分式方程经典试题详解汇编

合集下载

初中数学:分式方程习题精选(附参考答案)

初中数学:分式方程习题精选(附参考答案)

初中数学:分式方程习题精选(附参考答案)1.某学校组织七、八两个年级学生到黄河岸边开展植树造林活动,已知七年级植树900棵与八年级植树1 200棵所用的时间相同,两个年级平均每小时共植树350棵。

求七年级年级平均每小时植树多少棵?设七年级年级平均每小时植树x 棵,则下面所列方程中正确的是( ) A .900350−x =1 200xB .900x =1 200350+xC .900350+x =1 200xD .900x=1 200350−x2.若关于x 的方程2x =m2x+1无解,则m 的值为( ) A .0 B .4或6 C .6D .0或43.解分式方程2x −1x+1=0去分母时,方程两边同乘的最简公分母是_____________. 4.分式方程3−x x−4+14−x=1的解是________.5.甲、乙两人做某种机器零件,甲每小时比乙每小时多做10个,甲做160个所用时间与乙做140个所用时间相等,甲、乙两人每小时分别做多少个?设甲每小时做x 个,则可列分式方程为__________. 6.(1)解方程:xx+1=2x 2−1(2)解方程:1x−1+1=32x−27.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动。

甲、乙两班在一次体验挖土豆的活动中,甲班挖1 500千克土豆与乙班挖1 200千克土豆所用的时间相同。

已知甲班平均每小时比乙班多挖100千克土豆,问:乙班平均每小时挖多少千克土豆?8.已知点P (1-2a ,a -2)关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程x+1x−a =2的解是( ) A .x =5 B .x =1 C .x =3D .不能确定9.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个。

设原计划每天生产x 个,根据题意可列分式方程为( ) A .20x+10x+4=15 B .20x−10x+4=15 C .20x+10x−4=15 D .20x−10x−4=1510.照相机成像应用了一个重要原理,用公式1f =1u +1v (v ≠f )表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离。

中考数学真题专项汇编解析—分式与分式方程

中考数学真题专项汇编解析—分式与分式方程

中考数学真题专项汇编解析—分式与分式方程一.选择题1.(2022·天津)计算1122a a a ++++的结果是( ) A .1 B .22a + C .2a + D .2a a + 【答案】A【分析】利用同分母分式的加法法则计算,约分得到结果即可. 【详解】解:1121222a a a a a +++==+++.故选:A . 【点睛】本题主要考查了分式的加减,解题的关键是掌握分式加减运算顺序和运算法则. 2.(2022·浙江杭州)照相机成像应用了一个重要原理,用公式()111v f f u v=+≠表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,v ,则u =( ) A .fvf v -B .f vfv-C .fvv f- D .v ffv-【答案】C【分析】利用分式的基本性质,把等式()111v f f u v =+≠恒等变形,用含f 、v 的代数式表示u .【详解】解:∵()111v f f u v =+≠,∵111f u ν=+,即111u f ν=-,∵1f uf νν-=,∵f u fνν=-,故选:C . 【点睛】本题考查分式的加、减法运算,关键是异分母通分,掌握通分法则. 3.(2022·四川眉山)化简422a a +-+的结果是( ) A .1 B .22a a +C .224a a -D .2a a + 【答案】B【分析】根据分式的混合运算法则计算即可.【详解】解:422a a +-+244=22-+++a a a 2=2+a a .故选:B【点睛】本题考查分式的混合运算法则,解题的关键是掌握分式的混合运算法则. 4.(2022·湖南怀化)代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( ) A .2个 B .3个 C .4个 D .5个【答案】B【分析】看分母中是否含有字母,如果含有字母则是分式,如果不含字母则不是,根据此依据逐个判断即可.【详解】分母中含有字母的是224x +,1x ,12x x ++,∵分式有3个,故选:B . 【点睛】本题考查分式的定义,能够准确判断代数式是否为分式是解题的关键. 5.(2022·四川凉山)分式13x+有意义的条件是( ) A .x =-3 B .x ≠-3 C .x ≠3 D .x ≠0【答案】B【分析】根据分式的分母不能为0即可得.【详解】解:由分式的分母不能为0得:30x +≠,解得3x ≠-, 即分式13x+有意义的条件是3x ≠-,故选:B . 【点睛】本题考查了分式有意义的条件,熟练掌握分式的分母不能为0是解题关键.6.(2022·四川南充)已知0a b >>,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭的值是( )AB .CD .【答案】B【分析】先将分式进件化简为a bb a+-,然后利用完全平方公式得出a b -=a b +,代入计算即可得出结果.【详解】解:2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭22222a b b a ab a b +-⎛⎫=÷ ⎪⎝⎭()()()22222a b a b a b b a b a +=⨯+-a b b a +=-,∵223a b ab +=,∵222a ab b ab -+=,∵()2a b ab -=, ∵a>b>0,∵a b -=∵223a b ab +=,∵2225a ab b ab ++=,∵()25a b ab +=,∵a>b>0,∵a b +=,∵原式=,故选:B . 【点睛】题目主要考查完全公式的计算,分式化简等,熟练掌握运算法则是解题关键. 7.(2022·云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该活动开始后、实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x 棵.则下列方程正确的是( ) A .40030050x x=- B .30040050x x=- C .40030050x x=+ D .30040050x x=+ 【答案】B【分析】设实际平均每天植树x 棵,则原计划每天植树(x -50)棵,根据:实际植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可. 【详解】解:设现在平均每天植树x 棵,则原计划每天植树(x -50)棵, 根据题意,可列方程:30040050x x=-,故选:B . 【点睛】此题考查了由实际问题列分式方程,关键在寻找相等关系,列出方程.8.(2022·山东泰安)某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则多用3天,现在甲、乙两队合做2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为x 天,下面所列方程中错误的是( ) A .2x1xx 3+=+ B .23x x 3=+ C .11x 221x x 3x 3-⎛⎫+⨯+= ⎪++⎝⎭ D .1x1x x 3+=+ 【答案】D【分析】设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为1x;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为1x 3+,根据甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,列方程即可.【详解】解:设规定日期为x 天,由题意可得,11x 221xx 3x 3-⎛⎫+⨯+= ⎪++⎝⎭, 整理得2x 1x x 3+=+,或2x 1x x 3=-+或23x x 3=+. 则ABC 选项均正确,故选:D .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程. 9.(2022·四川德阳)关于x 的方程211x ax +=-的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-2 【答案】D【分析】将分式方程变为整式方程求出解,再根据解为正数且不能为增根,得出答案. 【详解】方程左右两端同乘以最小公分母x -1,得2x+a=x -1.解得:x=-a -1且x 为正数.所以-a -1>0,解得a <-1,且a≠-2.(因为当a=-2时,方程不成立.) 【点睛】本题难度中等,易错点:容易漏掉了a≠-2这个信息. 10.(2022·四川遂宁)若关于x 的方程221mxx =+无解,则m 的值为( ) A .0 B .4或6 C .6 D .0或4【答案】D【分析】现将分时方程化为整式方程,再根据方程无解的情况分类讨论,当40m -=时,当40m -≠时,0x =或210x +=,进行计算即可.【详解】方程两边同乘(21)x x +,得2(21)x mx +=,整理得(4)2m x -=, 原方程无解,∴当40m -=时,4m =; 当40m -≠时,0x =或210x +=,此时,24x m =-,解得0x =或12x =-,当0x =时,204x m ==-无解; 当12x =-时,2142x m ==--,解得0m =; 综上,m 的值为0或4;故选:D .【点睛】本题考查了分式方程无解的情况,即分式方程有增根,分两种情况,分别是最简公分母为0和化成的整式方程无解,熟练掌握知识点是解题的关键.11.(2022·浙江丽水)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x=-,则方程中x 表示( ) A .足球的单价 B .篮球的单价 C .足球的数量 D .篮球的数量【答案】D 【分析】由50004000302x x=-的含义表示的是篮球单价比足球贵30元,从而可以确定x 的含义. 【详解】解:由50004000302x x=-可得: 由50002x 表示的是足球的单价,而4000x表示的是篮球的单价, x 表示的是购买篮球的数量,故选D【点睛】本题考查的是分式方程的应用,理解题意,理解方程中代数式的含义是解本题的关键. 二.填空题12.(2022·湖北黄冈)若分式21x -有意义,则x 的取值范围是________. 【答案】1x ≠【分析】根据分式有意义的条件即可求解. 【详解】解:∵分式21x -有意义,∵10x -≠, 解得1x ≠.故答案为:1x ≠.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键.13.(2022·浙江湖州)当a =1时,分式1a a+的值是______. 【答案】2【分析】直接把a 的值代入计算即可. 【详解】解:当a =1时,11121a a ++==.故答案为:2. 【点睛】本题主要考查了分式求值问题,在解题时要根据题意代入计算即可. 14.(2022·湖南怀化)计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++故答案为:1. 【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减.15.(2022·四川自贡)化简:22a 3a 42a 3a 2a 4a 4--⋅+-+++ =____________. 【答案】2a a + 【分析】根据分式混合运算的顺序,依次计算即可.【详解】22a 3a 42a 3a 2a 4a 4--⋅+-+++=2a 3(a 2)(a 2)2a 3a 2(a 2)-+-⋅+-++ 22222a a a a a -=+=+++故答案为2a a + 【点睛】本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键. 16.(2022·四川泸州)若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________. 【答案】1a <-【分析】先解分式方程得1x =,再把1x =代入不等式计算即可. 【详解】33122x x x-+=--去分母得:323x x -+-=-解得:1x = 经检验,1x =是分式方程的解 把1x =代入不等式()230-->a x 得:230a -->解得1a <-故答案为:1a <-【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则.17.(2022·浙江宁波)定义一种新运算:对于任意的非零实数a ,b ,11ba b a⊗=+.若21(1)++⊗=x x x x ,则x 的值为___________. 【答案】12-【分析】根据新定义可得221(1)x x x x x ++⊗=+,由此建立方程22121x x x x x++=+解方程即可. 【详解】解:∵11ba b a ⊗=+,∵()211121(1)11x x x x x x x x x x x ++++⊗=+==+++, 又∵21(1)++⊗=x x x x ,∵22121x x x x x++=+,∵()()()221210x x x x x ++-+=,∵()()2210x x x x +-+=,∵()2210x x +=,∵21(1)++⊗=x x x x即0x ≠,∵210x +=,解得12x =-, 经检验12x =-是方程22121x x x x x++=+的解,故答案为:12-. 【点睛】本题主要考查了新定义下的实数运算,解分式方程,正确理解题意得到关于x 的方程是解题的关键.18.(2022·江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为__________. 【答案】16014010xx =- 【分析】先表示乙每小时采样(x -10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可.【详解】根据题意可知乙每小时采样(x -10)人,根据题意,得16014010xx =-. 故答案为:16014010xx =-. 【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键. 19.(2022·浙江金华)若分式23x -的值为2,则x 的值是_______. 【答案】4【分析】根据题意建立分式方程,再解方程即可; 【详解】解:由题意得:223x =- 去分母:()223x =- 去括号:226x =- 移项,合并同类项:28x = 系数化为1:4x =经检验,x =4是原方程的解, 故答案为:4;【点睛】本题考查了分式方程,掌握解分式方程的步骤是解题关键. 20.(2022·四川成都)分式方程31144x x x-+=--的解是_________. 【答案】3x =【分析】找出分式方程的最简公分母,方程左右两边同时乘以最简公分母,去分母后再利用去括号法则去括号,移项合并,将x 的系数化为1,求出x 的值,将求出的x 的值代入最简公分母中进行检验,即可得到原分式方程的解. 【详解】解:31144x x x-+=-- 解:化为整式方程为:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是原方程的解, 故答案为:3x =.【点睛】此题考查了分式方程的解法.注意解分式方程一定要验根,熟练掌握分式方程的解法是关键.21.(2022·重庆)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________. 【答案】35【分析】适当引进未知数,合理转化条件,构造等式求解即可.【详解】设三座山各需香樟数量分别为4x 、3x 、9x .甲、乙两山需红枫数量2a 、3a . ∵425336x a x a +=+,∵3a x =,故丙山的红枫数量为()742955x a x x +-=,设香樟和红枫价格分别为m 、n .∵()()()()()16695161 6.25%120%695125%mx x x x n x m x x x n +++=-⋅-+++⋅+,∵:5:4m n =,∵实际购买香樟的总费用与实际购买红枫的总费用之比为()()()()161 6.25%120%3695125%5x mx x x n ⋅-⋅-=++⋅+,故答案为:35.【点睛】本题考查未知数的合理引用,熟练掌握未知数的科学设置,灵活构造等式计算求解是解题的关键.22.(2022·湖南衡阳)计算:2422a a a +=++_________. 【答案】2【分析】分式分母相同,直接加减,最后约分. 【详解】解:2422a a a +++242a a +=+()222a a +=+2= 【点睛】本题考查了分式的加减,掌握同分母分式的加减法法则是解决本题的关键. 23.(2022·浙江台州)如图的解题过程中,第∵步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是____.先化简,再求值:314xx -+-,其中x =解:原式3(4)(4)4xx x x -=⋅-+--34x x =-+-1=-【答案】5【分析】根据题意得到方程3114xx -+=--,解方程即可求解. 【详解】解:依题意得:3114x x -+=--,即3204xx -+=-, 去分母得:3-x +2(x -4)=0, 去括号得:3-x +2x -8=0, 解得:x =5,经检验,x =5是方程的解, 故答案为:5.【点睛】本题考查了解分式方程,一定要注意解分式方程必须检验. 24.(2022·四川成都)已知2272a a -=,则代数式2211a a a a a --⎛⎫-÷⎪⎝⎭的值为_________. 【答案】72【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值;【详解】解:2211a a a a a --⎛⎫-÷ ⎪⎝⎭=22211a a a a a a ⎛⎫---÷ ⎪⎝⎭=22211a a a a a -+-÷ =22(1)1a a a a -⨯-=(1)a a -=2-a a . 2272a a -=,移项得2227a a -=,左边提取公因式得22()7a a -=, 两边同除以2得272a a -=, ∵原式=72.故答案为:72.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 25.(2022·湖南常德)方程()21522x x x x +=-的解为________. 【答案】4x =【分析】根据方程两边同时乘以()22x x -,化为整式方程,进而进行计算即可求解,最后注意检验.【详解】解:方程两边同时乘以()22x x -,()()222252x x ⨯-+=⨯-482510x x -+=-解得4x =经检验,4x =是原方程的解 故答案为:4x =【点睛】本题考查了解分式方程,解分式方程一定要注意检验. 三.解答题26.(2022·江苏宿迁)解方程:21122x x x =+--. 【答案】x =﹣1【分析】根据解分式方程的步骤,先去分母化为整式方程,再求出方程的解,最后进行检验即可. 【详解】解:21122x x x =+--, 2x =x ﹣2+1, x =﹣1,经检验x =﹣1是原方程的解, 则原方程的解是x =﹣1.【点睛】本题考查解分式方程,得出方程的解之后一定要验根.27.(2022·四川泸州)化简:22311(1).m m m m m-+-+÷ 【答案】11m m -+ 【分析】直接根据分式的混合计算法则求解即可.【详解】解:22311(1)m m m m m-+-+÷ ()()231`11m m m m m m m÷++=--+()()2211`1m m m mm m -+=⋅+-()()()21`11mm mm m +⋅--=11m m -=+. 【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.28.(2022·新疆)先化简,再求值:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭,其中2a =. 【答案】1【分析】根据平方差公式、完全平方公式和分式的混合运算法则对原式进行化简,再把a 值代入求解即可.【详解】解:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭()()()2331113121a a a a a a a ⎡⎤+--=⋅-⋅⎢⎥--+-⎢⎥⎣⎦311112a a a a +⎛⎫=-⋅⎪--+⎝⎭ 2112a a a +=⋅-+ 11a =-, ∵2a =, ∵原式111121a ===--. 【点睛】本题考查分式的化简求值,熟练掌握平方差公式、完全平方公式和分式的混合运算法则是解题的关键.29.(2022·四川乐山)先化简,再求值:211121xx x x ⎛⎫-÷ ⎪+++⎝⎭,其中x = 【答案】1x +1【分析】先将括号内的通分、分式的除法变乘法,再结合完全平方公式即可化简,代入x 的值即可求解. 【详解】21(1-)121xx x x ÷+++ 21121(-)11x x x x x x+++=⨯++ 211(1)1x x x x+-+=⨯+ 1x =+,∵x∵原式=11x +=.【点睛】本题考查了分式混合运算,掌握分式的混合运算法则是解答本题的关键. 30.(2022·湖南邵阳)先化简,再从-1,0,1x 值代入求值.211111x x x x ⎛⎫+÷ ⎪+--⎝⎭.【答案】11x + 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把合适的x 的值代入计算即可求出值. 【详解】解:211111x x x x ⎛⎫+÷⎪+--⎝⎭11(1)(1)(1)(1)1x x x x x x x ⎡⎤-=+÷⎢⎥+-+--⎣⎦1(1)(1)x x x x x-=⋅+-=11x +, ∵x +1≠0,x -1≠0,x ≠0,∵x ≠±1,x ≠0当x=【点睛】本题主要考查了分式的化简求值,分母有理化,解题的关键是掌握分式混合运算顺序和运算法则.31.(2022·陕西)化简:212111a a a a +⎛⎫+÷ ⎪--⎝⎭. 【答案】1a +【分析】分式计算先通分,再计算乘除即可.【详解】解:原式211112a a a a a++--=⋅-2(1)(1)12a a a a a +-=⋅-1a =+. 【点睛】本题考查了分式的混合运算,正确地计算能力是解决问题的关键. 32.(2022·湖南株洲)先化简,再求值:2111144x x x x +⎛⎫+⋅ ⎪+++⎝⎭,其中4x =. 【答案】12x +,16 【分析】先将括号内式子通分,再约分化简,最后将4x =代入求值即可. 【详解】解:2221111111441114241(2)2x x x x x x x x x x x x x x +++⎛⎫+⋅=⋅=⋅= ⎪+++++++++⎝⎭+++, 将4x =代入得,原式1112426x ===++. 【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则和完全平方公式是解题的关键.33.(2022·江苏扬州)计算:(1)(02cos 45π︒+ (2)22221121m m m m +⎛⎫+÷⎪--+⎝⎭【答案】(1)1 (2)12m - 【分析】(1)根据特殊锐角三角函数值、零指数幂、二次根式进行计算即可; (2)先合并括号里的分式,再对分子和分母分别因式分解即可化简; (1)解:原式=21-1 (2)解:原式=()()21211121m m m m m --⎛⎫+⋅ ⎪--+⎝⎭=()()211121m m m m -+⋅-+=12m -. 【点睛】本题主要考查分式的化简、特殊锐角三角函数值、零指数幂、二次根式的计算,掌握相关运算法则是解题的关键.34.(2022·江西)以下是某同学化筒分式2113422x x x x +⎛⎫-÷⎪-+-⎭的部分运算过程: (1)上面的运算过程中第__________步出现了错误;(2)请你写出完整的解答过程. 【答案】(1)∵(2)见解析【分析】根据分式的运算法则:先乘方,再加减,最后乘除,有括号先算括号里面的计算即可. (1)第∵步出现错误,原因是分子相减时未变号,故答案为:∵; (2)解:原式=112(2)(2)23x x x x x ⎡⎤+--⨯⎢⎥+-+⎣⎦122(2)(2)(2)(2)3x x x x x x x ⎡⎤+--=-⨯⎢⎥+-+-⎣⎦122(2)(2)3x x x x x +-+-=⨯+-32(2)(2)3x x x -=⨯+-12x =+ 【点睛】本题主要考查了分式的混合运算,熟练掌握分式的运算法则是解决本题的关键. 35.(2022·重庆)计算:(1)()()(2)x y x y y y +-+-;(2)2244124m m m m m -+⎛⎫-÷⎪⎝⎭-+. 【答案】(1)22x y -(2)22m - 【分析】(1)根据平方差公式和单项式乘多项式法则进行计算,再合并同类项即可; (2)先将括号里通分计算,所得的结果再和括号外的分式进行通分计算即可. (1)解:()()(2)x y x y y y +-+-=2222x y y y -+-=22x y -(2)解: 2244124m m m m m -+⎛⎫-÷⎪⎝⎭-+ =()()()222222m m m m m m -+-÷++- =()()()222222m m m m +-⨯+- =22m - 【点睛】本题考查了平方差公式、单项式乘多项式、合并同类项、分式的混合运算等知识点,熟练掌握运算法则是解答本题的关键.36.(2022·江苏连云港)化简:221311x x x x -+--. 【答案】11x x -+ 【分析】根据异分母分式的加法计算法则求解即可.【详解】解:原式2221311x x xx x +-=+-- 22131x x x x ++-=-22211x x x -+=-22(1)1x x -=- 2(1)=(1)(1)x x x -+- 11x x -=+. 【点睛】本题主要考查了异分母分式的加法,熟知相关计算法则是解题的关键.37.(2022·四川达州)化简求值:222112111a a a a a a a ⎛⎫-+÷+ ⎪-+--⎝⎭,其中31a.【答案】11a +【分析】先将分子因式分解,再进行通分,然后根据分式减法法则进行计算,最后再根据分式除法法则计算即可化简,再把a 的值代入计算即可求值.【详解】解:原式=()()()2211111a a a a a a a -+++÷+-- ()()()()2211111a a a a a +--=⋅-+1=1a +;当31a=. 【点睛】本题考查分式的化简求值,分母有理化,熟练掌握分式的运算法则以及正确的计算是解题的关键.38.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,…… (1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数) (2)请运用分式的有关知识,推理说明这个结论是正确的. 【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n +1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n +1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明. (1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++, 第三个式子()11111452041441=+=+++,……∵第(n +1)个式子1111(1)n n n n =+++; (2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n++=+==+++++=左边, ∵1111(1)n n n n =+++. 【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.39.(2022·四川凉山)先化简,再求值:524(2)23m m m m-++⋅--,其中m 为满足-1<m <4的整数.【答案】26--m ,当0m =时,式子的值为6-;当1m =时,式子的值为8-.【分析】先计算括号内的分式加法,再计算分式的乘法,然后根据分式有意义的条件确定m 的值,代入计算即可得.【详解】解:原式(2)(2)52(2)223m m m m m m+--⎡⎤=+⋅⎢⎥---⎣⎦ 2452(2)()223m m m m m --=+⋅---292(2)23m m m m--=⋅--(3)(3)2(2)23m m m m m +--=⋅--2(3)m =-+26m =--, 20,30m m -≠-≠,2,3m m ∴≠≠,又m 为满足14-<<m 的整数,0m ∴=或1m =,当0m =时,原式262066m =--=-⨯-=-, 当1m =时,原式262168m =--=-⨯-=-,综上,当0m =时,式子的值为6-;当1m =时,式子的值为8-.【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键.40.(2022·山东滨州)先化简,再求值:2344111a a a a a ++⎛⎫+-÷ ⎪--⎝⎭,其中10(1tan 45π2)a -=︒+-【答案】22a a -+,0 【分析】先算括号内的减法,再将除法变成乘法进行计算,然后根据锐角三角函数,负指数幂和零次幂的性质求出a ,最后代入计算.【详解】解:2344111a a a a a ++⎛⎫+-÷⎪--⎝⎭()22213111a a a a a +⎛⎫-=-÷ ⎪---⎝⎭()222411a a a a +-=÷--()()()222112a a a a a +--=⋅-+22a a -=+; ∵101tan 45π122)2(1a -=︒+-=+-=,∵原式2220222a a --===++. 【点睛】本题考查了分式的化简求值,锐角三角函数,负指数幂和零次幂的性质,熟练掌握运算法则是解题的关键.41.(2022·重庆)计算:(1)()()224x x x ++-;(2)2212a a bb b -⎛⎫-÷ ⎪⎝⎭.【答案】(1)224x +(2)2a b+ 【分析】(1)先计算乘法,再合并,即可求解;(2)先计算括号内的,再计算除法,即可求解. (1)解:原式22444x x x x =+++-224x =+ (2)解:原式2()()a b b b a b a b -=⨯+-2a b=+ 【点睛】本题主要考查了整式的混合运算,分式的混合运算,熟练掌握相关运算法则是解题的关键.42.(2022·山东泰安)(1)若单项式14m n x y -与单项式33812m n x y --是一多项式中的同类项,求m 、n 的值;(2)先化简,再求值:211111xx x x ⎛⎫+÷ ⎪+--⎝⎭,其中1x =. 【答案】(1)m =2,n =-1;(2)21x +,4-【分析】(1)根据同类项的概念列二元一次方程组,然后解方程组求得m 和n 的值; (2)先通分算小括号里面的,然后算括号外面的,最后代入求值. 【详解】解:(1)由题意可得33814m n m n -=⎧⎨-=⎩①②,∵-∵3⨯,可得:55n -=,解得:1n =-, 把1n =-代入∵,可得:(1)3m --=,解得:2m =,m ∴的值为2,n 的值为1-;(2)原式(1)(1)[](1)(1)(1)(1)x x x x x x x -++=⋅+-+-21(1)(1)(1)(1)x x x x x x x -++=⋅+-+-21x =+,当1x 时,原式21)12114=+=-+=-【点睛】本题考查同类项,解二元一次方程组,分式的化简求值,二次根式的混合运算,理解同类项的概念,掌握消元法解二元一次方程组的步骤以及完全平方公式222()2a b a ab b +=++的结构是解题关键.43.(2022·四川乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办,为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆,已知抢修车是摩托车速度的1.5倍,求摩托车的速度.【答案】摩托车的速度为40千米/时【分析】设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时,根据抢修车比摩托车少用10分钟,即可得出关于x 的分式方程,解之经检验后即可得出结论. 【详解】解:设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时, 依题意,得:2020101.560x x -=,解得:x =40, 经检验,x =40是所列方程的根,且符合题意, 答:摩托车的速度为40千米/时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 44.(2022·湖南怀化)去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售. 优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a 套,购买费用为W 元,请写出W 关于a 的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?【答案】(1)每件雨衣40元,每双雨鞋35元(2)()600.954052705600.848305a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩(3)最多可购买6套 【分析】(1)根据题意,设每件雨衣()5+x 元,每双雨鞋x 元,列分式方程求解即可; (2)根据题意,按套装降价20%后得到每套60元,根据费用=单价×套数即可得出结论; (3)根据题意,结合(2)中所求,得出不等式4830320a +≤,求解后根据实际意义取值即可.(1)解:设每件雨衣()5+x 元,每双雨鞋x 元,则4003505x x=+,解得35x =, 经检验,35x =是原分式方程的根,540x ∴+=,答:每件雨衣40元,每双雨鞋35元;(2)解:根据题意,一套原价为354075+=元,下降20%后的现价为()75120%60⨯-=元,则()600.954,052705600.84830,5a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩; (3)解:320270>,∴购买的套数在5a ≥范围内,即4830320a +≤,解得145 6.04224a ≤≈, 答:在(2)的情况下,今年该部门购买费用不超过320元时最多可购买6套.【点睛】本题考查实际应用题,涉及分式方程的实际应用、一次分段函数的实际应用和不等式解实际应用题等知识,熟练掌握实际应用题的求解步骤“设、列、解、答”,根据题意得出相应关系式是解决问题的关键.45.(2022·重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.【答案】(1)24/千米时(2)18千米/时【分析】(1)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,根据甲出发半小时恰好追上乙列方程求解即可;(2)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,根据甲、乙恰好同时到达B地列方程求解即可.(1)解:设乙的速度为x千米/时,则甲的速度为1.2x千米/时,由题意得:0.5 1.20.52x x⨯=+,解得:20x,则1.224x=(千米/时),答:甲骑行的速度为24千米/时;(2)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,由题意得:301303 1.2x x-=,解得15x=,经检验15x=是分式方程的解,则1.218x=(千米/时),答:甲骑行的速度为18千米/时.【点睛】本题考查了一元一次方程的应用和分式方程的应用,找准等量关系,正确列出方程是解题的关键.46.(2022·重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?【答案】(1)100米(2)90米【分析】(1)设甲施工队增加人员后每天修建灌溉水渠x 米,原来每天修建()20x -米,根据工效问题公式:工作总量=工作时间×工作效率,列出关于x 的一元一次方程,解方程即可得出答案;(2)设乙施工队原来每天修建灌溉水渠y 米,技术更新后每天修建()120y +%米,根据水渠总长1800米,完工时,两施工队修建长度相同,可知每队修建900米,再结合两队同时开工修建,直至同时完工,可得两队工作时间相同,列出关于y 的分式方程,解方程即可得出答案.(1)解:设甲施工队增加人员后每天修建灌溉水渠x 米,原来每天修建()20x -米,则有()5202600x x -+=解得100x =∵甲施工队增加人员后每天修建灌溉水渠100米.(2)∵水渠总长1800米,完工时,两施工队修建长度相同∵两队修建的长度都为1800÷2=900(米)乙施工队技术更新后,修建长度为900-360=540(米)解:设乙施工队原来每天修建灌溉水渠y 米,技术更新后每天修建()120y +%米,即1.2y 米 则有5403609001.2100y y +=解得90y =经检验,90y=是原方程的解,符合题意∵乙施工队原来每天修建灌溉水渠90米.【点睛】本题考查一元一次方程和分式方程的实际应用,应注意分式方程要检验,读懂题意,正确设出未知数,并列出方程,是解题的关键.47.(2022·四川自贡)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【答案】张老师骑车的速度为15千米/小时【分析】实际应用题的解题步骤“设、列、解、答”,根据问题设未知数,找到题中等量关系张老师先走2小时,结果同时达到列分式方程,求解即可.【详解】解:设张老师骑车的速度为x千米/小时,则汽车速度是3x千米/小时,根据题意得:454523x x=+,解之得15x=,经检验15x=是分式方程的解,答:张老师骑车的速度为15千米/小时.【点睛】本题考查分式方程解实际应用题,根据问题设未知数,读懂题意,找到等量关系列出分式方程是解决问题的关键.48.(2022·江苏扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?【答案】每个小组有学生10名.【分析】设每个小组有学生x名,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设每个小组有学生x名,。

