MAX9123EUE中文资料

合集下载

MAX232中文资料,MAX232CPE,MAX232EPE,MAX232ECPE,规格书,MAXIM代理商,datasheet,PDF

MAX232中文资料,MAX232CPE,MAX232EPE,MAX232ECPE,规格书,MAXIM代理商,datasheet,PDF
深圳市万瑞尔科技有限公司 MAXIM代理商 0755-28269789
19-4323; Rev 15; 13;5V ‫ޥ‬٫Ă‫ۂ‬໼‫ ل‬RS-232 ഝ‫ڑ‬ಹ/ेฏಹ
________________________________ ‫ݣ‬ะ
MAX220–MAX249࿅઼࿯ഝ‫ڑ‬ಹ /ेฏಹLjከཛྷEIA/TIA232EჾࣆV.28/V.24໼ဳेਊහࣜLjᅐದกྐۨ໗‫ ޥ‬±12V ٫ᆚ‫و‬ᄮᅋă
ሦဗಹऔ໎Ӽคࠩ٫֠‫ޥ‬٫࿅༇Ljሦกᅑᅢದّ‫ڱߔࠞޢ‬ ன෷৹ჾट‫ࠞޢ‬ऋဏ‫ ف‬5μW ჾ௠ăMAX225ĂMAX233Ă MAX235 ჾࣆ MAX245/MAX246/MAX247 ԥၖე༶ԩᆐ औLj༚ऌᅋᅢᄩฺ٫ଁғஎࢵᅘ࿮‫و‬ᄮᅋă
1.0 (0.1) 0.1 — — 1.0 (0.1) — 1.0 (0.1) 1.0 (0.1) 1.0 (0.1) 1.0 (0.1)
1.0 1.0 (0.1) 0.1 0.1 1.0 — — — 1.0 1.0
SHDN & ThreeState No Yes Yes Yes Yes No
No No No No No Yes Yes No No No
_____________________________________________________________________ ၭျӹ
Part Number MAX220 MAX222 MAX223 (MAX213) MAX225 MAX230 (MAX200) MAX231 (MAX201)
MAX232 (MAX202) MAX232A MAX233 (MAX203) MAX233A MAX234 (MAX204) MAX235 (MAX205) MAX236 (MAX206) MAX237 (MAX207) MAX238 (MAX208) MAX239 (MAX209)

MAX1239MEEE中文资料

MAX1239MEEE中文资料

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
MAX1236–MAX1239
♦ ♦
Applications
Hand-Held Portable Applications Medical Instruments Battery-Powered Test Equipment Solar-Powered Remote Systems Received-Signal-Strength Indicators System Supervision
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .

MAX3232ESE RS232接口芯片应用方案-奥伟斯

MAX3232ESE RS232接口芯片应用方案-奥伟斯

奥伟斯科技为您提供RS232接口芯片MAX3232ESE应用参考设计方案●内容导航:●公司简介●MAX3232产品规格书MAX3232ESE MAX3232CSE MAX3232EUE MAX3232EEAE MAX3232EEUE●产品图片●主营产品及优势产品简介●公司简介深圳市奥伟斯科技有限公司是一家专注触摸芯片,单片机,电源管理芯片,语音芯片,场效应管,显示驱动芯片,网络接收芯片,运算放大器,红外线接收头及其它半导体产品的研发,代理销售推广的高新技术企业.奥伟斯科技自成立以来一直致力于新半导体产品在国内的推广与销售,年销售额超过壹亿人民币是一家具有综合竞争优势的专业电子元器件代理商.本公司代理推广的一系列优秀触摸芯片及语音芯片,现以大批量应用到智能电子锁、饮水机、电饭煲、LED台灯等控制器为顾客提供最佳解决方案,受到广大客户的一致赞誉。

奥伟斯科技优势行业集中在家用电器和汽车电子领域,包括:智能电子锁、饮水机、抽烟机、空调、洗衣机、冰箱、洗碗机、电饭煲、电磁炉、微波炉、电动自行车、汽车仪表、汽车音响、汽车空调等。

