.化简()()AB CD BE DE -+-u u u r u u u r u u u r u u u r 的结果是().A .CA u u u rB .AC u u u r C .0rD .AEu u u r 6.如图,在四边形ABCD 中,AC 与BD 相交于点O ,AD BC ∥,AC BD =,那么下列条件中不能..判定四边形ABCD 是矩形的是().A .AD BC=B .AB CD =C .DAB ABC ∠=∠D .DAB DCB∠=∠二、填空题(本大题共12题,每小题3分,满分36分)7.若一次函数(2)1y k x =-+中,y 随x 的增大而减小,则k 的取值范围是.8.已知直线(2)3y k x =-+与直线32y x =-平行,那么k =.9.方程320x +=在实数范围内的解是.10.方程2422x x x =--的解是.11.用换元法解方程221231x x x x -+=-时,如果设21x y x-=,那么得到关于y 的整式方程为.12.将二元二次方程22560x xy y -+=化为两个一次方程为.13.一个菱形的两条对角线长分别为12cm 、16cm ,这个菱形的周长=cm .14.如图,在四边形ABCD 中,AB CD ≠,E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是.15.在5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是.16.已知在等腰梯形ABCD 中,CD AB ∥,AD BC =,对角线AC BD ⊥,垂足为O ,若3CD =,8AB =,梯形的高为.17.如图,正方形ABCD 的边长为6,点E 、F 分别在AB ,AD 上,若CE =,且45ECF ∠=︒,则CF 的长为.18.如图,在ABCD Y 中,AC 与BD 相交于点O ,60AOB ∠=︒,4BD =,将ABC △沿直线AC 翻折后,点B 落在点E 处,那么AED S =△.三、解答题(共7题,满分52分)192511x x -=-+.20.解方程组:2241226x y x y ⎧-=⎨+=⎩.21.如图,点E 、F 、G 、H 分别是四边形ABCD 的边AB 、BC 、CD 、DA 的中点.(1)如果图中线段都可画成有向线段........,那么在这些有向线段所表示的向量中,与向量EF u u u r 相等的向量是;(2)设AB a =u u u r r ,BC b =u u u r r ,AD c =u u u r r .试用向量a r ,b r 或c r 表示下列向量:AC =u u u r ;DC =u u u r ;(3)求作:BC DG -u u u r u u u r.(请在原图..上作图,不要求写作法,但要写出结论)22.某校学生在“蓝天下的至爱”帮困活动中,纷纷拿零花钱,参加募捐活动.甲班学生共募捐840元,乙班学生共募捐1000元,乙班学生的数比甲班学生的人均捐款数多5元,且人数比甲班少2名,求甲班和乙班学生的人数.23.某边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B 追赶(如图1).图2中1l 、2l 分别表示两船相对于海岸的距离s (海里)与追赶时间t (分)之间的关系.(1)求1l 、2l 的函数解析式;(2)当A 逃到离海岸12海里的公海时,B 将无法对其进行检查.照此速度,B 能否在A 逃入公海前将其拦截?若能,请求出此时B 离海岸的距离;若不能,请说明理由.24.已知:如图1,在ABCD Y 中,点G 为对角线AC 的中点,过点G 的直线EF 分别交边AB 、CD 于点E 、F ,过点G 的直线MN 分别交边AD 、BC 于点M 、N ,且AGE CGN ∠=∠.(1)求证:四边形ENFM 为平行四边形;(2)如图2,当四边形ENFM 为矩形时,求证:BE BN =.25.如图,已知直角梯形ABCD ,AD BC ∥,90DCB ∠=︒,过点A 作AH BC ⊥,垂足为点H ,4CD =,2BH =,点F 是CD 边上的一动点,过F 作线段AB 的垂直平分线,交AB 于点E ,并交射线BC 于点G .(1)如图1,当点F 与点C 重合时,求BC 的长;(2)设AD x =,DF y =,求y 与x 的函数关系式,并写出定义域;(3)如图2,联结DE ,当DEF △是等腰三角形时,求AD 的长.