方程与不等式之分式方程难题汇编附解析

方程与不等式之分式方程难题汇编附解析

方程与不等式之分式方程难题汇编附解析 、选择题1.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从 A 、B 两地同时出发到C 地•若乙车每小时比甲车多行驶 为x 千米/小时,依题意列方程正确的是(故选B .故选A【点睛】 本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用 的等量关系为:工作时间 =工作总量 M 效.3.体育测试中,小进和小俊进行 800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了 40秒,设小俊的速度是 x 米/秒,则所列方程正确的是()40 A .X 【答案】 【解析】 试题解析: 50x 12 B B . 设乙车的速度为 由题意得,40 50x 12 x40 50x 12 xx 千米/小时, 40 50C.x x 1240 50D .x 12 x则甲车的速度为(x-12) 千米/小时,12千米,则两车同时到达 )C 地.设乙车的速度2.某市在旧城改造过程中,需要整修一段全长 交通所造成的影响,实际工作效率比原计划提高了 计划每小时修路的长度•若设原计划每小时修路24002400°A .8x (1 20%) x 2400 2400 °C.8(1 20%) x x【答案】A 【解析】 【分析】求的是原计划的工效,工作总量为 是:提前8小时完成任务 【详解】原计划用的时间为:B .D.2400m 的道路.为了尽量减少施工对城市20%,结果提前8小时完成任务.求原 xm ,则根据题意可得方程()2400 2400 °8(1 20%) x x2400 2400° 8x (1 20%) x2400,根据工作时间来列等量关系.本题的关键描述语 等量关系为:原计划用的时间 -实际用的时间=8.实际用的时间为:2400 x 1 20%.所列方程为:2400x2400 20%=8.13【详解】 小进跑800米用的时间为-8也 秒,小俊跑800米用的时间为 型 秒,1.25x x•••小进比小俊少用了 40秒,800 800万程是 40,x 1.25x故选C.【点睛】 本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.4.从4 , 2 , 1, 0,1, 2, 4, 6这八个数中,随机抽一个数,记为 a .若数a 使关y a 1 3有整数解,确定a 的值即可判断.y 11 y【详解】2 2方程x 2 a 4 x a 0有实数解,•••△ =4(a- 4)2- 4a 2? 0,解得a? 2•满足条件的a 的值为-4, -2, -1, 0, 1, 2 方程y a y 131有整数解,则符合条件的 a 的值的和是( 1 y)A .6B .4C. 2D . 2【答案】 C【解析】【分析】由一兀— .次方程x 2 a4 x a 2 0有实数解,确定a的取值范围, 由分式方程0有实数解.且关于 y 的分式方程A . 4 1.25x 40x 800800 800 40 B.——x 2.25x 800 800 800 800 C.40D .40x1.25x1.25x x【答案】C 【解析】 【分析】先分别表示出小进和小俊跑 800米的时间,再根据小进比小俊少用了 40秒列出方程即可. 于x 的一元二次方程 x22 a 4 x a 2解得y=a+22••• y有整数解--a=-4, 0, 2, 4, 6综上所述,满足条件的a的值为-4, 0, 2,符合条件的a的值的和是-2故选:C【点睛】本题考查了一元二次方程根据方程根的情况确定方程中字母系数的取值范围;以及分式方程解的定义:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫分式方程的解.5. 若关于x的方程2 —有增根,则a的值为()x 4 x 4A. -4B. 2C. 0D. 4【答案】D【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根•让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4.【详解】解:由分式方程的最简公分母是x-4,•••关于x的方程亠2 —有增根,x 4 x 4••• x-4=0,•••分式方程的增根是x=4.关于x的方程」 2 —去分母得x=2(x-4)+a,x 4 x 4代入x=4得a=4故选D.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.6. 某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()240120240 120A. 4B. 4x 20x x 20 x120 240120 240C.4D. 4x x20x x 20【答案】D【解析】【分析】设第一次买了x本资料,则第二次买了(x+ 20)本资料,由等量关系第二次比第一次优惠了4列出方程即可解答.【详解】解:设第一次买了x本资料,则第二次买了(x + 20)本资料,根据题意可得:120 240 ,4x x 20故选:D【点睛】本题考查由实际问题抽象出分式方程,找到关键描述语,设出未知数,找到等量关系是解题的关键.2x a7. 关于x的分式方程1的解为负数,贝V a 的取值范围是()x 1A. a 1B. a 1 c. a 1 且a 2 D. a 1 且a 2【答案】D【解析】【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a的不等式,求出不等式的解集即可确定出a的范围.【详解】分式方程去分母得:x 1 2x a,即x 1 a,因为分式方程解为负数,所以1 a 0,且1 a 1 ,解得:a 1且a 2,故选D.【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键•注意在任何时候都要考虑分母不为0.&新能源汽车环保节能,越来越受到消费者的喜爱•各种品牌相继投放市场•一汽贸公司经销某品牌新能源汽车•去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元•销售数量与去年一整年的相同•销售总额比去年一整年的少20%,今年1~5月【解析】 【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示 出今年的销售总额,然后再根据去年和今年 1~5月份销售汽车的数量相同建立方程即可得解• 【详解】•••今年1~5月份每辆车的销售价格为 x 万元, •••去年每辆车的销售价格为(x+1)万元,50005000(1 -20%)则有一|x+ 1x故选A. 【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系9.某一景点改造工程要限期完成,甲工程队独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做 4天后,余下的由乙工程队独做,正好如期完成,若设工程期限为x 天,则下面所列方程正确的是 ( )4 x A .1x 1 x 6C.【答案】D 【解析】 【分析】1首先根据工程期限为 x 天,结合题意得出甲每天完成总工程的,而乙每天完成总工程x 11的,据此根据题意最终如期完成了工程进一步列出方程即可x 6【详解】•••工程期限为x 天,1 1•甲每天完成总工程的,乙每天完成总工程的 1份每辆车的销售价格是多少万元 列方程正确的是()50005000(1 - 20%)A .X + 1 X 5000 5000(1 - 20%)C. --------- = ------------------------x * I x【答案】A ?设今年1~5月份每辆车的销售价格为 x 万元•根据题意,B . D .3000 5000(1 + 20%) 50005000(1 + 20%)xx 1 x 6 •••由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,•••可列方程为:x 1 x 6故选:D.1,【点睛】本题主要考查了分式方程的实际应用,根据题意正确找出等量关系是解题关键10.解分式方程2x xx 1 12x1丄时,去分母后所得的方程正确的是(2)A. 2x x 20B. 4x 2x 4 x 1C. 4x2x 4x 1D. 2x x 2 x 1【答案】C【解析】【分析】根据等式的性质,方程两边冋时乘以最简公分母 2 (x-1),整理即可得答案【详解】.2x x21x 11x22x x21x 1x12方程两边同时乘以最简公分母 2 (x-1)得:4x+2(x-2)=x-1,去括号得:4x+2x-4=x-1,故选:C.【点睛】本题考查解分式方程,正确得出最简公分母是解题关键.11.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()1000100010001000A. =2B. =2x x 30x 30x1000100010001000C.=2D. =2x x 30x 30x【答案】A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30) 米,根据:原计划所用时间-实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30) 米,根据题意,可列方程: =2,1000 1000故选A.x 30点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.1 kx 112. 若分式方程2+ = 有增根,则k的值为()x 2 2 xA.- 2B.- 1C. 1D. 2【答案】C【解析】【分析】根据分式方程有增根得到x=2,将其代入化简后的整式方程中求出k即可.【详解】解:分式方程去分母得: 2 (x-2)+1- kx=- 1,由题意将x= 2代入得:1 - 2k=- 1,解得:k= 1.故选:C.【点睛】此题考查分式方程的增根,由增根求方程中其他未知数的值,根据增根的定义得到方程的解是解题的关键•13. 已知甲车行驶35千米与乙车行驶45千米所用时间相同,且乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是| ) 354535 4535 453545A. B. C.D.x x 15x+15 x x-15 x x x+15【答案】D【解析】【分析】首先根据甲车的速度为x千米/小时,表示出乙车的速度为(x+15)千米/小时, 再根据关键是语句甲车行驶35千米与乙车行驶45千米所用时间相同”列出方程即可.【详解】解:设甲车的速度为x千米/小时,则乙车的速度为(x+15)千米/小时,由题意得:35 45x x+15'故选D.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,表示出甲乙两车的速度,再根据关键是语句列出方程即可•此题用到的公式是:路程谨度=时间.a x a14. 若整数a使关于x的分式方程1 的解为负数,且使关于x 的不等式组x 1 x 1a ) 0无解,则所有满足条件的整数2x 13解分式方程和不等式得出关于x 的值及x 的范围,根据分式方程的解不是增根且为负数和不等式组无解得出 a 的范围,继而可得整数 a 的所有取值,然后相加. 【详解】a) 0无解,2x 13…a £4,•••则所有满足条件的整数 a 的值是:2、3、4,和为9, 故选:C. 【点睛】本题主要考查分式方程的解和一元一次不等式组的解,熟练掌握解分式方程和不等式组的 方法,并根据题意得到a 的范围是解题的关键.2(x a 的值之和是(A . 5【答案】C 【解析】【分析】B . 7 C. 9 D . 10解:解关于x 的分式方程-x汁,得“-2a+1,•/X M ±,•••关于x 的分式方程a 的解为负数,1- 2a+1 v 0,解不等式a) 0,得: x v a ,解不等式2x 1丁,得:•••关于x 的不等式组2(x 15.若关于x 的分式方程 3m 2 x2有增根,则m 的值为(A .1B . 0C. 1D . 23【答案】C 【解析】 【分析】增根是化为整式方程后产生的不适合分式方程的根•所以应先确定增根的可能值,让最简 公分母x - 2= 0,得到x = 2,然后代入化为整式方程的方程,满足即可.【详解】解:方程两边都乘 x - 2, 得 x+m - 3m = 2 (x - 2), •••原方程有增根, •••最简公分母x - 2 = 0, 解得x = 2,当 x = 2 时,2+m - 3m = 0,m = 1,故选:C. 【点睛】本题考查了分式方程的增根,难度适中.确定增根可按如下步骤进行: ① 让最简公分母为0确定可能的增根; ② 化分式方程为整式方程;③ 把可能的增根代入整式方程,使整式方程成立的值即为分式方程的增根.3a a 使得关于x 的方程2的解为非负数,且使得关于y 的不等式x 2 2 x至少有四个整数解,则所有符合条件的整数 a 的和为().解:不等式组整理得:16.若整数3y 2组丁y a 3A . 17【答案】C 【解析】 【分析】表示出不等式组的解集,B . 18 C. 22 D . 25由不等式至少有四个整数解确定出非负数以及分式有意义的条件求出满足题意整数 【详解】a 的值,再由分式方程的解为 a 的值,进而求出之和.600 480 A.x 40600 480 B.x 40由不等式组至少有四个整数解,得到- 1< y^a,解得:a>3即整数a = 3, 4, 5, 6,…,3 a2 一x 2 2 x去分母得:2 (x—2)—3 =—a,7 a解得:x=27 a 7 a- >0且工22 2••• a<7 且a^3,由分式方程的解为非负数以及分式有意义的条件,得到a为4, 5, 6, 7,之和为22.故选:C.【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.17. 2017年,全国部分省市实施了免费校车工程”.小明原来骑自行车上学,现在乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.已知小明家距学校5千米,若校车速度是他骑车速度的2倍,设小明骑车的速度为x千米/时,则下面所列方程正确的为()515551 5 “55“5A. + —=B. = + -C. — + 10 =D.——10 =x62x x2x6x2x x2x 【答案】B【解析】【分析】设小明骑车的速度为x千米/小时,校车速度为2x千米/小时,等量关系为:小明骑车所走的时间减去校车所走的时间=10分钟,据此列方程.【详解】设小明骑车的速度为x千米/小时,校车速度为2x千米/小时,5 5 1由题意得,=—+丄x 2x 6所以答案为B.【点睛】本题考查了分式方程,解题的关键是根据实际问题列出分式方程18.某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x台机器,根据题意,下面列出的方程正确的是()x xC. D.——x x 40x x 40【答案】B 【解析】 【分析】由题意分别表达出原来生产 480台机器所需时间和现在生产 600台机器所需时间,然后根据两者相等即可列出方程,再进行判断即可. 【详解】解:设原计划每天生产 x 台机器,根据题意得:480600x x 40故选B . 【点睛】读懂题意,用含x 的代数式表达出原来生产 480台机器所需时间为台机器所需时间为-605天是解答本题的关键.x 40四则运算•若(―3 x =2 x ,则x 的值为(A . -2B . -1I【答案】B 【解析】 【分析】利用题中的新定义变形已知等式,然后解方程即可. 【详解】根据题中的新定义化简得: —9 3x经检验x=- 1是分式方程的解. 故选B . 【点睛】本题考查了新定义和解分式方程,利用了转化的思想,解分式方程注意要检验.20.某车间加工12个零件后,采用新工艺,工效比原来提高了50%,这样加工同样多的零件就少用1小时,那么采用新工艺前每小时加工的零件数为()600 480 600 480 480天和现在生产600x19.对于实数a 、b ,定义一种新运算 ?"为:a3 ab,这里等式右边是通常的D . 2C. 1汽;,去分母得:12 - 6x=27+9x ,解得:x= - 1,A. 3个B. 4个C. 5个D. 6个【答案】B【解析】【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.【详解】解:根据题意,得:12 12 ,1,x x(1 50%)解得:x 4 ;经检验,x 4是原分式方程的解.•••那么采用新工艺前每小时加工的零件数为4个;故选:B.【点睛】此题主要考查了分式方程的应用,其中找出方程的关键语,找出数量关系是解题的关键.注意解分式方程需要检验.。

分式方程精选题答案

分式方程精选题答案

分式方程精选题参考答案与试题解析一.解答题(共30小题)1.(2016•常州)先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.【分析】根据多项式乘以多项式先化简,再代入求值,即可解答.【解答】解:(x﹣1)(x﹣2)﹣(x+1)2,=x2﹣2x﹣x+2﹣x2﹣2x﹣1=﹣5x+1当x=时,原式=﹣5×+1=﹣.【点评】本题考查了多项式乘以多项式,解决本题的关键是熟记多项式乘以多项式.2.(2016•厦门校级模拟)化简:5x2y﹣2xy2﹣5+3xy(x+y)+1,并说出化简过程中所用到的运算律.【分析】先依据单项式乘多项式的法则进行计算,然后再依据同类项法则进行计算即可.【解答】解:原式=5x2y﹣2xy2﹣5+3x2y+3xy2+1(乘法的分配律)=8x2y+xy2﹣4(乘法的分配律).【点评】本题主要考查的是单项式乘多项式法则,合并同类项法则的应用,熟练掌握相关法则是解题的关键.3.(2016•濉溪县三模)计算:(x+3)(x﹣5)﹣x(x﹣2).【分析】根据多项式与多项式相乘的法则、单项式与多项式相乘的法则以及合并同类项法则计算即可.【解答】解:原式=x2﹣5x+3x﹣15﹣x2+2x=﹣15.【点评】本题考查的是多项式乘多项式,掌握多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加是解题的关键.4.(2016•南平模拟)化简:a(2﹣a)﹣(3+a)•(3﹣a)【分析】直接利用单项式乘以多项式以及平方差公式化简求出答案.【解答】解:a(2﹣a)﹣(3+a)•(3﹣a)=2a﹣a2﹣(9﹣a2)=2a﹣9.【点评】此题主要考查了单项式乘以多项式以及平方差公式,正确掌握运算法则是解题关键.5.(2016春•杨浦区期末)利用幂的运算性质计算:3××.【分析】根据同底数幂的乘法计算即可.【解答】解:原式=3×××=3×=3×2=6.【点评】本题考查了同底数幂的乘法,解题时牢记定义是关键.6.(2016春•长春校级期末)已知a x=5,a x+y=30,求a x+a y的值.【分析】首先根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求出a y的值是多少;然后把a x、a y的值相加,求出a x+a y的值是多少即可.【解答】解:∵a x=5,a x+y=30,∴a y=a x+y﹣x=30÷5=6,∴a x+a y=5+6=11,即a x+a y的值是11.【点评】此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.7.(2016春•湘潭期末)已知a x=3,a y=2,求a x+2y的值.【分析】直接利用同底数幂的乘法运算法则将原式变形进而将已知代入求出答案.【解答】解:∵a x=3,a y=2,∴a x+2y=a x×a2y=3×22=12.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确应用同底数幂的乘法运算法则是解题关键.8.(2016春•新化县期末)计算:(﹣2x2y)3•3(xy2)2.【分析】先依据积的乘方公式进行计算,然后再依据单项式乘单项式法则计算即可.【解答】(1)原式=﹣8x6y3•3x2y4=﹣24x8y7.【点评】本题主要考查的是单项式乘单项式、积的乘方、幂的乘方,掌握相关法则是解题的关键.9.(2016春•青岛校级期末)(﹣3x2y2)2•2xy+(xy)5.【分析】根据积的乘方等于乘方的积,可得单项式的乘法,根据单项式的乘法,可得同类项,根据合并同类项,可得答案.【解答】解:原式=9x4y4•2xy+x5y5=18x5y5+x5y5=19x5y5.【点评】本题考查了积的乘方、单项式的乘法、合并同类项,熟记法则并根据法则计算是解题关键.10.(2016春•石景山区期末)﹣6ab(2a2b﹣ab2)【分析】根据单项式与多项式相乘的运算法则计算即可.【解答】解:原式=﹣6ab•2a2b+6ab•ab2=﹣12a3b2+2a2b3.【点评】本题考查的是单项式乘多项式,单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.11.(2016春•东阿县期末)观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…①根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1.②你能否由此归纳出一般性规律:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1.③根据②求出:1+2+22+…+234+235的结果.【分析】①观察已知各式,得到一般性规律,化简原式即可;②原式利用得出的规律化简即可得到结果;③原式变形后,利用得出的规律化简即可得到结果.【解答】解:①根据题意得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②根据题意得:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1;③原式=(2﹣1)(1+2+22+…+234+235)=236﹣1.故答案为:①x7﹣1;②x n+1﹣1;③236﹣1【点评】此题考查了多项式乘以多项式,弄清题中的规律是解本题的关键.12.(2016春•长春校级期末)若(x+a)(x+2)=x2﹣5x+b,则a+b的值是多少?【分析】根据多项式与多项式相乘的法则把等式的左边展开,根据题意列出算式,求出a、b的值,计算即可.【解答】解:(x+a)(x+2)=x2+(a+2)x+2a,则a+2=﹣5,2a=b,解得,a=﹣7,b=﹣14,则a+b=﹣21.【点评】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.13.(2016春•门头沟区期末)化简:(x+5)(2x﹣3)﹣2x(x2﹣2x+3)【分析】根据单项式乘多项式和多项式乘多项式法则把原式展开,根据合并同类项法则计算即可.【解答】解:(x+5)(2x﹣3)﹣2x(x2﹣2x+3)=2x2﹣3x+10x﹣15﹣2x3+4x2﹣6x=﹣2x3+6x2+x﹣15.【点评】本题考查的是单项式乘多项式和多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.14.(2016春•扬州期末)计算:(x+2)(x﹣1)﹣3x(x+3)【分析】原式利用多项式乘以多项式,单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:原式=x2﹣x+2x﹣2﹣3x2﹣9x=﹣2x2﹣8x﹣2.【点评】此题考查了多项式乘多项式,以及单项式乘多项式,熟练掌握运算法则是解本题的关键.15.(2016春•青岛校级期末)(2a+1)(a﹣1)﹣2a(a+1)【分析】根据多项式的乘法,可得整式的加减,根据整式的加减,可得答案;【解答】解:原式=2a2﹣2a+a﹣1﹣2a2﹣2a=﹣3a﹣1.【点评】本题考查了多项式的乘法、整式的加减,熟记法则并根据法则计算是解题关键.16.(2016春•埇桥区期末)已知x+1与x﹣k的乘积中不含x项,求k的值.【分析】根据多项式的乘法,可得整式,根据整式不含x项,可得关于k的方程,根据解方程,可得答案.【解答】解:由(x+1)(x﹣k)=x2+(1﹣k)x﹣k,得x的系数为1﹣k.若不含x项,得1﹣k=0,解得k=1.【点评】本题考查了多项式乘多项式,利用整式不含x项得出关于k的方程是解题关键.17.(2016春•常州期末)已知x+y=3,(x+3)(y+3)=20.(1)求xy的值;(2)求x2+y2+4xy的值.【分析】(1)先根据多项式乘以多项式法则展开,再把x+y=3代入,即可求出答案;(2)先根据完全平方公式变形,再代入求出即可.【解答】解:(1)∵x+y=3,(x+3)(y+3)=xy+3(x+y)+9=20,∴xy+3×3+9=20,∴xy=2;(2)∵x+y=3,xy=2,∴x2+y2+4xy=(x+y)2+2xy=32+2×2=13.【点评】本题考查了多项式乘以多项式的应用,能熟记多项式乘以多项式法则和乘法公式是解此题的关键.18.(2016春•户县期末)先化简,再求值.已知|m﹣1|+(n+)2=0,求(﹣m2n+1)(﹣1﹣m2n)的值.【分析】先根据非负数的性质,求出m,n的值,再根据多项式乘以多项式,即可解答.【解答】解:∵|m﹣1|+(n+)2=0,∴m﹣1=0,n+=0,∴m=1,n=﹣,∴(﹣m2n+1)(﹣1﹣m2n)=m2n+m4n2﹣1﹣m2n=m4n2﹣1==1×﹣1==﹣.【点评】本题考查了多项式乘以多项式,解决本题的关键是熟记多项式乘以多项式.19.(2016春•港南区期中)已知x m=5,x n=7,求x2m+n的值.【分析】根据同底数幂的乘法,即可解答.【解答】解:∵x m=5,x n=7,∴x2m+n=x m•x m•x n=5×5×7=175.【点评】本题考查了同底数幂的乘法,解决本题的关键是熟记同底数幂的乘法法则.20.(2016春•淮阴区期中)已知3×9m×27m=321,求m的值.【分析】先把9m×27m分解成32m×33m,再根据同底数幂的乘法法则进行计算即可求出m 的值.【解答】解:∵3×9m×27m=3×32m×33m=31+2m+3m=321,∴1+2m+3m=21,∴m=4.【点评】此题考查了同底数幂的乘法,幂的乘方与积的乘方,理清指数的变化是解题的关键.21.(2016•徐州)计算:(1)(﹣1)2016+x0﹣+(2)÷.【分析】(1)先计算负整数指数幂、零指数幂、化简二次根式然后计算加减法;(2)利用完全平方公式、平方差公式、化除法为乘法进行约分化简.【解答】解:(1)原式=1+1﹣3+2=1;(2)原式=×=x.【点评】本题考查了分式的乘除法、实数的运算以及负整数指数幂等知识点,属于基础题.22.(2016•南京)计算﹣.【分析】首先进行通分运算,进而合并分子,进而化简求出答案.【解答】解:﹣=﹣==.【点评】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.23.(2016•青岛)(1)化简:﹣(2)解不等式组,并写出它的整数解.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,确定出整数解即可.【解答】解:(1)原式=﹣==;(2),由①得:x≤1,由②得:x≥﹣2,则不等式组的解集为﹣2≤x≤1,则不等式组的整数解为﹣2,﹣1,0,1.【点评】此题考查了分式的加减法,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.24.(2016•福州)化简:a﹣b﹣.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式=a﹣b﹣(a+b)=a﹣b﹣a﹣b=﹣2b.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.25.(2016•十堰)化简:.【分析】首先把第一个分式的分子、分母分解因式后约分,再通分,然后根据分式的加减法法则分母不变,分子相加即可.【解答】解:=++2=++2=++==【点评】本题考查了分式的加减法法则、分式的通分、约分以及因式分解;熟练掌握分式的通分是解决问题的关键.26.(2016•甘孜州)化简:+.【分析】先通分变为同分母分式,然后再相加即可解答本题.【解答】解法一:+=+==.解法二:+=+=+=.【点评】本题考查分式的加减法,解题的关键是明确分式的加减法的计算方法.27.(2016•毕节市)已知(1)化简A;(2)若x满足不等式组,且x为整数时,求A的值.【分析】(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,确定出整数x的值,代入计算即可求出A的值.【解答】解:(1)A=(x﹣3)•﹣1=﹣1==;(2),由①得:x<1,由②得:x>﹣1,∴不等式组的解集为﹣1<x<1,即整数x=0,则A=﹣.【点评】此题考查了分式的混合运算,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.28.(2016•资阳)化简:(1+)÷.【分析】首先把括号内的式子通分相加,把除法转化为乘法,然后进行乘法运算即可.【解答】解:原式=÷=•=a﹣1.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.29.(2016•陕西)化简:(x﹣5+)÷.【分析】根据分式的除法,可得答案.【解答】解:原式=•=(x﹣1)(x﹣3)=x2﹣4x+3.【点评】本题考查了分式混合运算,利用分式的除法转化成分式的乘法是解题关键.30.(2016•成都)化简:(x﹣)÷.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=x+1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.。

分式方程专项试题精选(含答案解析)

分式方程专项试题精选(含答案解析)

分式方程专项测试题一、选择题1.某市高校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. =B. =C. =D. =2.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A. =﹣ B. =﹣20 C. =+D. =+203.张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A. =B. =C. =D. =4.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两类玩具,其中A类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.设A类玩具的进价为m元/个,根据题意可列分式方程为()A.B.C.D.5.某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为()A.﹣=20 B.﹣=20C.﹣=20 D. +=206.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. =C. =D. =7.某商店销售一种玩具,每件售价90元,可获利15%,求这种玩具的成本价.设这种玩具的成本价为x元,依题意列方程,正确的是()A. =15% B. =15% C.90﹣x=15% D.x=90×15%8.关于x的分式方程+3=有增根,则增根为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣39.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2 B.﹣=2C. +=D.﹣=10.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x吨/小时,依题意列方程正确的是()A.B.C.D.11.已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.12.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件x个,依题意列方程为()A.﹣=5 B.﹣=5C.﹣=5 D.13.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是()A. =B. =C. =D. =14.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.15.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=316.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A. =B. =C. =D. =17.甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意下面所列方程正确的是()A. =B. =C. =D. =18.从甲地到乙地有两条公路,一条是全长450公里的普通公路,一条是全长330公里的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.如果设该客车由高速公路从甲地到乙地所需时间为x小时,那么x满足的分式方程是()A. =×2 B. =﹣35C.﹣=35 D.﹣=3519.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A. =1 B. =1 C. =1 D. =120.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500二、填空题21.某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程.22.制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x个零件,则可列方程为.23.A、B两地相距60千米,若骑摩托车走完全程可比骑自行车少用小时,已知摩托车的速度是自行车速度的2倍,求自行车的速度.设骑自行车的速度为x千米/时,根据题意可列方程为.24.若分式方程﹣=2有增根,则这个增根是.25.若关于x的方程﹣1=0有增根,则a的值为.26.小明上周三在超市恰好用10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多用了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x袋牛奶,则根据题意列得方程为.27.分式方程的解x= .28.分式方程=的解为.三、解答题29.解分式方程:.30.解方程组和分式方程:(1)(2).参考答案与试题解析一、选择题1.某市高校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.【解答】解:设每个笔记本的价格为x元,则每个笔袋的价格为(x+3)元,根据题意得: =,故选B.【点评】本题考查了由实际问题抽象出分式方程的知识,解题的关键是能够找到概括题目全部含义的等量关系,难度不大.2.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A. =﹣ B. =﹣20 C. =+D. =+20【考点】由实际问题抽象出分式方程.【分析】表示出汽车的速度,然后根据汽车行驶的时间等于骑车行驶的时间减去时间差列方程即可.【解答】解:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得, =+.故选C.【点评】本题考查了实际问题抽象出分式方程,读懂题目信息,理解两种行驶方式的时间的关系是解题的关键.3.张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】根据每小时张三比李四多加工5个零件和张三每小时加工这种零件x个,可知李四每小时加工这种零件的个数,根据张三加工120个这种零件与李四加工100个这种零件所用时间相等,列出方程即可.【解答】解:设张三每小时加工这种零件x个,则李四每小时加工这种零件(x﹣5)个,由题意得, =,故选B.【点评】本题考查的是列分式方程解应用题,根据题意准确找出等量关系是解题的关键.4.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两类玩具,其中A类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.设A类玩具的进价为m元/个,根据题意可列分式方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据题意B类玩具的进价为(m﹣3)元/个,根据用900元购进A类玩具的数量与用750元购进B类玩具的数量相同这个等量关系列出方程即可.【解答】解:设A类玩具的进价为m元/个,则B类玩具的进价为(m﹣3)元/个,由题意得, =,故选:C.【点评】本题考查的是列分式方程解应用题,找到等量关系是解决问题的关键.5.某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为()A.﹣=20 B.﹣=20C.﹣=20 D. +=20【考点】由实际问题抽象出分式方程.【分析】根据题意可得等量关系:原计划种植的亩数﹣改良后种植的亩数=20亩,根据等量关系列出方程即可.【解答】解:设原计划每亩平均产量x万千克,由题意得:﹣=20,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得: =.故选:A.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.7.某商店销售一种玩具,每件售价90元,可获利15%,求这种玩具的成本价.设这种玩具的成本价为x元,依题意列方程,正确的是()A. =15% B. =15% C.90﹣x=15% D.x=90×15%【考点】由实际问题抽象出分式方程.【分析】设这种玩具的成本价为x元,根据每件售价90元,可获利15%,可列方程求解.【解答】解:设这种玩具的成本价为x元,根据题意得=15%.故选A.【点评】本题考查由实际问题抽象出分式方程,关键是设出未知数,根据利润率=(售价﹣成本)÷成本列方程.8.关于x的分式方程+3=有增根,则增根为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣3【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣1)=0,得到x=1,然后代入化为整式方程的方程,检验是否符合题意.【解答】解:方程两边都乘(x﹣1),得7+3(x﹣1)=m,∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,当x=1时,m=7,这是可能的,符合题意.故选:A.【点评】本题考查了分式方程的增根,关于增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程,检验是否符合题意.9.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2 B.﹣=2C. +=D.﹣=【考点】由实际问题抽象出分式方程.【专题】行程问题.【分析】设原来的平均速度为x千米/时,高速公路开通后平均速度为1.5x千米/时,根据走过相同的距离时间缩短了2小时,列方程即可.【解答】解:设原来的平均速度为x千米/时,由题意得,﹣=2.故选:B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x吨/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】工程问题.【分析】设甲种污水处理器的污水处理效率为x吨/小时,则乙种污水处理器的污水处理效率为(x+20)吨/小时,根据甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,列出方程.【解答】解:设甲种污水处理器的污水处理效率为x吨/小时,则乙种污水处理器的污水处理效率为(x+20)吨/小时,由题意得, =.故选:B.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.11.已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】行程问题.【分析】设乙车的速度为x千米/小时,则甲车的速度为(x﹣12)千米/小时,根据用相同的时间甲走40千米,乙走50千米,列出方程.【解答】解:设乙车的速度为x千米/小时,则甲车的速度为(x﹣12)千米/小时,由题意得, =.故选:B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.12.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件x个,依题意列方程为()A.﹣=5 B.﹣=5C.﹣=5 D.【考点】由实际问题抽象出分式方程.【分析】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,根据提前5天完成任务,列方程即可.【解答】解:设原计划每天生产零件x个,则实际每天生产零件为1.5x个,由题意得,﹣=5.故选:A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.13.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【专题】销售问题.【分析】设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,根据用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,列方程即可.【解答】解:设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,由题意得, =.故选:D.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.14.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.【解答】解:根据题意,得.故选:C.【点评】理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.15.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3【考点】分式方程的增根.【分析】方程两边都乘以最简公分母(x﹣3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.【解答】解:方程两边都乘以(x﹣3)得,2﹣x﹣m=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=3,∴2﹣3﹣m=2(3﹣3),解得m=﹣1.故选A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】首先根据行程问题中速度、时间、路程的关系:时间=路程÷速度,用列车提速前行驶的路程除以提速前的速度,求出列车提速前行驶skm用的时间是多少;然后用列车提速后行驶的路程除以提速后的速度,求出列车提速后行驶s+50km用的时间是多少;最后根据列车提速前行驶skm和列车提速后行驶s+50km时间相同,列出方程即可.【解答】解:列车提速前行驶skm用的时间是小时,列车提速后行驶s+50km用的时间是小时,因为列车提速前行驶skm和列车提速后行驶s+50km时间相同,所以列方程是=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程问题,解答此类问题的关键是分析题意找出相等关系,(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.17.甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意下面所列方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】根据题意设出未知数,根据甲所用时间=乙所用时间列出分式方程即可.【解答】解:设甲每天完成x个零件,则乙每天完成(x﹣4)个,由题意得, =,故选:A.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.18.从甲地到乙地有两条公路,一条是全长450公里的普通公路,一条是全长330公里的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.如果设该客车由高速公路从甲地到乙地所需时间为x小时,那么x满足的分式方程是()A. =×2 B. =﹣35C.﹣=35 D.﹣=35【考点】由实际问题抽象出分式方程.【分析】设出未知数,根据客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,列出方程即可.【解答】解:设该客车由高速公路从甲地到乙地所需时间为x小时,那么由普通公路从甲地到乙地所需时间为2x,由题意得,﹣=35,故选:D.【点评】本题考查的是列分式方程解应用题,正确设出未知数、找出合适的等量关系是解题的关键.19.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A. =1 B. =1 C. =1 D. =1【考点】由实际问题抽象出分式方程.【分析】由设他上月买了x本笔记本,则这次买了(x+2)本,然后可求得两次每本笔记本的价格,由等量关系:每本比上月便宜1元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:﹣=1,即:﹣=1.故选B.【点评】此题考查了分式方程的应用.注意准确找到等量关系是关键.20.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500【考点】由实际问题抽象出分式方程.【分析】根据“今后项目的数量﹣今年项目的数量=20”得到分式方程.【解答】解:∵今后项目的数量﹣今年的数量=20,∴﹣=20.故选:A.【点评】本题考查了由实际问题抽象出分式方程.找到关键描述语,找到等量关系是解决问题的关键.二、填空题21.某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程﹣=15 .【考点】由实际问题抽象出分式方程.【分析】设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,根据题意可得,实际比原计划少用15天完成任务,据此列方程即可.【解答】解:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,由题意得,﹣=15.故答案为:﹣=15.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.22.制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x个零件,则可列方程为=.【考点】由实际问题抽象出分式方程.【分析】设小芳每小时做x个零件,则小明每小时做(x+20)个零件,根据小明做220个零件与小芳做180个零件所用的时间相同,列方程即可.【解答】解:设小芳每小时做x个零件,则小明每小时做(x+20)个零件,由题意得, =.故答案为: =.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.23. A、B两地相距60千米,若骑摩托车走完全程可比骑自行车少用小时,已知摩托车的速度是自行车速度的2倍,求自行车的速度.设骑自行车的速度为x千米/时,根据题意可列方程为﹣=.【考点】由实际问题抽象出分式方程.【分析】设骑自行车的速度为x千米/时,则摩托车的速度为2x千米/小时,根据骑摩托车走完全程可比骑自行车少用小时,列方程即可.【解答】解:设骑自行车的速度为x千米/时,则摩托车的速度为2x千米/小时,由题意得,﹣=.故答案为:﹣=.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.24.若分式方程﹣=2有增根,则这个增根是x=1 .【考点】分式方程的增根.【专题】计算题.【分析】根据分式方程有增根,让最简公分母为0确定增根,得到x﹣1=0,求出x的值.【解答】解:根据分式方程有增根,得到x﹣1=0,即x=1,则方程的增根为x=1.故答案为:x=1【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.25.(2014•天水)若关于x的方程﹣1=0有增根,则a的值为﹣1 .【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出未知字母的值.【解答】解:方程两边都乘(x﹣1),得。

