03《大学物理学》动量守恒和能量守恒定律部分练习题(马)

合集下载

大学物理活页作业(马文蔚主编)答案

大学物理活页作业(马文蔚主编)答案

运动方程。)
7.解:(1)
r

2ti

(2

t
2
)
j
( SI )
r1 2i j (m)
r2 4i 2 j (m)
r r2 r1 2i 3 j (m)
v

r

2i

3j
t
(m / s)
(2) v
mr 2 J
(2)设绳子对物体(或绳子对轮轴)的拉力为 T,则根据牛顿运动定律和转动定律 得:
mg – T=ma
T r=J
由运动学关系有: a = r
联立解得:
mgJ T
J mr 2
1 质点运动学单元练习一答案—11
10.解:以中心 O 为原点作坐标轴 Ox、Oy 和 Oz 如图所示,取质量为 dm dxdy
式中面密度 为常数,按转动惯量定义,
Jz
(x2

y 2 )dm

b
2 b
dx

a
2 a
(
x
2


y 2 )dy

(ab3 12
a3b)
2
2
薄板的质量 m ab
所以
Jz

m (a2 12

b2 )
7.刚体转动单元练习(二)答案
1.C
2.A
3.D
4.B
5.
3
o

1 3
Ep

1 2
mv12

1 2
m2v
2 2

1 2
(m1
m2 )v 2

大学物理练习题3((角)动量与能量守恒定律)

大学物理练习题3((角)动量与能量守恒定律)

大学物理练习题3:“力学—(角)动量与能量守恒定律”一、填空题1、一个质量为10kg 的物体以4m/s 的速度落到砂地后经0.1s 停下来,则在这一过程中物体对砂地的平均作用力大小为 。

2、t F x 430+=(式中x F 的单位为N ,t 的单位为s )的合外力作用在质量为kg m 10=的物体上,则:(1)在开始s 2内,力x F 的冲量大小为: ;(2)若物体的初速度1110-⋅=s m v ,方向与x F 相同,则当力x F 的冲量s N I ⋅=300时,物体的速度大小为: 。

3、一质量为kg 1、长为m 0.1的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。

现以100N 的力打击它的下端点,打击时间为0.02s 时。

若打击前棒是静止的,则打击时棒的角动量大小变化为 ,打击后瞬间棒的角速度为 。

4、某质点最初静止,受到外力作用后开始运动,该力的冲量是100.4-⋅⋅s m kg ,同时间内该力作功4.00J ,则该质点的质量是 ,力撤走后其速率为 。

5、设一质量为kg 1的小球,沿x 轴正向运动,其运动方程为122-=t x ,则在时间s t 11=到s t 32=内,合外力对小球的功为 ;合外力对小球作用的冲量大小为 。

6、一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。

已知在此力作用下质点的运动学方程为3243t t t x +-= (SI)。

则在0到4 s 的时间间隔内,力F 的冲量大小I = ,力F 对质点所作的功W = 。

7、设作用在质量为 2 kg 上的物体上的力x F x 6=(式中x F 的单位为N ,x 的单位为m )。

若物体由静止出发沿直线运动,则物体从0=x 运动到m x 2=过程中该力作的功=W ,m x 2=时物体的速率=v 。

8、已知质量kg 2=m 物体在一光滑路面上作直线运动,且0=t 时,0=x ,0=ν。

若该物体受力为x F 43+=(式中F 的单位为N ,x 的单位为m ),则该物体速率ν随 x 的函数关系=)(x ν ;物体从0=x 运动到2=x m 过程中该力作的功=W 。

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案
t1
即:作用在两质点组成的系统的合外力的冲量等于系统内两质点动量之和的增 量,即系统动量的增量。 2.推广:n 个质点的情况
t2 t2 n n n n F d t + F d t m v mi vi 0 i外 i内 i i i 1 i 1 i 1 i 1 t1 t1
yv 2
同乘以 ydy,得
y 2 gdty y
积分 得
y
0
y
gdty
yvdt( yv)
0
1 3 1 gy ( yv) 2 3 2
因而链条下落的速度和落下的距离的关系为
2 v gy 3
1/ 2
7
第4讲
动量和冲量
考虑到内力总是成对出现的,且大小相等,方向相反,故其矢量和必为零, 即
F
i 0
n

i内
0

设作用在系统上的合外力用 F外力 表示,且系统的初动量和末动量分别用
5
第4讲
动量和冲量
P0 和 P 表示,则
t2 n n F d t m v mi vi 0 i i 外力 t1
F外 dt=dPFra bibliotek力的效果 关系 适用对象 适用范围 解题分析
*动量定理与牛顿定律的关系 牛顿定律 动量定理 力的瞬时效果 力对时间的积累效果 牛顿定律是动量定理的 动量定理是牛顿定律的 微分形式 积分形式 质点 质点、质点系 惯性系 惯性系 必须研究质点在每时刻 只需研究质点(系)始末 的运动情况 两状态的变化
1
第4讲
动量和冲量
§3-1 质点和质点系的动量定理
实际上,力对物体的作用总要延续一段时间,在这段时间内,力的作用将 积累起来产生一个总效果。下面我们从力对时间的累积效应出发,介绍冲量、 动量的概念以及有关的规律,即动量守恒定律。 一、冲量 质点的动量定理 1.动量:Momentum——表示运动状态的物理量 1)引入:质量相同的物体,速度不同,速度大难停下来,速度小容易停下;速 度相同的物体,质量不同,质量大难停下来,质量小容易停下。 2)定义:物体的质量 m 与速度 v 的乘积叫做物体的动量,用 P 来表示 P=mv 3)说明:动量是矢量,大小为 mv,方向就是速度的方向;动量表征了物体的 运动状态 -1 4)单位:kg.m.s 5)牛顿第二定律的另外一种表示方法 F=dP/dt 2.冲量:Impulse 1)引入:使具有一定动量 P 的物体停下,所用的时间Δt 与所加的外力有关, 外力大,Δt 小;反之外力小,Δt 大。 2)定义: 作用在物体外力与力作用的时间Δt 的乘积叫做力对物体的冲量, 用 I 来表 示 I= FΔt 在一般情况下,冲量定义为