销售网络覆盖华东、华南及华北地区。

奥伟斯科技已为众多世界著名企业提供服务如:美的、小米、云米、长虹、创维、三星、LG、飞利浦、TCL、海尔、美菱、沁园、等众多中国一流品牌电家厂商奥伟斯科技提供专业的智能电子锁触摸解决方案,并提供电子锁整套的芯片配套:低功耗触摸芯片低功耗单片机马达驱动芯片显示驱动芯片刷卡芯片时针芯片存储芯片语音芯片低压MOS管 TVS二极管主要品牌产品:OWEIS-TECHOWEIS触摸芯片 OWEIS接口芯片 OWEIS电源芯片 OWEIS语音芯片 OWEIS场效应管一.电容式触摸芯片ADSEMI触摸芯片代理芯邦科技触控芯片万代科技触摸按键芯片博晶微触摸控制芯片海栎创触摸感应芯片启攀微触摸IC 融和微触摸感应IC 合泰触摸按键IC 通泰触摸芯片二.汽车电子/电源管理/接口芯片/逻辑芯片:IKSEMICON一级代理 ILN2003ADT IK62783DT IL2596 IL2576 ILX485 ILX3485 ILX232ILX3232三.功率器件/接收头/光电开关:KODENSHI AUK SMK系列MOS管SMK0260F SMK0460F SMK0760F SMK1260F SMK1820F SMK18T50F四. LED显示驱动芯片:中微爱芯AIP系列 AIP1668 AIP1628 AIP1629 AIP1616天微电子TM系列 TM1628 TM1668 TM1621五.电源管理芯片:Power Integrations LNK364PN LNK564PN 芯朋微PN8012 PN8015 AP5054 AP5056 力生美晶源微友达天钰电子FR9886 FR9888六.语音芯片:APLUS巨华电子AP23085 AP23170 AP23341 AP23682 AP89085 AP89170 AP89341AP89341K AP89682七.运算放大器:3PEAK运算放大器聚洵运算放大器圣邦微运算放大器八.发光二极管:OSRAM欧司朗发光二极管 Lite-On光宝发光二极管 Everlight亿光发光二极管 Kingbright今台发光二极管九. CAN收发器:NXP恩智浦CAN收发器 Microchip微芯CAN收发器十.分销产品线:ONSEMI安森美 TI德州仪器 ADI TOSHIBA东芝 AVAGO安华高十一 MCU单片机ABOV现代单片机MC96F系列 Microchip微芯单片机PIC12F PIC16F PIC18F系列 FUJITSU富仕通单片机MB95F系列 STM单片机STM32F STM32L系列 CKS中科芯单片机CKS32F系列 TI单片机MSP430系列 TMS320F系列 NXP单片机LPC系列D, DB, DW, OR PW PACKAGE (TOP VIEW)C1+V+C1−C2+C2−V−DOUT2RIN2Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines areavailable at /sc/package.Please be aware that an important notice concerning availability, standard warranty, and use in critical applications ofTexas Instruments semiconductor products and disclaimers thereto appears at the end of this data s heet.Copyright ©2004, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date.Products conform to s pecifications p er t he t erms o f Texas Instrumentsstandard warranty. Production processing does not necessarily includetesting of all p arameters.1description/ordering information (continued)The MAX3232 device consists of two line drivers, two line receivers, and a dual charge-pump circuit with ±15-kV ESD protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The devices operate at data signaling rates up to 250 kbit/s and a maximum of 30-V/μs driver output slew rate.Function TablesEACH DRIVERlevelEACH RECEIVERlevel, Open = inputdisconnected orconnected driver offlogic diagram (positive logic)DIN1 DOUT1DIN2 DOUT2ROUT1 RIN1ROUT2 RIN22absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†Supply voltage range, V CC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .−0.3 V to 6 VPositive output supply voltage range, V+ (see Note 1) Negative output supply voltage range, V− (see Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .−0.3 V to 7 V0.3 V to −7 VSupply voltage difference, V+ −V− (see Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 V Input voltage range, V I: Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .−0.3 V to 6 V Receivers ............................................................................................... −25 V to 25 V Output voltage range, V O: Drivers.......................................................................................... −13.2 V to 13.2 VReceivers .............................................................................. −0.3 V to V CC + 0.3 VPackage thermal impedance, θJA (see Notes 2 and 3): D packageDB package . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .73︒C/W82︒C/WDW package. . . . . . . . . . . . . . . . . . . . . . . . . . 57︒C/WPW package .................................................108︒C/W Operating virtual junction temperature, T J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150︒C Storage temperature range, T stg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .−65︒C to 150︒C† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.NOTES: 1. All voltages are with respect to network GND.2. Maximum power dissipation is a function of T J(max), θJA, and T A. The maximum allowable power dissipation at any allowableambient temperature is P D = (T J(max) − T A)/θJA. Operating at the absolute maximum T J of 150︒C can affect reliability.3. The package thermal impedance is calculated in accordance with JESD 51-7.recommended operating conditions (see Note 4 and Figure 4)CC CCelectrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)All typical values are at V CC = 3.3 V or V CC = 5 V, and T A = 25︒C.NOTE 4: Test conditions are C1−C4 = 0.1 μF at V CC = 3.3 V ±0.3 V; C1 = 0.047 μF, C2−C4 = 0.33 μF at V CC = 5 V ±0.5 V.3DRIVER SECTIONelectrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)CC CC A‡ Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.NOTE 4: Test conditions are C1−C4 = 0.1 μF at V CC = 3.3 V ±0.3 V; C1 = 0.047 μF, C2−C4 = 0.33 μF at V CC = 5 V ±0.5 V.switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)CC CC A§Pulse skew is defined as |t PLH − t PHL| of each channel of the same device.NOTE 4: Test conditions are C1−C4 = 0.1 μF at V CC = 3.3 V ±0.3 V; C1 = 0.047 μF, C2−C4 = 0.33 μF at V CC = 5 V ±0.5 V.4RECEIVER SECTIONelectrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)CC CC A NOTE 4: Test conditions are C1−C4 = 0.1 μF at V CC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2−C4 = 0.33 μF at V CC = 5 V ± 0.5 V.switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 3)CC CC A ‡ Pulse skew is defined as |t PLH − t PHL | of each channel of the same device.NOTE 4: Test conditions are C1−C4 = 0.1 μF at V CC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2−C4 = 0.33 μF at V CC = 5 V ± 0.5 V.PARAMETER MEASUREMENT INFORMATIONGenerator (see Note B)50 ΩRS-232 OutputC LInputt THL3 V 0 V t TLHR L(see Note A)Output3 V−3 V 3 V−3 VV OHV OLTEST CIRCUITSR(tr) = 6 V t THL or t TLHVOLTAGE WAVEFORMSNOTES: A. C L includes probe and jig capacitance.B. The pulse generator has the following characteristics: PRR = 250 kbit/s, Z O = 50 Ω, 50% duty cycle, t r ≤ 10 ns, t f ≤ 10 ns.Figure 1. Driver Slew Rate5PARAMETER MEASUREMENT INFORMATIONGenerator(see Note B)50 ΩRS-232OutputC L3 VInput0 V R LTEST CIRCUIT NOTES: A. C L includes probe and jig capacitance.(see Note A)OutputVOLTAGE WAVEFORMSV OHV OLB. The pulse generator has the following characteristics: PRR = 250 kbit/s, Z O = 50 Ω, 50% duty cycle, t r ≤10 ns, t f ≤10 ns.Figure 2. Driver Pulse SkewGenerator(see Note B)50 ΩOutputC LInput3 V−3 VTEST CIRCUIT (see Note A)OutputVOLTAGE WAVEFORMSV OHV OLNOTES: A. C L includes probe and jig capacitance.B. The pulse generator has the following characteristics: Z O = 50 Ω, 50% duty cycle, t r ≤10 ns, t f ≤10 ns.Figure 3. Receiver Propagation Delay Times6−APPLICATION INFORMATION+C1 †+C31C1+2 V+V CC 16GND15+ C BYPASS−= 0.1μF−+C2−−C4+ DOUT23C1−4C2+5 C2−6V−714135 kΩ121110DOUT1RIN1ROUT1DIN1DIN2RIN2 8 9ROUT25 kΩ† C3 can be connected to V CC or GND.NOTES: A. Resistor values shown are nominal.B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should beconnected as shown.Vvs CAPACITOR VALUESFigure 4. Typical Operating Circuit and Capacitor Values7PACKAGE OPTION ADDENDUM 14-Aug-2009 PACKAGING INFORMATIONAddendum-Page 1PACKAGE OPTION ADDENDUM(1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check /productcontent for the latest availability information and additional product content details.PACKAGE OPTION ADDENDUM14-Aug-2009 TBD: The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.OTHER QUALIFIED VERSIONS OF MAX3232 :•Enhanced Product: MAX3232-EPNOTE: Qualified Version Definitions:•Enhanced Product - Supports Defense, Aerospace and Medical ApplicationsTAPE AND REEL INFORMATIONDB (R-PDSO-G**) PLASTIC SMALL-OUTLINE 28 PINS SHOWNNOTES: A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.D. Falls within JEDEC MO-150PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWNNOTES: A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.D. Falls within JEDEC MO-153IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.Following are URLs where you can obtain information on other Texas Instruments products and application solutions:奥伟斯科技提供专业的智能电子锁触摸解决方案,并提供电子锁整套的芯片配套:低功耗触摸芯片低功耗单片机马达驱动芯片显示驱动芯片刷卡芯片时针芯片存储芯片语音芯片低压MOS管 TVS二极管低功耗触摸按键芯片OWEIS奥伟斯触摸芯片:JM01S JM02S JM04S JM08S JM12MCOWEIS奥伟斯电源芯片: JM2575S-12 JM2575S-3.3 JM2575S-5.0 JM2575S-ADJ JM2575T-12 JM2575T-3.3 JM2575T-5.0 JM2575T-ADJ JM2576S-12 JM2576S-3.3 JM2576S-5.0 JM2576S-ADJ JM2576T-12 JM2576T-3.3 JM2576T-5.0 JM2576T-ADJ LM2596S-12 LM2596S-3.3 LM2596S-5.0 LM2596S-ADJ LM2596T-12 LM2596T-3.3 LM2596T-5.0 LM2596T-ADJ OWEIS奥伟斯接口芯片:JM485S JM3485S JM232S JM232TS JM3232S JM3232TS JM1040SOWEIS语音芯片:JM085S JM170S JM341S JM682SADS触摸芯片:TQ01 TS01Q TQ02 TH01TS01S AWS01 TS02NT TS04 TS06 TS08NT TS08NC TS08NE TS08P TS12 TSM12S TSM12MC TSM16C TS20博晶微/晶尊微触摸芯片:SC01A SC02A SC04A SC05A SC09A SC12A通泰触控芯片: TTP223-BA6 TTP223-CA6 TTP223N-BA6 TTP223N-HA6 TTP223N-CA6 TTP223N-DO8 TTP233B-BA6TTP233B-HA6 TTP233C-BA6 TTP233C-HA6 TTP233D-HA6 TTP233D-BA6 TTP233D-QA6 TTP233D-MA6 TTP233D-RB6TTP233D-SB6 TTP239-BSF TTP239-COBN TTP223E TTP223E-BA6 TTP223E-CA6 TTP223E-HA6 TTP233F-QA6 TTP226-809SN TTP259-ASFN TTP229-AQG TTP229-BSF TTP229-LSFN TTP229-KSFN TTP232-BA6 TTP232-CA6 TTP224B TTP224B-BSBN TTP224B-BSBN TTP224B-COBN TTP224B-COBN TTP224B-SQBN TTP224B-RO8N TTP224B-BCBN TTP224B-RC8N TTY6952B合泰触摸控制芯片:BS801B BS801C BS802B BS802C BS804B BS804C BS806B BS806C BS808B BS808C BS83A04A-3BS83B08-3 BS83B08A-3 BS83B08A-4 BS83A02A-4 BS83A02A-4 BS83A02A-4 BS83A04A-3 BS83A04A-4 BS83B08A-3BS83B08A-4 BS83B12A-3 BS83B12A-3 BS83B12A-4 BS83B12A-4 BS83B16A-3 BS83B16A-3 BS83B16A-4 BS83B16A-4BS82B12A-3 BS82C16A-3 BS82D20A-3 BS83A01C BS83A02C BS83B04C BS83B08C BS83B12C BS83B16C BS83B24CBS83C40C BS83B08-3 BS83B12-3 BS83B16-3 BS83C24-3 BS83C24-3 BS84B08A-3 BS84B08A-3 BS84B08A-3 BS84B08A-3 BS84B08A-3 BS84B08A-3 BS84C12A-3 BS84C12A-3 BS84C12A-3 BS84C12A-3 BS84C12A-3 BS84C12A-3低功耗单片机:STM8L052C6T6 STM8L052R8T6 STM8L152C6T6 STM8L152R8T6 STM32L151C8T6 STM32L152RBT6STM32L051C8T6指纹识别芯片:AS608 QS808马达驱动芯片:MX08E L9110S BA6287F-E2显示驱动芯片:74HC595PW 74HC164PW刷卡芯片:MFRC52202HN1/RC522 MFCV520/CV520 FM17520 FM17522 MS520 MS522时针芯片:PCF8563T AIP8536 IN1363DT VC8563T DQ8563T存储芯片:W25Q32JVSSIQ W25Q32BVSSIG W25Q32FVSSIG AT24C32D-SSHM-T GD25Q32BSIG GD25Q32CSIG FM25Q32 FM24C32 语音芯:AP23085 AP23341 AP89085 AP89341K低压MOS管:SI2300 SI2301 SI2302 AO3400 AO3401 AO3402TVS二极管:SMAJ6.0CA SMAJ15CACAN收发器:TJA1040T TJA1042T TJA1043T TJA1044T TJA1050T TJA1051T TJA1052T TJA1053T MCP2515-I/SO MCP2515T-I/SO MCP2515-I/ST MCP2515T-I/ST网络接口芯片:MAX485ESA MAX485EESA MAX485CSA MAX485ED ST3485EBDR ST3485ECDR ADM485ARZ ADM485EARZ SP485EN SP485EEN ILX485DT MAX4853ESA MAX3485EESA MAX3485CSA ST3485EBDR ST3485ECDR ADM3485ARZ ADM3485EARZ SP3485EN SP3485EEN ILX3485DT MAX232ESE MAX232EESE MAX232CSE MAX232DR MAX232IDRMAX232EIDR ST232BDR ST232CDR ST232EBDR ST232ABDR ADM232AARNZ ADM232AARW ADM232LAR SP232ECNSP232EEN ILX232DT MAX232EIPWR ST232BTR ST232ABTR ST232CTR ST232ACTR MAX3232ESE MAX3232EESEMAX3232CSE MAX3232CDR MAX3232ECDR MAX3232IDR MAX3232EIDR ST3232CDR ST3232BDR ST3232EBDRST3232ECDR ADM3232EARN SP3232EEN ILX3232DT MAX3232EEAE ST3232CTR ST3232BTR ST3232EBTR ST3232ECTR ADM3232EARUZ SP3232EEA SP3232EEY ILX3232TSDT电源管理芯片:LM2575 LM2576 LM2596 IL2576 IL2596 XL2596 XL2576 TD2576 TD2596ADI模数转换器:AD7705BRZ AD7705BURZ AD7706BRZ AD7706BURZ AD7715ANZ-3 AD7715ANZ-5 AD7715ARZ-3REELAD7715ARZ-5REELAMS奥地利微低频唤醒芯片:AS3933-BTST AS3933-BQFTCKS中科芯单片机:CKS32F030K6T6 CKS32F030C8T6 CKS32F051C8T6 CKS32F051R8T6 CKS32F103C8T6CKS32F103R8T6聚洵运算放大器:聚洵零漂移运算放大器GS8592-SR GS8592-MR GS8594-TR GS8594-SR GS6554-TR GS6554-SR GS6552-SR GS6552-MR GS6551-CR GS6551-TR GS8551-TR GS8551-SR GS8552-SR GS8552-MR GS8554-TR GS8554-SR GS8331-TRGS8331-CR GS8331-SR GS8331Y-TR GS8331Y-CR GS8332-SR GS8332-MR GS8332-FR GS8334-TR GS8334-SR聚洵高速运算放大器:GS8091-CR GS8091-TR GS8091N-CR GS8091N-TR GS8092-SR GS8092-MR GS8092N-MRGS8094-TR GS8094-SR GS8054-TR GS8054-SR GS8052N-MR GS8052-SR GS8052-MR GS8051N-CR GS8051N-TRGS8051-CR GS8051-TR聚洵高精度运算放大器:GS358-SR GS358-MR GS358-DR GS358-FR GS321Y-CR GS321Y-TR GS321-CR GS321-TR GS8721-CR GS8721-TR GS8721-SR GS8722-SR GS8722-MR GS8724-TR GS8724-SR GS8631-CR GS8631-TR GS8631-SR GS8632-SR GS8632-MR GS8634-TR GS8634-SR GS8631N-TR聚洵纳安级运算放大器:GS6041-CR GS6041-TR GS6041-SR GS6041-MR GS6042-SR GS6042-MR GS6042-FRGS6043-SR GS6043-MR GS6044-TR GS6044-SR聚洵高压摆率运放:GS2771-TR GS2772-SR GS2772-MR GS2774-TR GS2774-SR GS2771N-TR聚洵低电压低功耗运算放大器:GS6001A-CR GS6001A-TR GS6001-CR GS6001-TR GS6001Y-CR GS6001Y-TRGS6002-SR GS6002-MR GS6004-SR GS6004-MR优势产品未尽详细,欢迎来电查询!!!。

EP9121中文资料(PCA ELECTRONICS)中文数据手册「EasyDatasheet - 矽搜」

EP9121中文资料(PCA ELECTRONICS)中文数据手册「EasyDatasheet - 矽搜」
3. Moisture Sensitive Levels(MSL) (per IPC/JEDEC J-STD-020C)
4. Weight 5. Packaging Information
(Tube)
EP91XX SnPb SnPb
225°C
3 (168 hours, 30°C/60% R H ) TBD grams 45 pieces/tube
加入"-RC"为符合RoHS部件编号后
鸥翼 零件号
EP9115(-RC) EP9116(-RC) EP9117(-RC) EP9118(-RC) EP9119(-RC) EP9120(-RC) EP9121(-RC) EP9122(-RC)
†无论
抽头延迟
总延时
J形 引 线
(†±5%或±2NS) (†±5%或±2NS) 零件号
EP91XX-RC Sn
SnPb (RoHS exemption 7a)
260°C
4 (72 hours, 30°C/60% R H )
TBD grams 45 pieces/tube
除非另有说明尺寸以英寸/毫米±0.010 /.25
*这两个值是互相依赖.
Unit
4.75 5.25 V
2.0
V
0.8 V
-18 mA
-1.0 mA
20 mA
40
%
40 %
0 +70 °C
输入脉冲测试条件 @ 25°C
Unit
EIN 脉冲输入电压
3.2 Volts
PW 总延时脉冲宽度% TRI 脉冲上升时间(0.75 - 2.4伏特)
110 % 2.0 nS
.055 (1.40)

高速比较器MAX912

高速比较器MAX912

高速比较器MAX9121.总体描述MAX913(单)和MAX912(双)高速,低功耗比较器是一个拥有独特设计就是在其线性区域是它的比较是可以防止振荡。

没有要求最低输入转换率。

它是由差分输入和互补的TTL输出。

快速传播延迟(10ns 的典型值),具有极低的电源电流和宽共模输入范围,包括负电流使MAX912/MAX913达到的低功耗理想效果,高速,单电源+5 V(或±5V)的应用,例如有V / F转换器和开关稳压器。