(专题精选)初中数学方程与不等式之分式方程难题汇编附解析

(专题精选)初中数学方程与不等式之分式方程难题汇编附解析

(专题精选)初中数学方程与不等式之分式方程难题汇编附解析一、选择题1.解分式方程221112x x x x --=--时,去分母后所得的方程正确的是( ) A .220x x -+= B .4241x x x -+=-C .4241x x x +-=-D .221x x x +-=- 【答案】C【解析】【分析】根据等式的性质,方程两边同时乘以最简公分母2(x-1),整理即可得答案.【详解】 ∵221112x x x x --=--, ∴221112x x x x -+=--, 方程两边同时乘以最简公分母2(x-1)得:4x+2(x-2)=x-1,去括号得:4x+2x-4=x-1,故选:C .【点睛】本题考查解分式方程,正确得出最简公分母是解题关键.2.解分式方程11222x x x -+=--的结果是( ) A .x="2"B .x="3"C .x="4"D .无解【答案】D【解析】【分析】【详解】解:去分母得:1﹣x+2x ﹣4=﹣1,解得:x=2,经检验x=2是增根,分式方程无解.故选D .考点:解分式方程.3.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月份的水费是15元,而今年5月的水费则是30元,已知小丽家今年5月的用水量比去年12月的用水量多35m .求该市今年居民用水的价格.设去年居民用水价格为x 元/3m ,根据题意列方程,正确的是()A.30155113xx-=⎛⎫+⎪⎝⎭B.30155113xx-=⎛⎫-⎪⎝⎭C.15305113xx-=⎛⎫+⎪⎝⎭D.15305113xx-=⎛⎫-⎪⎝⎭【答案】A【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3得出方程即可.【详解】解:设去年居民用水价格为x元/3m,根据题意得:30155113xx-=⎛⎫+⎪⎝⎭,故选:A.【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键.4.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg货物,则可列方程为A.B.C.D.【答案】B【解析】甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,由题意得:,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.5.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同.设原计划平均每天生产x个零件,根据题意可列方程为()A .60045025x x=- B .60045025x x =- C .60045025x x =+ D .60045025x x =+ 【答案】C【解析】【分析】 原计划平均每天生产x 个零件,现在每天生产(x+25)个,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同即可列出方程.【详解】由题意得:现在每天生产(x+25)个, ∴60045025x x=+, 故选:C.【点睛】 此题考查分式方程的实际应用,正确理解题意是列方程的关键.6.方程24222x x x x =-+-- 的解为( ) A .2B .2或4C .4D .无解 【答案】C【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:2x=(x ﹣2)2+4,分解因式得:(x ﹣2)[2﹣(x ﹣2)]=0,解得:x=2或x=4,经检验x=2是增根,分式方程的解为x=4,故选C .【点睛】此题考查了解分式方程,以及分式方程的解,熟练掌握运算法则是解本题的关键.7.已知关于x 的分式方程211x k x x -=--的解为正数,则k 的取值范围为( ) A .20k -<<B .2k >-且1k ≠-C .2k >-D .2k <且1k ≠ 【答案】B【解析】【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案.【详解】 解:211x k x x-=--Q , 21x k x +∴=-, 2x k ∴=+,Q 该分式方程有解,21k ∴+≠,1k ∴≠-,0x Q >,20k ∴+>,2k ∴>-,2k ∴>-且1k ≠-,故选:B .【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.8.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程.其中正确的是( )A .1101002x x=+ B .1101002x x =+ C .1101002x x =- D .1101002x x =- 【答案】A【解析】 设乙骑自行车的平均速度为x 千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x 千米/时,由题意得:1102x +=100x, 故选A .9.方程10020x +=6020x-的解为( ) A .x =10B .x =﹣10C .x =5D .x =﹣5 【答案】C【解析】【分析】方程两边同时乘以(20+x)(20﹣x),解得,x=5,经检验,x=5是方程的根.【详解】解:方程两边同时乘以(20+x)(20﹣x),得100(20﹣x)=60(20+x),整理,得8x=40,解得,x=5,经检验,x=5是方程的根,∴原方程的根是x=5;故选:C.【点睛】本题考查分式方程的解法;熟练掌握分式方程的解法,切勿遗漏验根是解题的关键.10.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.10x-102x=20 B.102x-10x=20 C.10x-102x=13D.102x-10x=13【答案】C【解析】【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,10 x -102x=13,故选:C.【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.11.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.1000100030x x-+=2 B.1000100030x x-+=2C.1000100030x x--=2 D.1000100030x x--=2【答案】A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.方程31144xx x--=--的解是()A.-3 B.3 C.4 D.-4【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:3-x-x+4=1,解得:x=3,经检验x=3是分式方程的解.故选:B.【点睛】此题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.【答案】C【解析】设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:,故选C.14.若关于x 的分式方程2233x m x x -=--有增根,则m 的值为( ). A .3B.CD.【答案】D【解析】 解关于x 的方程2233x m x x -=--得:26x m =-, ∵原方程有增根,∴30x -=,即2630m --=,解得:m =故选D.点睛:解这类题时,分两步完成:(1)按解一般分式方程的步骤解方程,用含待定字母的式子表示出方程的根;(2)方程有增根,则把(1)中所得的结果代入最简公分母中,最简公分母的值为0,由此即可求得待定字母的值.15.关于x 的分式方程26344ax x x -+=---的解为正数,且关于x 的不等式组1722x a x x >⎧⎪⎨+≥-⎪⎩有解,则满足上述要求的所有整数a 的绝对值之和为( ) A .12B .14C .16D .18【答案】C【解析】【分析】根据分式方程的解为正数即可得出a <2且a≠1,根据不等式组有解,即可得出a >-5,找出-5<a <2且a≠1中所有的整数,将其相加即可得出结论.【详解】 解分式方程26344ax x x -+=---得:x=43a -, 因为分式方程的解为正数, 所以43a ->0且43a-≠4, 解得:a <3且a≠2, 解不等式1722x a x x >⎧⎪⎨+≥-⎪⎩,得:x≤a+7, ∵不等式组有解,∴a+7>1,解得:a >-6,综上,-6<a <3,且a≠2,则满足上述要求的所有整数a 的绝对值的和为:|-5|+|-4|+|-3|+|-2|+|-1|+|0|+|1|=16,故选:C .【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出-6<a <3且a≠2是解题的关键.16.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得 A .25301018060(%)x x -=+ B .253010180(%)x x -=+ C .30251018060(%)x x -=+ D .302510180(%)x x -=+ 【答案】A【解析】若设走路线一时的平均速度为x 千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x 千米/小时,()253010180%60x x -=+ 故选A .17.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x⨯+-= D .6060(125%)30x x⨯+-= 【答案】C【解析】 分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.18.八年级(1)班全体师生义务植树300棵.原计划每小时植树x 棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是( )A .300300201.2x x -= B .300300201.260x x =- C .300300201.260x x x -=+ D .3002030060 1.2x x -= 【答案】D【解析】【分析】原计划每小时植树x 棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x 棵,原计划植300棵树可用时300x 小时,实际用了3001.2x 小时,根据关键语句“结果提前20分钟完成任务”可得方程.【详解】设原计划每小时植树x 棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x 棵,由题意得:3002030060 1.2x x-=, 故选:D .【点睛】 此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,表示出原计划植300棵树所用时间与实际所用时间.19.对于实数a 、b ,定义一种新运算“⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若32x x ⊗⊗(﹣)=,则x 的值为( )A .-2B .-1C .1D .2 【答案】B【解析】【分析】利用题中的新定义变形已知等式,然后解方程即可.根据题中的新定义化简得:339342x x=+-,去分母得:12﹣6x =27+9x ,解得:x =﹣1,经检验x =﹣1是分式方程的解.故选B .【点睛】本题考查了新定义和解分式方程,利用了转化的思想,解分式方程注意要检验.20.已知关于x 的分式方程13222mx x x -+=--有解,则m 应满足的条件是( ) A . 1 2m m ≠≠且B .2m ≠C .1m =或2m =D .1m ≠或2m ≠ 【答案】A【解析】【分析】分式方程去分母转化为整式方程(m-2)x=-2,由分式方程有解可知m-2≠0,最简公分母x-2≠0,求出x 的值,进一步求出m 的取值即可.【详解】 13222mx x x-+=--, 去分母得,1-(3-mx )=2(x-2)整理得,(m-2)x=-2 ∵分式方程13222mx x x-+=--有解, ∴m-2≠0,即m≠2, ∴22x m -=- ∵分式方程13222mx x x-+=--有解, ∴x-2≠0,即x≠2, ∴222m -≠-,解得,m≠1, 所以,m 的取值为: 1 m ≠且2m ≠故选:A.【点睛】 此题主要考查了分式方程的求解,关键是会解出方程的解,注意隐含条件.。

分式方程计算30题(附答案、讲解)

分式方程计算30题(附答案、讲解)

郭氏数学公益教学博客中考分式方程计算30题(附答案、讲解)一.解答题(共30小题)1.(2011•自贡)解方程:.2.(2011•孝感)解关于的方程:.3.(2011•咸宁)解方程.4.(2011•乌鲁木齐)解方程:=+1.5.(2011•威海)解方程:.6.(2011•潼南县)解分式方程:.7.(2011•台州)解方程:.8.(2011•随州)解方程:.9.(2011•陕西)解分式方程:.10.(2011•綦江县)解方程:.11.(2011•攀枝花)解方程:.12.(2011•宁夏)解方程:.13.(2011•茂名)解分式方程:.14.(2011•昆明)解方程:.15.(2011•菏泽)解方程:16.(2011•大连)解方程:.17.(2011•常州)解分式方程;18.(2011•巴中)解方程:.(2)解分式方程:=+1.20.(2010•遵义)解方程:21.(2010•重庆)解方程:+=122.(2010•孝感)解方程:.23.(2010•西宁)解分式方程:24.(2010•恩施州)解方程:25.(2009•乌鲁木齐)解方程:26.(2009•聊城)解方程:+=1 27.(2009•南昌)解方程:28.(2009•南平)解方程:29.(2008•昆明)解方程:30.(2007•孝感)解分式方程:.答案与评分标准一.解答题(共30小题)1.(2011•自贡)解方程:.考点:解分式方程。

专题:计算题。

分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.(2011•孝感)解关于的方程:.考点:解分式方程。

中考数学分式方程专题训练有答案解析

中考数学分式方程专题训练有答案解析

分式方程一、选择题1.下列各式中,是分式方程的是A.x+y=5 B.C. =0 D.2.关于x的方程的解为x=1,则a=A.1 B.3 C.﹣1 D.﹣33.分式方程=1的解为A.x=2 B.x=1 C.x=﹣1 D.x=﹣24.下列关于分式方程增根的说法正确的是A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根5.方程+=0可能产生的增根是A.1 B.2 C.1或2 D.﹣1或26.解分式方程,去分母后的结果是A.x=2+3 B.x=2x﹣2+3 C.xx﹣2=2+3x﹣2 D.x=3x﹣2+27.要把分式方程化为整式方程,方程两边需要同时乘以A.2xx﹣2 B.x C.x﹣2 D.2x﹣48.河边两地距离s km,船在静水中的速度是a km/h,水流的速度是b km/h,船往返一次所需要的时间是A.小时B.小时C.小时D.小时9.若关于x的方程有增根,则m的值是A.3 B.2 C.1 D.﹣110.有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,若设第一块试验田每公顷的产量为x㎏,根据题意,可得方程A. =B. =C. =D. =二.填空题11.方程:的解是.12.若关于x的方程的解是x=1,则m= .13.若方程有增根x=5,则m= .14.如果分式方程无解,则m= .15.当m= 时,关于x的方程=2+有增根.16.用换元法解方程,若设,则可得关于的整式方程.17.已知x=3是方程一个根,求k的值= .18.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程.三.解答题19.解分式方程1;2.20.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具21.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服22.为了过一个有意义的“六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学23.请你编一道可化为一元一次方程的分式方程且不含常数项的应用题,并予以解答.分式方程参考答案与试题解析一、选择题1.下列各式中,是分式方程的是A.x+y=5 B.C. =0 D.考点分式方程的定义.分析根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.解答解:A、方程分母中不含未知数,故不是分式方程;B、方程分母中不含未知数,故不是分式方程;C、方程分母中含未知数x,故是分式方程.D、不是方程,是分式.故选C.点评本题考查的是分式方程的定义,即分母中含有未知数的方程叫做分式方程.2.关于x的方程的解为x=1,则a=A.1 B.3 C.﹣1 D.﹣3考点分式方程的解.专题计算题.分析根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有a的新方程,解此新方程可以求得a的值.解答解:把x=1代入原方程得,去分母得,8a+12=3a﹣3.解得a=﹣3.故选:D.点评解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.3.分式方程=1的解为A.x=2 B.x=1 C.x=﹣1 D.x=﹣2考点解分式方程.专题计算题.分析本题的最简公分母是2x﹣3,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.解答解:方程两边都乘2x﹣3,得1=2x﹣3,解得x=2.检验:当x=2时,2x﹣3≠0.∴x=2是原方程的解.故选A.点评1解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.2解分式方程一定注意要代入最简公分母验根.4.下列关于分式方程增根的说法正确的是A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根考点分式方程的增根.分析分式方程的增根是最简公分母为零时,未知数的值.解答解:分式方程的增根是使最简公分母的值为零的解.故选D.点评本题考查了分式方程的增根,使最简公分母的值为零的解是增根.5.方程+=0可能产生的增根是A.1 B.2 C.1或2 D.﹣1或2考点分式方程的增根.专题计算题.分析本题由增根的定义可知分式分母为0,即x﹣1=0或x﹣2=0,解出即可.解答解:∵方程+=0有增根,∴x﹣1=0或x﹣2=0,解得x=1或2,点评本题主要考查增根的定义,解题的关键是使最简公分母x﹣1x﹣2=0.6.解分式方程,去分母后的结果是A.x=2+3 B.x=2x﹣2+3 C.xx﹣2=2+3x﹣2 D.x=3x﹣2+2考点解分式方程.专题计算题.分析找出各分母的最小公分母,同乘以最小公分母即可.解答解:左右同乘以最简公分母x﹣2,得x=2x﹣2+3,故选B.点评本题考查了解分式方程的内容.注意在乘以最小公分母时,不要漏乘.7.要把分式方程化为整式方程,方程两边需要同时乘以A.2xx﹣2 B.x C.x﹣2 D.2x﹣4考点解分式方程.专题计算题.分析把分式方程化为整式方程,乘以最简公分母2xx﹣2即可.解答解:∵方程的最简公分母2xx﹣2,∴方程的两边同乘2xx﹣2即可.故选A.点评本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.找出最简公分母是解此题的关键.8.河边两地距离s km,船在静水中的速度是a km/h,水流的速度是b km/h,船往返一次所需要的时间是A.小时B.小时C.小时D.小时考点列代数式分式.分析往返一次所需要的时间是,顺水航行的时间+逆水航行的时间,根据此可列出代数式.解答解:根据题意可知需要的时间为: +点评本题考查列代数式,关键知道时间=路程÷速度,从而列出代数式.9.若关于x的方程有增根,则m的值是A.3 B.2 C.1 D.﹣1考点分式方程的增根.专题计算题.分析有增根是化为整式方程后,产生的使原分式方程分母为0的根.在本题中,应先确定增根是1,然后代入化成整式方程的方程中,求得m的值.解答解:方程两边都乘x﹣1,得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故选:B.点评增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,若设第一块试验田每公顷的产量为x㎏,根据题意,可得方程A. =B. =C. =D. =考点由实际问题抽象出分式方程.专题应用题.分析关键描述语是:“有两块面积相同的小麦试验田”;等量关系为:第一块试验田的面积=第二块试验田的面积.解答解:第一块试验田的面积是,第二块试验田的面积为.那么方程可表示为.点评列方程解应用题的关键步骤在于找相等关系,找到关键描述语,找到相应的等量关系是解决问题的关键.二.填空题11.方程:的解是.考点解分式方程.专题计算题.分析本题考查解分式方程的能力,观察可得方程最简公分母为:xx+1,方程两边去分母后化为整式方程求解.解答解:方程两边同乘以xx+1,得x2+x+1x﹣1=2xx+1,解得:x=﹣.经检验:x=﹣是原方程的解.点评1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.2解分式方程一定注意要验根.3方程中有常数项的注意不要漏乘常数项,本题应避免出现x2+x+1x﹣1=2的情况出现.12.若关于x的方程的解是x=1,则m= 2 .考点分式方程的解.分析根据分式方程的解的定义,把x=1代入原方程求解可得m的值.解答解:把x=1代入方程,得,解得m=2.故应填:2.点评本题主要考查了分式方程的解的定义,属于基础题型.13.若方程有增根x=5,则m= 5 .考点分式方程的增根.专题计算题.分析由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘x﹣5化为整式方程,再把增根x=5代入求解即可.解答解:方程两边都乘x﹣5,得x=2x﹣5+m,∵原方程有增根x=5,把x=5代入,得5=0+m,解得m=5.故答案为:5.点评本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14.如果分式方程无解,则m= ﹣1 .考点分式方程的解.专题计算题.分析分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答解:方程去分母得:x=m,当x=﹣1时,分母为0,方程无解.即m=﹣1方程无解.点评本题考查了分式方程无解的条件,是需要识记的内容.15.当m= 3 时,关于x的方程=2+有增根.考点分式方程的增根.专题方程思想.分析由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘x﹣3化为整式方程,再把增根x=3代入求解即可.解答解:方程两边都乘x﹣3,得x=2x﹣3+m,∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,3=0+m,解得m=3.故答案为:3.点评本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.2006 南通用换元法解方程,若设,则可得关于的整式方程2y2﹣4y+1=0 .考点换元法解分式方程.专题压轴题;换元法.分析本题考查用换元法整理分式方程的能力,根据题意得设=y,代入方程可把原方程化为整式.解答解:设=y,则可得=,∴可得方程为2y+=4,整理得2y2﹣4y+1=0.点评用换元法解分式方程是常用的方法之一,换元时要注意所设分式的形式及式中不同的变形.17.已知x=3是方程一个根,求k的值= ﹣3 .考点分式方程的解.分析根据方程的解的定义,把x=3代入原方程,得关于k的一元一次方程,再求解可得k 的值.解答解:把x=3代入方程,得,解得k=﹣3.故应填:﹣3.18.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程﹣=8 .考点由实际问题抽象出分式方程.分析求的是原计划的工效,工作总量为2400,一定是根据工作时间来列等量关系.本题的关键描述语是:“提前8小时完成任务”;等量关系为:原计划用的时间﹣实际用的时间=8.解答解:原计划用的时间为:,实际用的时间为:.所列方程为:﹣=8.点评应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.三.解答题19.解分式方程1;2.考点解分式方程.分析1首先乘以最简公分母x﹣3x去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.2首先乘以最简公分母x﹣1x+1去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.解答解:1去分母得:2x=3x﹣3,去括号得:2x=3x﹣9,移项得:2x﹣3x=﹣9,合并同类项得:﹣x=﹣9,把x的系数化为1得:x=9检验:当x=9时,xx﹣3=54≠0.∴原方程的解为:x=9.2去分母得:x+1=2,移项得:x=2﹣1,合并同类项得:x=1.检验:当x=1时,x﹣1x+1=0,所以x=1是增根,故原方程无解.点评此题主要考查了分式方程的解法,做题过程中关键是不要忘记检验,很多同学忘记检验,导致错误.20.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具考点分式方程的应用.专题应用题.分析求的是工效,工作总量明显,一定是根据工作时间来列等量关系.本题的关键描述语是:“甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等”;等量关系为:甲加工90个玩具所用的时间=乙加工120个玩具所用的时间.解答解:设甲每天加工x个玩具,那么乙每天加工35﹣x个玩具.由题意得:.5分解得:x=15.7分经检验:x=15是原方程的根.8分∴35﹣x=209分答:甲每天加工15个玩具,乙每天加工20个玩具.10分点评应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服考点分式方程的应用.专题应用题.分析关键描述语为:“共用9天完成任务”;等量关系为:用老技术加工60套用的时间+用新技术加工240套用的时间=9.解答解:设服装厂原来每天加工x套演出服.根据题意,得:.3分解得:x=20.经检验,x=20是原方程的根.答:服装厂原来每天加工20套演出服.6分点评分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.为了过一个有意义的“六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学考点分式方程的应用.分析设一班有x人,则二班有人.根据五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,可列方程求解.解答解:设一班有x人,则二班有人.根据题意得:,解得:x=50.经检验:x=50是原方程的解.=×50=60.答:一班有50人,二班有60人.点评本题考查分式方程的应用,关键是设出人数,以平均每人捐的本数做为等量关系列方程求解.23.请你编一道可化为一元一次方程的分式方程且不含常数项的应用题,并予以解答.考点分式方程的应用.分析本题答案开放,根据题意要求,先写出符合要求的方程,如:,然后根据此方程编拟应用题.解答解:甲乙两个车间分别制造相同的机器零件,已知甲车间每小时比乙多制造10个机器零件,这样甲车间制造170个机器零件与乙制造160个所用时间相同,求甲乙两车间每小时各制造机器零件多少个点评此题考查分式方程的应用,为开放性试题,答案不唯一.。