大物习题答案第2章动量守恒定律与能量守恒定律

大物习题答案第2章动量守恒定律与能量守恒定律

第2章 动量守恒定律与能量守恒定律一 基本要求1 理解冲量、动量等概念。

掌握动量定理及动量守恒定律,能运用它们解简单系统在平面内运动的力学问题。

2 理解功的概念,能计算变力做功的问题 。

3 理解保守力做功的特点和势能的概念,会计算重力、弹性力和万有引力做的功及对应的势能 。

4 理解动能定理、功能原理和机械能守恒定律,掌握运用守恒定律解问题 的思想和方法 。

二 基本概念 1 质点的动量、冲量质点的动量定义:m =p υ,p 为矢量,也是状态量。

质点的冲量定义 :21t t dt =⎰I F ,它也是矢量,是过程量。

2 冲力 在解决冲击、碰撞问题时,将两个物体在碰撞瞬间的相互作用力称为冲力,冲力作用时间短,量值变化也很大,所以很难确定每一时刻的冲力,常用平均冲力的冲量来代替变力的冲量 。

3内力和外力 对于质点系,其内部各个质点之间的相互作用力称为内力,质点系以外的其他物体对其中的任一质点的作用力称为外力。

4功 功率(1)功 力对质点所作的功为力在质点位移方向的分量与位移大小的乘积。

cos BBAAW dW d F dr θ==⋅=⎰⎰⎰F r(2) 功率 功随时间的变化率,反映的是做功的快慢。

dW P dt =cos d d P F dt dtυθ⋅==⋅=⋅=F r r F F υ5动能 质量为m 的物体,当它具有速度υ时,定义212m υ为质点在速度为υ时的动能,用k E 表示。

6保守力和非保守力 如果力F 对物体做的功只与物体初、末位置有关而与物体所经过的路径无关,我们把具有这种特点的力称为保守力,否则称为非保力。

保守力做功0ld ⋅=⎰F l Ñ ,非保守力作功 0ld ⋅≠⎰F l Ñ 。

重力、弹性力、万有引力均为保守力,而摩擦力、汽车的牵引力等都是非保守力。

7势能 系统某点的势能等于在保守力作用下将物体从该点沿任意路径移动到零势能点保守力做的功,用p E 表示。

8机械能,系统的动能和势能统称为机械能,用E 表示。

动量守恒与能量守恒定律习题

动量守恒与能量守恒定律习题

第三章 动量守恒定律和能量守恒定律(一) 教材外习题1 功与能习题一、选择题:1.一质点受力i x F 23 (SI )作用,沿X 轴正方向运动。

从x = 0到x = 2m 进程中,力F 作功为(A )8J. (B )12J. (C )16J. (D )24J.( )2.如图所示,圆锥摆的小球在水平面内作匀速度圆周运动,下列说法正确的是(A )重力和绳索的张力对小球都不作功.(B )重力和绳索的张力对小球都作功.(C )重力对小球作功,绳索张力对小球不作功.(D )重力对小球不作功,绳索张力对小球作功.( )3.已知两个物体A 和BB 的大,则A 的动能E KA 与B 的动能E KB 之间的关系为(A )E KB 必然大于E KA . (B )E KB 必然小于E KA(C )E KB =E KA(D )不能判定谁大谁小 ( )4.如图所示,一个小球前后两次从P 点由静止开始,别离沿着滑腻的固定斜面l 1和圆弧面l 2下滑,则小球滑到两面的底端Q 时的(A )动量相同,动能也相同(B )动量相同,动能不同(C )动量不同,动能也不同(D )动量不同,动能相同 ( )5.一质点在外力作用下运动时,下述哪一种说法正确?(A )质点的动量改变时,质点的动能必然改变(B )质点的动能不变时,质点的动量也必然不变(C )外力的冲量是零,外力的功必然为零(D )外力的功为零,外力的冲量必然为零( )二、填空题: 1.某质点在力F =(4+5x )i (SI )的作用下沿x 轴作直线运动,在从x =0移动到x =10m 的进程中,力F 所作功为___________________。

QP l 2 l 12.如图所示,一斜面倾角为θ,用与斜面成α角的恒力F 将一质量为m 的物体沿斜面拉升了高度h ,物体与斜面间的摩擦系数为μ,摩擦力在此进程中所作的功W f =____________________________。

动量守恒能量守恒练习题

动量守恒能量守恒练习题

动量守恒能量守恒练习题动量守恒和能量守恒是物理学中两个重要的守恒定律。

它们在解决物理问题中起着关键的作用,尤其在力学和能量转化的问题中应用广泛。

下面是一些关于动量守恒和能量守恒的练习题,让我们来一起进行练习,加深对这两个定律的理解。

练习题1:碰撞问题两个相互靠近的物体质量分别为m1和m2,初始速度分别为v1和v2。

它们发生完全弹性碰撞,向相反方向运动后的速度分别为v1'和v2'。

根据动量守恒定律,我们可以得到以下式子:m1v1 + m2v2 = m1v1' + m2v2'对于给定的初始条件,求解碰撞后物体的速度。

练习题2:能量转化问题一物体从高处自由下落,其高度为h,质量为m。

忽略空气阻力的影响,我们可以应用能量守恒定律,得到以下式子:mgh = 1/2mv^2其中,g是重力加速度,v是物体的速度。

根据这个式子,给定初始条件,可以求解物体在到达地面时的速度v。

练习题3:弹簧振动问题一质量为m的物体挂在一个弹簧上,弹簧的劲度系数为k。

当物体受到外力F推动后,它绕平衡位置做简谐振动。

根据动量守恒和能量守恒定律,我们可以得到以下式子:mω^2A^2 = F^2其中,A是振幅,ω是振动的角频率。

根据这个式子,可以求解物体的运动参数。

练习题4:线性势能转化为动能一个弹簧压缩到长度为x,劲度系数为k。

当弹簧释放时,它将能量转化为物体的动能。

根据能量守恒定律,可以得到以下式子:1/2kx^2 = 1/2mv^2其中,x是弹簧的长度,v是物体的速度。

根据这个式子,可以求解物体的速度。

练习题5:球体滚动问题一个质量为m的球体从斜面上方的高度h滚动下来,斜面的倾角为θ。

忽略摩擦的影响,根据能量守恒定律,我们可以得到以下式子:mgh = 1/2mv^2 + 1/2Iω^2其中,g是重力加速度,v是球体的速度,I是球体关于通过球心的转动轴的转动惯量,ω是球体的角速度。