MAX912/MAX913保持着稳定的线性区域输出。

此功能消除了常见的在输出不稳定时产生高速驱动时具有的比较滞销输入信号。

该MAX912/MAX913可以单一+5 V电源供电或±5V的分别供应。

该MAX913是一个改进的LT1016的替代品。

在输入一小能量时它提供了更宽的输入电压范围和等效速度。

在MAX912双比较具有同等性能的MAX913并且包括独立的锁存控制功能。

2.应用过零检测器以太网线接收器开关稳压器高速采样电路高速触发器扩展范围的V / F转换器快速脉冲宽度/高度的判别3.特点超快速(为10ns)单+5 V或±5V的双电源供电输入范围扩展至负电源以下低功耗:6毫安(+5 V)的每次比较无最小输入信号摆率的要求无电源电流扣球稳定的线性区可投入任一电源低失调电压:0.8mV4.引脚配置顶视图:5.电气特性(V+ = +5V, V- = -5V, VQ = 1.4V, VLE = 0V, TA = TMIN to TMAX,除非另有说明。

典型值是在TA=25℃)注1:输入失调电压(VOS)作为两个输入失调电压,迫使第一个输出端测得的平均定义,那么其他至1.4V。

输入失调电流(IOS)的定义是一样的。

注2:传输延迟(公吨)和差分传输延迟(ÆtPD)不能在自动装卸设备的计量具有低输入过载值。

测试样品的MAX912/MAX913是一个1V的一步,为500mV至0.1%的AQL超速仅在+25 °C。

MAX962ESA中文资料

MAX962ESA中文资料
________________________Applications
Single 3V/5V Systems
Portable/Battery-Powered Systems
Threshold Detectors/Discriminators
GPS RecLeabharlann iversLine Receivers
Zero-Crossing Detectors
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
元器件交易网
元器件交易网
MAX961–MAX964/MAX997/MAX999
19-1129; Rev 4; 3/99
Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators
_________________General Description
VTRIP
VCM = - 0.1V or 5.1V,
VCC = 5V (Note 3)
µMAX, SOT23
All other packages
±2.0 ±3.5 ±2.0 ±3.5
±6.5 mV
±4.0
Input-Referred Hysteresis Input Offset Voltage
VCM = - 0.1V µMAX,
5-Pin SOT23 (derate 7.1mW/°C above +70°C).......571mW/°C 8-Pin SO (derate 5.88mW/°C above +70°C)...........471mW/°C 8-Pin µMAX (derate 4.10mW/°C above +70°C) ......330mW/°C

MAX913中文资料

MAX913中文资料

M A X912/M A X913————单/双路,超高速,低功耗,精密的TTL比较器1.总体描述MAX913(单)和MAX912(双)高速,低功耗比较器是一个拥有独特设计就是在其线性区域是它的比较是可以防止振荡。

没有要求最低输入转换率。

它是由差分输入和互补的TTL输出。

快速传播延迟(10ns的典型值),具有极低的电源电流和宽共模输入范围,包括负电流使MAX912/MAX913达到的低功耗理想效果,高速,单电源+5V(或±5V)的应用,例如有V/F转换器和开关稳压器。

MAX912/MAX913保持着稳定的线性区域输出。

此功能消除了常见的在输出不稳定时产生高速驱动时具有的比较滞销输入信号。

该MAX912/MAX913可以单一+5V电源供电或±5V的分别供应。

该MAX913是一个改进的LT1016的替代品。

在输入一小能量时它提供了更宽的输入电压范围和等效速度。

在MAX912双比较具有同等性能的MAX913并且包括独立的锁存控制功能。

2.应用过零检测器以太网线接收器开关稳压器高速采样电路高速触发器扩展范围的V/F转换器快速脉冲宽度/高度的判别3.特点超快速(为10ns)单+5V或±5V的双电源供电输入范围扩展至负电源以下低功耗:6毫安(+5V)的每次比较无最小输入信号摆率的要求无电源电流扣球稳定的线性区可投入任一电源低失调电压:0.8mV4.引脚配置顶视图:5.绝对最大额定值:正电源电压 (7V)负电源电压..............................................-7V差分输入电压.......................................±15V输入电压....................................-0.3V至15V锁存引脚电压...................................等于耗材连续输出电流.....................................±20mA连续功耗(TA=70℃)8引脚塑料DIP(减少9.09mW/妹高于70°)......727mW 8引脚SO(减少5.88mW/每高于70°).................471mW 8引脚CERDIP(减少8.00mW/每高于70°).........640mW 16引脚塑料DIP(减少10.53mW/高于70°).......842mW 16引脚窄的SO(减免8.70mW/高于70°)..........696mW16引脚CERDIP(减免10.00mW/高于70°)..........800mW工作温度范围:MAX91C......................................................0℃至70℃MAX91E....................................................-40℃至85℃MAX91MJ.................................................-55℃至125℃储存温度范围........................................-65°C至150°C焊接温度(10秒).........................................................300℃注:超越“绝对最大额定值“,即可能造成永久性损坏设备。

MAX3032EEUE+中文资料

MAX3032EEUE+中文资料

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
MAX3030E/ MAX3031E
16 VCC 15 DI4 14 DO4+ 13 DO412 EN 11 DO310 DO3+ 9 DI3
TSSOP/SO
DI1 1 DO1+ 2 DO1- 3 EN1&2 4 DO2- 5 DO2+ 6
DI2 7 GND 8
MAX3032E/ MAX3033E
16 VCC 15 DI4 14 DO4+ 13 DO412 EN3&4 11 DO310 DO3+ 9 DI3
Ordering Information
ቤተ መጻሕፍቲ ባይዱ
TEMP RANGE 0°C to +70°C 0°C to +70°C
-40°C to +85°C -40°C to +85°C

SGM9123XS中文资料

SGM9123XS中文资料
Vs = +2.7V to + 5.5V VIN = 500mV,
RL = 150Ω RL = 150Ω
20% to 80%, VIN = 1V Step, NTSC & PAL DC coupled NTSC & PAL AC coupled NTSC & PAL DC coupled NTSC & PAL AC coupled f = 400KHz, 6.5MHz at 1MHz 2.0VSTEP, 80% to 20% 2.0VSTEP, 80% to 20%
2
SGM9123
元器件交易网
PACKAGE/ORDERING INFORMATION
ORDER NUMBER SGM9123XS/TR
PACKAGE DESCRIPTION
SO-8
TEMPERATURE RANGE
-40℃ to +125℃
PACKAGE OPTION Tape and Reel, 2500
BLOCK DIAGRAM
SG Microelectronics Co, Ltd Tel: 86/10/51798160/80
REV. A
元器件交易网
ELECTRICAL CHARACTERISTICS: VS = +5.0V
(At RL = 150Ω connected to GND, VIN = 1Vpp,and CIN = 0.1µF, all outputs AC coupled with 220µF,unless
POWER SUPPLY Operating Voltage Range
Power Supply Rejection Ratio (PSRR) Quiescent Current (IQ) DYNAMIC PERFORMANCE ±0.1dB Bandwidth -3dB Bandwidth Filter Response

MAX1254AEUE中文资料

MAX1254AEUE中文资料

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
元器件交易网
Note: Please indicate you are using the MAX1254 when contacting these comport
Required Equipment
Before you begin, you need the following equipment: • MAX1254EVC16 (contains MAX1254EVKIT board and 68HC16MODULE-DIP) • DC power supply, +7VDC to +20VDC at 0.25A • • Windows 95/98/2000/XP computer with an available serial (COM) port 9-pin I/O extension cable
MAX1254 Evaluation Kit/Evaluation System Evaluate: MAX1254/MAX1253
MAX1254EV KIT Component List (continued)
DESIGNATION QTY JU1:1-2, JU2, JU3:1-2, JU4, JU5, JU6:1-2 JU1, JU3, JU6 JU2, JU4, JU5 6 3 3 Shunts 3-pin headers 2-pin headers 2N3904 transistor (SOT23) Central Semiconductor CMPT3904 Diodes Incorporated MMBT3904-7 Fairchild MMBT3904 Motorola MMBT3904LT1 DESCRIPTION DESIGNATION QTY R1, R3 R2, R4 R5, R6 TB1 U1 U2 U3, U4 U5 None 0 0 2 1 1 1 2 1 1 DESCRIPTION Open, shorted by PC board trace (1206) Open (1206) 10kΩ ±5% resistors (1206) 2-circuit terminal block MAX1254BEUE MAX1615EUK-T (SOT23-5) MAX1840EUB or MAX1841EUB MAX6033AAUT25-T (SOT23-6) MAX1254EVKIT PC board