2024年全国各省市数学中考真题汇编 专题4分式与分式方程(34题)含详解

2024年全国各省市数学中考真题汇编 专题4分式与分式方程(34题)含详解

专题04分式与分式方程(34题)一、单选题1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是()A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=2.(2024·四川雅安·中考真题)计算()013-的结果是()A .2-B .0C .1D .43.(2024·四川巴中·中考真题)某班学生乘汽车从学校出发去参加活动,目的地距学校60km ,一部分学生乘慢车先行0.5h ,另一部分学生再乘快车前往,他们同时到达.已知快车的速度比慢车的速度每小时快20km ,求慢车的速度?设慢车的速度为km /h x ,则可列方程为()A .60601202x x -=+B .60601202x x -=-C .60601202x x -=+D .60601202x x -=-4.(2024·四川雅安·中考真题)已知()2110a b a b+=+≠.则a ab a b +=+()A .12B .1C .2D .3二、填空题5.(2024·湖南长沙·中考真题)要使分式619x -有意义,则x 需满足的条件是.6.(2024·辽宁·中考真题)方程512x =+的解为.7.(2024·重庆·中考真题)计算:011(3)()2π--+=.8.(2024·重庆·中考真题)计算:023-+=.9.(2024·安徽·中考真题)若代数式14-x 有意义,则实数x 的取值范围是.10.(2024·青海·中考真题)若式子13x -有意义,则实数x 的取值范围是.11.(2024·四川甘孜·中考真题)分式方程11x 2=-的解为.12.(2024·内蒙古通辽·中考真题)分式方程322x x=-的解为.13.(2024·重庆·中考真题)若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y -=---的解为非负整数,则所有满足条件的整数a 的值之和为.14.(2024·黑龙江绥化·中考真题)计算:22x y xy y x x x ⎛⎫--÷-= ⎪⎝⎭.15.(2024·江苏盐城·中考真题)使分式11x -有意义的x 的取值范围是.16.(2024·山东滨州·中考真题)若分式11x -在实数范围内有意义,则x 的取值范围是.17.(2024·四川自贡·中考真题)计算:31211a aa a +-=++.18.(2024·江苏常州·中考真题)计算:111x x x +=++.19.(2024·四川内江·中考真题)已知实数a ,b 满足1ab =,那么221111a b +++的值为.三、解答题20.(2024·甘肃兰州·中考真题)先化简,再求值:7411a a a a ++⎛⎫+÷⎪+⎝⎭,其中4a =.21.(2024·四川资阳·中考真题)先化简,再求值:221412x x x x x+-⎛⎫-÷ ⎪+⎝⎭,其中3x =.22.(2024·黑龙江大庆·中考真题)先化简,再求值:22391369x x x x -⎛⎫+÷ --+⎝⎭,其中2x =-.23.(2024·黑龙江大庆·中考真题)为了健全分时电价机制,引导电动汽车在用电低谷时段充电,某市实施峰谷分时电价制度,用电高峰时段(简称峰时):7:00—23:00,用电低谷时段(简称谷时):23:00—次日7:00,峰时电价比谷时电价高0.2元/度.市民小萌的电动汽车用家用充电桩充电,某月的峰时电费为50元,谷时电费为30元,并且峰时用电量与谷时用电量相等,求该市谷时电价.24.(2024·四川遂宁·中考真题)先化简:2121121x x x x -⎛⎫-÷ ⎪--+⎝⎭,再从1,2,3中选择一个合适的数作为x 的值代入求值.25.(2024·吉林长春·中考真题)先化简,再求值:32222x x x x ---,其中x =26.(2024·青海·中考真题)先化简,再求值:11x y y x y x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭,其中2x y =-.27.(2024·四川·中考真题)化简:11x x x x +⎛⎫-÷ ⎪⎝⎭.28.(2024·四川雅安·中考真题)(1()111525-⎛⎫-+-⨯- ⎪⎝⎭;(2)先化简,再求值:2221211a a aa a -+⎛⎫-÷⎪-⎝⎭,其中2a =.29.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?30.(2024·四川雅安·中考真题)某市为治理污水,保护环境,需铺设一段全长为3000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成铺设任务.(1)求原计划与实际每天铺设管道各多少米?(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元,该公司原计划最多应安排多少名工人施工?31.(2024·江苏常州·中考真题)书画装裱,是指为书画配上衬纸、卷轴以便张贴、欣赏和收藏,是我国具有民族传统的一门特殊艺术.如图,一幅书画在装裱前的大小是1.2m 0.8m ⨯,装裱后,上、下、左、右边衬的宽度分别是a m 、b m 、c m 、d m .若装裱后AB 与AD 的比是16:10,且a b =,c d =,2c a =,求四周边衬的宽度.32.(2024·四川达州·中考真题)先化简:22224xx x x x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.33.(2024·重庆·中考真题)计算:(1)()()22x x y x y -++;(2)22111a a a a-⎛⎫+÷ ⎪+⎝⎭.34.(2024·内蒙古呼伦贝尔·中考真题)先化简,再求值:22422324x xx x x -⎛⎫+-÷+⎪+-⎝⎭,其中72x =-.专题04分式与分式方程(34题)一、单选题1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是()A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=【答案】A【分析】本题考查通过去分母将分式方程转化为整式方程,方程两边同乘各分母的最简公分母,即可去分母.【详解】解:方程两边同乘26x -,得()()152626263126x x x x x---⨯=-⨯---,整理可得:2625x -+=-故选:A .2.(2024·四川雅安·中考真题)计算()013-的结果是()A .2-B .0C .1D .4【答案】C【分析】本题考查零指数幂,掌握“任何不为零的零次幂等于1”是正确解答的关键.根据零指数幂的运算性质进行计算即可.【详解】解:原式0(2)1=-=.故选:C .3.(2024·四川巴中·中考真题)某班学生乘汽车从学校出发去参加活动,目的地距学校60km ,一部分学生乘慢车先行0.5h ,另一部分学生再乘快车前往,他们同时到达.已知快车的速度比慢车的速度每小时快20km ,求慢车的速度?设慢车的速度为km /h x ,则可列方程为()A .60601202x x -=+B .60601202x x -=-C .60601202x x -=D .60601202x x -=【答案】A【分析】本题主要考查了分式方程的应用.设慢车的速度为km /h x ,则快车的速度是()20km /h x +,再根据题意列出方程即可.【详解】解:设慢车的速度为km /h x ,则快车的速度为()20km /h x +,根据题意可得:60601202x x -=+.故选:A .4.(2024·四川雅安·中考真题)已知()2110a b a b+=+≠.则a ab a b +=+()A .12B .1C .2D .3二、填空题5.(2024·湖南长沙·中考真题)要使分式619x -有意义,则x 需满足的条件是.6.(2024·辽宁·中考真题)方程12x =的解为.7.(2024·重庆·中考真题)计算:011(3)()2π--+=.8.(2024·重庆·中考真题)计算:023-+=.【答案】3【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算即可得到结果.【详解】解:原式=2+1=3,故答案为:3.【点睛】此题考查了有理数的运算,熟练掌握运算法则是解本题的关键.9.(2024·安徽·中考真题)若代数式14-x 有意义,则实数x 的取值范围是.【答案】4x ≠【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.10.(2024·青海·中考真题)若式子13x -有意义,则实数x 的取值范围是.11.(2024·四川甘孜·中考真题)分式方程1x 2=-的解为.【答案】x 3=【分析】首先去掉分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解.12.(2024·内蒙古通辽·中考真题)分式方程2x x=-的解为.13.(2024·重庆·中考真题)若关于x 的不等式组()1321x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为.14.(2024·黑龙江绥化·中考真题)计算:22x y xy y x x x ⎛⎫--÷-= ⎪⎝⎭.15.(2024·江苏盐城·中考真题)使分式1x -有意义的x 的取值范围是.【答案】x ≠1【详解】根据题意得:x -1≠0,即x ≠1.故答案为:x ≠1.16.(2024·山东滨州·中考真题)若分式11x -在实数范围内有意义,则x 的取值范围是.17.(2024·四川自贡·中考真题)计算:11a a +-=++.【答案】118.(2024·江苏常州·中考真题)计算:11x x +=.19.(2024·四川内江·中考真题)已知实数a ,b 满足1ab =,那么221111a b +的值为.三、解答题20.(2024·甘肃兰州·中考真题)先化简,再求值:7411a a a a ++⎛⎫+÷⎪+,其中4a =.21.(2024·四川资阳·中考真题)先化简,再求值:212x x x+-⎛⎫-÷ ⎪+,其中3x =.22.(2024·黑龙江大庆·中考真题)先化简,再求值:21369x x x -⎛⎫+÷ ,其中2x =-.23.(2024·黑龙江大庆·中考真题)为了健全分时电价机制,引导电动汽车在用电低谷时段充电,某市实施峰谷分时电价制度,用电高峰时段(简称峰时):7:00—23:00,用电低谷时段(简称谷时):23:00—次日7:00,峰时电价比谷时电价高0.2元/度.市民小萌的电动汽车用家用充电桩充电,某月的峰时电费为50元,谷时电费为30元,并且峰时用电量与谷时用电量相等,求该市谷时电价.【答案】该市谷时电价0.3元/度【分析】本题考查了分式方程的应用,设该市谷时电价为x 元/度,则峰时电价()0.2x +元/度,根据题意列出分式方24.(2024·四川遂宁·中考真题)先化简:21121x x x -⎛⎫-÷ ⎪--+⎝⎭,再从1,2,3中选择一个合适的数作为x 的值代入求值.25.(2024·吉林长春·中考真题)先化简,再求值:22x x -,其中x =26.(2024·青海·中考真题)先化简,再求值:11x y y x y x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭,其中2x y =-.27.(2024·四川·中考真题)化简:11x x x x ⎛⎫-÷ ⎪.28.(2024·四川雅安·中考真题)(1()111525-⎛⎫-+-⨯- ⎪⎝⎭;(2)先化简,再求值:2221211a a a a a -+⎛⎫-÷ ⎪-,其中2a =.29.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?30.(2024·四川雅安·中考真题)某市为治理污水,保护环境,需铺设一段全长为3000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成铺设任务.(1)求原计划与实际每天铺设管道各多少米?(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元,该公司原计划最多应安排多少名工人施工?31.(2024·江苏常州·中考真题)书画装裱,是指为书画配上衬纸、卷轴以便张贴、欣赏和收藏,是我国具有民族传统的一门特殊艺术.如图,一幅书画在装裱前的大小是1.2m 0.8m ⨯,装裱后,上、下、左、右边衬的宽度分别是a m 、b m 、c m 、d m .若装裱后AB 与AD 的比是16:10,且a b =,c d =,2c a =,求四周边衬的宽度.【答案】上、下、左、右边衬的宽度分别是0.1m 0.1m 0.2m 0.2m 、、、【分析】本题考查分式方程的应用,分别表示出,AB AD 的长,列出分式方程,进行求解即可.【详解】解:由题意,得: 1.2 1.22 1.24AB c d c a =++=+=+,0.80.82AD a b a =++=+,∵AB 与AD 的比是16:10,∴1.24160.8210a a +=+,解得:0.1a =,经检验0.1a =是原方程的解.∴上、下、左、右边衬的宽度分别是0.1m 0.1m 0.2m 0.2m 、、、.32.(2024·四川达州·中考真题)先化简:2224x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.【答案】41x +,当1x =时,原式2=.【分析】本题主要考查了分式的化简求值,先把小括号内的式子通分,再把除法变成乘法后约分化简,接着根据分式有意义的条件确定x 的值,最后代值计算即可.【详解】解:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭()()()()()()()2212222x x x x x x x x x x +--+=÷-+-+()()()()()222222221x x x x x x x x x x -++-+=⋅-++()()()()()224221x x x x x x x -+=⋅-++41x =+,∵分式要有意义,∴()()()22010x x x x ⎧+-≠⎪⎨+≠⎪⎩,33.(2024·重庆·中考真题)计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪.34.(2024·内蒙古呼伦贝尔·中考真题)先化简,再求值:22324x x x -⎛⎫+-÷+ ⎪,其中2x =-.。

经典讲解和复习题八年级数学分式方程

经典讲解和复习题八年级数学分式方程

1 小时,已知甲与乙速度比为8:7,求两人速度。 4
解:设甲的速度8x千米/时, 乙的速度是7x千米/时。

v
8x 7x
s
28 28
t
28 8x
28 28 1 7 x 8x 4

28 7x
(2)一船在静水中每小时航行20千米,顺水航行 72千米的时间恰好等于逆水航行48千米的时间, 求每小时的水流速度。
例2:从2004年5月起某列车平均 提速v千米/时,用相同的时间, 列车提速前行驶s千米,提速后比 提速前多行驶50千米,提速前列 车的平均速度为多少?
练习1.某单位将沿街的一部分房屋出租,每间房 屋的租金第二年比第一年多500元,所有房屋 的租金第一年为9.6万元,第二年为10.2万元 .
(1).分别求两年每间出租房屋的租金?
如:条件:已知水速为2 km/h, 问题:求船在静水中的速度 ?解:设船在静水中的速度为x km/h.
2 2 2 x2 x2 3
2=16 化简得:X
解得x=±4
经检验x= ±4是原方程的根, 但是x=-4不符合题意,应舍去.
答:船在静水中的速度是 4km/h.
列分式方程解应用题的 一般步骤
答:自行车的速度是15千米/时, 汽车的速度是45千米/时。
列分式方程解应用题的步骤:
(1)审题。
(2)设未知数。
(3)弄清各个量之间的关系。 (4)找出等量关系,列出方程。 (5)解方程及检验。 (6)答题。
先填表,后列方程。(只列方程,不用解方程)
(1)甲、乙两人骑自行车各行28公里,甲比乙快
分析:
2
骑自车的路程=乘车的路程/骑车速度的3倍=乘车的速度
/

《分式方程》专项练习和中考真题(含答案解析及点睛)

《分式方程》专项练习和中考真题(含答案解析及点睛)

《分式方程》专项练习1.下列关于x 的方程:①153x -=,②121x x =-,③()111x x x -+=,④31x a b =-中,是分式方程的有 ( ) A .4个 B .3个 C .2个D .1个 2.关于x 的分式方程2503x x -=-的解为( ) A .3-B .2-C .2D .3【答案】B 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解析】解:去分母得:2650x x --=,解得:2x =-,经检验2x =-是分式方程的解,故选B .【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.3.甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x 个零件,所列方程正确的是( )A .2403006x x =-B .2403006x x =+C .2403006x x =-D .2403006x x=+ 【答案】B【分析】根据“甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等”,列出方程即可.【解析】解:根据题意得:2403006x x =+,故选B . 【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键. 4.关于x 的方程1242k x x x -=--的解为正数,则k 的取值范围是( ) A .4k >-B .4k <C .4k >-且4k ≠D .4k <且4k ≠- 【答案】C【分析】先对分式方程去分母,再根据题意进行计算,即可得到答案.【解析】解:分式方程去分母得:(24)2k x x --=,解得:44k x +=, 根据题意得:404k +>,且424k +≠,解得:4k >-,且4k ≠.故选C . 【点睛】本题考查分式方程,解题的关键是掌握分式方程的求解方法.5.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5B .﹣8C .﹣2D .5【答案】A【解析】解:去分母得:3x ﹣2=2x +2+m ①.由分式方程无解,得到x +1=0,即x =﹣1,代入整式方程①得:﹣5=﹣2+2+m ,解得:m =﹣5.故选A .6.甲、乙两地相距600km ,提速前动车的速度为/vkm h ,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min ,则可列方程为( )A .60016003 1.2-=v vB .60060011.23v v =-C .60060020 1.2v v -=D .600600201.2v v=- 【答案】A 【分析】行驶路程都是600千米;提速前后行驶时间分别是:600600,1.2v v ;因为提速后行车时间比提速前减少20min ,所以,提速前的时间-提速后的时间=20min .【解析】根据提速前的时间-提速后的时间=20min ,可得60060011.23-=v v 即60016003 1.2-=v v故选:A 【点睛】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.7.若关于x 的方程201m x x -=+的解为正数,则m 的取值范围是( ) A .2m <B .2m <且0m ≠C .2m >D .2m >且4m ≠ 【答案】C【分析】先将分式方程化为整式方程,再根据方程的解为正数得出不等式,且不等于增根,再求解.【解析】解:∵解方程201m x x-=+,去分母得:()210mx x -+=,整理得:()22m x -=, ∵方程有解,∴22x m =-,∵分式方程的解为正数,∴202m >-,解得:m >2, 而x≠-1且x≠0,则22m -≠-1,22m -≠0,解得:m≠0,综上:m 的取值范围是:m >2.故选C. 【点睛】本题主要考查分式方程的解,解题的关键是掌握分式方程的解的概念.8.随着5G 网络技术的发展,市场对5G 产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,设更新技术前每天生产x 万件,依据题意得( )A .40050030x x =-B .40050030x x =+C .40050030x x =-D .40050030x x=+ 【答案】B【分析】设更新技术前每天生产x 万件产品,则更新技术后每天生产(x+30)万件产品,根据工作时间=工作总量÷工作效率,再结合现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同,即可得出关于x 的分式方程.【解析】解:设更新技术前每天生产x 万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:40050030x x =+.故选:B . 【点睛】本题考查了由实际问题列分式方程,解题的关键是找准等量关系,正确列出分式方程.9.若关于x 的一元一次不等式结3132x x x a-⎧≤+⎪⎨⎪≤⎩的解集为x a ≤;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( )A .7B .-14C .28D .-56【答案】A【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a 的值,求出之和即可. 【解析】解:解不等式3132x x -≤+,解得x≤7,∴不等式组整理的7x x a ≤⎧⎨≤⎩,由解集为x≤a ,得到a≤7, 分式方程去分母得:y−a +3y−4=y−2,即3y−2=a ,解得:y =+23a , 由y 为正整数解且y≠2,得到a =1,7,1×7=7,故选:A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10. 已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤B .3m <C .3m >-D .3m ≥- 【答案】A【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可 【解析】213x m x -=-,方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-, Q 分式方程213x m x -=-的解是非正数,30x -≠,30(3)30m m -≤⎧∴⎨--≠⎩,解得,3m ≤,故选A . 【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值11.随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( )A .3000420080x x =-B .3000420080x x +=C .4200300080x x =-D .3000420080x x =+ 【答案】D【分析】设原来平均每人每周投递快件x 件,则现在平均每人每周投递快件(x +80)件,根据人数=投递快递总数量÷人均投递数量,结合快递公司的快递员人数不变,即可得出关于x 的分式方程,此题得解.【解析】解:设原来平均每人每周投递快件x 件,则现在平均每人每周投递快件(x +80)件,根据快递公司的快递员人数不变列出方程,得:3000420080x x =+,故选:D . 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.12.若数a 使关于x 的不等式组12(7)34625(1)x x x a x ⎧--⎪⎨⎪->-⎩…有且仅有三个整数解,且使关于y 的分式方程12311y a y y --=---的解为正数,则所有满足条件的整数a 的值之和是( )A .﹣3B .﹣2C .﹣1D .1【答案】A 【分析】先解不等式组12(7)34625(1)x x x a x ⎧--⎪⎨⎪->-⎩…根据其有三个整数解,得a 的一个范围;再解关于y 的分式方程12311y a y y--=---,根据其解为正数,并考虑增根的情况,再得a 的一个范围,两个范围综合考虑,则所有满足条件的整数a 的值可求,从而得其和.【解析】解:由关于x 的不等式组12(7)34625(1)x x x a x ⎧--⎪⎨⎪->-⎩…,得32511x a x ⎧⎪⎨+>⎪⎩… ∵有且仅有三个整数解,∴25311a x +<…,1x =,2,或3.∴250111a +<…,∴532a -<<; 由关于y 的分式方程12311y a y y--=---得1 2 31y a y -+=--(),∴2y a =-, ∵解为正数,且1y =为增根,∴2a <,且1a ≠,∴522a -<<,且1a ≠, ∴所有满足条件的整数a 的值为:﹣2,﹣1,0,其和为﹣3.故选A .【点睛】本题属于含一元一次不等式组和含分式方程的综合计算题,比较容易错,属于易错题.13.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A .62103(1)-=x x B .621031=-x C .621031-=x x D .62103=x 【答案】A【分析】根据“这批椽的价钱为6210文”、“每件椽的运费为3文,剩下的椽的运费恰好等于一株椽的价钱”列出方程解答.【解析】解:由题意得:62103(1)-=x x,故选A. 【点睛】本题考查了分式方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,准确的找到等量关系并用方程表示出来是解题的关键.14.甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x 个零件,下列方程正确的是( )A .240280130x x=- B .240280130x x =- C .240280130x x += D .240280130x x -= 【答案】A【分析】设甲每天做x 个零件,根据甲做240个零件与乙做280个零件所用的时间相同,列出方程即可.【解析】解:设甲每天做x 个零件,根据题意得:240280130x x=-,故选:A . 【点睛】此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.15.方程111x x x x -+=-的解是______. 【答案】13x = 【分析】方程两边都乘以(1)x x -化分式方程为整式方程,解整式方程得出x 的值,再检验即可得出方程的解.【解析】方程两边都乘以(1)x x -,得:2(1)(1)x x x -=+,解得:13x =, 检验:13x =时,2(1)09x x -=-≠,所以分式方程的解为13x =,故答案为:13x =.【点睛】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.16.若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 【答案】3【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【解析】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3 ∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17.关于x 的分式方程11222k x x-+=--的解为正实数,则k 的取值范围是________. 【答案】2k >-且2k ≠【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【解析】解:11222k x x -+=--方程两边同乘(x-2)得,1+2x-4=k-1,解得22k x += 222k +≠Q ,022k +>2k ∴>-,且2k ≠故答案为:2k >-且2k ≠ 【点睛】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.18.方程981x x =-的解为_______. 【答案】9.x =【分析】去分母,把分式方程转化为整式方程,解整式方程,并检验即可得到答案.【解析】解:981x x =-Q ()918,x x ∴-= 998,x x ∴-= 9,x ∴= 经检验:9x =是原方程的根,所以原方程的根是:9.x = 故答案为:9.x =【点睛】本题考查的是分式方程的解法,掌握去分母解分式方程是解题的关键.19.方程121x +=12x -的解是x =_____. 【答案】-3【分析】根据解分式方程的步骤解答即可,注意求出x 的值后记得要代入原方程进行检验,看是否有意义.【解析】解:方程的两边同乘(2x +1)×(x ﹣2),得:x ﹣2=2x +1,解这个方程,得:x =﹣3,经检验,x =﹣3是原方程的解,∴原方程的解是x =﹣3.故答案为:﹣3.【点睛】本题主要考查了分式的求解,首先需要注意要给等式两边同时乘以最简公分母,其次计算结束后要对方程的解进行检验,要求熟练掌握分式方程的解题规则.20.分式方程3122x x x x-+=--的解是_____. 【答案】x =53【分析】根据分式方程的解题步骤解出即可. 【解析】3122x x x x-+=-- 方程左右两边同乘x -2,得 3-x -x =x -2. 移项合并同类项,得 x =53.经检验, x =53是方程的解.故答案为: x =53. 【点睛】本题考查分式方程的解法,关键在于熟练掌握解法步骤注意检验.21.若关于x 的方程22222x a a x x -+=--的解为非负数,则a 的取值范围是__________ 【答案】a≤1且1a 2≠ 【分析】先求出分式方程的解,然后结合方程的解为非负数,即可求出a 的取值范围.【解析】解:∵22222x a a x x-+=--,∴222(2)x a a x --=-,∴424x a x -=-,∴44x a =-;∵0x ≥,20x -≠,∴440a -≥,442a -≠,∴1a ≤,12a ≠,故答案为:1a ≤且12a ≠; 【点睛】本题考查解分式方程,由分式方程的解求参数的取值范围,解题的关键是正确求出分式方程的解. 22.已知关于x 的分式方程233x k x x -=--有正数解,则k 的取值范围为________. 【答案】k <6且k≠3分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零. 【解析】233x k x x -=--,方程两边都乘以(x-3),得x=2(x-3)+k ,解得x=6-k≠3, 关于x 的方程程233x k x x -=--有正数解,∴x=6-k >0,k <6,且k≠3, ∴k 的取值范围是k <6且k≠3.故答案为k <6且k≠3.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键.23.解方程:24111x x x -=-- 【答案】3【分析】去分母化成整式方程,求出x 后需要验证,才能得出结果; 【解析】24111x x x -=--,去分母得:214x x -+=,解得:3x =. 检验:把3x =代入1x -中,得-=-=≠13120x ,∴3x =是分式方程的根.【点睛】本题主要考查了分式方程的求解,准确计算是解题的关键.24.解分式方程:2312x x x --=-. 【答案】x =45. 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解析】解:方程2312x x x --=-,去分母得:x 2﹣4x +4﹣3x =x 2﹣2x ,移项得:-5x=-4, 系数化为1得:x =45,经检验x =45是分式方程的解. 【点睛】本题考查了解分式方程.利用了转化的思想,解分式方程要注意检验.25.近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度.【答案】75km/h【分析】根据题意,设走线路A 的平均速度为/xkm h ,则线路B 的速度为1.5/xkm h ,由等量关系列出方程,解方程即可得到答案.【解析】解:设走线路A 的平均速度为/xkm h ,则线路B 的速度为1.5/xkm h ,则2563060 1.5x x-=,解得:50x =,检验∴50x =是原分式方程的解;∴走路线【点睛】本题考查分式方程的应用,以及理26.某工程队准备修建一条长3000的盲道结果提前2天完成这一任务,原计划每天修【答案】原计划每天修建盲道300米【分析】可设原计划每天修建盲道x 米,(125%)x +米,表示出原计划和实际修建x 的分式方程,求解即可.【解析】解:设原计划每天修建盲道米解这个方程,得300x =.经检验:答:原计划每天修建盲道300米【点睛】本题主要考查了分式方程的实际应27.如图,某公司会计欲查询乙商品的进价进货单商品进价(元/件) 数量(件)甲乙 商品采购员李阿姨和仓库保管员王师傅对采李阿姨:我记得甲商品进价比乙商品进价每王师傅:甲商品比乙商品的数量多40件请你求出乙商品的进价,并帮助他们补全进【答案】乙商品的进价40元/件;补全进货【分析】设出乙的进货价为x ,表示出乙的价等于甲的总金额列出方程,解出方程即可【解析】解:设乙的进货价为x ,则乙的进所以甲的数量为(3200x+40)件,甲的进可列方程为:x (1+50%)(3200x+404800+60x=7200 60x=2400 解得:x=4检验:当50x =时,1.50x ≠, 路线B 的平均速度为:50 1.575⨯=(km/h );以及理解题意的能力,解题的关键是以时间做为等量m 的盲道,由于采用新的施工方式,实际每天修建盲道的每天修建盲道多少米?,由“实际每天修建盲道的长度比原计划增加25%际修建3000m 的盲道所用的时间,根据“提前2天完x 米,根据题意,得300030002(125%)x x-=+. 300x =是所列方程的根.实际应用,正确理解题意,找准题中等量关系列出方的进价,发现进货单已被墨水污染.) 总金额(元) 7200 3200傅对采购情况回忆如下:进价每件高50%.件. 补全进货单.全进货单见详解出乙的进货数量,表示出甲的进货数量与进货价,程即可.乙的进货数量为3200x 件, 甲的进货价为x (1+50%) )=7200 x=40.为等量关系列方程求解. 盲道的长度比原计划增加25%,”可知实际每天修建天完成这一任务”可列出关于列出方程是解题的关键. ,根据假的进货数量乘以进货经检验:x=40是原方程的解,所以乙的进价为40元/件.答:乙商品的进价为40元/件.3200320080x 40==,3200x+40=120,x (1+50%)=60, 补全进货单如下表: 商品进价(元/件) 数量(件) 总金额(元) 甲60 120 7200 乙 40 80 3200【点睛】本题考查的是分式方程的应用,通过题目给的条件,设出乙的进货价,表示出甲的数量与进货价,通过甲的进货价×甲的数量=甲的总金额,列出分式方程,解出答案,解答本题的关键在于表示出相关量,找出等量关系,列出方程.29.在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?【答案】2万斤【分析】由题意设该村企去年黑木耳的年销量为x 万斤,则今年黑木耳的年销量为3x 万斤,根据单价=总价÷数量结合今年每斤黑木耳的售价比去年增加了20元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解析】解:设该村企去年黑木耳的年销量为x 万斤 依题意得80360203x x+=解得:2x = 经检验2x =是原方程的根,且符合题意.答:该村企去年黑木耳的年销量为2万斤.【点睛】本题考查分式方程的应用,根据题意找准等量关系,正确列出分式方程是解题的关键.30.为帮助贫困山区孩子学习,某学校号召学生自愿捐书,已知七、八年级同学捐书总数都是1800本,八年级捐书人数比七年级多150人,七年级人均捐书数量是八年级人均捐书数量的1.5倍,求八年级捐书人数是多少?【答案】八年级捐书人数是450人.【分析】设七年级捐书人数为x ,则八年级捐书人数为(x+150),根据七年级人均捐书数量是八年级人均捐书数量的1.5倍,列出方程求解并检验即可.【解析】设七年级捐书人数为x ,则八年级捐书人数为(x+150),根据题意得,180018001.5150x x=⨯+,解得,300x =,经检验,300x =是原方程的解, ∴ x+150=400+150=450,答:八年级捐书人数是450人.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程求解并检验.《分式方程》中考真题1.分式方程312x =-的解是( )A .1x =-B .1x =C .5x =D .2x =【答案】C 【分析】先去分母化成整式方程,然后解整式方程即可.【解析】解:312x =- 3=x-2 x=5 经检验x=5是分式方程的解 所以该分式方程的解为x=5. 故选:C .【点睛】本题考查了分式方程的解法,掌握解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1和检验是解答本题的关键,而且检验也是这类题的易错点.2.方程2152x x =+-的解是( ) A .1x =-B .5x =C .7x =D .9x = 【答案】D【分析】根据题意可知,本题考察分式方程及其解法,根据方程解的意义,运用去分母,移项的方法,进行求解.【解析】解:方程可化简为()225x x -=+ 245x x -=+ 9x = 经检验9x =是原方程的解 故选D【点睛】本题考察了分式方程及其解法,熟练掌握解分式方程的步骤是解决此类问题的关键.3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=---【答案】D 【分析】先对分式方程乘以()2x -,即可得到答案.【解析】去分母得:()1122x x -=---,故选:D .【点睛】本题考查去分母,解题的关键是掌握通分.4.已知关于x 的分式方程422x k x x-=--的解为正数,则x 的取值范围是( ) A .80k -<< B .8k >-且2k ≠- C .8k >- D .4k <且2k ≠-【答案】B【分析】先解分式方程利用k 表示出x 的值,再由x 为正数求出k 的取值范围即可.【解析】方程两边同时乘以2x -得,()420x x k --+=,解得:83k x +=. ∵x 为正数,∴803k +>,解得8k >-,∵2x ≠,∴823k +≠,即2k ≠-, ∴k 的取值范围是8k >-且2k ≠-.故选:B .【点睛】本题考查了解分式方程及不等式的解法,解题的关键是熟练运用分式方程的解法,5.已知2x =是分式方程311k x x x -+=-的解,那么实数k 的值为( ) A .3B .4C .5D .6 【答案】B 【分析】将2x =代入原方程,即可求出k 值.【解析】解:将2x =代入方程311k x x x -+=-中,得231221k +=--解得:4k = .故选:B . 【点睛】本题考查了方程解的概念.使方程左右两边相等的未知数的值就是方程的解.“有根必代”是这类题的解题通法.6.若整数a 使关于x 的不等式组1112341x x x a x -+⎧≤⎪⎨⎪->+⎩,有且只有45个整数解,且使关于y 的方程2260111y a y y +++=++的解为非正数,则a 的值为( )A .61-或58-B .61-或59-C .60-或59-D .61-或60-或59-【答案】B【分析】先解不等式组,根据不等式组的整数解确定a 的范围,结合a 为整数,再确定a 的值,再解分式方程,根据分式方程的解为非正数,得到a 的范围,注意结合分式方程有意义的条件,从而可得答案. 【解析】解:1112341x x x a x -+⎧≤⎪⎨⎪->+⎩Q ①②由①得:25,x ≤ 由②得:x >13a +, 因为不等式组有且只有45个整数解,13a +∴<25,x ≤ 1203a +∴-≤<19,- 601a ∴-≤+<57,- 61a ∴-≤<58,-a Q 为整数,a ∴为61,60,59,---Q 2260111y a y y+++=++,22601,y a y ∴+++=+ 61,y a ∴=-- 而0,y ≤ 且1,y ≠- 610,a ∴--≤ 61,a ∴≥-又611,a --≠- 60,a ∴≠- 综上:a 的值为:61,59.-- 故选B .【点睛】本题考查的是由不等式组的整数解求参数系数的问题,考查分式方程的解为非正数,易错点是疏忽分式方程有意义,掌握以上知识是解题的关键.7.若关于x 的一元一次不等式组()213212x x x a ⎧-≤-⎪⎨->⎪⎩的解集为x ≥5,且关于y 的分式方程122+=---y a y y 有非负整数解,则符合条件的所有整数a 的和为( )A .-1B .-2C .-3D .0【答案】B 【分析】首先由不等式组的解集为x ≥5,得a <3,然后由分式方程有非负整数解,得a ≥-2且a ≠2的偶数,即可得解.【解析】由题意,得()2132x x -≤-,即5x ≥12x a ->,即2x a +>∴25a +<,即3a < 122+=---y a y y ,解得22a y +=有非负整数解,即202a y +=≥ ∴a ≥-2且a ≠2∴23a -≤<且2a ≠∴符合条件的所有整数a 的数有:-2,-1,0,1 又∵22a y +=为非负整数解, ∴符合条件的所有整数a 的数有:-2,0∴其和为202-+=-故选:B . 【点睛】此题主要考查根据不等式组的解集和分式方程的解求参数的值,熟练掌握,即可解题.8.某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是( )A .1600元B .1800元C .2000元D .2400元 【答案】C【分析】设原计划每间直播教室的建设费用是x 元,则实际每间建设费用为1.2x ,根据“实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元”列出方程求解即可.【解析】解:设原计划每间直播教室的建设费用是x 元,则实际每间建设费用为1.2x , 根据题意得:80004000800011.2x x+-=,解得:x =2000,经检验:x =2000是原方程的解, 答:每间直播教室的建设费用是2000元,故选:C .【点睛】本题考查了分式方程的应用,解题的关键是找到题目中的等量关系,难度不大.9.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km ”,乙对甲说:“我用你所花的时间,只能行驶80km ”.从他们的交谈中可以判断,乙驾车的时长为( )A .1.2小时B .1.6小时C .1.8小时D .2小时 【答案】C【分析】设乙驾车时长为x 小时,则乙驾车时长为(3﹣x )小时,根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x-km/h ,根据“各匀速行驶一半路程”列出方程求解即可. 【解析】解:设乙驾车时长为x 小时,则乙驾车时长为(3﹣x )小时, 根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x -km/h ,根据题意得:180(3)803x x x-=-,解得:x 1=1.8或x 2=9, 经检验:x 1=1.8或x 2=9是原方程的解,x 2=9不合题意,舍去,故答案为:C .【点睛】本题考查了分式方程的应用,解决本题的关键是正确理解题意,熟练掌握速度时间和路程之间的关系,找到题意中的等量关系.10.某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务若设原计划每周生产x 万个口罩,则可列方程为( )A .18018011.5x x x x--=+ B .18018011.5x x x x --=- C .18018021.5x x =+ D .18018021.5x x =- 【答案】A【分析】根据第一周之后,按原计划的生产时间=提速后生产时间+1,可得结果.【解析】由题知:18018011.5x x x x--=+ 故选:A . 【点睛】本题考查了分式方程的实际应用问题,根据题意列出方程式即可.11.若关于x 的分式方程2222x m m x x +=--有增根,则m 的值为_______. 【答案】1【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母20x -=,得到2x =,然后代入化为整式方程的方程算出m 的值.【解析】解:方程两边都乘2x =,得22(2)x m m x -=-∵原方程有增根,∴最简公分母20x -=,解得2x =,当2x =时,1m =故m 的值是1,故答案为1【点睛】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.12.若关于x 的分式方程333x a x x+--=2a 无解,则a 的值为_____. 【答案】1或12分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.【解析】去分母得:x-3a=2a (x-3),整理得:(1-2a )x=-3a ,当1-2a=0时,方程无解,故a=12; 当1-2a≠0时,x=312a a--=3时,分式方程无解,则a=1,故关于x的分式方程333x ax x+-+=2a无解,则a的值为:1或12.故答案为1或12.点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.13.若分式11x+的值等于1,则x=_____.【答案】0【分析】根据分式的值,可得分式方程,根据解分式方程,可得答案.【解析】解:由分式11x+的值等于1,得11x+=1,解得x=0,经检验x=0是分式方程的解.故答案为:0.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法是解决本题的关键.14.某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程_________.【答案】24024021.5x x=+【分析】设原计划每天生产零件x个,则实际每天生产零件1.5x个,根据比原计划少用2天,列方程即可.【解析】解:设原计划每天生产零件x个,则实际每天生产零件为1.5x个,由题意,得24024021.5x x=+.故答案是:24024021.5x x=+.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.15.方程3122xx x=++的解是_______.【答案】3 2【分析】根据分式方程的解法步骤解出即可.【解析】3122xx x=++左右同乘2(x+1)得: 2x=3解得x=32.经检验x=32是方程的跟.故答案为:32.【点睛】本题考查解分式方程,关键在于熟练掌握分式方程的解法步骤.16.解方程:32xx--+1=32x-.【答案】x=1【分析】找出最简公分母(x-2),去分母,变成一元一次方程从而得解.【解析】32xx--+1=32x-,两边同乘以(x﹣2)得,x﹣3+(x﹣2)=﹣3,解得,x=1.经检验x=1是原分式方程的解.【点睛】本题考查实数的混合运算,尤其是负指数运算,还考查了解分式方程,解题关键是熟练掌握实数混合运算顺序.。