普陀2018学年第二学期八年级期末考试数学试卷参考答案一、选择题(本大题共6题,每小题2分,满分12分)1.A 2.C 3.C 4.C 5.B 6.B二、填空题(本大题共12题,每小题3分,满分36分)7.2k >8.59.x =10.2x =-11.2320y y -+=12.30x y -=和20x y -=13.4014.AD BC =15.3516.5.517.18.三、解答题(本大题共7题,第19题~第22题每小题6分,共24分;第23题、第24题每小题8分,共16分,第25题12分,满分52分)191=-,2511x x -=-+,7x =-,2444914x x x +=-+,218450x x -+=.13x =,215x =.经检验:它们都是增根,舍去.所以原方程无解.20.解:由①得(2)(2)12x y x y -+=.③将②代入③,得22x y -=.④得方程组2226x y x y -=⎧⎨+=⎩,解得41x y =⎧⎨=⎩,所以原方程组的解是41x y =⎧⎨=⎩.21.(1)HGu u u r (2)AC a b =+u u u r r r ;DC a b c =+-u u u r r r r .(3)∵BC DG BC GC BG -=-=u u u r u u u r u u u r u u u r u u u r,∴BC u u u r为所求作向量.作图略22.解:设乙班学生的人数为x 名,则甲班学生的人数为(2)x +名.根据题意,得100084052x x -=+.整理,得2304000x x --=.解得140x =,210x =-.经检验:140x =,210x =-都是原方程的根,但210x =-不符合题意,舍去.242x +=答:甲班学生的人数为42名,乙班学生的人数为40名.23.解:(1)由题意,设()111:0l s k t k =≠.∵(10,5)在此函数图像上,∴1105k =,解得112k =,∴12s t =.由题意,设()222:0l s k t b k =+≠.∵(0,5),(10,7)在此函数图像上,∴205107b k b +=⎧⎨+=⎩.解得215k =,5b =.∴155s t =+.(2)由题意,得12155s t s t ⎧=⎪⎪⎨⎪=+⎪⎩,解得503253t s ⎧=⎪⎪⎨⎪=⎪⎩.∵25123<,∴B 能追上A .此时B 离海岸的距离为253海里.24.(1)证明:∵四边形ABCD 为平行四边形,∴AB CD ∥.∴EAG FCG ∠=∠.∵点G 为对角线AC 的中点,∴AG GC =.∵AGE FGC ∠=∠,∴EAG FCG △≌△.∴EG FG =.同理MG NG=∴四边形ENFM 为平行四边形.(2)证明:∵四边形ENFM 为矩形,∴EF MN =,且12EG EF =,12GN MN =.∴EG NG =.(不可无上步而直接写EG NG FG MG ===)又∵AG CG =,AGE CGN ∠=∠.∴EAG NCG △≌△.∴AE CN =,BAC ACB ∠=∠.∴AB BC =.∴AB AE BC CN -=-.即BE BN =.25.解:(1)∵梯形ABCD 中,AD BC ∥,AH BC ⊥,90DCB ∠=︒,∴AD CH=∵CE 是线段AB 的垂直平分线,∴BC AC=在Rt ADC △中,222AD DC AC +=又∵4DC =,2BH =,设AD HC x ==,2BC x AC =+=,222(2)4x x +=+∴3x =∴235BC =+=(2)联结AF ,BF∵EF 是线段AB 的垂直平分线,∴AF BF=∵AD x =,DF y =,∴4FC y=-在Rt ADF △中,222AF x y=+在\sqrt{5}中,222(2)(4)BF x y =++-∴2222(2)(4)x y x y +=++-∴5(03)2x y x +=<≤(3)在Rt ABH △中,4AH =,2BH =,∴25AB =,5AE BE ==当DEF △是等腰三角形时①∵FD FE=∴DEF EDF∠=∠∵90ADC AEF ∠=∠=︒∴AED ADE∠=∠∴5AD AE ==②DE EF=取DC 中点M ,联结EM ∵E 为AB 的中点∴EM 为梯形中位线∴EM DC⊥∵DE EF=∴M 为DF 中点,∴此时F 与C 重合∴3AD =③DE DF=联结DE 并延长交CB 延长线于点P此时EAD EBP △≌△.∴AD PB x ==,2BC x =+,DE PE y==∴22PC x =+,2DP y=∴在Rt PDC △中,222(22)4(2)x y ++=,∵52x y +=∴解得153x =,21x =-(不合题意含去)∴综上所述,当DEF △是等腰三角形时,AD 53或53。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下学期期期末测试卷学校______班级_______姓名______得分_________一、选择题(本大题10个小题,每小题3分,共30分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个答案是正确的,请选出填在题后的括号内。