MAX232ECWE中文资料

MAX232ECWE中文资料

________________________________________________________________Maxim Integrated Products 1General DescriptionThe MAX202E–MAX213E, MAX232E/MAX241E line drivers/receivers are designed for RS-232 and V.28communications in harsh environments. Each transmitter output and receiver input is protected against ±15kV electrostatic discharge (ESD) shocks, without latchup.The various combinations of features are outlined in the Selector Guide.The drivers and receivers for all ten devices meet all EIA/TIA-232E and CCITT V.28specifications at data rates up to 120kbps, when loaded in accordance with the EIA/TIA-232E specification.The MAX211E/MAX213E/MAX241E are available in 28-pin SO packages, as well as a 28-pin SSOP that uses 60% less board space. The MAX202E/MAX232E come in 16-pin TSSOP, narrow SO, wide SO, and DIP packages. The MAX203E comes in a 20-pin DIP/SO package, and needs no external charge-pump capacitors. The MAX205E comes in a 24-pin wide DIP package, and also eliminates external charge-pump capacitors. The MAX206E/MAX207E/MAX208E come in 24-pin SO, SSOP, and narrow DIP packages. The MAX232E/MAX241E operate with four 1µF capacitors,while the MAX202E/MAX206E/MAX207E/MAX208E/MAX211E/MAX213E operate with four 0.1µF capacitors,further reducing cost and board space.________________________ApplicationsNotebook, Subnotebook, and Palmtop Computers Battery-Powered Equipment Hand-Held EquipmentNext-Generation Device Featureso For Low-Voltage ApplicationsMAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E: ±15kV ESD-Protected Down to10nA, +3.0V to +5.5V, Up to 1Mbps, True RS-232Transceivers (MAX3246E Available in a UCSP™Package)o For Low-Power ApplicationsMAX3221/MAX3223/MAX3243: 1µA SupplyCurrent, True +3V to +5.5V RS-232 Transceivers with Auto-Shutdown™o For Space-Constrained ApplicationsMAX3233E/MAX3235E: ±15kV ESD-Protected,1µA, 250kbps, +3.0V/+5.5V, Dual RS-232Transceivers with Internal Capacitorso For Low-Voltage or Data Cable ApplicationsMAX3380E/MAX3381E: +2.35V to +5.5V, 1µA,2Tx/2Rx RS-232 Transceivers with ±15kV ESD-Protected I/O and Logic PinsMAX202E–MAX213E, MAX232E/MAX241E±15kV ESD-Protected, +5V RS-232 TransceiversSelector Guide19-0175; Rev 6; 3/05Pin Configurations and Typical Operating Circuits appear at end of data sheet.YesPARTNO. OF RS-232DRIVERSNO. OF RS-232RECEIVERSRECEIVERS ACTIVE IN SHUTDOWNNO. OF EXTERNAL CAPACITORS(µF)LOW-POWER SHUTDOWNTTL TRI-STATE MAX202E 220 4 (0.1)No No MAX203E 220None No No MAX205E 550None Yes Yes MAX206E 430 4 (0.1)Yes Yes MAX207E 530 4 (0.1)No No MAX208E 440 4 (0.1)No No MAX211E 450 4 (0.1)Yes Yes MAX213E 452 4 (0.1)Yes Yes MAX232E 220 4 (1)No No MAX241E454 (1)YesFor pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .AutoShutdown and UCSP are trademarks of Maxim Integrated Products, Inc.Ordering InformationOrdering Information continued at end of data sheet.2_______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241EABSOLUTE MAXIMUM RATINGSV CC ..........................................................................-0.3V to +6V V+................................................................(V CC - 0.3V) to +14V V-............................................................................-14V to +0.3V Input VoltagesT_IN............................................................-0.3V to (V+ + 0.3V)R_IN...................................................................................±30V Output VoltagesT_OUT.................................................(V- - 0.3V) to (V+ + 0.3V)R_OUT......................................................-0.3V to (V CC + 0.3V)Short-Circuit Duration, T_OUT....................................Continuous Continuous Power Dissipation (T A = +70°C)16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW 16-Pin Narrow SO (derate 8.70mW/°C above +70°C).....696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 16-Pin TSSOP (derate 9.4mW/°C above +70°C)...........755mW20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)...889mW 20-Pin SO (derate 10.00mW/°C above +70°C).............800mW 24-Pin Narrow Plastic DIP(derate 13.33mW/°C above +70°C) ...............................1.07W 24-Pin Wide Plastic DIP(derate 14.29mW/°C above +70°C)................................1.14W 24-Pin SO (derate 11.76mW/°C above +70°C).............941mW 24-Pin SSOP (derate 8.00mW/°C above +70°C)..........640mW 28-Pin SO (derate 12.50mW/°C above +70°C)....................1W 28-Pin SSOP (derate 9.52mW/°C above +70°C)..........762mW Operating Temperature RangesMAX2_ _EC_ _.....................................................0°C to +70°C MAX2_ _EE_ _...................................................-40°C to +85°C Storage Temperature Range.............................-65°C to +165°C Lead Temperature (soldering, 10s).................................+300°CELECTRICAL CHARACTERISTICS(V CC = +5V ±10% for MAX202E/206E/208E/211E/213E/232E/241E; V CC = +5V ±5% for MAX203E/205E/207E; C1–C4 = 0.1µF for MAX202E/206E/207E/208E/211E/213E; C1–C4 = 1µF for MAX232E/241E; T A = T MIN to T MAX ; unless otherwise noted. Typical values are at T A = +25°C.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.ELECTRICAL CHARACTERISTICS (continued)MAX202E–MAX213E, MAX232E/MAX241E (V CC= +5V ±10% for MAX202E/206E/208E/211E/213E/232E/241E; V CC= +5V ±5% for MAX203E/205E/207E; C1–C4 = 0.1µF forMAX202E/206E/207E/208E/211E/213E; C1–C4 = 1µF for MAX232E/241E; T A= T MIN to T MAX; unless otherwise noted. Typical valuesare at T A= +25°C.)Note 1:MAX211EE_ _ tested with V CC= +5V ±5%._______________________________________________________________________________________34______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241E__________________________________________Typical Operating Characteristics(Typical Operating Circuits, V CC = +5V, T A = +25°C, unless otherwise noted.)5.00MAX211E/MAX213ETRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)V O H , -V O L (V )5.56.06.57.07.58.0100020003000400050000MAX211E/MAX213E/MAX241E TRANSMITTER SLEW RATE vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E ( V /µs )5101520253010002000300040005000_______________________________________________________________________________________5MAX202E–MAX213E, MAX232E/MAX241E____________________________Typical Operating Characteristics (continued)(Typical Operating Circuits, V CC = +5V, T A = +25°C, unless otherwise noted.)2MAX202E/MAX203E/MAX232E TRANSMITTER SLEW RATE vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E ( V /µs )468101214100020003000400050005.07.5-7.53000MAX205E–MAX208ETRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCE-5.02.5LOAD CAPACITANCE (pF)O U T P U T V O L T A G E (V )10002000400050000-2.54550203000MAX205E–MAX208E SUPPLY CURRENT vs. LOAD CAPACITANCE2540LOAD CAPACITANCE (pF)S U P P L Y C U R R E N T (m A )100020004000500035302.55.0-10.0180MAX205E –MAX208EOUTPUT VOLTAGE vs. DATA RATE-7.50DATA RATE (kbps)O U T P U T V O L T A G E (V )601202401503090210-2.5-5.010.07.56_______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241EMAX203EMAX205E_____________________________________________________________Pin DescriptionsMAX202E/MAX232E_______________________________________________________________________________________7MAX202E–MAX213E, MAX232E/MAX241EMAX208E________________________________________________Pin Descriptions (continued)MAX206EMAX207E8_______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241EMAX211E/MAX213E/MAX241E)(MAX205E/MAX206E/MAX211E/MAX213E/MAX241E)________________________________________________Pin Descriptions (continued)MAX211E/MAX213E/MAX241EFigure 3. Transition Slew-Rate Circuit_______________Detailed Description The MAX202E–MAX213E, MAX232E/MAX241E consist of three sections: charge-pump voltage converters, drivers (transmitters), and receivers. These E versions provide extra protection against ESD. They survive ±15kV discharges to the RS-232 inputs and outputs, tested using the Human Body Model. When tested according to IEC1000-4-2, they survive ±8kV contact-discharges and ±15kV air-gap discharges. The rugged E versions are intended for use in harsh environments or applications where the RS-232 connection is frequently changed (such as notebook computers). The standard (non-“E”) MAX202, MAX203, MAX205–MAX208, MAX211, MAX213, MAX232, and MAX241 are recommended for applications where cost is critical.+5V to ±10V Dual Charge-PumpVoltage Converter The +5V to ±10V conversion is performed by dual charge-pump voltage converters (Figure 4). The first charge-pump converter uses capacitor C1 to double the +5V into +10V, storing the +10V on the output filter capacitor, C3. The second uses C2 to invert the +10V into -10V, storing the -10V on the V- output filter capacitor, C4.In shutdown mode, V+ is internally connected to V CC by a 1kΩpull-down resistor, and V- is internally connected to ground by a 1kΩpull up resistor.RS-232 Drivers With V CC= 5V, the typical driver output voltage swing is ±8V when loaded with a nominal 5kΩRS-232 receiver. The output swing is guaranteed to meet EIA/TIA-232E and V.28 specifications that call for ±5V minimum output levels under worst-case conditions. These include a 3kΩload, minimum V CC, and maximum operating temperature. The open-circuit output voltage swings from (V+ - 0.6V) to V-.Input thresholds are CMOS/TTL compatible. The unused drivers’ inputs on the MAX205E–MAX208E, MAX211E, MAX213E, and MAX241E can be left unconnected because 400kΩpull up resistors to V CC are included on-chip. Since all drivers invert, the pull up resistors force the unused drivers’ outputs low. The MAX202E, MAX203E, and MAX232E do not have pull up resistors on the transmitter inputs._______________________________________________________________________________________9MAX202E–MAX213E, MAX232E/MAX241E10______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241E±15kV ESD-Protected, +5V RS-232 Transceivers When in low-power shutdown mode, the MAX205E/MAX206E/MAX211E/MAX213E/MAX241E driver outputs are turned off and draw only leakage currents—even if they are back-driven with voltages between 0V and 12V. Below -0.5V in shutdown, the transmitter output is diode-clamped to ground with a 1k Ωseries impedance.RS-232 ReceiversThe receivers convert the RS-232 signals to CMOS-logic output levels. The guaranteed 0.8V and 2.4V receiver input thresholds are significantly tighter than the ±3V thresholds required by the EIA/TIA-232E specification.This allows the receiver inputs to respond to TTL/CMOS-logic levels, as well as RS-232 levels.The guaranteed 0.8V input low threshold ensures that receivers shorted to ground have a logic 1 output. The 5k Ωinput resistance to ground ensures that a receiver with its input left open will also have a logic 1 output. Receiver inputs have approximately 0.5V hysteresis.This provides clean output transitions, even with slow rise/fall-time signals with moderate amounts of noise and ringing.In shutdown, the MAX213E’s R4 and R5 receivers have no hysteresis.Shutdown and Enable Control (MAX205E/MAX206E/MAX211E/MAX213E/MAX241E)In shutdown mode, the charge pumps are turned off,V+ is pulled down to V CC , V- is pulled to ground, and the transmitter outputs are disabled. This reduces supply current typically to 1µA (15µA for the MAX213E).The time required to exit shutdown is under 1ms, as shown in Figure 5.ReceiversAll MAX213E receivers, except R4 and R5, are put into a high-impedance state in shutdown mode (see Tables 1a and 1b). The MAX213E’s R4 and R5 receivers still function in shutdown mode. These two awake-in-shutdown receivers can monitor external activity while maintaining minimal power consumption.The enable control is used to put the receiver outputs into a high-impedance state, to allow wire-OR connection of two EIA/TIA-232E ports (or ports of different types) at the UART. It has no effect on the RS-232 drivers or the charge pumps.N ote: The enabl e control pin is active l ow for the MAX211E/MAX241E (EN ), but is active high for the MAX213E (EN). The shutdown control pin is active high for the MAX205E/MAX206E/MAX211E/MAX241E (SHDN), but is active low for the MAX213E (SHDN ).Figure 4. Charge-Pump DiagramMAX202E–MAX213E, MAX232E/MAX241EV+V-200µs/div3V 0V 10V 5V 0V -5V -10VSHDNMAX211EFigure 5. MAX211E V+ and V- when Exiting Shutdown (0.1µF capacitors)X = Don't care.*Active = active with reduced performanceSHDN E N OPERATION STATUS Tx Rx 00Normal Operation All Active All Active 01Normal Operation All Active All High-Z 1XShutdownAll High-ZAll High-ZTable 1a. MAX205E/MAX206E/MAX211E/MAX241E Control Pin ConfigurationsTable 1b. MAX213E Control Pin ConfigurationsThe MAX213E’s receiver propagation delay is typically 0.5µs in normal operation. In shutdown mode,propagation delay increases to 4µs for both rising and falling transitions. The MAX213E’s receiver inputs have approximately 0.5V hysteresis, except in shutdown,when receivers R4 and R5 have no hysteresis.When entering shutdown with receivers active, R4 and R5 are not valid until 80µs after SHDN is driven low.When coming out of shutdown, all receiver outputs are invalid until the charge pumps reach nominal voltage levels (less than 2ms when using 0.1µF capacitors).±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The driver outputs and receiver inputs have extra protection against static electricity. Maxim’s engineers developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an ESD event, Maxim’s E versions keep working without latchup, whereas competing RS-232products can latch and must be powered down to remove latchup.ESD protection can be tested in various ways; the transmitter outputs and receiver inputs of this product family are characterized for protection to the following limits:1)±15kV using the Human Body Model2)±8kV using the contact-discharge method specifiedin IEC1000-4-23)±15kV using IEC1000-4-2’s air-gap method.ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test set-up, test methodology, and test results.Human Body ModelFigure 6a shows the Human Body Model, and Figure 6b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a 1.5k Ωresistor.S H D N ENOPERATION STATUS Tx 1–400Shutdown All High-Z 01Shutdown All High-Z 10Normal Operation 11Normal OperationAll ActiveAll Active Active1–34, 5High-Z ActiveHigh-Z High-Z High-Z Active*High-Z RxM A X 202E –M A X 213E , M A X 232E /M A X 241EIEC1000-4-2The IEC1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to integrated circuits. The MAX202E/MAX203E–MAX213E, MAX232E/MAX241E help you design equipment that meets level 4 (the highest level) of IEC1000-4-2, without the need for additional ESD-protection components.The major difference between tests done using the Human Body Model and IEC1000-4-2 is higher peak current in IEC1000-4-2, because series resistance is lower in the IEC1000-4-2 model. Hence, the ESD withstand voltage measured to IEC1000-4-2 is generally lower than that measured using the Human Body Model. Figure 7b shows the current waveform for the 8kV IEC1000-4-2 level-four ESD contact-discharge test.The air-gap test involves approaching the device with a charged probe. The contact-discharge method connects the probe to the device before the probe is energized.Machine ModelThe Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. Of course, all pins require this protection during manufacturing, not just RS-232 inputs and outputs. Therefore,after PC board assembly,theMachine Model is less relevant to I/O ports.Figure 7a. IEC1000-4-2 ESD Test ModelFigure 7b. IEC1000-4-2 ESD Generator Current WaveformFigure 6a. Human Body ESD Test ModelFigure 6b. Human Body Model Current Waveform__________Applications InformationCapacitor Selection The capacitor type used for C1–C4 is not critical for proper operation. The MAX202E, MAX206–MAX208E, MAX211E, and MAX213E require 0.1µF capacitors, and the MAX232E and MAX241E require 1µF capacitors, although in all cases capacitors up to 10µF can be used without harm. Ceramic, aluminum-electrolytic, or tantalum capacitors are suggested for the 1µF capacitors, and ceramic dielectrics are suggested for the 0.1µF capacitors. When using the minimum recommended capacitor values, make sure the capacitance value does not degrade excessively as the operating temperature varies. If in doubt, use capacitors with a larger (e.g., 2x) nominal value. The capacitors’ effective series resistance (ESR), which usually rises at low temperatures, influences the amount of ripple on V+ and V-.Use larger capacitors (up to 10µF) to reduce the output impedance at V+ and V-. This can be useful when “stealing” power from V+ or from V-. The MAX203E and MAX205E have internal charge-pump capacitors. Bypass V CC to ground with at least 0.1µF. In applications sensitive to power-supply noise generated by the charge pumps, decouple V CC to ground with a capacitor the same size as (or larger than) the charge-pump capacitors (C1–C4).V+ and V- as Power Supplies A small amount of power can be drawn from V+ and V-, although this will reduce both driver output swing and noise margins. Increasing the value of the charge-pump capacitors (up to 10µF) helps maintain performance when power is drawn from V+ or V-.Driving Multiple Receivers Each transmitter is designed to drive a single receiver. Transmitters can be paralleled to drive multiple receivers.Driver Outputs when Exiting Shutdown The driver outputs display no ringing or undesirable transients as they come out of shutdown.High Data Rates These transceivers maintain the RS-232 ±5.0V minimum driver output voltages at data rates of over 120kbps. For data rates above 120kbps, refer to the Transmitter Output Voltage vs. Load Capacitance graphs in the Typical Operating Characteristics. Communication at these high rates is easier if the capacitive loads on the transmitters are small; i.e., short cables are best.Table 2. Summary of EIA/TIA-232E, V.28 SpecificationsMAX202E–MAX213E, MAX232E/MAX241EM A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)Table 3. DB9 Cable ConnectionsCommonly Used for EIA/TIAE-232E and V.24 Asynchronous Interfaces____________Pin Configurations and Typical Operating Circuits (continued)MAX202E–MAX213E, MAX232E/MAX241EM A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)MAX202E–MAX213E, MAX232E/MAX241E____________Pin Configurations and Typical Operating Circuits (continued)M A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)MAX202E–MAX213E, MAX232E/MAX241E____________Pin Configurations and Typical Operating Circuits (continued)M A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)______________________________________________________________________________________21MAX202E–MAX213E, MAX232E/MAX241E Ordering Information (continued)*Dice are specified at T A= +25°C.M A X 202E –M A X 213E , M A X 232E /M A X 241E22________________________________________________________________________________________________________________________________________________Chip Topographies___________________Chip InformationC1-V+C1+V CC R2INT2OUT R2OUT0.117"(2.972mm)0.080"(2.032mm)V-C2+ C2-T2IN T1OUT R1INR1OUT T1INGNDR5INV-C2-C2+C1-V+C1+V CC T4OUTR3IN T3OUTT1OUT 0.174"(4.420mm)0.188"(4.775mm)T4IN R5OUT R4OUT T3IN R4IN EN (EN) SHDN (SHDN)R3OUT T2OUT GNDR1IN R1OUT T2IN R2OUTR2IN T1IN ( ) ARE FOR MAX213E ONLYTRANSISTOR COUNT: 123SUBSTRATE CONNECTED TO GNDTRANSISTOR COUNT: 542SUBSTRATE CONNECTED TO GNDMAX202E/MAX232EMAX211E/MAX213E/MAX241EMAX205E/MAX206E/MAX207E/MAX208E TRANSISTOR COUNT: 328SUBSTRATE CONNECTED TO GNDMAX202E–MAX213E, MAX232E/MAX241E Package InformationM A X 202E –M A X 213E , M A X 232E /M A X 241EPackage Information (continued)MAX202E–MAX213E, MAX232E/MAX241E±15kV ESD-Protected, +5V RS-232 TransceiversMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________25©2005 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products, Inc.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)。