方程与不等式之分式方程真题汇编及答案解析

方程与不等式之分式方程真题汇编及答案解析

方程与不等式之分式方程真题汇编及答案解析一、选择题1.为有效落实党中央“精准扶贫”战略决策,某市对农村实施“户户通”修路计划,已知该市计划在某村修路5000m ,在修了1000m 后,由于引入新技术,工作效率提高到原来的1.2倍,结果提前5天完成了任务.若设原来每天修路 m x ,则可列方程为( ) A .50004000100051.2x x x=+- B .5000100040005 1.2x x x +=+ C .5000400010005 1.2x x x -=+ D .5000100040005 1.2x x x-=+ 【答案】D 【解析】 【分析】本题依题意可知等量关系为原计划工作时间-实际工作时间=5,根据等量关系列出方程即可.【详解】设原来每天修路xm ,引入新技术后每天修路1.2xm ,实际工作天数为(100040001.2x x+),原计划工作天数为5000x天,根据题意得, 5000100040005 1.2x x x -=+, 故选D. 【点睛】本题考查了由实际问题抽象出分式方程,理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.2.下列说法中正确的是( )A .顺次连接一个四边形四边中点得到的四边形是平行四边形B .9的平方根为3C .抛物线21(1)32y x =-++的顶点坐标为(1,3) D .关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是m≥-1 【答案】A 【解析】 【分析】根据各个选项中的说法,可以判断各个选项中的说法是否正确,从而可以解答本题. 【详解】A 、顺次连接一个四边形四边中点得到的四边形是平行四边形,该选项正确;B 、9的平方根是±3,该选项错误;C 、抛物线21(1)32y x =-++的顶点坐标为(-1,3) ,该选项错误; D 、由方程121m x -=-去分母得:12m x +=,∵关于x 的分式方程的解为非负数,∴102m +≥且112m x +=≠, 解得:1m ≥-且1m ≠,该选项错误; 故选:A . 【点睛】本题考查了二次函数的性质、平方根、平行四边形的判定、中点四边形、解分式方程,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.解分式方程要注意分母不能为0这个条件.3.若 x=3 是分式方程2102a x x --=- 的根,则 a 的值是A .5B .-5C .3D .-3【答案】A 【解析】把x=3代入原分式方程得,210332a --=-,解得,a=5,经检验a=5适合原方程. 故选A.4.若关于x 的分式方程2xx -﹣12m x--=3的解为正整数,且关于y 的不等式组2()522126m y y y ⎧-≤⎪⎪⎨+⎪+>⎪⎩至多有六个整数解,则符合条件的所有整数m 的取值之和为( ) A .1 B .0C .5D .6【答案】A 【解析】 【分析】先求出一元一次不等式组的解集,根据“不等式组的解至多有六个整数解”确定m 的取值范围,再解分式方程,依据“解为正整数”进一步确定m 的值,最后求和即可. 【详解】解:化简不等式组为25632y m y y -≤⎧⎨+>+⎩,解得:﹣2<y ≤52m +, ∵不等式组至多有六个整数解,∴52m +≤4, ∴m ≤3,将分式方程的两边同时乘以x ﹣2,得 x +m ﹣1=3(x ﹣2), 解得:x =52m +, ∵分式方程的解为正整数, ∴m +5是2的倍数, ∵m ≤3,∴m =﹣3或m =﹣1或m =1或m =3, ∵x ≠2,∴52m +≠2, ∴m ≠﹣1,∴m =﹣3或m =1或m =3,∴符合条件的所有整数m 的取值之和为1, 故选:A . 【点睛】本题考查分式方程的解法、解一元一次不等式组;熟练掌握分式方程的解法、一元一次不等式组的解法,是解题关键,分式方程切勿遗漏增根的情况是本题易错点.5.对于非零实数a 、b ,规定a ⊗b =21a b a-.若x ⊗(2x ﹣1)=1,则x 的值为( ) A .1 B .13 C .﹣1D .-13【答案】A 【解析】 【分析】 【详解】解:根据题中的新定义可得:()21x x ⊗-=21121x x x-=-, 解得:x=1,经检验x=1是分式方程的解, 故选A . 【点睛】本题考查了新定义、解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6.若关于x 的分式方程233x mx x -=--有增根,则m 的值是( ) A .1- B .1C .2D .3【答案】B 【解析】 【分析】根据分式方程的增根的定义得出x-3=0,再进行判断即可. 【详解】 去分母得:x-2=m , ∴x=2+m ∵分式方程233x mx x -=--有增根, ∴x-3=0, ∴x= 3, ∴2+m=3, 所以m=1, 故选:B . 【点睛】本题考查了对分式方程的增根的定义的理解和运用,能根据题意得出方程x-3=0是解此题的关键,题目比较典型,难度不大.7.从4-,2-,1-,0,1,2,4,6这八个数中,随机抽一个数,记为a .若数a 使关于x 的一元二次方程()22240x a x a --+=有实数解.且关于y 的分式方程1311y a y y+-=--有整数解,则符合条件的a 的值的和是( ) A .6- B .4- C .2- D .2【答案】C 【解析】 【分析】由一元二次方程()22240x a x a --+=有实数解,确定a 的取值范围,由分式方程1311y a y y+-=--有整数解,确定a 的值即可判断. 【详解】方程()22240x a x a --+=有实数解,∴△=4(a −4)2−4a 2⩾0,∴满足条件的a 的值为−4,−2,−1,0,1,2 方程1311y a y y+-=-- 解得y=2a+2 ∵y 有整数解 ∴a=−4,0,2,4,6综上所述,满足条件的a 的值为−4,0,2, 符合条件的a 的值的和是−2 故选:C 【点睛】本题考查了一元二次方程根据方程根的情况确定方程中字母系数的取值范围;以及分式方程解的定义:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫分式方程的解.8.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=- B .120100x x 10=+ C .120100x 10x=- D .120100x 10x=+ 【答案】A 【解析】 【分析】 【详解】甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120100x x 10=-. 故选A.9.中秋节是我国的传统节日,人们素有吃月饼的习俗.汾阳月饼不仅汾阳人爱吃,而且风靡省城市场.省城某商场在中秋节来临之际购进A 、B 两种汾阳月饼共1500个,已知购进 A 种月饼和 B 种月饼的费用分别为3000元和2000元,且 A 种月饼的单价比 B 种月饼单价多1元.求 A 、B 两种月饼的单价各是多少?设 A 种月饼单价为x 元,根据题意,列方程正确的是( ) A .3000200015001x x +=+ B .2000300015001x x +=+ C .3000200015001x x +=- D .2000300015001x x +=- 【答案】C【分析】设A 种月饼单价为x 元,再分别表示出A 种月饼和B 种月饼的个数,根据“购进A 、B 两种汾阳月饼共1500个”,列出方程即可. 【详解】设A 种月饼单价为x 元,则B 种月饼单价为(x -1)元, 根据题意可列出方程3000200015001x x +=-, 故选C. 【点睛】本题考查分式方程的应用,读懂题意是解题关键.10.把分式方程11122x x x--=--,的两边同时乘以x-2,约去分母,得( ) A .1-(1-x)=1 B .1+(1-x)=1C .1-(1-x)=x-2D .1+(1-x)=x-2【答案】D 【解析】 【分析】本题需要注意的有两个方面:①、第二个分式的分母为2-x ,首先要化成x -2;②、等式右边的常数项不要漏乘. 【详解】 解:11122x x x--=-- 11+122x x x -=-- 两边同时乘以x-2,约去分母,得1+(1-x)=x-2 故选:D 【点睛】本题考查解分式方程.11.八年级(1)班全体师生义务植树300棵.原计划每小时植树x 棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是( )A .300300201.2x x-= B .300300201.260x x =- C .300300201.260x x x -=+ D .3002030060 1.2x x-= 【答案】D 【解析】 【分析】原计划每小时植树x 棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x 棵,原计划植300棵树可用时300x小时,实际用了3001.2x 小时,根据关键语句“结果提前20分钟完成任务”可得方程. 【详解】设原计划每小时植树x 棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x 棵,由题意得:3002030060 1.2x x-=, 故选:D . 【点睛】此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,表示出原计划植300棵树所用时间与实际所用时间.12.分式方程22111x x x -=--,解的情况是( ) A .x =1 B .x =2C .x =﹣1D .无解【答案】D 【解析】 【分析】观察式子确定最简公分母为(x+1)(x ﹣1),再进一步求解可得. 【详解】方程两边同乘以(x+1)(x ﹣1),得: x (x+1)﹣(x 2﹣1)=2, 解方程得:x =﹣1,检验:把x =﹣1代入x+1=0, 所以x =﹣1不是方程的解. 故选:D . 【点睛】此题考查分式方程的解,掌握运算法则是解题关键13.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x 千米/小时,则所列方程正确的是( )A .10x -102x =20 B .102x -10x=20 C .10x -102x =13D .102x -10x =13【答案】C 【解析】 【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的. 【详解】 由题意可得,10x -102x =13, 故选:C . 【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.14.如果解关于x 的分式方程2122m xx x -=--时出现增根,那么m 的值为 A .-2 B .2 C .4 D .-4【答案】D 【解析】 【详解】2122m xx x-=--,去分母,方程两边同时乘以(x ﹣2),得: m +2x =x ﹣2,由分母可知,分式方程的增根可能是2. 当x =2时,m +4=2﹣2,m =﹣4, 故选D .15.若分式方程2+1kx x 2--=12x-有增根,则k 的值为( ) A .﹣2 B .﹣1C .1D .2【答案】C 【解析】 【分析】根据分式方程有增根得到x=2,将其代入化简后的整式方程中求出k 即可. 【详解】解:分式方程去分母得:2(x ﹣2)+1﹣kx =﹣1,由题意将x=2代入得:1﹣2k=﹣1,解得:k=1.故选:C.【点睛】此题考查分式方程的增根,由增根求方程中其他未知数的值,根据增根的定义得到方程的解是解题的关键.16.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()A.﹣2 B.0 C.1 D.3【答案】B【解析】【分析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a的和为0.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.17.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.【答案】C【解析】设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:,故选C.18.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.3036101.5x x-=B.3030101.5x x-=C.3630101.5x x-=D.3036101.5x x+=【答案】A【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数10=亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.19.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得A .25301018060(%)x x -=+ B .253010180(%)x x -=+ C .30251018060(%)x x -=+ D .302510180(%)x x -=+ 【答案】A【解析】若设走路线一时的平均速度为x 千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x 千米/小时,()253010180%60x x -=+ 故选A .20.风筝会期间,几名同学租一辆面包车前去观看开幕式,面包车的租价为180元,出发时又增加两名同学,结果每人比原来少摊了3元钱车费,设前去观看开幕式的同学共x 人,则所列方程为( )A .18018032x x -=+ B .18018032x x -=+ C .18018032x x -=- D .18018032x x -=- 【答案】D【解析】【分析】先用x 表示出增加2名同学前和增加后每人分摊的车费钱,再根据增加后每人比原来少摊了3元钱车费列出方程即可.【详解】 解:设前去观看开幕式的同学共x 人,根据题意,得:18018032x x-=-. 故选:D.【点睛】 本题考查了分式方程的应用,解题的关键是弄清题意、找准等量关系,易错点是容易弄错增加前后的人数.。

初中数学分式方程精选试题(含答案和解析)

初中数学分式方程精选试题(含答案和解析)

初中数学分式方程精选试题一.选择题1. (2018·湖南怀化·4分)一艘轮船在静水中的最大航速为30km/h.它以最大航速沿江顺流航行100km所用时间.与以最大航速逆流航行80km所用时间相等.设江水的流速为v km/h.则可列方程为()A.=B.=C.=D.=【分析】根据“以最大航速沿江顺流航行100km所用时间.与以最大航速逆流航行80km所用时间相等.”建立方程即可得出结论.【解答】解:江水的流速为v km/h.则以最大航速沿江顺流航行的速度为(30+v)km/h.以最大航速逆流航行的速度为(30﹣v)km/h. 根据题意得..故选:C.【点评】此题是由实际问题抽象出分式方程.主要考查了水流问题.找到相等关系是解本题的关键.2.(2018•临安•3分)下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.【分析】此类题目难度不大.可用验算法解答.【解答】解:A.a12÷a6是同底数幂的除法.指数相减而不是相除.所以a12÷a6=a6.错误;B.(x+y)2为完全平方公式.应该等于x2+y2+2xy.错误;C.===﹣.错误;D.正确.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n.②÷=(a≥0.b>0).3.(2018•金华、丽水•3分)若分式的值为0.则x的值是()A. 3B.C. 3或D. 0【解析】【解答】解:若分式的值为0.则.解得.故答案为:A.【分析】分式指的是分母是含字母的整式且分母的值不为0的代数式;当分式为0时.则分子为零.分母不能为0.5.(2018·黑龙江哈尔滨·3分)方程=的解为()A.x=﹣1 B.x=0 C.x=D.x=1【分析】分式方程去分母转化为整式方程.求出整式方程的解得到x 的值.经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x.解得:x=1.经检验x=1是分式方程的解.故选:D.【点评】此题考查了解分式方程.利用了转化的思想.解分式方程注意要检验.6.(2018·黑龙江龙东地区·3分)已知关于x的分式方程=1的解是负数.则m的取值范围是()A.m≤3B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零.再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3.∵关于x的分式方程=1的解是负数.∴m﹣3<0.解得:m<3.当x=m﹣3=﹣1时.方程无解.则m≠2.故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解.正确得出分母不为零是解题关键.7.(2018•贵州黔西南州•4分)施工队要铺设1000米的管道.因在中考期间需停工2天.每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米.所列方程正确的是()A.=2 B.=2C.=2 D.=2【分析】设原计划每天施工x米.则实际每天施工(x+30)米.根据:原计划所用时间﹣实际所用时间=2.列出方程即可.【解答】解:设原计划每天施工x米.则实际每天施工(x+30)米. 根据题意.可列方程:﹣=2.故选:A.【点评】本题考查了由实际问题抽象出分式方程.关键是读懂题意.找出合适的等量关系.列出方程.8.(2018•海南•3分)分式方程=0的解是()A.﹣1 B.1 C.±1D.无解【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以x+1.得:x2﹣1=0.解得:x=1或x=﹣1.当x=1时.x+1≠0.是方程的解;当x=﹣1时.x+1=0.是方程的增根.舍去;所以原分式方程的解为x=1.故选:B.【点评】本题主要考查分式方程的解.解题的关键是熟练掌握解分式方程的步骤.9.(2018湖南张家界3.00分)若关于x的分式方程=1的解为x=2.则m的值为()A.5 B.4 C.3 D.2【分析】直接解分式方程进而得出答案.【解答】解:∵关于x的分式方程=1的解为x=2.∴x=m﹣2=2.解得:m=4.故选:B.【点评】此题主要考查了分式方程的解.正确解方程是解题关键.二.填空题1. (2018·湖北襄阳·3分)计算﹣的结果是.【分析】根据同分母分式加减运算法则计算即可.最后要注意将结果化为最简分式.【解答】解:原式===.故答案为:.【点评】本题考查了分式的加减.归纳提炼:分式的加减运算中.如果是同分母分式.那么分母不变.把分子直接相加减即可;如果是异分母分式.则必须先通分.把异分母分式化为同分母分式.然后再相加减.2. (2018•达州•3分)若关于x的分式方程=2a无解.则a 的值为.【分析】直接解分式方程.再利用当1﹣2a=0时.当1﹣2a≠0时.分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3).整理得:(1﹣2a)x=﹣3a.当1﹣2a=0时.方程无解.故a=;当1﹣2a≠0时.x==3时.分式方程无解.则a=1.故关于x的分式方程=2a无解.则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.3. (2018•遂宁•4分)A.B两市相距200千米.甲车从A市到B市.乙车从B市到A市.两车同时出发.已知甲车速度比乙车速度快15千米/小时.且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时.则根据题意.可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时.则根据题意.可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程.正确表示出两车所用时间是解题关键.4. (2018•湖州•4分)当x=1时.分式的值是.【分析】将x=1代入分式.按照分式要求的运算顺序计算可得.【解答】解:当x=1时.原式==.故答案为:.【点评】本题主要考查分式的值.在解答时应从已知条件和所求问题的特点出发.通过适当的变形、转化.才能发现解题的捷径.5. (2018•嘉兴•4分.)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%.若设甲每小时检测个.则根据题意,可列出方程:________.【答案】【解析】【分析】若设甲每小时检测个.检测时间为.乙每小时检测个.检测时间为.根据甲检测300个比乙检测200个所用的时间少.列出方程即可.【解答】若设甲每小时检测个.检测时间为.乙每小时检测个.检测时间为.根据题意有:.故答案为:【点评】考查分式方程的应用.解题的关键是找出题目中的等量关系.7.(2018·黑龙江哈尔滨·3分)函数y=中.自变量x的取值范围是x≠4.【分析】根据分式分母不为0列出不等式.解不等式即可.【解答】解:由题意得.x﹣4≠0.解得.x≠4.故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围.掌握分式分母不为0是解题的关键.8.(2018·黑龙江齐齐哈尔·3分)若关于x的方程+=无解.则m的值为﹣1或5或﹣.【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【解答】解:去分母得:x+4+m(x﹣4)=m+3.可得:(m+1)x=5m﹣1.当m+1=0时.一元一次方程无解.此时m=﹣1.当m+1≠0时.则x==±4.解得:m=5或﹣.综上所述:m=﹣1或5或﹣.故答案为:﹣1或5或﹣.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.9.(2018•广西贵港•3分)若分式的值不存在.则x的值为﹣1 .【分析】直接利用分是有意义的条件得出x的值.进而得出答案.【解答】解:若分式的值不存在.则x+1=0.解得:x=﹣1.故答案为:﹣1.【点评】此题主要考查了分式有意义的条件.正确把握分式有意义的条件:分式有意义的条件是分母不等于零是解题关键.11.(2018•贵州铜仁•4分)分式方程=4的解是x= ﹣9 .【分析】分式方程去分母转化为整式方程.求出整式方程的解得到x 的值.经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=4x+8.解得:x=﹣9.经检验x=﹣9是分式方程的解.故答案为:﹣912. (2018湖南长沙3.00分)化简:= 1 .【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减.分母不变.把分子相加减计算即可.【解答】解:原式==1.故答案为:1.【点评】本题考查了分式的加减法法则.解题时牢记定义是关键.13.(2018湖南湘西州4.00分)要使分式有意义.则x的取值范围为x≠﹣2 .【分析】根据根式有意义的条件即可求出答案.【解答】解:由题意可知:x+2≠0.∴x≠﹣2故答案为:x≠﹣2【点评】本题考查分式有意义的条件.解题的关键是正确理解分式有意义的条件.本题属于基础题型.14. (2018•达州•3分)若关于x的分式方程=2a无解.则a 的值为.【分析】直接解分式方程.再利用当1﹣2a=0时.当1﹣2a≠0时.分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3).整理得:(1﹣2a)x=﹣3a.当1﹣2a=0时.方程无解.故a=;当1﹣2a≠0时.x==3时.分式方程无解.则a=1.故关于x的分式方程=2a无解.则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.15. (2018•遂宁•4分)A.B两市相距200千米.甲车从A市到B市.乙车从B市到A市.两车同时出发.已知甲车速度比乙车速度快15千米/小时.且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时.则根据题意.可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时.则根据题意.可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程.正确表示出两车所用时间是解题关键.三.解答题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·5分)化简:•.【分析】先将分子、分母因式分解.再约分即可得.【解答】解:原式=•=.【点评】本题主要考查分式的乘除法.解题的关键是掌握分式乘除运算顺序和运算法则.2. (2018·湖北随州·6分)先化简.再求值:.其中x为整数且满足不等式组.【分析】根据分式的除法和加法可以化简题目中的式子.由x为整数且满足不等式组可以求得x的值.从而可以解答本题.【解答】解:===.由得.2<x≤3.∵x是整数.∴x=3.∴原式=.【点评】本题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解.解答本题的关键是明确分式的化简求值的计算方法.3. (2018·湖北襄阳·6分)正在建设的“汉十高铁”竣工通车后.若襄阳至武汉段路程与当前动车行驶的路程相等.约为325千米.且高铁行驶的速度是当前动车行驶速度的2.5倍.则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.【分析】设高铁的速度为x千米/小时.则动车速度为0.4x千米/小时.根据题意列出方程.求出方程的解即可.【解答】解:设高铁的速度为x千米/小时.则动车速度为0.4x千米/小时.根据题意得:﹣=1.5.解得:x=325.经检验x=325是分式方程的解.且符合题意.则高铁的速度是325千米/小时.【点评】此题考查了分式方程的应用.弄清题中的等量关系是解本题的关键.4.(2018•内蒙古包头市•3分)化简;÷(﹣1)= ﹣.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=÷(﹣)=÷=•=﹣.故答案为:﹣.【点评】本题主要考查分式的混合运算.解题的关键是掌握分式混合运算顺序和运算法则.2.(2018•内蒙古包头市•10分)某商店以固定进价一次性购进一种商品.3月份按一定售价销售.销售额为2400元.为扩大销量.减少库存.4月份在3月份售价基础上打9折销售.结果销售量增加30件.销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元.那么该商店4月份销售这种商品的利润是多少元?【分析】(1)设该商店3月份这种商品的售价为x元.则4月份这种商品的售价为0.9x元.根据数量=总价÷单价结合4月份比3月份多销售30件.即可得出关于x的分式方程.解之经检验即可得出结论;(2)设该商品的进价为y元.根据销售利润=每件的利润×销售数量.即可得出关于y的一元一次方程.解之即可得出该商品的进价.再利用4月份的利润=每件的利润×销售数量.即可求出结论.【解答】解:(1)设该商店3月份这种商品的售价为x元.则4月份这种商品的售价为0.9x元.根据题意得:=﹣30.解得:x=40.经检验.x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元.(2)设该商品的进价为y元.根据题意得:(40﹣a)×=900.解得:a=25.∴(40×0.9﹣25)×=990(元).答:该商店4月份销售这种商品的利润是990元.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.6.(2018•山东烟台市•6分)先化简.再求值:(1+)÷.其中x满足x2﹣2x﹣5=0.【分析】原式括号中两项通分并利用同分母分式的加法法则计算.同时利用除法法则变形.约分得到最简结果.把已知等式变形后代入计算即可求出值.【解答】解:原式=•=•=x(x﹣2)=x2﹣2x.由x2﹣2x﹣5=0.得到x2﹣2x=5.则原式=5.【点评】此题考查了分式的化简求值.熟练掌握运算法则是解本题的关键.7.(2018•山东东营市•8分)小明和小刚相约周末到雪莲大剧院看演出.他们的家分别距离剧院1200m和2000m.两人分别从家中同时出发.已知小明和小刚的速度比是3:4.结果小明比小刚提前4min到达剧院.求两人的速度.【分析】设小明的速度为3x米/分.则小刚的速度为4x米/分.根据时间=路程÷速度结合小明比小刚提前4min到达剧院.即可得出关于x 的分式方程.解之经检验后即可得出结论.【解答】解:设小明的速度为3x米/分.则小刚的速度为4x米/分. 根据题意得:﹣=4.解得:x=25.经检验.x=25是分式方程的根.且符合题意.∴3x=75.4x=100.答:小明的速度是75米/分.小刚的速度是100米/分.【点评】本题考查了分式方程的应用.找准等量关系.正确列出分式方程是解题的关键.8.(2018•山东济宁市•7分)先化简.再求值:﹣÷(﹣).其中a=﹣.【分析】首先计算括号里面的减法.然后再计算除法.最后再计算减法.化简后.再代入a的值可得答案.【解答】解:原式=﹣÷[﹣].=﹣÷[﹣].=﹣÷.=﹣•.=﹣.=﹣.当a=﹣时.原式=﹣=﹣4.【点评】此题主要考查了分式的化简求值.关键是掌握化简求值.一般是先化简为最简分式或整式.再代入求值.9. (2018•达州•6分)化简代数式:.再从不等式组的解集中取一个合适的整数值代入.求出代数式的值.【分析】直接将=去括号利用分式混合运算法则化简.再解不等式组.进而得出x的值.即可计算得出答案.【解答】解:原式=×﹣×=3(x+1)﹣(x﹣1)=2x+4..解①得:x≤1.解②得:x>﹣3.故不等式组的解集为:﹣3<x≤1.把x=﹣2代入得:原式=0.【点评】此题主要考查了分式的化简求值以及不等式组解法.正确掌握分式的混合运算法则是解题关键.10. (2018•遂宁•8分)先化简.再求值•+.(其中x=1.y=2)【分析】根据分式的运算法则即可求出答案.【解答】解:当x=1.y=2时.原式=•+=+==﹣3【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.11.(2018•资阳•7分)先化简.再求值:÷(﹣a).其中a=﹣1.b=1.【分析】先根据分式混合运算顺序和运算法则化简原式.再将A.b的值代入计算可得.【解答】解:原式=÷=•=.当a=﹣1.b=1时.原式====2+.【点评】本题主要考查分式的化简求值.解题的关键是掌握分式混合运算顺序和运算法则.12.(2018•乌鲁木齐•10分)某校组织学生去9km外的郊区游玩.一部分学生骑自行车先走.半小时后.其他学生乘公共汽车出发.结果他们同时到达.己知公共汽车的速度是自行车速度的3倍.求自行车的速度和公共汽车的速度分别是多少?【分析】设自行车的速度为xkm/h.则公共汽车的速度为3xkm/h.根据时间=路程÷速度结合乘公共汽车比骑自行车少用小时.即可得出关于x的分式方程.解之经检验即可得出结论.【解答】解:设自行车的速度为xkm/h.则公共汽车的速度为3xkm/h. 根据题意得:﹣=.解得:x=12.经检验.x=12是原分式方程的解.∴3x=36.答:自行车的速度是12km/h.公共汽车的速度是36km/h.【点评】本题考查了分式方程的应用.找准等量关系.正确列出分式方程是解题的关键.13.(2018•临安•6分)(1)化简÷(x﹣).(2)解方程:+=3.【分析】(1)先计算括号内分式的减法.再计算除法即可得;(2)先去分母化分式方程为整式方程.解整式方程求解的x值.检验即可得.【解答】解:(1)原式=÷(﹣)=÷=•=;(2)两边都乘以2x﹣1.得:2x﹣5=3(2x﹣1).解得:x=﹣.检验:当x=﹣时.2x﹣1=﹣2≠0.所以分式方程的解为x=﹣.【点评】本题主要考查分式的混合运算与解分式方程.解题的关键是掌握解分式方程和分式混合运算的步骤.14.(2018•嘉兴•4分)化简并求值()•.其中a=1.b=2.【答案】原式= =a-b当a=1.b=2时.原式=1-2=-1【考点】利用分式运算化简求值【解析】分式的化简当中.可先运算括号里的.或都运用乘法分配律计算都可16. (2018•贵州安顺•10分)先化简.再求值:.其中.【答案】..【解析】分析:先化简括号内的式子.再根据分式的除法进行计算即可化简原式.然后将x=-2代入化简后的式子即可解答本题.详解:原式=.∵.∴.舍.当时.原式.点睛:本题考查分式的化简求值.解题的关键是明确分式化简求值的方法.17.(2018•广西桂林•8分)某校利用暑假进行田径场的改造维修.项目承包单位派遣一号施工队进场施工.计划用40天时间完成整个工程:当一号施工队工作5天后.承包单位接到通知.有一大型活动要在该田径场举行.要求比原计划提前14天完成整个工程.于是承包单位派遣二号与一号施工队共同完成剩余工程.结果按通知要求如期完成整个工程.(1)若二号施工队单独施工.完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工.完成整个工程需要多少天?【答案】(1)60天;(2)24天.【解析】分析:(1)设二号施工队单独施工需要x天.根据题意可知一号施工队5天工作总量与一号施工队和二号施工队合作工作总量之和=1列出方程求解即可;(2)根据工作总量÷工作效率=工作时间求解即可.详解:(1)设二号施工队单独施工需要x天.依题可得解得x=60.经检验.x=60是原分式方程的解.∴由二号施工队单独施工.完成整个工期需要60天.(2)由题可得(天).∴若由一、二号施工队同时进场施工.完成整个工程需要24天.点睛:本题考查了列分式方程解应用题.灵活运用和掌握工作总量÷工作效率=工作时间是解题关键.18.(2018•广西南宁•6分)解分式方程:﹣1=.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论依次计算可得.【解答】解:两边都乘以3(x﹣1).得:3x﹣3(x﹣1)=2x.解得:x=1.5.检验:x=1.5时.3(x﹣1)=1.5≠0.所以分式方程的解为x=1.5.【点评】本题主要考查解分式方程.解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.19. 2018·黑龙江大庆·4分)解方程:﹣=1.【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2.求出方程的解.再代入x(x+3)进行检验即可.【解答】解:两边都乘以x(x+3).得:x2﹣(x+3)=x(x+3).解得:x=﹣.检验:当x=﹣时.x(x+3)=﹣≠0.所以分式方程的解为x=﹣.20. (2018·黑龙江哈尔滨·7分)先化简.再求代数式(1﹣)÷的值.其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=4cos30°+3tan45°时.所以a=2+3原式=•=【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.21(2018·黑龙江龙东地区·5分)先化简.再求值:(1﹣)÷.其中a=sin30°.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=sin30°时.所以a=原式=•=•==﹣1【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.22..(2018·湖北省恩施·8分)先化简.再求值:•(1+)÷.其中x=2﹣1.【分析】直接分解因式.再利用分式的混合运算法则计算得出答案.【解答】解:•(1+)÷=••把x=2﹣1代入得.原式===.【点评】此题主要考查了分式的化简求值.正确进行分式的混合运算是解题关键.23.(2018•福建A卷•8分)先化简.再求值:(﹣1)÷.其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子.然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===.当m=+1时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确分式化简求值的方法.24.(2018•福建B卷•8分)先化简.再求值:(﹣1)÷.其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子.然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===.当m=+1时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确分式化简求值的方法.25.(2018•广东•6分)先化简.再求值:•.其中a=.【分析】原式先因式分解.再约分即可化简.继而将a的值代入计算.【解答】解:原式=•=2a.当a=时.原式=2×=.【点评】本题主要考查分式的化简求值.解题的关键是熟练掌握分式混合运算顺序和运算法则.26.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.27.(2018•广西北海•6分)解分式方程:【答案】 x = 1.5【考点】解分式方程【解答】解:方程左右两边同乘3(x -1).得3x - 3(x -1) = 2x3x - 3x + 3 = 2x2x = 3x = 1.5检验:当x = 1.5时 . 3(x -1) ≠ 0所以.原分式方程的解为 x = 1.5 .【点评】根据解分式的一般步骤进行去分母.然后解一元一次方程,最后记得检验即可.28.(2018•广西贵港•10分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.【分析】(1)先计算绝对值、零指数幂、负整数指数幂、代入三角函数值.再计算加减可得;(2)分式方程去分母转化为整式方程.求出整式方程的解得到x的值.经检验即可得到分式方程的解.【解答】解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2).得:4+(x+2)(x﹣2)=x+2. 整理.得:x2﹣x﹣2=0.解得:x1=﹣1.x2=2.检验:当x=﹣1时.(x+2)(x﹣2)=﹣3≠0.当x=2时.(x+2)(x﹣2)=0.所以分式方程的解为x=﹣1.【点评】此题考查了实数的运算与解分式方程.解分式方程的基本思想是“转化思想”.把分式方程转化为整式方程求解.解分式方程一定注意要验根.29.(2018•贵州黔西南州•12分)(2)先化简(1﹣)•.再在1.2.3中选取一个适当的数代入求值.【分析】(2)根据分式的减法和乘法可以化简题目中的式子.再从1.2.3中选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:(2)(1﹣)•===. 当x=2时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确它们各自的计算方法.31.(2018年湖南省娄底市)先化简.再求值:( +)÷.其中x=.【分析】原式括号中两项通分并利用同分母分式的加法法则计算.同时利用除法法则变形.约分得到最简结果.把x的值代入计算即可求出值.【解答】解:原式=•=.当x=时.原式==3+2.【点评】此题考查了分式的化简求值.熟练掌握运算法则是解本题的关键.31.(2018湖南省邵阳市)(8分)某公司计划购买A.B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料.且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A.B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A.B两种型号的机器人共20台.要求每小时搬运材料不得少于2800kg.则至少购进A型机器人多少台?【分析】(1)设B型机器人每小时搬运x千克材料.则A型机器人每小时搬运(x+30)千克材料.根据A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同建立方程求出其解就可以得出结论.(2)设购进A型机器人a台.根据每小时搬运材料不得少于2800kg 列出不等式并解答.【解答】解:(1)设B型机器人每小时搬运x千克材料.则A型机器人每小时搬运(x+30)千克材料.根据题意.得=.解得x=120.经检验.x=120是所列方程的解.当x=120时.x+30=150.答:A型机器人每小时搬运150千克材料.B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台.则购进B型机器人(20﹣a)台.根据题意.得150a+120(20﹣a)≥2800.解得a≥.∵a是整数.∴a≥14.答:至少购进A型机器人14台.【点评】本题考查了分式方程的运用.一元一次不等式的运用.解决问题的关键是读懂题意.找到关键描述语.进而找到所求的量的数量关。