1、化简a b a b a b--+等于( ) A 、2222a b a b +- B 、222()a b a b +- C 、2222a b a b -+ D 、222()a b a b+-2、一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时。
A 、11a b +B 、1abC 、1a b +D 、ab a b+3、下列命题中不成立是( )A 、三个角的度数之比为1:3:4的三角形是直角三角形B 、三个角的度数之比为1:3:2的三角形是直角三角形C 、三边长度之比为1:3:2的三角形是直角三角形D 、三边长度之比为2:2:2的三角形是直角三角形4、如图,点A 是反比例函数`4x y =图象上一点,AB ⊥y 轴于点B ,则△AOB 的面积是( )A 、1B 、2C 、3D 、4第4题图形5、在三边分别为下列长度的三角形中,哪些不是直角三角形( ) A 、5,13,12 B 、2,3,C 、4,7,5D 、1,6、、一组对边平行,并且对角线互相垂直且相等的四边形是( ) A 、菱形或矩形 B 、正方形或等腰梯形 C 、矩形或等腰梯形 D 、菱形或直角梯形7、1x ,2x ,……,10x 的平均数为a ,11x ,12x ,……,50x 的平均数为b ,则1x ,2x ,……,50x 的平均数为( ) A 、b a + B 、2b a + C 、605010b a + D 、504010ba + 8、当5个整数从小到大排列,则中位数是4,如果这5个数 的唯一众数是6,则这5个整数可能的最大和是( ) A 、21 B 、22 C 、23 D 、24 9、如图,在一个由4×4个小正方形组成的正方形网格中, 阴影部分面积与正方形ABCD 的面积比是( )A 、3:4B 、5:8C 、9:16D 、1:210、、已知四边形ABCD 的对角线相交于O ,给出下列 5个条件①AB ∥CD ②AD ∥BC ③AB=CD ④∠BAD=∠DCB ,从以上4个条件中任选 2个条件为一组,能推出四边形ABCD 为平行四边形的有( ) A6组 B.5组 C.4组 D.3组二、填空题(本大题10个小题,每小题3分,共30分)在每小题中,请将答案直接写在题后横线上。
11、计算(x+y)·2222x y x y y x+-- =___________。
12、如图,□ABCD 中,AE ⊥CD 于E ,∠B=55°,则∠D= °,∠DAE= °。
13、如图,△ABC 、△ACE 、△ECD 都是等边三角形,则图中的平行四边形有那些? 。
14、将40cm 长的木条截成四段,围成一个平行四边形,使其长边与短边的比为3:2,则较长的木条长 cm ,较短的木条长 cm 。
15、数据1,2,8,5,3,9,5,4,5,4的众数是_________;中位数是__________。
16、已知一个工人生产零件,计划30天完成,若每天多生产5个,则在26天完成且多生产15个。
求这个工人原计划每天生产多少个零件?如果设原计划每天生产x 个,根据题意可列出的方程为 。
17、若y 与x 成反比例,且图像经过点(-1,1),则y= 。
(用含x 的代数式表示)18、已知,在△ABC 中,AB =1,AC =2,∠B=45°,那么△ABC 的面积是 。
19、如右图,△OPQ 是边长为2的等边三角形,若反比例函数的图象过点P ,则它的解析式是_______。
20、在四边形ABCD 中,若已知AB ∥CD ,则再增加条件 即可使四边形ABCD 成为平行四边形。
三、解答题(共60分)解答时请写出必要的演算过程或推理步骤。
21、(1)(5分)计算: 2424422x y x y x x y x y x y x y ⋅-÷-+-+。
(2)(5分)解分式方程: 482222-=-+-+x x x x x .22(5分)请你阅读下列计算过程,再回答所提出的问题: 题目计算x x x ----13132解:原式=13)1)(1(3---+-x x x x (A ) =)1)(1()1(3)1)(1(3-++--+-x x x x x x (B ) =x-3-3(x+1) (C ) =-2x-6 (D )(1)上述计算过程中,从哪一步开始出现错误:_______________(2)从B 到C 是否正确,若不正确,错误的原因是__________________________ (3)请你正确解答。