MAX9122EUE

MAX9122EUE

1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
PARAMETER LVDS INPUTS (IN_+, IN_-) Differential Input High Threshold Differential Input Low Threshold Input Current (MAX9121) Power-Off Input Current (MAX9121) Input Resistor 1 Input Resistor 2 Differential Input Resistance (MAX9122) LVCMOS/LVTTL OUTPUTS (OUT_) IOH = -4.0mA (MAX9121) Output High Voltage (Table 1) VOH IOH = -4.0mA (MAX9122) Output Low Voltage Output Short-Circuit Current Output High-Impedance Current VOL IOS IOZ Open, undriven short, or undriven 100Ω parallel termination VID = +100mV Open or undriven short VID = +100mV 2.7 2.7 2.7 2.7 -15 -10 3.2 3.2 3.2 3.2 0.1 0.25 -120 +10 V mA µA V VTH VTL IIN_+, IIN_IINOFF RIN1 RIN2 RDIFF 0.1V ≤VID≤ 0.6V 0.6V <VID≤ 1.0V 0.1V ≤VID≤ 0.6V, VCC = 0 0.6V <VID≤ 1.0V, VCC = 0 VCC = 3.6V or 0, Figure 1 VCC = 3.6V or 0, Figure 1 VCC = 3.6V or 0, Figure 1 -100 -20 -25 -20 -25 35 132 90 107 132 20 25 20 25 100 mV mV µA µA µA µA kΩ kΩ Ω SYMBOL CONDITIONS MIN TYP MAX UNITS

高速比较器MAX912

高速比较器MAX912

高速比较器MAX912简介
1 器件用途及特点
MAX912 是由MAXIM 公司生产的双组高速低功耗、高精度电压比较器。

该器件速度快(典型值为10ns) , 功耗低(单个比较器工作电流为6mA) ,每个比较器均有独立的锁存使能功能。

它与其他高速比较器的不同之处在于, 当接收缓慢移动信号时, MXA912 仍能保持稳定, 器件均能接受差动输入信号并具有互补性的TTL 兼容输出, 可广泛应用于V/ F 变换、高速采样等电路中,以下为该器件的典型应用:
(1) 以太网线接收器
(2) 扩展V/F转换器
(3) 高速脉冲幅度/宽度鉴别器
(4) 高速采样电路
(5) 高速触发
(6) 开关型稳压器
(7) 过零检测器
2 管脚功能描述
图1为芯片的管脚示意图,从中可以看出,内部结构是对称的2路比较器,管脚功能描述如表一。

图1 MAX912 管脚示意图
3 图2为利用MAX912设计的一个带有外部滞回电压的比较器,比较器的
同相阈值为: (1) TH+ = V V +212R/(R +R )反向阈值为:
(2)
TH- = V V -21
2R/(R +R )
图2 外部滞回电压比较器
4 使用注意事项
MAX912可以工作在单电源、双电源模式,同时它是一款高速的器件,因此设计PCB 电路板的时候需要注意以下几点: (1) PCB 电路板要大面积接地
(2) 注意旁路器件(旁路电容)的带宽,保证信号的完整性通过 (3) 尽量不要用插座,避免产生寄生电感和电容。

MAX232中文资料(官方版)

MAX232中文资料(官方版)

新一代 器件特性 ____________________________
♦ 对于低电压、集成 ESD 保护的应用 MAX3222E/MAX3232E/MAX3237E/MAX3241E/ MAX3246E:+3.0V 至 +5.5V、低功耗、速率高达 1Mbps、利用四个 0.1µF 电容实现真正的 RS-232 收发器 (MAX3246E 提供 UCSPTM 封装 )。 ♦ 对于低成本应用 MAX221E:±15kV ESD 保护、+5V、1µA、 具有 AutoShutdownTM 功能的单芯片 RS-232。
________________________________ 应用
便携式计算机 低功耗调制解调器 接口转换 电池供电 RS-232 系统 多点 RS-232 网络
_____________________________ 定购信息
PART MAX220CPE MAX220CSE MAX220CWE MAX220C/D MAX220EPE MAX220ESE MAX220EWE MAX220EJE MAX220MJE TEMP RANGE 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -55°C to +125°C PIN-PACKAGE 16 Plastic DIP 16 Narrow SO 16 Wide SO Dice* 16 Plastic DIP 16 Narrow SO 16 Wide SO 16 CERDIP 16 CERDIP

MAX912

MAX912

______________Ordering Information
PART
TEMP. RANGE
PIN-PACKAGE
MAX912CPE
0°C to +70°C
16 Plastic DIP
MAX912CSE
0°C to +70°C
16 Narrow SO
MAX912C/D
0°C to +70°C
Dice*
The MAX912/MAX913 can be powered from a single +5V supply or a ±5V split supply. The MAX913 is an improved plug-in replacement for the LT1016. It provides significantly wider input voltage range and equivalent speed at a fraction of the power. The MAX912 dual comparator has equal performance to the MAX913 and includes independent latch controls.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MAX3232EEUE+T中文资料