专题04 分式与分式方程-2022年中考数学真题分项汇编(全国通用)(第2期)(解析版)

专题04 分式与分式方程-2022年中考数学真题分项汇编(全国通用)(第2期)(解析版)

专题04 分式与分式方程一.选择题1.(2022·广西玉林)若x 是非负整数,则表示22242(2)x x x x --++的值的对应点落在下图数轴上的范围是( )A .①B .②C .③D .①或②【答案】B【分析】先对分式进行化简,然后问题可求解. 【详解】解:22242(2)x x x x --++ =()()222224(2)2x x x x x +--++ =()2222442x x x x +-++ =()222(2)x x ++=1;故选B .【点睛】本题主要考查分式的运算,熟练掌握分式的减法运算是解题的关键.2.(2022·黑龙江绥化)有一个容积为243m 的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟,设细油管的注油速度为每分钟x 3m ,由题意列方程,正确的是( ) A .1212304x x += B .1515244x x += C .3030242x x += D .1212302x x+= 【答案】A【分析】由粗油管口径是细油管的2倍,可知粗油管注水速度是细油管的4倍.可设细油管的注油速度为每分钟x 3m ,粗油管的注油速度为每分钟4x 3m ,继而可得方程,解方程即可求得答案.【详解】解:∵细油管的注油速度为每分钟x 3m ,∵粗油管的注油速度为每分钟4x 3m , ∵1212304x x+=.故选:A . 【点睛】此题考查了分式方程的应用,准确找出数量关系是解题的关键.3.(2022·山东威海)试卷上一个正确的式子(11a b a b ++-)÷★=2a b +被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( )A .a a b -B .a b a -C .a a b +D .224a a b - 【答案】A【分析】根据分式的混合运算法则先计算括号内的,然后计算除法即可. 【详解】解:11a b a b ⎛⎫+÷ ⎪+-⎝⎭∵=2a b + ()()a b a b a b a b -++÷+-∵=2a b+ ∵=()()22a a b a b a b ÷+-+ =a a b-,故选A . 【点睛】题目主要考查分式的混合运算,熟练掌握运算法则是解题关键.4.(2022·黑龙江)已知关于x 的分式方程23111x m x x --=--的解是正数,则m 的取值范围是( ) A .4m >B .4m <C .4m >且5m ≠D .4m <且1m ≠ 【答案】C【分析】先将分式方程去分母转化为整式方程,求出整式方程的解,根据分式方程的解为正数得到40m ->且410m --≠,即可求解.【详解】方程两边同时乘以(1)x -,得231x m x -+=-,解得4x m =-,关于x 的分式方程23111x m x x--=--的解是正数, 0x ∴>,且10x -≠,即40m ->且410m --≠,4m ∴>且5m ≠,故选:C .【点睛】本题考查了分式方程的解,涉及解分式方程和分式方程分母不为0,熟练掌握知识点是解题的关键. 5.(2022·广西)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x 米,根据题意可列方程( )A .1.482.413x x -=-B .1.482.413x x +=+C .1.4282.4213x x -=-D .1.4282.4213x x +=+ 【答案】D【分析】设边衬的宽度为x 米,则整幅图画宽为(1.4+2x )米, 整幅图画长为(2.4+2x )米,根据整幅图画宽与长的比是8:13,列出方程即可.【详解】解:设边衬的宽度为x 米,根据题意,得1.4282.4213x x +=+,故选:D . 【点睛】本题考查分式方程的应用,根据题意找出等量关系是解题的关键.6.(2022·海南)分式方程2101x -=-的解是( ) A .1x =B .2x =-C .3x =D .3x =- 【答案】C【分析】按照解分式方程的步骤解答即可. 【详解】解:2101x -=- 2-(x -1)=02-x +1=0-x =-3x =3检验,当x =3时,x -1≠0,故x =3是原分式方程的解.故答案为C .【点睛】本题主要考查了解分式方程,解分式方程的基本步骤为去分母、去括号、移项、合并同类项、系数化为1,以及检验,特别是检验是解分式方程的关键.7.(2022·内蒙古通辽)若关于x 的分式方程:121222k x x --=--的解为正数,则k 的取值范围为( ) A .2k < B .2k <且0k ≠ C .1k >-D .1k >-且0k ≠【答案】B【分析】先解方程,含有k 的代数式表示x ,在根据x 的取值范围确定k 的取值范围.【详解】解:∵121222k x x--=--, ∵()22121x k --+=-,解得:2x k =-,∵解为正数,∵20k ->,∵2k <,∵分母不能为0,∵2x ≠,∵22k -≠,解得0k ≠,综上所述:2k <且0k ≠,故选:B .【点睛】本题考查解分式方程,求不等式的解集,能够熟练地解分式方程式解决本题的关键.8.(2022·贵州铜仁)下列计算错误的是( )A .|2|2-=B .231-⋅=a a aC .2111a a a -=+-D .()323a a = 【答案】D【分析】根据绝对值,同底数幂的乘法,负整数指数幂,分式的性质,幂的乘方计算法则求解即可.【详解】解:A 、|2|2-=,计算正确,不符合题意;B 、2311aa a a --=⋅=,计算正确,不符合题意; C 、()()2111111a a a a a a +--==+--,计算正确,不符合题意; D 、()326a a =,计算错误,符合题意;故选D . 【点睛】本题主要考查了绝对值,同底数幂的乘法,负整数指数幂,分式的性质,幂的乘方计算法则,熟知相关知识是解题的关键.9.(2022·广西贵港)据报道:芯片被誉为现代工业的掌上明珠,芯片制造的核心是光刻技术,我国的光刻技术水平已突破到28nm .已知91nm 10m -=,则28nm 用科学记数法表示是( )A .92810m -⨯B .92.810m -⨯C .82.810m -⨯D .102.810m -⨯【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:∵91nm 10m -=,∵28nm=2.8×10-8m .故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(2022·山东潍坊)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:267100% 6.6%4036⨯≈).2022年3月当月增速为14.0%-,设2021年3月原油进口量为x 万吨,下列算法正确的是( )A .4271100%14.0%4271x -⨯=- B .4271100%14.0%4271x -⨯=- C .4271100%14.0%x x -⨯=- D .4271100%14.0%x x-⨯=- 【答案】D【分析】根据题意列式即可.【详解】解:设2021年3月原油进口量为x 万吨,则2022年3月原油进口量比2021年3月增加(4271-x )万吨, 依题意得:4271100%14.0%x x-⨯=-,故选:D . 【点睛】本题考查了列分式方程,关键是找出题目蕴含的数量关系.11.(2022·辽宁营口)分式方程322x x =-的解是( ) A .2x =B .6x =-C .6x =D .2x =- 【答案】C 【分析】先去分母,去括号,移项,合并同类项得出答案,最后检验即可. 【详解】解:322x x =-, 去分母,得3(2)2x x -=, 去括号,得362x x -=,移项,得326x x -=,所以6x =.经检验,6x =是原方程的解.故选:C .【点睛】本题主要考查了解分式方程,掌握解分式方程的步骤是解题的关键.12.(2022·湖北恩施)一艘轮船在静水中的速度为30km/h ,它沿江顺流航行144km 与逆流航行96km 所用时间相等,江水的流速为多少?设江水流速为v km/h ,则符合题意的方程是( )A .144963030v v =+-B .1449630v v =-C .144963030v v =-+D .1449630v v=+ 【答案】A【分析】先分别根据“顺流速度=静水速度+江水速度”、“逆流速度=静水速度-江水速度”求出顺流速度和逆流速度,再根据“沿江顺流航行144km 与逆流航行96km 所用时间相等”建立方程即可得.【详解】解:由题意得:轮船的顺流速度为(30)km/h v +,逆流速度为(30)km/h v -, 则可列方程为144963030v v=+-, 故选:A .【点睛】本题考查了列分式方程,正确求出顺流速度和逆流速度是解题关键.13.(2022·山东临沂)将5kg 浓度为98%的酒精,稀释为75%的酒精.设需要加水kg x ,根据题意可列方程为( )A .0.9850.75x ⨯=B .0.9850.755x ⨯=+ C .0.7550.98x ⨯= D .0.7550.985x ⨯=- 【答案】B【分析】利用酒精的总质量不变列方程即可.【详解】设需要加水kg x , 由题意得0.9850.755x⨯=+, 故选:B .【点睛】本题考查了分式方程的实际应用,准确理解题意,找到等量关系是解题的关键.14.(2022·黑龙江哈尔滨)方程233x x =-的解为( ) A .3x =B .9x =-C .9x =D .3x =-【答案】C【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】解:233x x =- 去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.15.(2022·江苏无锡)方程213x x =-的解是( ). A .3x =-B .1x =-C .3x =D .1x = 【答案】A【分析】根据解分式方程的基本步骤进行求解即可.先两边同时乘最简公分母(3)x x -,化为一元一次方程;然后按常规方法,解一元一次方程;最后检验所得一元一次方程的解是否为分式方程的解.【详解】解:方程两边都乘(3)x x -,得23x x =-解这个方程,得3x =-检验:将3x =-代入原方程,得 左边13=-,右边13=-,左边=右边. 所以,3x =-是原方程的根.故选:A .【点睛】本题考查解分式方程,熟练掌握解分式方程的基本步骤和验根是解题的关键.16.(2022·山东青岛)我国古代数学家祖冲之推算出π的近似值为355113,它与π的误差小于0.0000003.将0.0000003用科学记数法可以表示为( )A .7310-⨯B .60.310-⨯C .6310-⨯D .7310⨯【答案】A 【分析】绝对值较小的数的科学记数法的一般形式为:a ×10-n ,在本题中a 应为3,10的指数为-7.【详解】解:0.00000037310故选A【点睛】本题考查的是用科学记数法表示绝对值较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 由原数左边起第一个不为零的数字前面的0的个数决定.17.(2022·黑龙江牡丹江)函数y x 的取值范围是【 】 A .x≥1且x≠3B .x≥1C .x≠3D .x >1且x≠3 【答案】A【详解】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0x 10x 1{{x 1x 30x 3-≥≥⇒⇒≥-≠≠且x 3≠.故选A .考点:函数自变量的取值范围,二次根式和分式有意义的条件.二.填空题18.(2022·湖南)有一组数据:13123a =⨯⨯,25234a =⨯⨯,37345a =⨯⨯,⋯,21(1)(2)n n a n n n +=++.记123n n S a a a a =+++⋯+,则12S =__. 【答案】201182【分析】通过探索数字变化的规律进行分析计算. 【详解】解:13111311123222212a ===⨯+-⨯⨯⨯+; 2551113123424222222a ===⨯+-⨯⨯⨯+; 3771113134560232232a ===⨯+-⨯⨯⨯+; ⋯,()()2111131122122n n a n n n n n n +==⨯+-⨯++++,当12n =时, 原式11111113111122312231323414⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++++⋅⋅⋅-⨯++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭201182=, 故答案为:201182. 【点睛】本题考查分式的运算,探索数字变化的规律是解题关键.19.(2022·黑龙江牡丹江)某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务 .设乙车间每天生产x 个,可列方程为___________ . 【答案】40050010x x =+ 【分析】设乙车间每天生产x 个,根据甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务可列出方程.【详解】解:设乙车间每天生产x 个,则40050010x x =+. 故答案为:40050010x x =+. 【点睛】本题考查理解题意的能力,关键设出生产个数,以时间作为等量关系列分式方程.20.(2022·湖南长沙)分式方程253x x =+的解是_____________ . 【答案】x =2【详解】解:两边同乘x (x +3),得2(x +3)=5x ,解得x =2,经检验x =2是原方程的根;故答案为:x =2.【点睛】考点:解分式方程.21.(2022·黑龙江哈尔滨)在函数53x y x =+中,自变量x 的取值范围是___________. 【答案】35x ≠- 【分析】根据分式中分母不能等于零,列出不等式530x +≠,计算出自变量x 的范围即可.【详解】根据题意得:530x +≠∵53x ≠- ∵35x ≠- 故答案为:35x ≠-【点睛】本题考查了函数自变量的取值范围,分式有意义的条件,分母不为零,解答本题的关键是列出不等式并正确求解.22.(2022·四川广元)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为_____.【答案】3.4×10-10【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂.【详解】100.00000000034 3.410-=⨯故答案为:103.410-⨯.【点睛】本题考查用科学记数法表示绝对值小于1的数,一般形式为a ×10-n ,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的 0的个数决定.23.(2022·湖南郴州)若23a b b -=,则a b=________. 【答案】53 【分析】由分式的运算法则进行计算,即可得到答案. 【详解】解:23a b b -= ()32a b b ∴-=,332,a b b ∴-= 35,a b ∴=53a b ∴=; 故答案为:53. 【点睛】本题考查了分式的运算法则,解题的关键是掌握运算法则进行计算.24.(2022·山东青岛)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x 米/分,那么x 满足的分式方程为__________.【答案】300030003(125%)x x-=+ 【分析】根据比赛时小亮的平均速度比训练前提高了25%,可得比赛时小亮平均速度为(1+25%)x 米/分,根据比赛时所用时间比训练前少用3分钟列出方程.【详解】解:∵比赛时小亮的平均速度比训练前提高了25%,小亮训练前的平均速度为x 米/分, ∵比赛时小亮平均速度为(1+25%)x 米/分, 根据题意可得300030003(125%)x x -=+, 故答案为:300030003(125%)x x-=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键. 25.(2022·北京)方程215x x=+的解为___________. 【答案】x =5【分析】观察可得最简公分母是x (x +5),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,再进行检验即可得解. 【详解】解:215x x =+ 方程的两边同乘x (x +5),得:2x =x +5, 解得:x =5, 经检验:把x =5代入x (x +5)=50≠0. 故原方程的解为:x =5【点睛】此题考查了分式方程的求解方法,注意掌握转化思想的应用,注意解分式方程一定要验根,26.(2022·内蒙古包头)计算:222a b ab a b a b-+=--___________. 【答案】-a b ##b a -+【分析】分母相同,分子直接相加,根据完全平方公式的逆用即可得.【详解】解:原式=2222()a b ab a b a b a b a b+--==---, 故答案为:-a b .【点睛】本题考查了分式的加法,解题的关键是掌握完全平方公式.27.(2022·山东威海)按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是 _____.【答案】1【分析】根据程序分析即可求解.【详解】解:∵输出y 的值是2,∵上一步计算为121x=+或221x =- 解得1x =(经检验,1x =是原方程的解),或32x =当10x =>符合程序判断条件,302x =>不符合程序判断条件 故答案为:1 【点睛】本题考查了解分式方程,理解题意是解题的关键.28.(2022·黑龙江齐齐哈尔)若关于x 的分式方程2122224x m x x x ++=-+-的解大于1,则m 的取值范围是______________.【答案】m >0且m ≠1【分析】先解分式方程得到解为1x m =+,根据解大于1得到关于m 的不等式再求出m 的取值范围,然后再验算分母不为0即可.【详解】解:方程两边同时乘以()()22x x +-得到:22(2)2x x x m ,整理得到:1x m =+,∵分式方程的解大于1,∵11m +>,解得:0m >,又分式方程的分母不为0,∵12m 且12m ,解得:1m ≠且3m ≠-, ∵m 的取值范围是m >0且m ≠1.【点睛】本题考查分式方程的解法,属于基础题,要注意分式方程的分母不为0这个隐藏条件. 29.(2022·广西)当x =______时,分式22x x +的值为零. 【答案】0【分析】根据分式值为零,分子等于零,分母不为零得2x =0,x +2≠0求解即可.【详解】解:由题意,得2x =0,且x +2≠0,解得:x =0,故答案为:0.【点睛】本题考查分式值为零的条件,熟练掌握分式值为零的条件“分子为零,分母不为零”是解题的关键.30.(2022·湖南永州)解分式方程2101x x -=+去分母时,方程两边同乘的最简公分母是______. 【答案】()1x x +【分析】根据解分式方程的方法中确定公分母的方法求解即可. 【详解】解:分式方程2101x x -=+的两个分母分别为x ,(x +1), ∴最简公分母为:x (x +1),故答案为:x (x +1).【点睛】题目主要考查解分式方程中确定公分母的方法,熟练掌握解分式方程的步骤是解题关键. 31.(2022·湖南岳阳)分式方程321x x =+的解为x =______. 【答案】2【分析】去分母,移项、合并同类项,再对所求的根进行检验即可求解. 【详解】解:321x x =+, 322=+x x ,2x =,经检验2x =是方程的解.故答案为:2.【点睛】本题主要考查解分式方程,熟练掌握分式方程的解法,注意对所求的根进行检验是解题的关键.32.(2022·四川内江)对于非零实数a ,b ,规定a ∵b =11a b-,若(2x ﹣1)∵2=1,则x 的值为 _____. 【答案】56【分析】根据题意列出方程,解方程即可求解.【详解】解:由题意得:11212x --=1, 等式两边同时乘以2(21)x -得,2212(21)x x -+=-, 解得:56x =, 经检验,x =56是原方程的根, ∵x =56, 故答案为:56. 【点睛】本题考查了解分式方程,掌握分式方程的一般解法是解题的关键.三.解答题33.(2022·黑龙江牡丹江)先化简,再求值:23224x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭,在﹣2,0,1,2四个数中选一个合适的代入求值.【答案】28x +,10.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x =1代入计算即可求出值.【详解】解:原式=()()()()2322422x x x x x x x x +---⋅-+ =()()()()()242222x x x x x x x +-+⋅-+=2(x +4)=2x +8当x =-2,0,2时,分式无意义当x =1时,原式=10.【点睛】本题主要考查了分式的化简和代入求值,关键是代入的时候要根据分式有意义的条件选择合适的值代入.34.(2022·湖南)先化简2121(1)1221a a a a a ---÷+--+,再从1,2,3中选一个适当的数代入求值. 【答案】31a -,32【分析】先根据分式的混合运算的法则进行化简后,再根据分式有意义的条件确定a 的值,代入计算即可.【详解】解:原式()2221121a a a a a --=⋅+---2111a a =+-- 31a =-; 因为1a =,2时分式无意义,所以3a =,当3a =时,原式32=. 【点睛】本题考查分式的化简与求值,掌握分式有意义的条件以及分式混合运算的方法是正确解答的关键.35.(2022·辽宁营口)先化简,再求值:25244111a a a a a a +++⎛⎫+-÷ ⎪++⎝⎭,其中11|2|2a -⎛⎫=-- ⎪⎝⎭.【答案】22a a -+,15. 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,再利用算术平方根、绝对值、负整数指数幂计算出a 的值,代入计算即可求出值. 【详解】解:25244111a a a a a a +++⎛⎫+-÷ ⎪++⎝⎭ 22(1)52(2)11a a a a a +--+=÷++ 22411(2)a a a a -+=⋅++ 2(2)(2)11(2)a a a a a +-+=⋅++ =22a a -+,当11|2|23223a -⎛⎫-- =+⎪-⎭=⎝时, 原式=3232-+=15. 【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.还考查了算术平方根、绝对值、负整数指数幂.36.(2022·黑龙江哈尔滨)先化简,再求代数式21321211x x x x x -⎛⎫-÷ ⎪--+-⎝⎭的值,其中2cos451x =︒+.【答案】11x -,2【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据特殊角三角函数值求出x ,继而代入计算可得. 【详解】解:原式22131(1)(1)2x x x x x ⎡⎤---=-⋅⎢⎥--⎣⎦ 2(1)(3)1(1)2x x x x ----=⋅- 221(1)2x x -=⋅- 11x =-∵211x ==∵原式===.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则以及特殊角三角函数值.37.(2022·内蒙古赤峰)先化简,再求值:221111a a a a -⎛⎫+÷ ⎪+-⎝⎭,其中114cos 452a -⎛⎫= ⎪⎝⎭︒. 【答案】33a -;3【分析】由分式的加减乘除运算法则进行化简,然后求出a 的值,再代入计算,即可得到答案. 【详解】解:221111a a a a -⎛⎫+÷ ⎪+-⎝⎭ =1211(1)(1)a a a a a a ++-÷+-+ =3(1)(1)1a a a aa -+⨯+ =33a -;∵114cos 452422a -︒=-⎛⎫= ⎪⎭=⎝, 把2a =代入,得原式=3233⨯-=.【点睛】本题考查了分式的加减乘除混合运算,二次根式的性质,负整数指数幂,特殊角的三角函数值等知识,解题的关键是熟练掌握运算法则,正确的进行解题.38.(2022·黑龙江大庆)先化简,再求值:222a ab a b b ⎛⎫--÷ ⎪⎝⎭.其中2,0a b b =≠. 【答案】a a b +,23【分析】根据分式的减法和除法可以化简题目中的式子,然后将2a b =代入化简后的式子即可解答本题. 【详解】222a ab a b b ⎛⎫--÷ ⎪⎝⎭=222a ab a b bb b ⎛⎫--÷ ⎪⎝⎭ =222a ab a b b b--÷ =()()()a a b b b a b a b -+- =a a b+ 当2,0a b b =≠时,原式=222233b b b b b ==+. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式减法和除法的运算法则和计算方法.39.(2022·四川雅安)(1)计算:2+|﹣4|﹣(12)﹣1;(2)化简:(1+2a a -)÷22444a a a --+,并在﹣2,0,2中选择一个合适的a 值代入求值. 【答案】(1)5;(2)2,2a 当0a =时,分式的值为1.【分析】(1)先计算二次根式的乘方运算,求解绝对值,负整数指数幂的运算,再合并即可;(2)先计算括号内的分式的加法运算,同步把除法转化为乘法运算,再约分可得化简后的结果,再结合分式有意义的条件可得0,a = 从而可得分式的值.【详解】解(1)2+|﹣4|﹣(12)﹣1 3425=(2)(1+2a a -)÷22444a a a --+ 222222a a aaa a2222a a a 22a =+ 2a ≠且2,a ≠-当0a =时,原式2 1.2 【点睛】本题考查的是实数的混合运算,二次根式的乘法运算,分式的化简求值,负整数指数幂的含义,掌握以上基础运算是解本题的关键.40.(2022·湖北鄂州)先化简,再求值:21a a +﹣11a +,其中a =3. 【答案】1a -,2 【分析】先根据同分母分式的减法计算法则化简,然后代值计算即可.【详解】解:2111a a a -++ 2=11a a -+ ()()11=1a a a +-+ 1a =-,当3a =时,原式312=-=.【点睛】本题主要考查了分式的化简求值,熟知同分母分式的减法计算法则是解题的关键.41.(2022·福建)先化简,再求值:2111a a a -⎛⎫+÷ ⎪⎝⎭,其中1a =.【答案】11a -,2. 【分析】根据分式的混合运算法则化简,再将a 的值代入化简之后的式子即可求出答案. 【详解】解:原式()()111a a a aa+-+=÷ ()()111a a a a a +=⋅+- 11a =-.当1a 时,原式2=. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.42.(2022·贵州黔东南)(1)计算:()03π12 1.572-⎛⎫-- ⎪⎝⎭; (2)先化简,再求值:2221111202220221x x x x x x ++-⎛⎫÷-+ ⎪---⎝⎭,其中cos60x =︒.【答案】(1)(2)2-【分析】(1)先每项化简,再加减算出最终结果即可;(2)先因式分解,化除为乘,通分,化简;再带入数值计算即可.【详解】(1)30(1)|2( 1.57)2π--+-31221(1)=++--1221=-++-=;(2)222111(1)202220221x x x x x x ++-÷-+--- 2(1)2022112022(1)(1)1x x x x x x x +-+-=⋅--+-- 111x x x x +=--- 11x =-∵1cos 602x ︒==, ∵原式=12112==--.【点睛】本题考查了实数的混合运算,分式的化简求值,二次根式的性质,特殊角的三角函数值,零指数幂和负整数指数幂的意义,熟练掌握各知识点是解答本题的关键.43.(2022·湖南永州)先化简,再求值:2121x x x xx -+⎛⎫÷- ⎪⎝⎭,其中1x =. 【答案】1x -【分析】先将括号内的分式进行合并,将分式的分子分母进行因式分解,并约分即可,再代入求值即可. 【详解】解:原式2121x x x x-+-=÷ ()()111x x x x x +-=⋅+ 1x =-当1x =时,原式11=-【点睛】本题考查分式的混合运算,因式分解,能够熟练掌握运算顺序是解决本题的关键.44.(2022·广西梧州)解方程:24133x x -=-- 【答案】5x =【分析】先方程两边同时乘以(3)x -,化成整式方程求解,然后再检验分母是否为0即可.【详解】解:方程两边同时乘以(3)x -得到:324x -+=,解出:5x =,当5x =时分式方程的分母不为0,∵分式方程的解为:5x =.【点睛】本题考查了分式方程的解法,属于基础题,计算过程中细心即可.45.(2022·广西玉林)解方程:1122x x x x -=--. 【答案】1x =-【分析】两边同时乘以公分母()1x -,先去分母化为整式方程,计算出x ,然后检验分母不为0,即可求解. 【详解】1122x x x x -=--,()112x x =-, 解得1x =-,经检验1x =-是原方程的解,故原方程的解为:1x =-【点睛】本题考查解分式方程,注意分式方程要检验.46.(2022·广东)先化简,再求值:211a a a -+-,其中5a =. 【答案】21a +,11【分析】利用平方差公式约分,再合并同类项可;【详解】解:原式=()()111211a a a a a a a +-+=++=+-, a =5代入得:原式=2×5+1=11;【点睛】本题考查了分式的化简求值,掌握平方差公式是解题关键.47.(2022·内蒙古通辽)先化简,再求值:242a a a a ⎛⎫--÷ ⎪⎝⎭,请从不等式组104513a a +>⎧⎪-⎨≤⎪⎩ 的整数解中选择一个合适的数求值.【答案】22a a +,3【分析】根据分式的加减运算以及乘除运算法则进行化简,然后根据不等式组求出a 的值并代入原式即可求出答案. 【详解】解:242a a a a ⎛⎫--÷ ⎪⎝⎭ 2242a a a a -=⋅- ()()2222a a a a a +-=⋅- 22a a =+,104513a a +>⎧⎪⎨-≤⎪⎩①②, 解不等式①得:1a >-解不等式②得:2a ≤,∵12a -<≤,∵a 为整数,∵a 取0,1,2,∵0,20a a ≠-≠,∵a =1,当a =1时,原式21213=+⨯=.【点睛】本题考查分式的化简求值,解一元一次不等式组,解题的关键是熟练运用分式的加减运算法则以及乘除运算法则,本题属于基础题型.48.(2022·山东聊城)先化简,再求值:244422a a a a a a --⎛⎫÷-- ⎪-⎝⎭,其中112sin 452a -⎛⎫=︒+ ⎪⎝⎭.【答案】2a a -1 【分析】运用分式化简法则:先算括号里,再算括号外,然后把a ,b 的值代入化简后的式子进行计算即可解答. 【详解】解:()()()222244422222a a a a a a a a a a a a +---⎛⎫÷--=⨯- ⎪--⎝⎭- 22222a a a a a +=-=---,∵112sin 452222a -⎛⎫=︒+== ⎪⎝⎭,代入得:原式1=;故答案为:2a a -1. 【点睛】本题考查了分式的化简求值,熟练掌握因式分解是解题的关键.49.(2022·山东潍坊)(12103时,小亮的计算过程如下:解:2103= 41627316+-+=- 2=-小莹发现小亮的计算有误,帮助小亮找出了3个错误.请你找出其他错误,参照①~③的格式写在横线上,并依次标注序号:①224-=;②10(1)1-=-;③66-=-;____________________________________________________________________________.请写出正确的计算过程.(2)先化简,再求值:22213369x x x x x x -⎛⎫-⋅ ⎪-++⎝⎭,其中x 是方程2230x x --=的根. 【答案】(1)⑤(-2)-2=14,⑥(-2)0=1;28;(2)13x +,12. 【分析】(1)根据乘方、绝对值、特殊角的三角函数值、立方根、负整数指数幂、零指数幂的法则计算即可;(2)先把括号内通分,接着约分得到原式=13x +,然后利用因式分解法解方程x 2-2x -3=0得到x 1=3,x 2=-1,则利用分式有意义的条件把x =-1代入计算即可.【详解】(1)其他错误,有:⑤(-2)-2=14,⑥(-2)0=1, 正确的计算过程:2103= 41627111--++=-+ =28;(2)22213369x x x x x x -⎛⎫-⋅ ⎪-++⎝⎭ 223(3)(3)(3)x x x x x x x -+-=⋅-+ 23(3)(3)(3)x x x x x x +-=⋅-+ =13x +, ∵x 2-2x -3=0,∵(x -3)(x +1)=0,x -3=0或x +1=0,∵x 1=3,x 2=-1,∵x =3分式没有意义,∵x 的值为-1,当x =-1时,原式=113-+=12. 【点睛】本题考查了实数的运算,解一元二次方程---因式分解法,分式的化简求值.也考查了特殊角的三角函数值、立方根、负整数指数幂、零指数幂.50.(2022·辽宁锦州)先化简,再求值:2233111211x x x x x x --⎛⎫÷-+ ⎪-++-⎝⎭,其中|1x =+.【答案】11x -,2 【分析】根据分式的运算法则“除以一个数等于乘以它的倒数”把除法改写成乘法;利用平方差公式和完全平方公式将分式的分子分母分别因式分解;约分化简后,求x 的值;去掉绝对值符号时注意正负,正数的绝对值是他本身,负数的绝对值是它的相反数,最后将x 的值代入原式.【详解】解:原式=2233111211x x x x x x --⎛⎫÷-+ ⎪-++-⎝⎭=23(1)11()(1)(1)311x x x x x x x x -+-⨯-++---- =111x x x x +--- =11x -|1x =+1∴原式【点睛】此题考查了分式的混合运算,熟练地掌握分式的混合运算法则和用公式法进行因式分解是解题的关键.注意最后求值的结果要分母有理化.51.(2022·四川广安)先化简:2242(2)244x x x x x x -++÷--+,再从0、1、2、3中选择一个适合的数代人求值. 【答案】x ;1或者3【分析】根据分式的混合运算法则即可进行化简,再根据分式有意义的条件确定x 可以选定的值,代入化简后的式子即可求解. 【详解】2242(2)244x x x x x x -++÷--+ 224(2)(2)44222[]x x x x x x x x+--+⨯=+--- 2244(2)2(2)x x x x x +--=-⨯-222x x x x=-⨯- x =根据题意有:0x ≠,20x -≠,故0x ≠,2x ≠,即在0、1、2、3中,当x =1时,原式=x =1;当x =3时,原式=x =3.【点睛】本题主要考查了运用分式的混合运算法则将分式的化简并求值、分式有意义的条件等知识,熟练掌握分式的混合运算法则是解题的关键.52.(2022·广西贵港)为了加强学生的体育锻炼,某班计划购买部分绳子和实心球,已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?【答案】(1)绳子的单价为7元,实心球的单价为30元(2)购买绳子的数量为30条,购买实心球的数量为10个【分析】(1)设绳子的单价为x 元,则实心球的单价为(23)x +元,根据“84元购买绳子的数量与360元购买实心球的数量相同”列出分式方程,解分式方程即可解题;(2)根据“总费用为510元,且购买绳子的数量是实心球数量的3倍”列出一元一次方程即可解题.(1)解:设绳子的单价为x 元,则实心球的单价为(23)x +元, 根据题意,得:8436023x x =+, 解分式方程,得:7x =,经检验可知7x =是所列方程的解,且满足实际意义,∵2330x +=,答:绳子的单价为7元,实心球的单价为30元.(2)设购买实心球的数量为m 个,则购买绳子的数量为3m 条,根据题意,得:7330510m m ⨯+=,解得10m =∵330m =答:购买绳子的数量为30条,购买实心球的数量为10个.【点睛】本题考查分式方程和一元一次方程的应用,根据题目中的等量关系列出方程是解题的关键. 53.(2022·辽宁)2022年3月23日“天官课堂”第二课在中国空间站开讲了,精彩的直播激发了学生探索科学奥秘的兴趣.某中学为满足学生的需求,充实物理兴趣小组的实验项目,决定购入A 、B 两款物理实验套装,其中A 款套装单价是B 款套装单价的1.2倍,用9900元购买的A 款套装数量比用7500元购买的B 款套装数量多5套.求A 、B 两款套装的单价分别是多少元.【答案】A 款套装的单价是180元、B 款套装的单价是150元.【分析】设B 款套装的单价是x 元,则A 款套装的单价是1.2x 元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设B 款套装的单价是x 元,则A 款套装的单价是1.2x 元, 由题意得:9900750051.2x x=+, 解得:x =150,经检验,x =150是原方程的解,且符合题意,∵1.2x =180.答:A 款套装的单价是180元、B 款套装的单价是150元.【点睛】本题考查了分式方程的应用,解题的关键是:找准等量关系,正确列出分式方程.54.(2022·贵州贵阳)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?【答案】每辆大货车货运量是16吨,每辆小货车货运量是12吨【分析】设小货车货运量x 吨,则大货车货运量()4x +,根据题意,列出分式方程,解方程即可求解.【详解】解:设小货车货运量x 吨,则大货车货运量()4x +,根据题意,得,80604x x=+, 解得12x =,经检验,12x =是原方程的解,412416x +=+=吨,答:每辆大货车货运量是16吨,每辆小货车货运量是12吨.【点睛】本题考查了分式方程的应用,根据题意列出方程是解题的关键.。