根据这个式子,可以求解球体在到达底部时的速度。

大学物理练习题3动量与能量守恒定律

大学物理练习题3动量与能量守恒定律

大学物理练习题3:“力学—(角)动量与能量守恒定律”一、填空题1、一个质量为10kg 的物体以4m/s 的速度落到砂地后经停下来,则在这一过程中物体对砂地的平均作用力大小为。

2、F x 30 4t (式中F x 的单位为N ,t的单位为s)的合外力作用在质量为m 10kg 的物体上,则:(1)在开始2s内,力F x的冲量大小为:;(2)若物体的初速度v1 10m s 1,方向与F x相同,则当力F x的冲量I 300N s时,物体的速度大小为:。

3、一质量为1kg 、长为1.0m 的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。

现以100N 的力打击它的下端点,打击时间为时。

若打击前棒是静止的,则打击时棒的角动量大小变化为,打击后瞬间棒的角速度为。

4、某质点最初静止,受到外力作用后开始运动,该力的冲量是4.00kg m s 1,同时间内该力作功,则该质点的质量是,力撤走后其速率为。

5、设一质量为1kg 的小球,沿x 轴正向运动,其运动方程为x 2t2 1,则在时间t1 1s到t2 3s 内,合外力对小球的功为;合外力对小球作用的冲量大小为。

6、一个力F 作用在质量为 1.0 kg 的质点上,使之沿x轴运动。

已知在此力作用下质点的运动学方程为x 3t 4t 2 t3(SI)。

则在0 到 4 s 的时间间隔内,力F 的冲量大小I = ,力F 对质点所作的功W = 。

7、设作用在质量为 2 kg 上的物体上的力F x 6x(式中F x的单位为N ,x的单位为m)。

若物体由静止出发沿直线运动,则物体从x 0 运动到x 2m 过程中该力作的功W ,x 2m 时物体的速率v 。

8、已知质量m 2kg 物体在一光滑路面上作直线运动,且t 0时,x 0,ν 0 。

若该物体受力为F 3 4x(式中 F 的单位为N ,x 的单位为m),则该物体速率ν随x 的函数关系ν(x);物体从x 0运动到x 2 m 过程中该力作的功W。

大学物理题库-第3章-动量守恒定律和能量守恒定律试题(含答案解析)

大学物理题库-第3章-动量守恒定律和能量守恒定律试题(含答案解析)

大学物理题库 第三章 动量守恒定律和能量守恒定律一、选择题: 1、水中有一只静止的小船,船头与船尾各站有一个质量不相同的人。

若两人以不同的速率相向而行,不计水的阻力,则小船的运动方向为: (A)与质量大的人运动方向一致 (B)与动量值小的人运动方向一致 (C)与速率大的人运动方向一致 (D)与动能大的人运动方向一致[ ]2、关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是: (A )不受外力作用的系统,其动量和机械能必然同时守恒;(B )所受合外力为零,内力都是保守力的系统,其机械能必然守恒;(C )不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒; (D )外力对一个系统所作的功为零,则该系统的动量和机械能必然同时守恒。

[ ]3、一质点在外力作用下运动时,下述哪种说法是正确的?(A )质点的动量改变时,质点的动能也一定改变; (B )质点的动能不变时,质点的动量也一定不变; (C )外力的冲量为零,外力的功一定为零; (D )外力的功为零,外力的冲量一定为零。

[ ]4、质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为 (A) 9 N·s . (B) -9 N·s . (C)10 N·s . (D) -10 N·s .[ ]5、质量分别为m 和4m 的两个质点分别以动能E 和4E 沿一直线相向运动,它们的总动量大小为(A) 2mE 2 (B) mE 23.(C) mE 25. (D) mE 2)122([ ]6、如图所示,一个小球先后两次从P 点由静止开始,分别沿着光滑的固定斜面l 1和圆弧面l 2下滑.则小球滑到两面的底端Q 时的(A) 动量相同,动能也相同. (B) 动量相同,动能不同. (C) 动量不同,动能也不同. (D) 动量不同,动能相同.[ ]7、一个质点同时在几个力作用下的位移为k j i r654+-=∆ (SI ),其中一个恒力为k j i F953+--=(SI ),则此力在该位移过程中所作的功为: (A )67J (B )91J (C ) 17J (D ) -67J[ ]8、如图3-12所示,劲度系数为k 的轻质弹簧水平放置,一端固定,另一端接一质量为m 的物体,物体与水平桌面间的摩擦系数为μ,现以恒力F 将物体自平衡位置开始向右拉动,则系统的最大势能为:(A ) ()22mg F k μ- (B ) ()221mg F k μ- (C ) 22F k(D )221F k[ ]9、质量为m 的一艘宇宙飞船关闭发动机返回地面时,可认为该飞船只在地球的引力场中运动。

大学物理练习题3动量与能量守恒定律

大学物理练习题3动量与能量守恒定律

大学物理练习题3:“力学—(角)动量与能量守恒定律”一、填空题1、一个质量为10kg 的物体以4m/s 的速度落到砂地后经停下来,则在这一过程中物体对砂地的平均作用力大小为 。