MAX3232EEUE+T中文资料

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,or visit Maxim's website at .General DescriptionThe MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E +3.0V-powered EIA/TIA-232 and V.28/V.24communications interface devices feature low power con-sumption, high data-rate capabilities, and enhanced electrostatic-discharge (ESD) protection. The enhanced ESD structure protects all transmitter outputs and receiver inputs to ±15kV using IEC 1000-4-2 Air-G ap Discharge, ±8kV using IEC 1000-4-2 Contact Discharge (±9kV for MAX3246E), and ±15kV using the Human Body Model. The logic and receiver I/O pins of the MAX3237E are protected to the above standards, while the transmit-ter output pins are protected to ±15kV using the Human Body Model.A proprietary low-dropout transmitter output stage delivers true RS-232 performance from a +3.0V to +5.5V power supply, using an internal dual charge pump. The charge pump requires only four small 0.1µF capacitors for opera-tion from a +3.3V supply. Each device guarantees opera-tion at data rates of 250kbps while maintaining RS-232output levels. The MAX3237E guarantees operation at 250kbps in the normal operating mode and 1Mbps in the MegaBaud™ operating mode, while maintaining RS-232-compliant output levels.The MAX3222E/MAX3232E have two receivers and two transmitters. The MAX3222E features a 1µA shutdown mode that reduces power consumption in battery-pow-ered portable systems. The MAX3222E receivers remain active in shutdown mode, allowing monitoring of external devices while consuming only 1µA of supply current. The MAX3222E and MAX3232E are pin, package, and func-tionally compatible with the industry-standard MAX242and MAX232, respectively.The MAX3241E/MAX3246E are complete serial ports (three drivers/five receivers) designed for notebook and subnotebook computers. The MAX3237E (five drivers/three receivers) is ideal for peripheral applications that require fast data transfer. These devices feature a shut-down mode in which all receivers remain active, while consuming only 1µA (MAX3241E/MAX3246E) or 10nA (MAX3237E).The MAX3222E, MAX3232E, and MAX3241E are avail-able in space-saving SO, SSOP, TQFN and TSSOP pack-ages. The MAX3237E is offered in an SSOP package.The MAX3246E is offered in the ultra-small 6 x 6 UCSP™package.ApplicationsBattery-Powered Equipment PrintersCell PhonesSmart Phones Cell-Phone Data Cables xDSL ModemsNotebook, Subnotebook,and Palmtop ComputersNext-Generation Device Features♦For Space-Constrained ApplicationsMAX3228E/MAX3229E: ±15kV ESD-Protected, +2.5V to +5.5V, RS-232 Transceivers in UCSP ♦For Low-Voltage or Data Cable ApplicationsMAX3380E/MAX3381E: +2.35V to +5.5V, 1µA, 2Tx/2Rx, RS-232 Transceivers with ±15kV ESD-Protected I/O and Logic PinsMAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246E±15kV ESD-Protected, Down to 10nA, 3.0V to 5.5V ,Up to 1Mbps, True RS-232 Transceivers________________________________________________________________Maxim Integrated Products 119-1298; Rev 11; 10/07Ordering Information continued at end of data sheet.*Dice are tested at T A = +25°C, DC parameters only.**EP = Exposed paddle.Pin Configurations, Selector Guide, and Typical Operating Circuits appear at end of data sheet.MegaBaud and UCSP are trademarks of Maxim Integrated Products, Inc.†Covered by U.S. Patent numbers 4,636,930; 4,679,134;4,777,577; 4,797,899; 4,809,152; 4,897,774; 4,999,761; and other patents pending.M A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 TransceiversABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = +3V to +5.5V, C1–C4 = 0.1µF, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Notes 3, 4)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC to GND..............................................................-0.3V to +6V V+ to GND (Note 1)..................................................-0.3V to +7V V- to GND (Note 1)...................................................+0.3V to -7V V+ + |V-| (Note 1).................................................................+13V Input Voltages T_IN, EN , SHDN , MBAUD to GND ........................-0.3V to +6V R_IN to GND.....................................................................±25V Output Voltages T_OUT to GND...............................................................±13.2V R_OUT, R_OUTB (MAX3241E)................-0.3V to (V CC + 0.3V)Short-Circuit Duration, T_OUT to GND.......................Continuous Continuous Power Dissipation (T A = +70°C)16-Pin SSOP (derate 7.14mW/°C above +70°C)..........571mW 16-Pin TSSOP (derate 9.4mW/°C above +70°C).......754.7mW 16-Pin TQFN (derate 20.8mW/°C above +70°C).....1666.7mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C).....762mW 18-Pin Wide SO (derate 9.52mW/°C above +70°C).....762mW 18-Pin PDIP (derate 11.11mW/°C above +70°C)..........889mW 20-Pin TQFN (derate 21.3mW/°C above +70°C)........1702mW 20-Pin TSSOP (derate 10.9mW/°C above +70°C)........879mW 20-Pin SSOP (derate 8.00mW/°C above +70°C)..........640mW 28-Pin SSOP (derate 9.52mW/°C above +70°C)..........762mW 28-Pin Wide SO (derate 12.50mW/°C above +70°C).............1W 28-Pin TSSOP (derate 12.8mW/°C above +70°C)......1026mW 32-Lead Thin QFN (derate 33.3mW/°C above +70°C)..2666mW 6 x 6 UCSP (derate 12.6mW/°C above +70°C).............1010mW Operating Temperature Ranges MAX32_ _EC_ _...................................................0°C to +70°C MAX32_ _EE_ _.................................................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°C Bump Reflow Temperature (Note 2)Infrared, 15s..................................................................+200°C Vapor Phase, 20s..........................................................+215°C Note 1:V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.Note 2:This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the devicecan be exposed to during board-level solder attach and rework. This limit permits only the use of the solder profiles recom-mended in the industry-standard specification, JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and convection reflow.Preheating is required. Hand or wave soldering is not allowed.MAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 Transceivers_______________________________________________________________________________________3M A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 Transceivers4_______________________________________________________________________________________TIMING CHARACTERISTICS—MAX3237E(V CC = +3V to +5.5V, C1–C4 = 0.1µF, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (Note 3)±10%. MAX3237E: C1–C4 = 0.1µF tested at +3.3V ±5%, C1–C4 = 0.22µF tested at +3.3V ±10%; C1 = 0.047µF, C2, C3, C4 =0.33µF tested at +5.0V ±10%. MAX3246E; C1-C4 = 0.22µF tested at +3.3V ±10%; C1 = 0.22µF, C2, C3, C4 = 0.54µF tested at 5.0V ±10%.Note 4:MAX3246E devices are production tested at +25°C. All limits are guaranteed by design over the operating temperature range.Note 5:The MAX3237E logic inputs have an active positive feedback resistor. The input current goes to zero when the inputs are atthe supply rails.Note 6:MAX3241EEUI is specified at T A = +25°C.Note 7:Transmitter skew is measured at the transmitter zero crosspoints.TIMING CHARACTERISTICS—MAX3222E/MAX3232E/MAX3241E/MAX3246EMAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 Transceivers_______________________________________________________________________________________5-6-4-202460MAX3237ETRANSMITTER OUTPUT VOLTAGE vs. LOAD CAPACITANCE (MBAUD = GND)LOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )10001500500200025003000531-1-3-5-6-2-42046-5-31-135010001500500200025003000LOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )MAX3237ETRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCE-7.5-5.0-2.502.55.07.5MAX3237ETRANSMITTER OUTPUT VOLTAGE vs. LOAD CAPACITANCE (MBAUD = V CC )LOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )500100015002000__________________________________________Typical Operating Characteristics(V CC = +3.3V, 250kbps data rate, 0.1µF capacitors, all transmitters loaded with 3k Ωand C L , T A = +25°C, unless otherwise noted.)-6-5-4-3-2-10123456010002000300040005000MAX3241ETRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V)302010405060020001000300040005000MAX3241EOPERATING SUPPLY CURRENT vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S U P P L Y C U R R E N T (m A )04286121014010002000300040005000MAX3241ESLEW RATE vs. LOAD CAPACITANCEM A X 3237E t o c 05LOAD CAPACITANCE (pF)S L E W R A T E (V /μs )-6-5-4-3-2-10123456010002000300040005000MAX3222E/MAX3232ETRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P UT V O L T A G E (V )624108141216010002000300040005000MAX3222E/MAX3232ESLEW RATE vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E (V /μs)2520155103530404520001000300040005000MAX3222E/MAX3232E OPERATING SUPPLY CURRENT vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S U P P L Y C U R R E N T (m A )M A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 Transceivers6_______________________________________________________________________________________Typical Operating Characteristics (continued)(V CC = +3.3V, 250kbps data rate, 0.1µF capacitors, all transmitters loaded with 3k Ωand C L , T A = +25°C, unless otherwise noted.)20604080100MAX3237ETRANSMITTER SKEW vs. LOAD CAPACITANCE(MBAUD = V CC )LOAD CAPACITANCE (pF)100015005002000T R A N S M I T T E R S K E W (n s )-6-2-42046-3-51-1352.03.03.52.54.04.55.0SUPPLY VOLTAGE (V)T R A N S M I T T E R O U T P U T V O L T A G E (V )MAX3237ETRANSMITTER OUTPUT VOLTAGE vs. SUPPLY VOLTAGE (MBAUD = GND)10203040502.0MAX3237E SUPPLY CURRENT vs. SUPPLY VOLTAGE (MBAUD = GND)SUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (m A )3.03.52.54.04.55.0MAX3246ETRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )4000300010002000-5-4-3-2-101234567-65000468101214160MAX3246ESLEW RATE vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L EW R A T E (V /μs )200030001000400050001020304050600MAX3246EOPERATING SUPPLY CURRENT vs. LOAD CAPACITANCEM A X 3237E t o c 17LOAD CAPACITANCE (pF)S U P P L Y C U R R EN T (m A )1000200030004000500055453525155024681012MAX3237ESLEW RATE vs. LOAD CAPACITANCE(MBAUD = GND)LOAD CAPACITANCE (pF)S L E W R A T E (V /μs )10001500500200025003000010203050406070MAX3237ESLEW RATE vs. LOAD CAPACITANCE(MBAUD = V CC )LOAD CAPACITANCE (pF)S L E W R A T E (V /μs )5001000150020001020304050MAX3237ESUPPLY CURRENT vs. LOAD CAPACITANCE WHEN TRANSMITTING DATA (MBAUD = GND)LOAD CAPACITANCE (pF)S U P P L Y C U R R E N T (m A )10001500500200025003000MAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 Transceivers_______________________________________________________________________________________7Pin DescriptionM A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 Transceivers8_______________________________________________________________________________________MAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 Transceivers_______________________________________________________________________________________9Detailed DescriptionDual Charge-Pump Voltage ConverterThe MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246Es’ internal power supply consists of a regu-lated dual charge pump that provides output voltages of +5.5V (doubling charge pump) and -5.5V (inverting charge pump) over the +3.0V to +5.5V V CC range. The charge pump operates in discontinuous mode; if the output voltages are less than 5.5V, the charge pump is enabled, and if the output voltages exceed 5.5V, the charge pump is disabled. Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C4) to generate the V+ and V- supplies (Figure 1).RS-232 TransmittersThe transmitters are inverting level translators that con-vert TTL/CMOS-logic levels to ±5V EIA/TIA-232-compli-ant levels.The MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E transmitters guarantee a 250kbps data rate with worst-case loads of 3k Ωin parallel with 1000pF,providing compatibility with PC-to-PC communication software (such as LapLink™). Transmitters can be par-alleled to drive multiple receivers or mice.The MAX3222E/MAX3237E/MAX3241E/MAX3246E transmitters are disabled and the outputs are forcedinto a high-impedance state when the device is in shut-down mode (SHDN = G ND). The MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E permit the outputs to be driven up to ±12V in shutdown.The MAX3222E/MAX3232E/MAX3241E/MAX3246E transmitter inputs do not have pullup resistors. Connect unused inputs to GND or V CC . The MAX3237E’s trans-mitter inputs have a 400k Ωactive positive-feedback resistor, allowing unused inputs to be left unconnected.MAX3237E MegaBaud OperationFor higher-speed serial communications, the MAX3237E features MegaBaud operation. In MegaBaud operating mode (MBAUD = V CC ), the MAX3237E transmitters guarantee a 1Mbps data rate with worst-case loads of 3k Ωin parallel with 250pF for +3.0V < V CC < +4.5V. For +5V ±10% operation, the MAX3237E transmitters guarantee a 1Mbps data rate into worst-case loads of 3k Ωin parallel with 1000pF.RS-232 ReceiversThe receivers convert RS-232 signals to CMOS-logic output levels. The MAX3222E/MAX3237E/MAX3241E/MAX3246E receivers have inverting three-state outputs.Drive EN high to place the receiver(s) into a high-impedance state. Receivers can be either active or inactive in shutdown (Table 1).Figure 1. Slew-Rate Test CircuitsLapLink is a trademark of Traveling Software.M A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 Transceivers10______________________________________________________________________________________The complementary outputs on the MAX3237E/MAX3241E (R_OUTB) are always active, regardless of the state of EN or SHDN . This allows the device to be used for ring indicator applications without forward biasing other devices connected to the receiver outputs. This is ideal for systems where V CC drops to zero in shutdown to accommodate peripherals such as UARTs (Figure 2).MAX3222E/MAX3237E/MAX3241E/MAX3246E Shutdown ModeSupply current falls to less than 1µA in shutdown mode (SHDN = low). The MAX3237E’s supply current falls to10nA (typ) when all receiver inputs are in the invalid range (-0.3V < R_IN < +0.3). When shut down, the device’s charge pumps are shut off, V+ is pulled down to V CC , V- is pulled to ground, and the transmitter out-puts are disabled (high impedance). The time required to recover from shutdown is typically 100µs, as shown in Figure 3. Connect SHDN to V CC if shutdown mode is not used. SHDN has no effect on R_OUT or R_OUTB (MAX3237E/MAX3241E).±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated to protect against electrostatic dis-charges encountered during handling and assembly.The driver outputs and receiver inputs of the MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E have extra protection against static electricity. Maxim’s engineers have developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage.The ESD structures withstand high ESD in all states:normal operation, shutdown, and powered down. After an ESD event, Maxim’s E versions keep working without latchup, whereas competing RS-232 products can latch and must be powered down to remove latchup.Furthermore, the MAX3237E logic I/O pins also have ±15kV ESD protection. Protecting the logic I/O pins to ±15kV makes the MAX3237E ideal for data cable applications.SHDN T2OUTT1OUT5V/div2V/divV CC = 3.3V C1–C4 = 0.1μFFigure 3. Transmitter Outputs Recovering from Shutdown or Powering UpMAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 TransceiversESD protection can be tested in various ways; the transmitter outputs and receiver inputs for the MAX3222E/MAX3232E/MAX3241E/MAX3246E are characterized for protection to the following limits:•±15kV using the Human Body Model•±8kV using the Contact Discharge method specified in IEC 1000-4-2•±9kV (MAX3246E only) using the Contact Discharge method specified in IEC 1000-4-2•±15kV using the Air-G ap Discharge method speci-fied in IEC 1000-4-2Figure 4a. Human Body ESD Test ModelFigure 4b. Human Body Model Current WaveformFigure 5a. IEC 1000-4-2 ESD Test Model Figure 5b. IEC 1000-4-2 ESD Generator Current WaveformM A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 Transceiverscharacterized for protection to ±15kV per the Human Body Model.ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body ModelFigure 4a shows the Human Body Model, and Figure 4b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the test device through a 1.5k Ωresistor.IEC 1000-4-2The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifi-cally refer to integrated circuits. The MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E help you design equipment that meets level 4 (the highest level)of IEC 1000-4-2, without the need for additional ESD-protection components.The major difference between tests done using the Human Body Model and IEC 1000-4-2 is higher peak current in IEC 1000-4-2, because series resistance is lower in the IEC 1000-4-2 model. Hence, the ESD with-stand voltage measured to IEC 1000-4-2 is generally lower than that measured using the Human Body Model. Figure 5a shows the IEC 1000-4-2 model, and Figure 5b shows the current waveform for the ±8kV IEC 1000-4-2 level 4 ESD Contact Discharge test. The Air-G ap Discharge test involves approaching the device with a charged probe. The Contact Discharge method connects the probe to the device before the probe is energized.Machine ModelThe Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. All pins require this protection during manufacturing, not just RS-232 inputs and outputs.Therefore, after PC board assembly, the Machine Model is less relevant to I/O ports.Table 2. Required Minimum Capacitor ValuesFigure 6a. MAX3241E Transmitter Output Voltage vs. Load Current Per TransmitterTable 3. Logic-Family Compatibility with Various Supply VoltagesMAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 TransceiversApplications InformationCapacitor SelectionThe capacitor type used for C1–C4 is not critical for proper operation; polarized or nonpolarized capacitors can be used. The charge pump requires 0.1µF capaci-tors for 3.3V operation. For other supply voltages, see Table 2 for required capacitor values. Do not use val-ues smaller than those listed in Table 2. Increasing the capacitor values (e.g., by a factor of 2) reduces ripple on the transmitter outputs and slightly reduces power consumption. C2, C3, and C4 can be increased without changing C1’s value. However, do not increase C1without also increasing the values of C2, C3, C4,and C BYPASS to maintain the proper ratios (C1 to the other capacitors).When using the minimum required capacitor values,make sure the capacitor value does not degradeexcessively with temperature. If in doubt, use capaci-tors with a larger nominal value. The capacitor’s equiv-alent series resistance (ESR), which usually rises at low temperatures, influences the amount of ripple on V+and V-.Power-Supply DecouplingIn most circumstances, a 0.1µF V CC bypass capacitor is adequate. In applications sensitive to power-supply noise, use a capacitor of the same value as charge-pump capacitor C1. Connect bypass capacitors as close to the IC as possible.Operation Down to 2.7VTransmitter outputs meet EIA/TIA-562 levels of ±3.7V with supply voltages as low as 2.7V.Figure 6b. Mouse Driver Test CircuitM A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 TransceiversFigure 7. Loopback Test CircuitT1IN T1OUTR1OUT5V/div5V/div5V/divV CC = 3.3V C1–C4 = 0.1μFFigure 8. MAX3241E Loopback Test Result at 120kbps T1INT1OUTR1OUT5V/div5V/div5V/divV CC = 3.3V, C1–C4 = 0.1μFFigure 9. MAX3241E Loopback Test Result at 250kbps+5V 0+5V 0-5V +5VT_INT_OUT5k Ω + 250pFR_OUTV CC = 3.3V C1–C4 = 0.1μFFigure 10. MAX3237E Loopback Test Result at 1000kbps (MBAUD = V CC )Transmitter Outputs Recoveringfrom ShutdownFigure 3 shows two transmitter outputs recovering from shutdown mode. As they become active, the two trans-mitter outputs are shown going to opposite RS-232 levels (one transmitter input is high; the other is low). Each transmitter is loaded with 3k Ωin parallel with 2500pF.The transmitter outputs display no ringing or undesir-able transients as they come out of shutdown. Note thatthe transmitters are enabled only when the magnitude of V- exceeds approximately -3.0V.Mouse DrivabilityThe MAX3241E is designed to power serial mice while operating from low-voltage power supplies. It has been tested with leading mouse brands from manu-facturers such as Microsoft and Logitech. The MAX3241E successfully drove all serial mice tested and met their current and voltage requirements.MAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 TransceiversFigure 6a shows the transmitter output voltages under increasing load current at +3.0V. Figure 6b shows a typical mouse connection using the MAX3241E.High Data RatesThe MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E maintain the RS-232 ±5V minimum transmit-ter output voltage even at high data rates. Figure 7shows a transmitter loopback test circuit. Figure 8shows a loopback test result at 120kbps, and Figure 9shows the same test at 250kbps. For Figure 8, all trans-mitters were driven simultaneously at 120kbps into RS-232 loads in parallel with 1000pF. For Figure 9, a single transmitter was driven at 250kbps, and all transmitters were loaded with an RS-232 receiver in parallel with 1000pF.The MAX3237E maintains the RS-232 ±5.0V minimum transmitter output voltage at data rates up to 1Mbps.Figure 10 shows a loopback test result at 1Mbps with MBAUD = V CC . For Figure 10, all transmitters were loaded with an RS-232 receiver in parallel with 250pF.Interconnection with 3V and 5V LogicThe MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E can directly interface with various 5V logic families, including ACT and HCT CMOS. See Table 3for more information on possible combinations of inter-connections.UCSP ReliabilityThe UCSP represents a unique packaging form factor that may not perform equally to a packaged product through traditional mechanical reliability tests. UCSP reliability is integrally linked to the user’s assembly methods, circuit board material, and usage environ-ment. The user should closely review these areas when considering use of a UCSP package. Performance through Operating Life Test and Moisture Resistance remains uncompromised as the wafer-fabrication process primarily determines it.Mechanical stress performance is a greater considera-tion for a UCSP package. UCSPs are attached through direct solder contact to the user’s PC board, foregoing the inherent stress relief of a packaged product lead frame. Solder joint contact integrity must be consid-ered. Table 4 shows the testing done to characterize the UCSP reliability performance. In conclusion, the UCSP is capable of performing reliably through envi-ronmental stresses as indicated by the results in the table. Additional usage data and recommendations are detailed in the UCSP application note, which can be found on Maxim’s website at .Table 4. Reliability Test DataM A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 Transceivers__________________________________________________________Pin ConfigurationsMAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 TransceiversPin Configurations (continued)M A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 Transceivers__________________________________________________Typical Operating CircuitsMAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 Transceivers_____________________________________Typical Operating Circuits (continued)M A X 3222E /M A X 3232E /M A X 3237E /M A X 3241E †/M A X 3246EUp to 1Mbps, True RS-232 Transceivers_____________________________________Typical Operating Circuits (continued)MAX3222E/MAX3232E/MAX3237E/MAX3241E †/MAX3246EUp to 1Mbps, True RS-232 Transceivers______________________________________________________________________________________21Selector Guide___________________Chip InformationTRANSISTOR COUNT:MAX3222E/MAX3232E: 1129MAX3237E: 2110MAX3241E: 1335MAX3246E: 842PROCESS: BICMOSOrdering Information (continued)†Requires solder temperature profile described in the AbsoluteMaximum Ratings section. UCSP Reliability is integrally linked to the user’s assembly methods, circuit board material, and environment. Refer to the UCSP Reliability Notice in the UCSP Reliability section of this datasheet for more information.**EP = Exposed paddle.。