专题04 分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题04 分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题04.分式与分式方程一、单选题1.(2021·河北中考真题)由1122c c +⎛⎫- ⎪+⎝⎭值的正负可以比较12c A c +=+与12的大小,下列正确的是( )A .当2c =-时,12A =B .当0c 时,12A ≠C .当2c <-时,12A > D .当0c <时,12A <【答案】C 【分析】先计算1122c c +⎛⎫- ⎪+⎝⎭的值,再根c 的正负判断1122c c +⎛⎫- ⎪+⎝⎭的正负,再判断A 与12的大小即可.【详解】解:11=224+2c cc c +-+,当2c =-时,20c +=,A 无意义,故A 选项错误,不符合题意; 当0c 时,04+2c c=,12A =,故B 选项错误,不符合题意; 当2c <-时,04+2c c>,12A >,故C 选项正确,符合题意; 当20c -<<时,04+2c c <,12A <;当2c <-时,04+2c c>,12A >,故D 选项错误,不符合题意; 故选:C .【点睛】本题考查了分式的运算和比较大小,解题关键是熟练运用分式运算法则进行计算,根据结果进行准确判断.2.(2021·湖南中考真题)为响应习近平总书记“坚决打赢关键核心技术攻坚战”的号召,某科研团队最近攻克了7nm 的光刻机难题,其中1nm 0.000000001m =,则7nm 用科学记数法表示为( ) A .80.710m ⨯ B .8710m -⨯C .80.710m -⨯D .9710m -⨯【答案】D【分析】由题意易得nm 0.000000007m 7=,然后根据科学记数法可直接进行求解. 【详解】解:由题意得:nm 0.000000007m 7=, ∴7nm 用科学记数法表示为9710m -⨯;故选D .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.3.(2021·四川眉山市·中考真题)化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .1a + B .1a a+ C .1a a- D .21a a + 【答案】B【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简. 【详解】解:原式()()()()221111111=11a a a a a aa a a a a a+-+--++⨯=⨯=--故答案是:B . 【点睛】本题考察分式的运算和化简、因式分解,属于基础题,难度不大.解题关键是掌握分式的运算法则.4.(2021·天津中考真题)计算33a ba b a b---的结果是( ) A .3 B .33a b +C .1D .6aa b- 【答案】A【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可. 【详解】原式33a b a b -=-,3()a b a b-=-3=.故选A . 【点睛】本题考查分式的减法.掌握分式的减法运算法则是解答本题你的关键. 5.(2021·山东临沂市·中考真题)计算11()()a b b a-÷-的结果是( )A .ab-B .a bC .b a-D .b a【答案】A【分析】根据分式的混合运算顺序和运算法则计算可得.【详解】解:11a b b a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab ab b b a a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab a b ab -⨯-=a b-故选A . 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 6.(2021·江西中考真题)计算11a a a+-的结果为( ) A .1 B .1- C .2a a+D .2a a- 【答案】A【分析】直接利用同分母分式的减法法则计算即可. 【详解】解:11111a a aa a a a++--===.故选:A . 【点睛】本题考查了同分母分式的减法,熟练掌握运算法则是解题的关键.7.(2021·江苏扬州市·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x + B .21x -C .11x + D .()21x +【答案】C【分析】分别找到各式为0时的x 值,即可判断.【详解】解:A 、当x =-1时,x +1=0,故不合题意;B 、当x =±1时,x 2-1=0,故不合题意; C 、分子是1,而1≠0,则11x +≠0,故符合题意;D 、当x =-1时,()210x +=,故不合题意;故选C . 【点睛】本题考查了分式的值为零的条件,代数式的值.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 8.(2021·湖北恩施土家族苗族自治州·中考真题)分式方程3111x x x +=--的解是( ) A .1x = B .2x =-C .34x =D .2x =【答案】D【分析】先去分母,然后再进行求解方程即可. 【详解】解:3111x x x +=-- 去分母:13x x +-=,∴2x =, 经检验:2x =是原方程的解;故选D .【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 9.(2021·湖南怀化市·中考真题)定义12a b a b ⊗=+,则方程342x ⊗=⊗的解为( ) A .15x =B .25x =C .35x =D .45x =【答案】B【分析】根据新定义,变形方程求解即可 【详解】∵12a b a b ⊗=+,∴342x ⊗=⊗变形为1123242x ⨯+=⨯+,解得25x = ,经检验25x =是原方程的根,故选B 【点睛】本题考查了新定义问题,根据新定义把方程转化一般的分式方程,并求解是解题的关键10.(2021·山东临沂市·中考真题)某工厂生产A 、B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%;清扫2100m 所用的时间A 型机器人比B 型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设A 型扫地机器人每小时清扫2m x ,根据题意可列方程为( ) A .10010020.53x x =+ B .10021000.53x x += C .10021003 1.5x x += D .10010021.53x x =+ 【答案】D【分析】根据清扫100m 2所用的时间A 型机器人比B 型机器人多用40分钟列出方程即可.【详解】解:设A 型扫地机器人每小时清扫x m 2,由题意可得:10010021.53x x =+,故选D . 【点睛】本题考查了分式方程的实际应用,解题的关键是读懂题意,找到等量关系. 11.(2021·四川成都市·中考真题)分式方程21133x x x-+=--的解为( ) A .2x = B .2x =-C .1x =D .1x =-【答案】A【分析】直接通分运算后,再去分母,将分式方程化为整式方程求解. 【详解】解:21133x x x -+=--,21133x x x --=--,2113x x --=-,213x x --=-,解得:2x =, 检验:当2x =时,32310x -=-=-≠,2x ∴=是分式方程的解,故选:A .【点睛】本题考查了解分式方程,解题的关键是:去分母化为整式方程求解,最后需要对解进行检验.12.(2021·重庆中考真题)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y+-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5 B .8C .12D .15【答案】B【分析】先计算不等式组的解集,根据“同大取大”原则,得到562a+<解得7a <,再解分式方程得到5=2a y +,根据分式方程的解是正整数,得到5a >-,且5a +是2的倍数,据此解得所有符合条件的整数a 的值,最后求和. 【详解】解:()322225x x a x ⎧-≥+⎨-<-⎩①②解不等式①得,6x ≥,解不等式②得,5+2ax >不等式组的解集为:6x ≥562a+∴<7a ∴< 解分式方程238211y a y y y +-+=--得238211y a y y y +--=--2(38)2(1)y a y y ∴+--=-整理得5=2a y +, 10,y -≠ 则51,2a +≠ 3,a ∴≠- 分式方程的解是正整数,502a +∴>5a ∴>-,且5a +是2的倍数,57a ∴-<<,且5a +是2的倍数,∴整数a 的值为-1, 1, 3, 5, 11358∴-+++=故选:B .【点睛】本题考查解含参数的一元一次不等式、解分式方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.13.(2021·重庆中考真题)关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y 的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( )A .5-B .4-C .3-D .2-【答案】B【分析】先将分式方程化为整式方程,得到它的解为64x a =+,由它的解为正数,同时结合该分式方程有解即分母不为0,得到40a +>且43a +≠,再由该一元一次不等式组有解,又可以得到20a -<,综合以上结论即可求出a 的取值范围,即可得到其整数解,从而解决问题.【详解】解:331122ax x x x--+=--,两边同时乘以(2x -),3213ax x x -+-=-,()46a x +=, 由于该分式方程的解为正数,∴64x a =+,其中4043a a +>+≠,;∴4a >-,且1a ≠-;∵关于y 的元一次不等式组32122y y y a -⎧≤-⎪⎨⎪+>⎩①②有解,由①得:0y ≤;由②得:2y a >-;∴20a -<,∴2a <综上可得:42a -<<,且1a ≠-;∴满足条件的所有整数a 为:32,0,1--,;∴它们的和为4-;故选B . 【点睛】本题涉及到含字母参数的分式方程和含字母参数的一元一次不等式组等内容,考查了解分式方程和解一元一次不等式组等相关知识,要求学生能根据题干中的条件得到字母参数a 的限制不等式,求出a 的取值范围进而求解,本题对学生的分析能力有一定要求,属于较难的计算问题.14.(2020·辽宁朝阳市·中考真题)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x 名学生,依据题意列方程得( ) A .807250405x x ⨯=⨯+ B .807240505x x ⨯=⨯+ C .728040505x x ⨯=⨯- D .728050405x x⨯=⨯- 【答案】B【分析】根据“按零售价购买40个毽球与按批发价购买50个毽球付款相同”建立等量关系,分别找到零售价与批发价即可列出方程.【详解】设班级共有x 名学生,依据题意列方程得,807240505x x ⨯=⨯+故选:B . 【点睛】本题主要考查列分式方程,读懂题意找到等量关系是解题的关键.15.(2020·四川绵阳市·中考真题)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( ) A .1.2小时 B .1.6小时C .1.8小时D .2小时【答案】C【分析】设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时,根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x-km/h ,根据“各匀速行驶一半路程”列出方程求解即可. 【详解】解:设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时, 根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x -km/h ,根据题意得:()1803803x xxx-=-,解得:x 1=1.8或x 2=9, 经检验:x 1=1.8或x 2=9是原方程的解,x 2=9不合题意,舍去,故答案为:C .【点睛】本题考查了分式方程的应用,解决本题的关键是正确理解题意,熟练掌握速度时间和路程之间的关系,找到题意中的等量关系.16.(2020·黑龙江鹤岗市·中考真题)已知关于x 的分式方程433x kx x-=--的解为非正数,则k 的取值范围是( ) A .12k ≤- B .12k -≥C .12k >-D .12k <-【答案】A【分析】表示出分式方程的解,由解为非正数得出关于k 的不等式,解出k 的范围即可.【详解】解:方程433x kx x-=--两边同时乘以(3)x -得:4(3)x x k --=-, ∴412x x k -+=-,∴312x k -=--,∴43kx =+,∵解为非正数,∴403k+≤,∴12k ≤-,故选:A .【点睛】本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.17.(2020·湖北荆门市·中考真题)已知关于x 的分式方程2322(2)(3)x kx x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( ) A .正数 B .负数C .零D .无法确定【答案】A【分析】先解出关于x 的分式方程得到x=63k-,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解.【详解】关于x 的分式方程2322(2)(3)x k x x x +=+--+得x=217k -, ∵41x -<<-∴21471k --<<-解得-7<k <14 ∴整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13, 又∵分式方程中x≠2且x≠-3∴k≠35且k≠0∴所有符合条件的k 中,含负整数6个,正整数13个,∴k 值的乘积为正数,故选A . 【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法.18.(2020·四川广元市·中考真题)按照如图所示的流程,若输出的=6M -,则输入的m 为( )A .3B .1C .0D .-1【答案】C【分析】根据题目中的程序,利用分类讨论的方法可以分别求得m 的值,从而可以解答本题. 【详解】解:当m 2-2m≥0时,661m =--,解得m=0, 经检验,m=0是原方程的解,并且满足m 2-2m≥0,当m 2-2m <0时,m -3=-6,解得m=-3,不满足m 2-2m <0,舍去.故输入的m 为0.故选:C . 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.(2020·四川成都市·中考真题)已知2x =是分式方程311k x x x -+=-的解,那么实数k 的值为( ) A .3 B .4C .5D .6【答案】B【分析】将2x =代入原方程,即可求出k 值. 【详解】解:将2x =代入方程311k x x x -+=-中,得231221k +=--解得:4k = .故选:B . 【点睛】本题考查了方程解的概念.使方程左右两边相等的未知数的值就是方程的解.“有根必代”是这类题的解题通法.20.(2020·四川遂宁市·中考真题)关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2, 把x =2代入整式方程得:m +3=0,解得:m =﹣3,故选:D .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值. 21.(2020·浙江金华市·中考真题)分式52x x +-的值是零,则x 的值为( ) A .5 B .5- C .2-D .2【答案】B【分析】利用分式值为零的条件可得50x +=,且20x -≠,再解即可. 【详解】解:由题意得:50x +=,且20x -≠,解得:5x =-,故选:B .【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.22.(2020·湖北孝感市·中考真题)已知1x =,1y =,那么代数式()32x xy x x y --的值是( )A .2BC .4D .【答案】D【分析】先按照分式四则混合运算法则化简原式,然后将x 、y 的值代入计算即可.【详解】解:()32x xy x x y --=()()()x x y x y x x y +--11D . 【点睛】本题考查了分式的化简求值,根据分式四则混合运算法则化简分式是解答本题的关键. 23.(2020·河北中考真题)若ab ,则下列分式化简正确的是( )A .22a ab b+=+B .22a a b b -=-C .22a a b b=D .1212aa b b = 【答案】D【分析】根据a≠b ,可以判断各个选项中的式子是否正确,从而可以解答本题. 【详解】∵a≠b ,∴22a a b b +≠+,选项A 错误;22a ab b-≠-,选项B 错误; 22a a b b ≠,选项C 错误;1212a ab b =,选项D 正确;故选:D . 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 24.(2020·贵州贵阳市·中考真题)当1x =时,下列分式没有意义的是( )A .1x x+B .1x x -C .1x x-D .1x x + 【答案】B【分析】由分式有意义的条件分母不能为零判断即可. 【详解】1xx -,当x=1时,分母为零,分式无意义.故选B. 【点睛】本题考查分式有意义的条件,关键在于牢记有意义条件. 25.(2019·河北中考真题)如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④【答案】B【分析】将所给分式的分母配方化简,再利用分式加减法化简,据x 为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x x x x x x x ++-=-=+++++1111xx x -=++.又∵x 为正整数,∴121x x ≤+<1,故表示22(2)1441x x x x +-+++的值的点落在②.故选B . 【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.26.(2019·湖南娄底市·中考真题)2018年8月31日,华为正式发布了全新一代自研手机SoC 麒麟980,这款号称六项全球第一的芯片,随着华为Mate 20系列、荣耀Magic 2相继搭载上市,它的强劲性能、出色能效比、卓越智慧、顶尖通信能力,以及为手机用户带来的更强大、更丰富、更智慧的使用体用,再次被市场和消费者所认可.麒麟980是全球首颗()97110nm nm m -=手机芯片.7nm 用科学记数法表示为( ) A .8710m -⨯ B .9710m -⨯C .80.710m -⨯D .10710m -⨯【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】7nm 用科学记数法表示为9710m -⨯.故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.27.(2019·湖北孝感市·中考真题)已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是( ) A .5- B .5C .6-D .6【答案】C【分析】解方程组求出x 、y 的值,对所求式子进行化简,然后把x 、y 的值代入进行计算即可. 【详解】1249x y x y +=⎧⎨+=⎩①②,2②-①×得,27y =,解得72y =,把72y =代入①得,712x +=,解得52x =-, ∴222222()()()x xy y x y x y x y x y -+-=-+-572261x y x y ---===-+,故选C. 【点睛】本题考查了解二元一次方程组,分式化简求值,正确掌握相关的解题方法是关键. 28.(2019·北京中考真题)如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3B .-1C .1D .3【答案】D【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值. 【详解】解:原式=()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭2()()()()m n m n m n m n m m n m m n ⎡⎤+-=+⋅+-⎢⎥--⎣⎦ 3()()3()()mm n m n m n m m n =⋅+-=+-1m n +=∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.29.(2019·四川中考真题)一辆货车送上山,并按原路下山.上山速度为a 千米/时,下山速度为b 千米/时.则货车上、下山的平均速度为( )千米/时. A .1()2a b + B .aba b+ C .2a bab+ D .2aba b+ 【答案】D【分析】平均速度=总路程÷总时间,设单程的路程为s ,表示出上山下山的总时间,把相关数值代入化简即可.【详解】解:设上山的路程为x 千米,则上山的时间x a 小时,下山的时间为xb小时, 则上、下山的平均速度22xabxxa b ab=++千米/时.故选D .【点睛】本题考查了列代数式以及分式的化简,得到平均速度的等量关系是解决本题的关键,得到总时间的代数式是解决本题的突破点.30.(2019·湖南益阳市·中考真题)解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( ) A .x+2=3 B .x ﹣2=3 C .x ﹣2=3(2x ﹣1) D .x+2=3(2x ﹣1)【答案】C【分析】最简公分母是2x ﹣1,方程两边都乘以(2x ﹣1),即可把分式方程便可转化成一元一次方程. 【详解】方程两边都乘以(2x ﹣1),得x ﹣2=3(2x ﹣1),故选C .【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.31.(2019·广东中考真题)定义一种新运算:1an n n bn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .25【答案】B【分析】根据新定义运算得到一个分式方程,求解即可.【详解】根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-,则25m =-,经检验,25m =-是方程的解,故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键. 二、填空题32.(2021·四川资阳市·中考真题)若210x x +-=,则33x x-=_________. 【答案】3【分析】先由210x x +-=可得21x x -=,再运用分式的减法计算33x x-,然后变形将21x x -=代入即可解答.【详解】解:∵210x x +-=∴21x x -=∴()2231333333x x x x x x x x---====.故填:3. 【点睛】本题主要考查了代数式的求值、分式的减法等知识点,灵活对等式进行变形成为解答本题的关键.33.(2021·四川南充市·中考真题)若3n m n m +=-,则2222m n n m+=_________ 【答案】174【分析】先根据3n m n m +=-得出m 与n 的关系式,代入2222m n n m+化简即可; 【详解】解:∵3n mn m+=-,∴()3n m n m +=-,∴2n m =, ∴22222222417+=44m n m m n m m m +=故答案为:174 【点睛】本题考查了分式的混合运算,得出2n m =是解决本题的关键.34.(2021·四川达州市·中考真题)若分式方程22411x a x ax x --+-=-+的解为整数,则整数a =___________. 【答案】±1【分析】直接移项后通分合并同类项,化简、用a 来表示x ,再根据解为整数来确定a 的值. 【详解】解:22411x a x a x x --+-=-+,22411x a x ax x --+-=-+ (2)(1)(2)(1)4(1)(1)x a x a x x x x -+---=-+整理得:2x a=若分式方程22411x a x ax x --+-=-+的解为整数, a 为整数,当1a =±时,解得:2x =±,经检验:10,10x x -≠+≠成立;当2a =±时,解得:1x =±,经检验:分母为0没有意义,故舍去; 综上:1a =±,故答案是:±1.【点睛】本题考查了分式方程,解题的关键是:化简分式方程,最终用a 来表示x ,再根据解为整数来确定a 的值,易错点,容易忽略对根的检验.35.(2021·湖南常德市·中考真题)分式方程1121(1)x x x x x ++=--的解为__________. 【答案】3x =【分析】直接利用通分,移项、去分母、求出x 后,再检验即可.【详解】解:1121(1)x x x x x ++=--通分得:212(1)(1)x x x x x x -+=--,移项得:()301x x x -=-, 30x ∴-=,解得:3x =,经检验,3x =时,(1)60x x -=≠,∴3x =是分式方程的解,故答案是:3x =. 【点睛】本题考查了对分式分式方程的求解,解题的关键是:熟悉通分,移项、去分母等运算步骤,易错点,容易忽略对根进行检验.36.(2021·湖南衡阳市·中考真题)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树__________棵. 【答案】500【分析】设原计划每天植树x 棵,则实际每天植树()125%x +,根据工作时间=工作总量÷工作效率,结合实际比原计划提前3天完成,准确列出关于x 的分式方程进行求解即可.【详解】解:设原计划每天植树x 棵,则实际每天植树()125%x +,6000600031.25x x-=,400x =,经检验,400x =是原方程的解, ∴实际每天植树400 1.25500⨯=棵,故答案是:500.【点睛】本题考查了分式方程的应用,解题的关键是:找准等量关系,准确列出分式方程. 37.(2021·四川凉山彝族自治州·中考真题)若关于x 的分式方程2311x mx x-=--的解为正数,则m 的取值范围是_________. 【答案】m >-3且m ≠-2【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可. 【详解】解:方程两边同时乘以x -1得,()231x x m --=-,解得3x m =+, ∵x 为正数,∴m +3>0,解得m >-3.∵x ≠1,∴m +3≠1,即m ≠-2. ∴m 的取值范围是m >-3且m ≠-2.故答案为:m >-3且m ≠-2.【点睛】本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键. 38.(2020·内蒙古呼和浩特市·中考真题)分式22x x -与282x x-的最简公分母是_______,方程228122-=--x x x x的解是____________. 【答案】()2x x - x=-4【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解. 【详解】解:∵()222x x x x -=-,∴分式22x x -与282x x -的最简公分母是()2x x -, 方程228122-=--x x x x,去分母得:()2282x x x -=-,去括号得:22282x x x -=-, 移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4. 【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法. 39.(2020·山东潍坊市·中考真题)若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 【答案】3【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【详解】去分母得3x -(x -2)=m+3,当增根为x=2时,6=m+3 ∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 40.(2020·湖北黄冈市·中考真题)计算:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是____________. 【答案】1x y- 【分析】先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得.【详解】解:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭()()y x y x x y x y x y x y ⎛⎫+=÷- ⎪+-++⎝⎭()()y y x y x y x y=÷+-+()()yx y x y x y y +=⋅+-1x y=-,故答案为:1x y -. 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 41.(2020·山东滨州市·中考真题)观察下列各式:1234523101526,,,,,357911a a a a a =====, 根据其中的规律可得n a =________(用含n 的式子表示).【答案】()12121n n n ++-+【分析】观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n 项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n 2+1,偶数项的分子是n 2-1,即第n 项的分子是n 2+(-1)n+1;依此即可求解.【详解】解:由分析得21(1)21n n n a n ++-=+,故答案为:21(1)21n n n a n ++-=+ 【点睛】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.42.(2020·山东济宁市·中考真题)已知m+n=-3.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是____________. 【答案】1m n -+,13【分析】先计算括号内的,再将除法转化为乘法,最后将m+n=-3代入即可.【详解】解:原式=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=()2m n m n m m ⎡⎤++÷-⎢⎥⎢⎥⎣⎦=()2m n m m m n ⎡⎤+⨯-⎢⎥+⎢⎥⎣⎦=1m n -+,∵m+n=-3,代入,原式=13. 【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的运算法则.43.(2019·江西中考真题)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A B C --横穿双向行驶车道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:_____________________.【答案】66111.2x x+= 【分析】设小明通过AB 时的速度是x 米/秒,根据题意列出分式方程解答即可. 【详解】解:设小明通过AB 时的速度是x 米/秒,可得:66111.2x x +=,故答案为66111.2x x+=, 【点睛】此题考查由实际问题抽象分式方程,关键是根据题意列出分式方程解答.三、解答题44.(2021·湖北随州市·中考真题)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =. 【答案】22x -,-2 【分析】(1)先把括号里通分合并,括号外的式子进行因式分解,再约分,将x=1代入计算即可. 【详解】解:原式()()()21221222x x x x x x ++=⋅=++-- 当1x =时,原式2212==-- 【点睛】本题考查了分式的化简求值,用到的知识是约分、分式的加减,熟练掌握法则是解题的关键.45.(2021·山东菏泽市·中考真题)先化简,再求值:22221244m n n m m n m mn n--+÷--+,其中m ,n 满足32m n =-. 【答案】3nm n+;-6. 【分析】先变除法为乘法,后因式分解,化简计算,后变形32nm =-代入求值即可【详解】∵22221244m n n m m n m mn n--+÷--+=2(2)12()()m n m n m n n m n m --+⨯--+=21m n n m --+=3n m n +, ∵32m n =-,∴32nm =-,∴原式=332nn n -+= -6. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的基本顺序,基本计算方法是解题的关键. 46.(2021·湖北宜昌市·中考真题)先化简,再求值:2211111x x x ÷--+-,从1,2,3这三个数中选择一个你认为适合的x 代入求值. 【答案】11x -,1或12【分析】先根据分式混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可. 【详解】解:原式21(1)(1)(1)1x x x x =⋅+--+-11x =-.∵x 2﹣1≠0,∴当2x =时,原式1=.或当3x =时,原式12=.(选择一种情况即可) 【点睛】本题考查了分式的化简求值,要了解使分式有意义的条件,熟练掌握分式的运算法则是解题的关键.47.(2021·四川达州市·中考真题)化简求值:231041244a a a a a --⎛⎫⎛⎫-÷ ⎪ ⎪--+⎝⎭⎝⎭,其中a 与2,3构成三角形的三边,且a 为整数. 【答案】24a -+,-2【分析】先根据分式的混合运算法则进行化简,再根据三角形三边关系确定a 的取值范围,把不合题意的a 的值舍去,最后代入求值即可求解.【详解】解:原式()22231024a a a a a ---+=⋅--()()224224a a a a ---=⋅--24a =-+; ∵2,3,a 为三角形的三边,∴3232a -<<+,∴15a <<,∵a 为整数,∴2a =,3或4,由原分式得20a -≠,40a -≠,∴2a ≠且4a ≠,∴3a =, ∴原式=242342a -+=-⨯+=-.【点睛】本题考查了分式的化简求值,正确进行分式的化简是解题关键,在把a 的值代入求值是要注意所求的a 的值保证原分式有意义.48.(2021·湖南株洲市·中考真题)先化简,再求值:2223142x x x x ⎛⎫⋅-- ⎪-+⎝⎭,其中2x =. 【答案】12x -+,2-【分析】先对分式进行化简,然后根据二次根式的运算进行求值即可.【详解】解:原式=()()223231222222x x x x x x x x x -⋅-=-=-+++-++,把2x =代入得:原式=2=-. 【点睛】本题主要考查分式的化简求值及二次根式的运算,熟练掌握分式的化简求值及二次根式的运算是解题的关键.49.(2021·四川成都市·中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a . 【答案】13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++13a =+,当3=a时,原式=== 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.50.(2021·四川资阳市·中考真题)先化简,再求值:222211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,其中30x -=. 【答案】原式=13. 【分析】利用分式的混合运算法则进行化简,再将3x =代入原式,即可求解.【详解】解:原式=()()()22111111x x x x x x ⎡⎤+--⋅⎢⎥+--⎢⎥⎣⎦=211111x x x x x +-⎛⎫-⋅ ⎪--⎝⎭=211x x x x -⋅-=1x303x x -=∴= 将3x =代入原式,原式=13.【点睛】本题主要考查分式的混合运算.需要掌握分式的混合运算法则、完全平方公式、平方差公式、同分母分式相加减等相关知识.进行分式的混合运算时,要细心. 51.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∵2x y -=,∴1121y x x y xy xy---===,∴2xy =-, ∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.52.(2021·四川遂宁市·中考真题)先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】32m m --;12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值.【详解】解:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭= 2223m m m m ÷--=2232m m m m-⋅-=32m m --=, ∵m 是已知两边分别为2和3的三角形的第三边长,∴3-2<m <3+2,即1<m <5, ∵m 为整数,∴m =2、3、4,又∵m ≠0、2、3∴m =4,∴原式=431422-=-. 【点睛】本题主要考查了分式的化简求值以及三角形三边的关系,解题的关键是掌握分式混合运算顺序和运算法则.53.(2021·江苏连云港市·中考真题)解方程:214111x x x +-=--. 【答案】无解。