2、t F x 430+=(式中x F 的单位为N ,t 的单位为s )的合外力作用在质量为kg m 10=的物体上,则:(1)在开始s 2内,力x F 的冲量大小为: ;(2)若物体的初速度1110-⋅=s m v ,方向与x F 相同,则当力x F 的冲量s N I ⋅=300时,物体的速度大小为: 。

3、一质量为kg 1、长为m 0.1的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。

现以100N 的力打击它的下端点,打击时间为时。

若打击前棒是静止的,则打击时棒的角动量大小变化为 ,打击后瞬间棒的角速度为 。

4、某质点最初静止,受到外力作用后开始运动,该力的冲量是100.4-⋅⋅s m kg ,同时间内该力作功,则该质点的质量是 ,力撤走后其速率为 。

5、设一质量为kg 1的小球,沿x 轴正向运动,其运动方程为122-=t x ,则在时间s t 11=到s t 32=内,合外力对小球的功为 ;合外力对小球作用的冲量大小为 。

6、一个力F ϖ作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。

已知在此力作用下质点的运动学方程为3243t t t x +-= (SI)。

则在0到4 s 的时间间隔内,力F ϖ的冲量大小I = ,力F ϖ对质点所作的功W = 。

7、设作用在质量为 2 kg 上的物体上的力x F x 6=(式中x F 的单位为N ,x 的单位为m )。

若物体由静止出发沿直线运动,则物体从0=x 运动到m x 2=过程中该力作的功=W ,m x 2=时物体的速率=v 。

8、已知质量kg 2=m 物体在一光滑路面上作直线运动,且0=t 时,0=x ,0=ν。

若该物体受力为x F 43+=(式中F 的单位为N ,x 的单位为m ),则该物体速率ν随 x 的函数关系=)(x ν ;物体从0=x 运动到2=x m 过程中该力作的功=W 。

大学物理动量守恒定律和能量守恒定律练习题题

大学物理动量守恒定律和能量守恒定律练习题题
1 mv2 mgR 2
A R=4m O
m=2kg
Bv
不动 v=6m·s-
1
Ff
FN
G=mg
第三章 动量守恒和能量守恒
9
物理学
第五版
第三章补充例题
9 已知在半径为R的光滑球面上,一物
体自顶端静止下滑, 问物体在何处脱离球面?

mg
cos
FN
m
v2 R
mgR(1 cos ) 1 mv2
当物体在A处脱离2球
的功.


vx
dx dt
5,
vy
dy dt
t,
有 v2 t 2 25
应用动能定理,得W
1 2
mv22
1 2
mv12
3J
第三章 动量守恒和能量守恒
7
物理学
第五版
8 如图,物体质
量 m 2 kg ,沿固定
的四分之一圆弧由A静 止滑下,到达B点时的
速率 v 6 m s1,求摩
擦力作的功.
第三章补充例题
x
Fdx
t 6t 1.5t 2dt 2.25t 4
0
0
所以,当 t 2 s 时, 得 W 36 J
第三章 动量守恒和能量守恒
6
物理学
第五版
第三章补充例题
7 质量为m 0.5 kg的质点, 在平面内
运动, 方程为 x 5tm,y 0.5t 2m ,求从
t 2s 到 t 4s 这段时间内,外力对质点作
v1 )
设 M = 200 m, 则 V=0.01v
v0= v1 =v
第三章 动量守恒和能量守恒
1
物理学
第五版

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案第三章动量守恒定律和能量守恒定律3-1 力)SI (12i F t =作用在质量kg 2=m 的物体上,使物体由原点从静止开始运动,则它在3秒末的动量应为:(A )m/s kg 54?-i (B )m/s kg 54?i(C )m/s kg 27?-i (D )m/s kg 27?i [B] 解:以该物体为研究对象,由质点动量定理=?==-=?30300354d 12d i i F p p p t t t又00=p 故()-13s m kg 54??=i p3-2 一个质点同时在几个力作用下的位移为:)SI (654k j i r +-=? 其中一个力为恒力)SI (953kj i F +--=,则此力在该位移过程中所作的功为(A )67J (B )91J(C )17J (D )-67J [A] 解:()()k j i k j i r F 654953+-?+--=??=A(J) 675425-12=++=3-3 对质点组有以下几种说法:①质点组总动量的改变与内力无关②质点组总动能的改变与内力无关③质点组机械能的改变与保守内力无关在上述说法中:(A )只有①是正确的(B )①、③是正确的(C )①、②是正确的(D )②、③是正确的 [B] 解:由于质点组内力冲量的矢量和为零,所以质点组总动量的改变与内力无关。

由于质点组内力功的代数和不一定为零,由动能定理K E A A ?=+内外,质点组总动能的改变可能与内力相关。

,由功能原理E A A ?=+非保内外,质点系机械能的改变与保守内力无关。

3-4 质点系的内力可以改变(A )系统的总质量(B )系统的总动量(C )系统的总动能(D )系统的总角动量 [C] 解:由质点系动量定理、角动量定理和动能定理k t t t t E A A t t ?=+?=??=??内外外外2121d d LM p F可知质点系内力只能改变系统总动能而不影响其总动量和总角动量。