Gentex 9123 9223 系列光电烟感120VAC和220VAC,9V电池备份,单 多站烟感

Gentex 9123 9223 系列光电烟感120VAC和220VAC,9V电池备份,单 多站烟感

9123 / 9223 SeriesPhotoelectric Smoke Alarm120 VAC and 220 VAC with 9V Battery Back-Up Single/Multiple Station Smoke Alarm 24 units per carton, 34 pounds per cartonApplicationsThe 9123/9223 Series of photoelectric smoke alarms is designed for residential andcommercial residential applications, including homes, apartments, hospitals, hotelsand motels. Available in several different models, the 9123/9223 Series is engineeredto virtually eliminate nuisance alarms and deliver outstanding performance whereverreliable fire protection is required.The 9123/9223 Series is provided with a 9V alkaline battery for back-up in the eventbuilding power is lost. The Gentex 9123/9223 Series provides an exclusive patentedthree-position test feature that simulates a 0.85% and 3.5% actual smoke conditionin full compliance with NFPA 72 and UL Standards. Options include self-restoring135°F integral or isolated heat thermals and Form A/Form C dry contacts for remoteannunciation.The 9123/9223 smoke alarms are ANSI/UL 217 and ANSI/UL 1730 listed and arewarranted for one year from date of purchase.Standard Features• Available in 120VAC and 220VAC models with 9V battery back-up• Photoelectric smoke sensing technology• Horn frequency 3100 Hz (nominal)• 90dBA temporal 3 evacuation piezo horn• Nominal 2.5% sensitivity• Patented three-position test switch• Relays operate on battery back-up• Quick-disconnect wiring harness• Interconnect with Gentex tandem capable smoke alarms• Non-latching (self restoring) alarm• 5-to-1 signal-to-noise ratio• Pulsing LED sensing chamber• Fully insect screened• Easy Wash® on-site maintenance washing program• Red LED pulses every 30 seconds, green LED for AC power on• Mounting hardware adapts to standard junction boxes• Dust cover to prevent contamination during installation•Low or missing battery indicator• One year warranty from date of purchaseProduct Listings• ANSI/UL 217 and ANSI/UL 1730 Listed• BS+A/MEA #285-91-E• BFP (City of Chicago)• MSFM Listing #1929• Hong Kong FSD Listed (9223 Series only)Product Compliance• NFPA 72• IBC/IFC/IRC• Quality Management System is certified to:ISO 9001:20089123 / 9223 SeriesModel Part Number Voltage (VAC)Integral135ºF ThermalIsolated135ºF ThermalTandemUp To 12 UnitsTandemUp To 6 UnitsForm A/CContacts9123917-0012-002120 VAC•9123T917-0013-002120 VAC••9123H917-0014-002120 VAC••9123F917-0015-002120 VAC••9123TF917-0017-002120 VAC•••9123HF917-0016-002120 VAC•••9223917-0032-002220 VAC•9223T917-0033-002220 VAC••9223H917-0034-002220 VAC••9223F917-0035-002220 VAC••9223TF917-0037-002220 VAC •••9223HF917-0036-002220 VAC•••Notes• Series available in round configuration only• When testing 9123 Series, it may take up to 16 seconds longer for smoke alarm to go in or out of alarm mode• It is recommended that 9123/9223 Series smoke alarmbe tested weekly• Refer to Technical Bulletin 002 for Easy Wash® on site washing instructions• Units produce a temporal 3 audible alarm Electrical SpecificationsOperating Voltage (9123) ................................................120 VAC, 60 Hz Operating Voltage (9223) ................................................220 VAC, 50 Hz Operating Current .............................................................0.045 amps Operating Current (Relay Options) ..............................0.070 amps Operating Ambient Temp Range .................................40°F to 100°F Alarm Horn Rating .............................................................90dBA at 10 feet Nominal Sensitivity ...........................................................2.5% obscuration “F” Auxiliary Relay ..............................................................1 Form A and1 Form C (0.6 amp)“T” Integral Thermal (Self-Restoring) ..........................135°F at 50 feet “H” Isolated Thermal Form A (Self-Restoring) .........135°F at 50 feet Size ..........................................................................................Diameter: 6.5” OA(5.75” at base)Depth: 2.625”Secondary Power Source ................................................Alkaline 9V battery Duracell® MN 16049123 / 9223 Series - Photoelectric Smoke AlarmTandem Wiring DiagramRelay ModelsModels: 9123F, 9123TF, 9223F, 9223TF Isolated Thermal withOptional Accessory ContactsModels: 9123H, 9123HF, 9223H, 9223HFLimitations• Maximum of 12 alarms (9123, 9123T, 9123H, 9223, 9223T, 9223H) may be connected together• Do not exceed 125 ft. between each alarm• Do not exceed 1125 ft. between the first and last alarm • Note: Gentex smoke alarms can not be interconnected to alarms from other manufacturers• A maximum of six (6) alarms with a relay may be tandem interconnected (9123F, 9123TF, 9123HF, 9223F, 9223TF, 9223HF)Caution• RED/YELLOW wire to be capped when not in use • This wire is for tandem connection only • Do not connect to any other circuitRelay Contacts Rated Load Resistive• 1.0 AMP @ 24 VDC• 0.6 AMP @ 125 VAC MAX • 0.3 AMP @ 220 VAC MAXBRN Smoke Alarm Heat SensorAccess ContactsAlarm Contacts Tandem PowerH F O n l yBRN GRAY GRAY YEL ORN BLU VIO VIO/BLK RED/YEL BLKWHTGRAY Supervision WiresAccess ContactsAlarm ContactsTandem PowerGRAY YELORN BLUVIO VIO/BLK RED/YEL BLK WHTQuickDisconnect Type Plug123123123120 Volts 60 HzElectrical BoxElectrical BoxNeutralWHT TandemRED /YEL To additionalGentex smoke alarmsHot BLKElectrical BoxSmoke AlarmSmoke AlarmSmoke AlarmThe photoelectric smoke alarm shall be a Gentex model 9123/ 9223 or approved equal which shall provide at least the following features and functions.• Nominal sensitivity shall be 2.5%• The alarm shall utilize an infrared LED sensing circuit which pulses in 4 to 5 second intervals when subjected to smoke. After 2 consecutive pulses in smoke, the alarm will activate.• The alarm shall have a 9V alkaline battery as a back-up in the event building power is lost.• The 9V battery impedance shall be verified by the circuitof the smoke alarm.• The alarm shall provide an indicator when the batteryis low in power, or high impedance, or is missing.• The alarm shall provide minimum 5-to-1 signal-to-noise ratio in the optics frame to assure stability of operation in environments of high RF and transient conditions.• The sensing chamber shall be fully screened to prevent entrance of small insects, thus reducing the probabilityof false alarms.• A temporal 3 piezo alarm rated at 90dBA at 10ft.• A visual LED monitor (condition indicator) will slowpulse in normal operation and rapid pulse in alarm.• An easily accessible test knob shall be provided. The test knob in the TEST position will simulate an actual smoke condition of approximately 3.5% causing the detector to alarm within 20-36 seconds. It will also have the capability of testing to 0.85% as arequired minimum. A magnetic switch closure or other switch closure, or smoke generating equipment which does not scatter the light beam or test sensitivity is not sufficient,as indicated in National Code.• The detector shall have interconnect capabilities of up to 12 units or 6 units with relay.• The alarm shall have interconnection capabilities of12 units on 9123/9123T/9123H/9223/9223T/9223H andshall have interconnection capabilities of 6 units on9123F/9123TF/9123HF/9223F/9223TF/9223HF.• The manufacturer shall provide other compatible alarm models with the following optional features: a) 135°F isolated thermal with normally opened contact for remote connection to local alarm or annunciator; b) 135°F integral thermal; c) auxiliary Form A/Form C relay contacts for initiating remote functions and annunciation; d) relay option that is capable of activation by tandem interconnect wire. Thermal sensor shall be self-restoring.• Unit must be ANSI/UL 217 and ANSI/UL 1730 listed for both wall and ceiling mount.• Unit shall be listed by Underwriters Laboratories.All equipment shall be completely factory assembled, wired and tested, and the contractor shall be prepared to submit a certified letter testifying to this condition. Alarms which do not meet all of the requirements of this specification will not be considered.9123 / 9223 Series Photoelectric Smoke Alarm Architect & Engineering Specifications。

MAX1253AEUE中文资料

MAX1253AEUE中文资料

Selector Guide
PART MAX1253AEUE* MAX1253BEUE MAX1254AEUE* MAX1254BEUE INL (LSB) ±1 ±1 ±1 ±1 TEMP ERROR (°C) ±1.0 ±3.0 ±1.0 ±2.5 SUPPLY VOLTAGE (V) 2.7 to 3.6 2.7 to 3.6 4.5 to 5.5 4.5 to 5.5
元器件交易网
19-2838; Rev 0; 4/03
Stand-Alone, 10-Channel, 12-Bit System Monitors with Internal Temperature Sensor and VDD Monitor
General Description
Features
o Monitor 10 Signals Without Processor Intervention o Eight External Channels Programmable as Temperature or Voltage Monitors o Intelligent Circuitry for Reliable Autonomous Measurement Programmable Digital Averaging Filter Programmable Fault Counter o Precision Measurements 12-Bit Resolution ±1 LSB INL, ±1 LSB DNL ±0.75°C Temperature Accuracy (typ) o Flexible Automatic Channel Scan Sequencer with Programmable Intervals Programmable Inputs: Single Ended/Differential, Voltage/Temperature Programmable Wait State o Internal 2.5V/4.096V Reference (MAX1253/MAX1254) o Remote Temperature Sensing Up to 10m (Differential Mode) o Single 3V or 5V Supply Operation o Small 16-Pin TSSOP Package

MAX490EESA+资料

MAX490EESA+资料

Supply Control
Voltage (VCC) Input Voltage
.(.–R—..E.–..,..D..E..)........................................-.0....5..V...t.o...(.V..C...C...+...0...152VV)
♦ For Low-Voltage Applications: MAX3483E/MAX3485E/MAX3486E/MAX3488E/ MAX3490E/MAX3491E: +3.3V Powered, ±15kV ESD-Protected, 12Mbps, Slew-Rate-Limited, True RS-485/RS-422 Transceivers
General Description
The MAX481E, MAX483E, MAX485E, MAX487E– MAX491E, and MAX1487E are low-power transceivers for RS-485 and RS-422 communications in harsh environments. Each driver output and receiver input is protected against ±15kV electro-static discharge (ESD) shocks, without latchup. These parts contain one driver and one receiver. The MAX483E, MAX487E, MAX488E, and MAX489E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, thus allowing error-free data transmission up to 250kbps. The driver slew rates of the MAX481E, MAX485E, MAX490E, MAX491E, and MAX1487E are not limited, allowing them to transmit up to 2.5Mbps.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PARAMETER
SYMBOL
CONDITIONS
MIN TYP MAX UNITS
LVDS OUTPUT (OUT_+, OUT_-)
Differential Output Voltage
VOD
Figure 1
250 368
450
mV
Change in Magnitude of VOD Between Complementary Output States
PART MAX9123EUE MAX9123ESE
Ordering Information
TEMP. RANGE -40°C to +85°C -40°C to +85°C
PIN-PACKAGE 16 TSSOP 16 SO
Typical Applications Circuit
LVDS SIGNALS MAX9123
MAX9123
Quad LVDS Line Driver with Flow-Through Pinout
ABSOLUTE MAXIMUM RATINGS
VCC to GND ...........................................................-0.3V to +4.0V IN_, EN, EN to GND....................................-0.3V to (VCC + 0.3V) OUT_+, OUT_- to GND..........................................-0.3V to +3.9V Short-Circuit Duration (OUT_+, OUT_-) .....................Continuous Continuous Power Dissipation (TA = +70°C)
∆VOD
Figure 1
1
35
mV
Offset Voltage
Change in Magnitude of VOS Between Complementary Output States
VOS ∆VOS
Figure 1 Figure 1
1.125 1.25 1.375
V
4
25
mV
Output High Voltage Output Low Voltage
The MAX9123 accepts four LVTTL/LVCMOS input levels and translates them to LVDS output signals. Moreover, the MAX9123 is capable of setting all four outputs to a high-impedance state through two enable inputs, EN and EN, thus dropping the device to an ultra-low-power state of 16mW (typ) during high impedance. The enables are common to all four transmitters. Outputs conform to the ANSI TIA/EIA-644 LVDS standard. Flow-through pinout simplifies PC board layout and reduces crosstalk by separating the LVTTL/LVCMOS inputs and LVDS outputs.
For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642, or visit Maxim’s website at .
元器件交易网
Features
o Flow-Through Pinout Simplifies PC Board Layout Reduces Crosstalk
o Pin Compatible with DS90LV047A o Guaranteed 800Mbps Data Rate o 250ps Maximum Pulse Skew o Conforms to TIA/EIA-644 LVDS Standard o Single +3.3V Supply o 16-Pin TSSOP and SO Packages
16-Pin TSSOP (derate 9.4mW/°C above +70°C) .........755mW 16-Pin SO (derate 8.7mW/°C above +70°C)................696mW
Storage Temperature Range .............................-65°C to +150°C Maximum Junction Temperature .....................................+150°C Operating Temperature Range ...........................-40°C to +85°C Lead Temperature (soldering, 10s) .................................+300°C ESD Protection
Differential Output Short-Circuit Current (Note 3)
VOH VOL
IOSD
Enabled, VOD = 0
1.6
V
0.90
V
-9
mA
Output Short-Circuit Current
IOS
OUT_+ = 0 at IN_ = VCC or OUT_- = 0 at IN_ = 0, enabled
Human Body Model, IN_, OUT_+, OUT_-.Байду номын сангаас.....................±4kV
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
The MAX9123 operates from a single +3.3V supply and is specified for operation from -40°C to +85°C. It is available in 16-pin TSSOP and SO packages. Refer to the MAX9121/ MAX9122* data sheet for quad LVDS line receivers with integrated termination and flow-through pinout.
Pin Configuration
TOP VIEW
EN 1 IN1 2 IN2 3 VCC 4 GND 5 IN3 6 IN4 7 EN 8
16 OUT1-
15 OUT1+
MAX9123
14 OUT2+ 13 OUT2-
12 OUT3-
11 OUT3+
10 OUT4+
9 OUT4-
TSSOP/SO
* Future product—contact factory for availability.
Disabled Supply Current
IOFF
VCC = 0 or open, OUT_+ = 0 or 3.6V, OUT_= 0 or 3.6V, RL = ∞
-20
20
µA
VIH
VIL
IIN
IN_, EN, EN = 0 or VCC
2.0 GND -20
VCC
V
0.8
V
20
µA
ICC ICCL
Digital Copiers Laser Printers Cell Phone Base Stations Add Drop Muxes Digital Cross-Connects
Applications
DSLAMs Network Switches/Routers Backplane Interconnect Clock Distribution
-3.8
-9
mA
Output High-Impedance Current
IOZ
EN = low and EN = high, OUT_+ = 0 or VCC, OUT_- = 0 or VCC , RL = ∞
-10
10
相关文档
最新文档