23(8分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形。
(1)使三角形三边长为3,(2)使平行四边形有一锐角为45°,且面积为4。
(1)(2)24、(8分)已知函数y = y1-y2,y1与x成反比例,y2与x-2成正比例,且当x = 1时,y =-1;当x = 3时,y = 5.求当x=5时y的值。
25、(8分)已知:如图,在□ABCD 中,对角线AC 交BD 于点O ,四边形AODE 是平行四边形。
求证:四边形ABOE 、四边形DCOE 都是平行四边形。
26、(7分)某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?27、(6分)张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”,对两位同学进行了辅导,并在辅导期间进行了10次测验,两位同学测验成绩记录如下表:利用表中提供的数据,解答下列问题: (1)填写完成下表:(2)张老师从测验成绩记录表中,求得王军10次测验成绩的方差2S 王=33.2,请你帮助张老师计算张成10次测验成绩的方差2S;张(3)请你根据上面的信息,运用所学的统计知识,帮助张老师做出选择,并简要说明理由。
28、(8分)如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P。
若木棍A端沿墙下滑,且B端沿地面向右滑行。
(1)请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由。
(2)在木棍滑动的过程中,当滑动到什Array么位置时,△AOB的面积最大?简述理由,并求出面积的最大值。
答案及提示一、选择题二、填空题11、x+y ;12、55°,35°;13、□ABCE ,□ACDE ;14、12,8;15、5;4.5;16、3015265x x +=+;17、x1-;18、)31(41+;19、x y 3=;20、AB=CD 或AD ∥BC 。
三、解答题21(1) 原式=•222222242)()(xy x y x y x y x y x y y x x+⋅-⋅+-+⋅-= ))(())((22y x y x y x y x y x xy -+--+=))((22y x y x yx xy -+-=y x xy y x y x x y xy +-=-+-))(()( (2)解:方程两边同乘以最简公分母)2)(2(-+x x 得 8)2()2(2=+--x x x844222=----x x x x 126=-x 2-=x经检验:2-=x 不是原方程的根,原方程无解 22、(1)A 到B(2)不正确,不能去分母 (3)x x x ----13132=33(1)(1)1x x x x -+--+=33(1)(1)(1)(1)(1)x x x x x x -++-+-+=241x x - 23、(略) 24、解:设11k y x =,22(2)y k x =-,则y = 1kx2(2)k x --。
根据题意有:1212153k k k k +=-⎧⎪⎨-=⎪⎩ ,解得:13k =,24k =- ∴348y x x=+- 当x =5时,y 32085=+-=3125.25、∵□ABCD 中,对角线AC 交BD 于点O ,∴OB=OD ,又∵四边形AODE 是平行四边形∴AE ∥OD 且AE=OD ,∴AE ∥OB 且AE=OB ,∴四边形ABOE 是平行四边形 同理,四边形DCOE 也是平行四边形。
26、设自行车速度为x 千米/小时,则汽车速度为2.5x 千米/小时,由题意可列方程为xx 5.220604520=-,解得x=16,经检验,x=16适合题意,故2.5x=40,所以自行车速度为16千米/小时,汽车速度为40千米/小时.27、(1)78,80(2)13(3)选择张成,因为他的成绩较稳定,中位数和众数都较高28、(1)不变。
理由:在直角三角形中,斜边上的中线等于斜边的一半,因为斜边AB 不变,所以斜边上的中线OP 不变。
(2)当△AOB 的斜边上的高h 等于中线OP 时,△AOB 的面积最大。
如图,若h 与OP 不相等, 则总有h <OP 。
故根据三角形面积公式, 有h 与OP 相等时△AOB 的面积最大此时,S △AOB =2·221·21a a a h AB =⨯=. 所以△AOB 的最大面积为2a 。