大学物理第二、三章 牛顿运动定律、动量守恒定律和能量守恒定律习题及答案

大学物理第二、三章 牛顿运动定律、动量守恒定律和能量守恒定律习题及答案

第二、三章 牛顿运动定律、动量守恒定律和能量守恒定律一.选择题1. 一质量为M 的斜面原来静止于水平光滑平面上,将一质量为m如图.如果此后木块能静止于斜面上,则斜面将(A ) (A) 保持静止 (B) 向右加速运动(C) 向右匀速运动 (D) 向左加速运动2.质量为m 的质点,以不变速率v 沿水平光滑轨道垂直撞击墙面,撞击后被反弹,假设撞击为完全弹性碰撞,并规定碰撞前质点运动方向为正方向,则质点作用于墙面的冲量为(B )(A) mv (B)2mv (C) -mv (D) -2mv3. 有两个完全相同的木块同时从同一高度自由落下,在下落过程中有一水平方向飞来的子弹(其质量不可忽略不计)击中其中的一个木块,并与木块一起下落,则( B )(A) 两木块同时落地(B) 被击中的木块后落地(C) 被击中的木块先落地(D) 无法判断4. A 、B 两木块质量分别为m A 和m B ,且m B =2m A ,其速度分别-2v 和v ,则两木块运动动能之比E KA /E KB 为( B )(A) (B) (C) (D) -1:25. 质点的动能定理:外力对质点所做的功,等于质点动能的增量,其中所描述的外力为(D )(A) 质点所受的任意一个外力 (B) 质点所受的保守力(C) 质点所受的非保守力 (D) 质点所受的合外力6. 下面几种说法中正确的是( D )(A) 静摩擦力一定不做功 (B) 静摩擦力一定做负功(C) 滑动摩擦力一定做负功 (D) 滑动摩擦力可做正功7. 子弹射入放在水平光滑地面上静止的木块而不穿出。

以地面为参考系,下列说法中正确的说法是(B )(A) 子弹的动能转变为木块的动能了(B) 子弹─木块系统的机械能守恒(C) 子弹动能的减少等于子弹克服木块阻力所作的功(D) 子弹克服木块阻力所作的功等于这一过程中产生的热8. 当物体有加速度时,则( D )(A )对该物体必须有功(B )它的动能必然增大(C )它的势能必然增大(D )对该物体必须施力,且合力不会等于零9. 质量为m 的一架航天飞机关闭发动机返回地球时,可认为它只在地球引力场中运动。

《大学物理》动量守恒定律和能量守恒定律练习题及答案解析

《大学物理》动量守恒定律和能量守恒定律练习题及答案解析

《大学物理》动量守恒定律和能量守恒定律练习题及答案解析一、选择题1.对动量和冲量,正确的是(B )(A)动量和冲量的方向均与物体运动速度方向相同。

(B)质点系总动量的改变与内力无关。

(C)动量是过程量,冲量是状态量。

(D)质点系动量守恒的必要条件是每个质点所受到的力均为0。

2如图所示,子弹入射在水平光滑地面上静止的木块后而穿出,以地面为参考系,下列说法中正确的是( C )(A)子弹减少的动能转变成木块的动能(B)子弹—木块系统的机械能守恒(C)子弹动能的减少等于子弹克服木块阻力所做的功(D)子弹克服木块阻力所做的功等于这一过程中产生的热。

3.对质点组有下列几种说法:(1)质点组总动量的改变与内力无关(2)质点组总动能的改变与内力无关(3)质点组机械能的改变与内力无关(4)质点组机械能的改变与保守内力无关正确的是( C )(A)(1)和(3)正确(B)(2)和(3)正确(C)(1)和(4)正确(D)(2)和(4)正确4.对于保守力,下列说法错误的是(C)(A)保守力做功与路径无关(B)保守力沿一闭合路径做功为零(C)保守力做正功,其相应的势能增加(D)只有保守力才有势能,非保守力没有势能。

5.对功的概念有以下几种说法:(1)保守力作正功时系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力与反作用力大小相等、方向相反,所以两者所作的功的代数合必为零.在上述说法中:(4)摩擦力一定做负功( C )(A) (1) 、(2)、(4)是正确的.(B) (2) 、(3) 、(4)是正确的.(C)只有(2)是正确的.(D)只有(3)是正确的.6.当重物减速下降时,合外力对它做的功( B )(A)为正值(B)为负值(C)为零(D)无法确定。

7、考虑下列四个实例,你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A)(A)物体在拉力作用下沿光滑斜面匀速上升(B)物体作圆锥摆运动(C)抛出的铁饼作斜抛运动(不计空气阻力)(D)物体在光滑斜面上自由滑下8.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,判断下列说法中正确的是( A )(A)重力和绳子的张力对小球都不作功。

大学物理练习题第三章 动量守恒定律和能量守恒定律

大学物理练习题第三章 动量守恒定律和能量守恒定律

大学物理练习题第三章动量守恒定律和能量守恒定律一、选择题1. 质量m=2kg的质点在力F⃗=12ti⃗ (SI)的作用下,从静止出发沿X轴正方向作直线运动,求它在3秒末的动量( )A. −54i⃗ kg∙m/sB. 54i⃗ kg∙m/sC.−27i⃗ kg∙m/sD. 27i⃗ kg∙m/s2. 一个质点同时在几个力作用下的位移为:∆r⃗=4i⃗−5j⃗+6k⃗⃗ (SI)其中一个力为恒力F⃗=−3i⃗−5j⃗+9k⃗⃗,则此力在该位移过程中所作的功为( )A. 67JB. 91JC. 17JD. -67J3. 对质点组有以下几种说法①质点组总动量的改变与内力无关②质点组总动能的改变与内力无关③质点组机械能的改变与保守内力无关在上述说法中( )A. 只有①是正确的B. ①、③是正确的C. ①、②是正确的D. ②、是正确的4. 质点系的内力可以改变( )A. 系统的总质量B. 系统的总动量C. 系统的总动能D. 系统的总角动量5. 质量为m的质点在外力作用下,其运动方程为r⃗=Acosωti⃗+bsinωtj⃗其中A,B,ω都是正的常数,则在t1=0到t2=π(2ω)⁄这段时间内所作的功( )A.mω2(A2+B2)2⁄B. mω2(A2+B2)C. mω2(A2−B2)2⁄D.mω2(B2−A2)2⁄6. 如图,一劲度系数为k的轻弹簧水平放置,左端固定,右端与桌面上一质量为m的木块相连,用一水平力F向右拉木块而使其处于静止状态。

若木块与桌面间的静摩擦系数为μ,弹簧的弹性势能为E,则下列关系中正确的是( )A. E=(F−μmg)22kB.E=(F+μmg)22kC. E=F22kD. (F−μmg)22k ≤E≤(F+μmg)22k二、填空题1. 设作用在质量为M=1kg的物体上的力F=6t+3 (SI)。

如果物体在这个力的作用下,由静止开始沿直线运动,在0到2.0s的时间间隔内,这个力作用在物体上的冲量大小I= 。

动量守恒与能量守恒练习题

动量守恒与能量守恒练习题

动量守恒与能量守恒复习 1.质量为1m 的物体以速度1v 与质量为物体2m 发生弹性碰撞,求碰撞后它们的速度分别是多少?2.质量为M 的楔形物块上有圆弧轨道,静止在水平面上。

质量为m 的小球以速度v 0向物块运动。

不计一切摩擦,圆弧小于90°且足够长。

求:(1)小球能上升到的最大高度H 是多少 ?(2)小球与物块最终速度1v 和2v 是多少?3.如图所示,位于光滑水平桌面上的小滑块P 和Q 都可视做质点,质量分别为2m 和m .Q 与轻质弹簧相连(弹簧处于原长).设开始时P 和Q 分别以2v 和v 初速度向右匀速运动,当小滑块P 追上小滑块Q 与弹簧发生相互作用,在以后运动过程中,求:(1)弹簧具有的最大弹性势能?(2)小滑块Q 的最大速度?4.如图所示,质量M 的小车B 静止光滑的水平轨道上,一个质量m 的物体A 以初速度0v 冲上小车B 后经一段时间t 从小车的右端以速度1v 滑下。

物体A 与小车板面间的动摩擦因数为μ,(取g=10m/s 2)(1)对物体A 动量定理: (4)对物体A 动能定理:(2)对车B 动量定理: (5)对车B 动能定理:(3)系统动量守恒: (6)系统能量守恒:5.如图所示,一质量M =3.0 kg 的长方形木板B 放在光滑水平地面上,在其右端放一个质量m =1.0 kg 的小木块A (可视为质点),同时给A 和B 以大小均为2.0 m/s ,方向相反的初速度,使A 开始向左运动,B 开始向右运动,要使小木块A 不滑离长木板B 板,已知小木块与长木板之间的动摩擦因数为0.6,求长木板B 的最小长度L=?6.如图所示,质量为3m 、长度为L 的木块静止放置在光滑的水平面上。

质量为m 的子弹(可视为质点)以初速度v 0水平向右射入木块,穿出木块速度变为025v 。

试求:子弹穿透木块的过程中,所受到平均阻力的大小。

7.如图,长木板a b 的b 端固定一档板,木板连同档板的质量为M=4.0kg ,a 、b 间距离s=2.0m 。

03《大学物理学》动量守恒和能量守恒定律部分练习题(马)

03《大学物理学》动量守恒和能量守恒定律部分练习题(马)

《大学物理学》动量守恒和能量守恒定律学习材料一、选择题3-25. 用铁锤把质量很小的钉子敲入木板,设木板对钉子的阻力与钉子进入木板的深度成正比。

在铁锤敲打第一次时,能把钉子敲入 1.00cm 。

如果铁锤第二次敲打的速度与第一次完全相同,那么第二次敲入多深为 ( )(A ) 0.41cm ; (B ) 0.50cm ; (C ) 0.73cm ; (D ) 1.00cm 。

【提示:首先设阻力为f k x =,第一次敲入的深度为x 0,第二次为∆x ,考虑到两次敲入所用的功相等,则0000x x x x kxd x kxd x +∆=⎰⎰】 3--4.一质量为0.02 kg 的子弹以200m/s 的速率射入一固定墙壁内,设子弹所受阻力与其进入墙壁的深度x 的关系如图所示,则该子弹能进入墙壁的深度为 ( )(A )0.02m ; (B ) 0.04 m ; (C ) 0.21m ; (D )0 .23m 。

【提示:先写出阻力与深度的关系53100.022100.02x x F x ⎧≤=⎨⨯>⎩,利用212W mv =有0.0253200.021102100.02(200)2xxd x d x +⨯=⨯⨯⎰⎰,求得0.21x m =】 3-1.对于质点组有以下几种说法:(1)质点组总动量的改变与内力无关; (2)质点组总动能的改变与内力无关;(3)质点组机械能的改变与保守内力无关。

对上述说法判断正确的是 ( )(A ) 只有(1)是正确的; (B )(1)、(2)是正确的;(C )(1)、(3)是正确的; (D )(2)、(3)是正确的。

【提示:(1)见书P55,只有外力才对系统的动量变化有贡献;(2)见书P74,质点系动能的增量等于作用于质点系的一切外力作的功与一切内力作的功之和;(3)见书P75,质点系机械能的增量等于外力与非保守内力作功之和】3-2.有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则 ( )(A )物块到达斜面底端时的动量相等; (B ) 物块到达斜面底端时的动能相等;(C )物块和斜面(以及地球)组成的系统,机械能不守恒;(D )物块和斜面组成的系统水平方向上动量守恒。

三大守恒练习题

三大守恒练习题

三大守恒练习题守恒定律是物理学中的重要概念,它描述了在封闭系统中某些物理量的守恒特性。

常见的守恒定律有能量守恒定律、动量守恒定律和角动量守恒定律。

这些守恒定律在解决物理问题时起着至关重要的作用。

为了更好地理解和应用守恒定律,下面将针对每个定律提出三道练习题。

一、能量守恒练习题1. 一个弹簧恢复力常数为k的弹簧,一端固定在墙上,另一端系有质量为m的物体。

初始时刻,物体与弹簧静止。

当把物体沿着弹簧的方向拉开距离l并释放时,求物体在压缩到弹簧原长时的速度。

解析:根据能量守恒定律,系统的机械能在运动过程中保持不变。

在初始时刻,物体的机械能只有重力势能;在物体压缩到弹簧原长时,机械能只有弹性势能。

因此,有重力势能转化为弹性势能,即mgL = (1/2)kL^2,解得物体在压缩到弹簧原长时的速度为v = √(2gL)。

2. 一个质量为m的物体从高度为h处自由下落,下落过程中与地面发生完全弹性碰撞,反弹后的高度为h'。

求弹性碰撞过程中物体与地面的动量变化。

解析:根据动量守恒定律,碰撞过程中系统的动量保持不变。

在自由下落阶段,物体的动量为mv,碰撞后竖直方向上的速度反向,动量为-mv。

因此,第一阶段动量变化量为Δp1 = -mv,第二阶段动量变化量为Δp2 = -(-mv) = mv。

整个弹性碰撞过程中,物体与地面的动量变化为Δp = Δp1 + Δp2 = 0。

3. 一个质量为m的火箭,以速度v0燃烧燃料喷出。

喷出速度为v,燃料的质量为m',燃烧时间为Δt。

求火箭燃烧过程中的平均推力。

解析:根据牛顿第二定律和动量守恒定律,火箭燃烧过程中的平均推力可以表示为火箭的质量变化率与喷出速度之积的相反数,即F = -Δ(mv)/Δt = v dm/Δt。

由质量守恒定律可知,燃烧过程中的质量变化率为dm/Δt = -m'/Δt。

因此,火箭燃烧过程中的平均推力为F = -v(m'/Δt)。

二、动量守恒练习题1. 一个质量为m1的小球在静止的水平面上,与一个质量为m2的小球发生碰撞,碰撞后两球的速度分别为v1'和v2'。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

03《大学物理学》动量守恒和能量守恒定律部分练习题(马)《大学物理学》动量守恒和能量守恒定律学习材料一、选择题3-25. 用铁锤把质量很小的钉子敲入木板,设木板对钉子的阻力与钉子进入木板的深度成正比。

在铁锤敲打第一次时,能把钉子敲入1.00cm 。

如果铁锤第二次敲打的速度与第一次完全相同,那么第二次敲入多深为 ( )(A ) 0.41cm ; (B ) 0.50cm ; (C ) 0.73cm ;(D ) 1.00cm 。

【提示:首先设阻力为f k x =,第一次敲入的深度为x 0,第二次为∆x ,考虑到两次敲入所用的功相等,则0000x x x x kxd x kxd x +∆=⎰⎰】3--4.一质量为0.02 kg 的子弹以射入一固定墙 壁内,的关系如图所示,则该子弹能进入墙壁的深度为 ( )(A )0.02m ; (B ) 0.04 m ; (C ) 0.21m ;(D )0 .23m 。

【提示:先写出阻力与深度的关系53100.022100.02x x F x ⎧≤=⎨⨯>⎩,利用212W mv =有 0.0253200.021102100.02(200)2xxd x d x +⨯=⨯⨯⎰⎰,求得0.21x m =】 3-1.对于质点组有以下几种说法:(1)质点组总动量的改变与内力无关; (2)质点组总动能的改变与内力无关;(3)质点组机械能的改变与保守内力无关。

0.对上述说法判断正确的是()(A) 只有(1)是正确的;(B)(1)、(2)是正确的;(C)(1)、(3)是正确的;(D)(2)、(3)是正确的。

【提示:(1)见书P55,只有外力才对系统的动量变化有贡献;(2)见书P74,质点系动能的增量等于作用于质点系的一切外力作的功与一切内力作的功之和;(3)见书P75,质点系机械能的增量等于外力与非保守内力作功之和】3-2.有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则()(A)物块到达斜面底端时的动量相等;(B) 物块到达斜面底端时的动能相等;(C)物块和斜面(以及地球)组成的系统,机械能不守恒;(D)物块和斜面组成的系统水平方向上动量守恒。

【提示:首先要明白的是物块从斜面上下滑到底部时,斜面也在地面上滑动。

(A)动量是矢量;(B)两斜面最后获得的动能不同,所以,两物块到达斜面底端的动能也不同;(C)物块和斜面(以及地球)组成的系统,没有外力或非保守内力作功,则机械能守恒;(D)系统水平方向上无外力作用,故系统水平方向上动量守恒】3-3.对功的概念有以下几种说法:(1)保守力作正功时,系统内相应的势能增加;(2)质点运动经一闭合路径,保守力对质点作的功为零;(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零。

对上述说法判断正确的是( )(A )(1)、(2)是正确的; (B )(2)、(3)是正确的;(C )只有(2)是正确的; (D ) 只有(3)是正确的。

【提示:(1)保守力作正功时,相应的势能应降低;(2)为保守力的定义;(3)非保守内力作功的代数和不为零】3-4.如图所示,质量分别为m 1和m 2的物体A和B ,置于光滑桌面上,A 和B有一有质量为m 1和m 2的物体C和D 分别置于物体A和B 之上,且物体A 和C 、B 和D 之间的摩擦系数均不为零。

首先用外力沿水平方向相向推压A和B ,使弹簧被压缩,然后撤掉外力,则在A 、B 弹开的过程中,对A 、B 、C 、D 以及弹簧组成的系统,有: ( )(A )动量守恒,机械能守恒; (B ) 动量不守恒,机械能守恒;(C )动量不守恒,机械能不守恒; (D ) 动量守恒,机械能不一定守恒。

【提示:系统上的合外力为零,则系统的动量守恒,但机械能不一定守恒,这取决于有无相对滑动,若有相对滑动,即有摩擦力作功,机械能就不守恒】3-5.如图所示,子弹射入放在水平光滑地面上静止的木块后穿出,正确的是 ( )(A ) 子弹减少的动能转变为木块的动能;(B ) 子弹--木块系统的机械能守恒;(C ) 子弹动能的减少等于子弹克服木块阻力所作的功;(D ) 子弹克服木块阻力所作的功等于这一过程中产生的热。

【提示:子弹动能的减少一方面给了木块动能,另一方面穿过木块时有摩擦生热,即等于子弹克服木块阻力所作的功】8.在系统不受外力作用的非弹性碰撞过程中 ( )(A )动能和动量都守恒; (B )动能和动量都不守恒;(C )动能不守恒、动量守恒; (D )动能守恒、动量不守恒。

【提示:非弹性碰撞系统动量守恒,但能量不守恒】9.A 、B 两木块质量分别为m A 和m B ,且m B =2m A ,两者用一个轻弹簧连接后静止与光滑水平桌面上,若用外力将两木块压紧使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E kA /E kB为 ( )(A) 0.5; (B) 0.707; (C) 1.414; (D) 2。

【提示:外力撤去后,系统只受弹性力(保守内力)作用,则系统动量守恒,即A A B B m v m v =。

那么,22222212212A A k AB A A B k B A B B A B B m v E m m v m E m m v m m v ====】10.如图所示,有一劲度系数为k 的轻弹簧竖直放置,下端悬一个质量为m 的小球,开始时使弹簧为原长而小球恰好与地接触,今将弹簧上端缓慢提起,直到小球刚能脱离地面为止,在此过程中外力做功为 ( )(A )224m g k ; (B ) 223m g k ; (C ) 222m g k ; (D ) 222m g k 。

【提示:外力作功等于弹性势能的增量:212W k x =,而k x mg =,∴222m g W k =】11.一个质点在同时几个力的作用下的位移为456r i j k ∆=-+v v v v ,其中的一个力为恒力359F i j k =--+v v v v ,则此力在该位移中所作的功为 ( )(A)67J -; (B) 17J ; (C) 67J ; (D) 91J 。

【提示:(359)(456)12255467W F r i j k i j k =⋅∆=--+⋅-+=-++=v v v v v v v v 】3--1. 一质点受力为kxe F F -=0,若质点在x =0处的速度为零,此质点所能达到的最大动能为: ( )(A )k F /0; (B )ke F /0 ; (C )k F 0;(D )kke F 0【提示:由0k x dv m F e dt -=,有0k x d x mdv F e d x dt-⋅=,则000v x k x mvd v F e d x -=⎰⎰,可得:201(1)2k x F mv e k -=-,当x →∞时,0k F E k→】 3--2. 质量为m 的物体,从距地球中心距离为R 处自由下落,且R 比地球半径R 0大得多。

若不计空气阻力,则落到地球表面时的速度为:( )(A ))(20R R g -;(B ))11(2020R R gR -;(C ))11(2020R R gR -;(D )22012R gR 【提示:首先注意到20M G g R =。

由万有引力势能公式P Mm E G r =-,有 201()2Mm Mm m v G G R R =---,则v =】 二、填空题3--3.如图所示,劲度系数为k定在墙上,另一端连接质量为M水平面上滑动,当弹簧处于原长时,容器恰在O 点处,今使容器自O 点左边x 0处由静止开始运动,每经过O 点一次,就从上方滴入一质量为m 的油滴,则在容器第一次到达O 点油滴滴入前得瞬间,容器的速率v = ;当容器中刚滴入了n 滴油后的瞬间,容器的速率u = 。

【提示:(1)由机械能守恒:2201122M v k x = (2)由水平方向动量守恒:()M nm u M v +=,有u = 3--5.一弹簧原长0.1m ,劲度系数k一端固定在半径为0.1m 的半圆环的端点A ,另一端与一套在半圆环上的小环相连。

在把小环由图中点B 移到点C 的过程中,弹簧的拉力 对小环所做的功为 。

【提示:由机械能守恒:22211122W k x k x -=-,考虑到10.120.1x =-,20.20.1x =-,则:0.207W J =-】3--6.有一质量为m 的小球,系在一细绳的下端作的圆周运动,如图所示。

圆的半径为R ,运动速率为v ,当小球在轨道上运动一周时,小球所受重力冲量的大小为: 。

【提示:由I Fd t =⎰,有I mgT =2R mg vπ=】 3--7.一个原来静止在光滑水平面上的物体,突然裂成三块,以相同的速率沿三个方向在水平面上运动,各方向之间的夹角如图所示,则三块物体的质量之比m 1:m 2:m 3= 。

【提示:以m 1为水平方向进行正交分解,有:12323cos60cos30sin 60sin 30m v m v m v m v m v ⎧=+⎨=⎩o o o o →12323233m m m m m ⎧=+⎪⎨=⎪⎩→123223m m m m =⎧⎪⎨=⎪⎩,则 mR v 2m 3m 1m123::m m m5.质量为m 的小球,在合外力x k F -=作用下运动,已知t A x ωcos =,其中k ,ω,A 为正的常量,则在0=t 到ωπ2=t 时间内小球动量的增量为: 。

【提示:由I Fd t =⎰,有2200cos kA I k xd t k A td t ππωωωω=-=-=-⎰⎰,∴p ∆=kAω-】6.人从10m 深的井中匀速提水,桶离开水面时装有水10kg 。

若每升高1m 要漏掉0.2kg 的水,则把这桶水从水面提高到井口的过程中,人力所作的功为 。

【提示:首先考虑0.2/k kg m =,则漏水重量为m kyg ∆=。

由()W mg kyg d y =-⎰,有:100(100.2)(10010)W y gd y g =-=-=⎰882J 】 7.一物体在介质中按规律3t c x =作直线运动,c 为常量。

设介质对物体的阻力2v k f -=,k 为正常量,则物体由原点运动到l x =位置时,阻力所作的功为 。

【提示:由3x ct =,知1223333v ct c x ==,则:122330(3)l W k c x d x =-=⎰2733277k c l -】 8.质量为m 的子弹,以水平速度v 0射入置于光滑水平面上的质量为M 的静止砂箱,子弹在砂箱中前进距离l 后停在砂箱中,同时砂箱向前运动的距离为S ,此后子弹与砂箱一起以共同速度匀速运动,则子弹受到的平均阻力F = ,砂箱与子弹系统损失的机械能△E = 。

相关文档
最新文档