分式方程经典训练题(含答案解析)

分式方程经典训练题(含答案解析)
∵y≠2,
∴ ,
解得a≠4,
∴a的取值范围为-2<a≤7且a≠4,
又∵y为正整数,
∴a=1,7,
满足条件的整数a的和为1+7=8.
故答案为:8.
【点睛】
此题考查了解分式方程以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
4.
【分析】
根据题意先解分式方程,求得 的值,再根据一次函数图像不经过第二象限确定 的范围,再根据题意求整数解
10.(1)16;(2)10
【分析】
(1)设每本《中国共产党简史》的价格是 元,则每本《论中国共产党历史》的价格为 元,根据题意列出分式方程求解并检验即可;
(2)首先结合(1)的结论求出4月份《简史》和《历史》的价格与数量,再根据题目对5月份购买数量与价格的描述列出一元二次方程,并利用换元思想求解即可.
(2)先求出第二次购入洗手液和消毒液各多少瓶,再结合题意列出关于a的一元一次方程,解出a即可.
【详解】
(1)设一瓶洗手液的价格为x元,则一瓶消毒液的价格为(x+7)元.
根据题意可列方程: ,
解得: ,经检验 是原方程得解.
故一瓶洗手液的价格为8元,一瓶消毒液的价格为8+7=15元.
(2)第二次购入洗手液 瓶,购入消毒液 瓶.
7.轻轨3号线北延伸段渝北空港广场站的一项挖土工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款2.1万元,付乙工程队工程款1.5万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:
(方案一)甲队单独完成这项工程,刚好按规定工期完成;
(方案二)乙队单独完成这项工程要比规定工期多用5天;
根据题意可列等式: .
解得: .

分式方程50题 参考答案与试题解析

分式方程50题  参考答案与试题解析

分式方程50题参考答案与试题解析一.解答题(共50小题)1.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:(x+1)2﹣4=x2﹣1,整理得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:(x﹣2)2=(x+2)2+16,整理得:x2﹣4x+4=x2+4x+4+16,解得:x=﹣2,经检验x=﹣2是增根,分式方程无解.2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3(x﹣1)=2x,去括号得:3x﹣3=2x,解得:x=3,经检验x=3是分式方程的解;(2)去分母得:(x﹣2)2﹣x2+4=16,整理得:x2﹣4x+4﹣x2+4=16,解得:x=﹣2,经检验x=﹣2是增根,分式方程无解.3.【分析】(1)方程两边同乘2(4+x),得关于x的一元一次方程,解方程可求解x值,最后验根即可;(2)方程两边同乘x2﹣1,得关于x的一元一次方程,解方程可求解x值,最后验根即可.【解答】解:(1)方程两边同乘2(4+x),得2(3﹣x)=4+x,解得x=,当x=时,2(4+x)≠0,∴x=是原方程的解.(2)方程两边同乘x2﹣1,得x﹣1+2=0解得x=﹣1,当x=﹣1时,x2﹣1=0,∴x=﹣1是方程的增根,∴原方程无解.4.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程整理得:﹣=1﹣,方程两边同乘以(x+3)(x﹣3)得:x+3﹣8x=x2﹣9﹣x(x+3),解这个方程得:x=3,经检验,x=3是原方程的增根,所以原方程无解.5.【分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=•=•=;(2)分式方程整理得:=1+,去分母得:x=2x﹣1+2,解得:x=﹣1,检验:当x=﹣1时,2x﹣1≠0,则分式方程的解为x=﹣1.6.【分析】两方式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3(x+1)=2(x﹣2),去括号得:3x+3=2x﹣4,解得:x=﹣7,经检验x=﹣7是分式方程的解;(2)去分母得:x2+2x+1=x2﹣1+4,解得:x=1,经检验x=1是增根,分式方程无解.7.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2(x+2)=3(3x﹣1),去括号得:2x+4=9x﹣3,移项合并得:﹣7x=﹣7,解得:x=1,经检验x=1是分式方程的解.8.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:原方程可化为:﹣=1,去分母,得3x﹣6=x﹣2,解得:x=2,经检验:x=2是原方程的增根,所以原方程无解.9.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=2x,解得:x=3,检验:把x=3代入得:x(x+3)=18≠0,则分式方程的解为x=3.10.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:+=4,去分母得:x+4+2=4x﹣12,移项合并得:﹣3x=﹣18,解得:x=6,经检验x=6是分式方程的解.11.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x+7﹣2(x+5)=x2+4x﹣5,整理得:x2+x﹣2=0,即(x﹣1)(x+2)=0,解得:x=1或x=﹣2,经检验x=1是增根,则分式方程的解为x=﹣2.12.【分析】根据解分式方程的解法步骤求解即可.【解答】解:去分母得,(x+1)(x﹣2)﹣(x+2)(x﹣2)=3(x+2)去括号得,x2﹣x﹣2﹣x2+4=3x+6移项得,x2﹣x﹣x2﹣3x=6+2﹣4合并同类项得,﹣4x=4系数化为1得,x=﹣1经检验,x=﹣1是原方程的解,所以原方程的解为x=﹣1.13.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:最简公分母为(x﹣2)2,去分母得:x(x﹣2)﹣(x﹣2)2=4,整理得:x2﹣2x﹣x2+4x﹣4=4,解得:x=4,检验:把x=4代入得:(x﹣2)2=4≠0,∴分式方程的解为x=4.14.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到m的值,经检验即可得到方程的解.【解答】解:去分母得:5﹣m=m﹣2﹣3,移项合并得:2m=10,解得:m=5,检验:把m=5代入得:m﹣2=5﹣2=3≠0,∴分式方程的解为m=5.15.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:3+x2﹣9=x(x+3),解得:x=﹣2,检验:当x=﹣2时,x2﹣9≠0,∴原方程的解为x=﹣2.16.【分析】方程两边都乘以x﹣1得出3x+2=5,求出方程的解,再进行检验即可.【解答】解:方程两边都乘以x﹣1得:3x+2=5,解得:x=1,检验:当x=1时,x﹣1=0,所以x=1不是原方程的解,即原方程无解.17.【分析】方程两边都乘以x(x﹣1)得出x﹣8+3x=0,求出方程的解,再进行检验即可.【解答】解:方程两边都乘以x(x﹣1)得:x﹣8+3x=0,解得:x=2,检验:当x=2时,x(x﹣1)≠0,所以x=2是原方程的解,即原方程的解是:x=2.18.【分析】(1)方程两边都乘以x(x+1)得出5x+2=3x,求出方程的解,再进行检验即可;(2)方程两边都乘以2(x﹣1)得出2x=3﹣4(x﹣1),求出方程的解,再进行检验即可.【解答】解:(1)方程两边都乘以x(x+1)得:5x+2=3x,解得:x=﹣1,检验:当x=﹣1时,x(x+1)=0,所以x=﹣1是增根,即原方程无解;(2)方程两边都乘以2(x﹣1)得:2x=3﹣4(x﹣1),解得:x=,检验:当x=时,2(x﹣1)≠0,所以x=是原方程的解,即原方程的解是:x=.19.【分析】方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:=+1,方程两边都乘(x﹣1)(x+1),得x(x+1)=4+(x﹣1)(x+1),解得x=3,检验:当x=3时,(x﹣1)(x+1)=8≠0.故x=3是原方程的解.20.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程两边同乘x(x﹣1)得:9(x﹣1)=8x,解得:x=9,经检验x=9是分式方程的解;(2)方程两边同乘x﹣2得:x﹣1﹣3(x﹣2)=1,解得:x=2,经检验x=2是增根,分式方程无解.21.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程﹣=1,去分母得:x2﹣4x+4﹣3x=x2﹣2x,解得:x=,经检验x=是分式方程的解.22.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)分式方程整理得:﹣=1,去分母得:1﹣2=x﹣2,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:x2+x﹣x2+1=3,解得:x=2,经检验x=2是分式方程的解.23.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)=,去分母得:x﹣3=2x,解得:x=﹣3,经检验x=﹣3是分式方程的解;(2)方程整理得:﹣1=﹣,去分母得:x﹣2x+1=﹣3,解得:x=4,经检验x=4是分式方程的解.24.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+3)(x﹣1)﹣x2+9=2,整理得:x2+2x﹣3﹣x2+9=2,即2x=﹣4,解得:x=﹣2,经检验x=﹣2是分式方程的解.25.【分析】(1)方程组整理后,利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程组整理得:,①×2+②得:11x=22,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2)去分母得:3x+3﹣4x=x﹣1,解得:x=2,经检验x=2是分式方程的解.26.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)+=0,去分母得:x﹣2+x+3=0,解得:x=﹣,经检验x=﹣是分式方程的解;(2)﹣=1,去分母得:(x+1)2﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.27.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),①×2+②得:5x=10,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(2)分式方程整理得:﹣2=﹣,去分母得:3x﹣2(x﹣3)=﹣3,去括号得:3x﹣2x+6=﹣3,解得:x=﹣9,经检验x=﹣9是分式方程的解.28.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程整理得:+1=﹣,去分母得:2x﹣4+4x﹣2=﹣3,移项合并得:6x=3,解得:x=,经检验x=是增根,分式方程无解.29.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到y的值,经检验即可得到分式方程的解.【解答】解:(1),①+②得:3x=9,解得:x=3,把x=3代入①得:y=0,则方程组的解为;(2)分式方程=+1,去分母得:3=1+y﹣2,解得:y=4,经检验y=4是分式方程的解.30.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)=,去分母得:3x=2x﹣2,解得:x=﹣2,经检验x=﹣2是分式方程的解;(2)方程组整理得:,①+②得:6y=6,解得:y=1,把y=1代入①得:x=3,则方程组的解为.31.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),①+②得:4x=12,解得:x=3,把x=3代入②得:y=1,则方程组的解为;(2)分式方程整理得:﹣=1,去分母得:4﹣3=x﹣2,解得:x=3,经检验x=3是分式方程的解.32.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),②×2﹣①得:7y=7,解得:y=1,把y=1代入②得:x=2,则方程组的解为;(2)分式方程整理得:﹣=﹣5,去分母得:﹣3=x﹣5(x﹣1),去括号得:﹣3=x﹣5x+5,移项合并得:4x=8,解得:x=2.33.【分析】(1)根据加减消元法解方程即可求解;(2)方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:(1).②﹣①×2得:7x=﹣14,解得:y=﹣2,把y=﹣2代入①得:x=2.故方程组的解为;(2)+2=,方程两边都乘(x﹣2)得1﹣x+2(x﹣2)=﹣1,解得x=2,检验:当x=2时,x﹣2=0,是增根.故原方程无解.34.【分析】(1)利用加减消元法解方程组;(2)方程两边乘以(x+1)(x﹣1)得到整式方程,然后解整式方程后进行检验确定原方程的解.【解答】解:(1),②﹣①得4x=28,解得x=7,把x=7代入①得7﹣3y=﹣8,解得y=5,所以方程组的解为;(2)去分母得﹣2=2(x﹣1)﹣(x+1),解得x=1,经检验:原方程的解为x=1.35.【分析】(1)方程两边都乘最简公分母,可以把分式方程转化为整式方程求解;(2)根据加减消元法解方程即可求解.【解答】解:(1)=1+,方程两边都乘(x﹣2)得x=x﹣2+x+1,解得x=1,检验:当x=1时,x﹣2≠0.故x=1是原方程的解;(2),①+②×5得:17x=17,解得:x=1,把x=1代入②得:y=﹣5.故方程组的解为.36.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程+1=,去分母得:2+1+x=4x,解得:x=1,经检验x=1是分式方程的解.37.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:﹣1=,去分母得:(x﹣2)2﹣(x2﹣4)=12,整理得:x2﹣4x+4﹣x2+4=12,移项合并得:﹣4x=4,解得:x=﹣1,检验:把x=﹣1代入得:(x+2)(x﹣2)≠0,∴分式方程的解为x=﹣1.38.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:﹣=1,去分母得:(x+2)2﹣20=x2﹣4,整理得:x2+4x+4﹣20=x2﹣4,移项合并得:4x=12,解得:x=3,检验:把x=3代入得:(x+2)(x﹣2)≠0,则分式方程的解为x=3.39.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),①+②得:6x=18,解得:x=3,①﹣②得:4y=8,解得:y=2,则方程组的解为;(2)分式方程整理得:﹣2=,去分母得:x﹣2(x﹣3)=3,去括号得:x﹣2x+6=3,移项合并得:﹣x=﹣3,解得:x=3,检验:把x=3代入得:x﹣3=0,∴x=3是增根,则分式方程无解.40.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程整理得:﹣=1,去分母得:x﹣2﹣4x+8=x2﹣4,即x2+3x﹣10=0,分解因式得:(x﹣2)(x+5)=0,解得:x=2或x=﹣5,经检验x=2是增根,则分式方程的解为x=﹣5.41.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+1=4(x﹣2),解得:x=3,检验:把x=3代入得:(x﹣2)(x+1)≠0,∴x=3是原方程的解.42.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4﹣(x+2)=0,解得:x=2,经检验x=2是增根,分式方程无解.43.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣2(x+3)=x﹣3,去括号得:3﹣2x﹣6=x﹣3,移项合并得:﹣3x=0,解得:x=0,经检验x=0是分式方程的解.44.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3x﹣6﹣2x=0,解得:x=6,经检验x=6是分式方程的解;(2)去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.45.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同时乘以(x+3)(x﹣3)得(x﹣3)+2(x+3)=12,去括号得:x﹣3+2x+6=12,移项得:x+2x=12+3﹣6,合并得:3x=9,解得:x=3,检验:把x=3代入(x+3)(x﹣3)=0,∴x=3是增根,原方程无解.46.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+4x+4﹣3x2=2x2+4x,整理得:4x2=4,即x2=1,解得:x=1或x=﹣1,经检验x=1和x=﹣1都为分式方程的解.47.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x=3x﹣6,解得:x=6,经检验x=6是分式方程的解;(2)去分母得:x2+2x+1﹣4=x2﹣x,解得:x=1,经检验x=1是增根,则原方程无解.48.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2=2x﹣1﹣3,解得:x=3,经检验x=3是分式方程的解;(2)去分母得:x﹣3﹣2=1,解得:x=6,经检验x=6是分式方程的解.49.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程两边同乘(3+x)(3﹣x),得9(3﹣x)=6(3+x),解这个方程,得x=,检验:当x=时,(3+x)(3﹣x)≠0,则x=是原方程的解;(2)方程两边同乘(x+1)(x﹣1),得4+x2﹣1=(x﹣1)2,解这个方程,得x=﹣1,检验:当x=﹣1时,(x+1)(x﹣1)=0,x=﹣1是增根,则原方程无解.50.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x+3=5x,解得:x=,经检验x=是分式方程的根;(2)去分母得:3﹣x+1=x﹣4,解得:x=4,经检验x=4是增根,方程无解.。

第6讲 分式方程(解析)

第6讲 分式方程(解析)

第六讲——分式方程考向一 解分式方程1.(2020·江苏常州·中考真题)解方程:2211x x x+=--; 【答案】x=0;【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;【解析】解:(1)2211x x x+=-- 去分母得:x 2=2x 2-- 解得x=0,经检验x=0是分式方程的解;【点睛】本题考查了解分式方程与解不等式组,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解一元一次不等式组要注意不等号的变化.2.(2020·山东济南·中考真题)代数式31x -与代数式23x -的值相等,则x =_____.【答案】7【分析】根据题意列出分式方程,去分母,解整式方程,再检验即可得到答案.【解析】解:根据题意得:3213x x =--,去分母得:3x ﹣9=2x ﹣2,解得:x =7,经检验x =7是分式方程的解.故答案为:7.【点睛】本题考查的是解分式方程,掌握分式方程的解法是解题的关键.1.(2020·内蒙古呼和浩特·中考真题)分式22x x -与282x x -的最简公分母是_______,方程228122-=--x x x x的解是____________.【答案】()2x x -x=-4【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解.【解析】解:∵()222x x x x -=-,∴分式22x x -与282x x-的最简公分母是()2x x -,方程228122-=--x x x x,去分母得:()2282x x x -=-,去括号得:22282x x x -=-,移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4.【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法.2.(2020·湖南郴州·中考真题)解方程:24111x x x =+--【答案】x=3.【分析】观察可得方程最简公分母为(x 2-1),去分母,转化为整式方程求解,结果要检验.【解析】解:24111x x x =+--去分母得,2(1)41x x x +=+- 解得,x=3,经检验,x=3是原方程的根,所以,原方程的根为:x=3.【点睛】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要检验.考向二 分式方程的解1.(2020·四川遂宁·中考真题)关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( )A .m =2B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可.【解析】解:去分母得:m +3=x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2,把x =2代入整式方程得:m +3=0,解得:m =﹣3,故选:D .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.2.(黑龙江齐齐哈尔·中考真题)若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__.【答案】-1或5或13-【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【解析】去分母得:()443x m x m ++-=+,可得:()151m x m +=-,当10m +=时,一元一次方程无解,此时1m =-,当10m +¹时,则5141m x m -==±+,解得:5m =或13-.故答案为:1-或5或13-.【点睛】此题主要考查了分式方程的解,正确分类讨论是解题关键.1.(2020·山东潍坊·中考真题)若关于x 的分式方程33122x m x x +=+--有增根,则m =_________.【答案】3.【分析】先把分式方程去分母转化为整式方程,然后由分式方程有增根求出x 的值,代入到转化以后的整式方程中计算即可求出m 的值.【解析】解:去分母得:()332x m x =++-,整理得:21x m =+,∵关于x 的分式方程33122x m x x +=+--有增根,即20x -=,∴2x =,把2x =代入到21x m =+中得:221m ´=+,解得:3m =,故答案为:3.【点睛】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值.2.(山东东营·中考真题)若分式方程无解,则的值为.【答案】±1【解析】去分母得:x-a=ax+a ,整理得:(1-a )x=2a ,由于分式方程无解,所以由两种情况:①分母为0,即x=-1,所以a-1=2a ,解得a=-1;②整式方程无解,即1-a=0,解得a=1;综上a=±1.考点:分式方程的解.1.(2020·黑龙江齐齐哈尔·中考真题)若关于x 的分式方程32x x -=2mx-+5的解为正数,则m 的取值范围为( )A .m <﹣10B .m ≤﹣10C .m ≥﹣10且m ≠﹣6D .m >﹣10且m ≠﹣6【分析】分式方程去分母化为整式方程,表示出方程的解,由分式方程的解为正数求出m 的范围即可.【解析】解:去分母得35(2)x m x =-+-,解得102m x +=,由方程的解为正数,得到100m +>,且2x ¹,104m +¹,则m 的范围为10m >-且6¹-m ,故选:D .【点睛】本题主要考查了分式方程的计算,去分母化为整式方程,根据方程的解求出m 的范围,其中考虑到分式方程的分母不可为零是做对题目的关键.2.(四川成都·中考真题)已知关于x 的分式方程111x k kx x +-=+-的解为负数,则k 的取值范围是.【答案】12k >且1k ¹.分析:分式方程去分母得:()()()()211121211x k x k x x x k k +--+=-Þ=-+-+¹±.【解析】∵分式方程解为负数,∴12102k k-+Þ.由211k -+¹±得0k ¹和1k ¹∴k 的取值范围是12k >且1k ¹.考点:1.分式方程的解;2.分式有意义的条件;3.解不等式;4.分类思想的应用.1.(2020·四川泸州·中考真题)已知关于x 的分式方程3211m x x+=---的解为非负数,则正整数m 的所有个数为( )A .3B .4C .5D .6【答案】B【分析】根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,即可解题.【解析】解:去分母,得:m+2(x-1)=3,移项、合并,解得:x=52m-,∵分式方程的解为非负数,∴52m -≥0且52m-≠1,解得:m≤5且m≠3,∵m 为正整数∴m=1,2,4,5,共4个,故选:B .【点睛】本题考查了分式方程的解,先求出分式方程的解,再求出符合条件的不等式的解.2.(2020·黑龙江鹤岗·中考真题)已知关于x 的分式方程433x kx x-=--的解为非正数,则k 的取值范围A .12k £-B .12k -≥C .12k >-D .12k <-【答案】A【分析】表示出分式方程的解,由解为非正数得出关于k 的不等式,解出k 的范围即可.【解析】解:方程433x k x x-=--两边同时乘以(3)x -得:4(3)x x k --=-,∴412x x k -+=-,∴312x k -=--,∴43kx =+,∵解为非正数,∴403k+£,∴12k £-,故选:A .【点睛】本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.1.(2020·湖北荆门·中考真题)已知关于x 的分式方程2322(2)(3)x kx x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( )A .正数B .负数C .零D .无法确定【答案】A【分析】先解出关于x 的分式方程得到x=63k-,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解.【解析】关于x 的分式方程2322(2)(3)x k x x x +=+--+得x=217k -,∵41x -<<-∴21471k --<<-解得-7<k <14∴整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,又∵分式方程中x≠2且x≠-3∴k≠35且k≠0∴所有符合条件的k 中,含负整数6个,正整数13个,∴k 值的乘积为正数,故选A .【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法.1.(2020·黑龙江穆棱·朝鲜族学校中考真题)若关于x 的分式方程21mx x=-有正整数解,则整数m 的值是( )A .3B .5C .3或5D .3或4【答案】D【分析】解带参数m 的分式方程,得到2122m x m m ==+--,即可求得整数m 的值.【解析】解:21mx x=-,两边同时乘以()1x x -得:()21x m x =-,去括号得:2x mx m =-,移项得:2x mx m -=-,合并同类项得:()2m x m -=-,系数化为1得:2122m x m m ==+--,若m 为整数,且分式方程有正整数解,则3m =或4m =,当3m =时,3x =是原分式方程的解;当4m =时,2x =是原分式方程的解;故选:D .【点睛】本题考查分式方程的解,始终注意分式方程的分母不为0这个条件.考向三 分式方程的应用1.(2020·湖北荆州·中考真题)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x 千米/小时,则所列方程正确的是( )A .10x -102x=20B .102x -10x=20C .10x -102x =13D .102x -10x =13【答案】C【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解析】由题意可得,10x -102x =13,故选:C .【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.2.(2020·辽宁朝阳·中考真题)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.807250405x x´=´+B.807240505x x´=´+C.728040505x x´=´-D.728050405x x´=´-【答案】B【分析】根据“按零售价购买40个毽球与按批发价购买50个毽球付款相同”建立等量关系,分别找到零售价与批发价即可列出方程.【解析】设班级共有x名学生,依据题意列方程得,807240505x x´=´+故选:B.【点睛】本题主要考查列分式方程,读懂题意找到等量关系是解题的关键.1.(2020·浙江嘉兴·中考真题)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程_____.【答案】10406 x x=+【分析】根据“第二次每人所得与第一次相同,”列分式方程即可得到结论.【解析】解:根据题意得,10406x x=+,故答案为:10406x x=+【点睛】本题主要考查分式方程的实际应用,找出等量关系,列出分式方程,是解题的关键.2.(2020·山东淄博·中考真题)如图,著名旅游景区B位于大山深处,原来到此旅游需要绕行C地,沿折线A→C→B方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从A地到景区B的笔直公路.请结合∠A=45°,∠B=30°,BC=100≈1.47等数据信息,解答下列问题:(1)公路修建后,从A地到景区B旅游可以少走多少千米?(2)为迎接旅游旺季的到来,修建公路时,施工队使用了新的施工技术,实际工作时每天的工效比原计划增加25%,结果提前50天完成了施工任务.求施工队原计划每天修建多少千米?【答案】(1)从A地到景区B旅游可以少走35千米;(2)施工队原计划每天修建0.14千米.【解析】解:(1)过点C作AB的垂线CD,垂足为D,在直角△BCD中,AB⊥CD,sin30°=CDBC,BC=1000千米,∴CD=BC•sin30°=100×=50(千米),BD=BC•cos30°=100×=50(千米),在直角△ACD中,AD=CD=50(千米),AC==50(千米),∴AB=50+50(千米),∴AC+BC﹣AB=50+100﹣(50+50)=50+50﹣50≈35(千米).答:从A地到景区B旅游可以少走35千米;(2)设施工队原计划每天修建x千米,依题意有,﹣=50,解得x=0.14,经检验x=0.14是原分式方程的解.答:施工队原计划每天修建0.14千米.点评:(1)过点C作AB的垂线CD,垂足为D,在直角△BCD中,解直角三角形求出CD的长度和BD的长度,在直角△ACD中,解直角三角形求出AD的长度和AC的长度,再求出AB的长度,进而求出从A地到景区B旅游可以少走多少千米;(2)本题先由题意找出等量关系即原计划的工作时间﹣实际的工作时间=50,然后列出方程可求出结果,最后检验并作答.1.(2020辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( )A .8042003000-=x x B .x x 4200803000=+C .8030004200-=xxD .8042003000+=x x 【分析】设原来平均每人每周投递快件x 件,则现在平均每人每周投递快件(x +80)件,根据人数=投递快递总数量÷人均投递数量结合快递公司的快递员人数不变,即可得出关于x 的分式方程,此题得解.【解析】设原来平均每人每周投递快件x 件,则现在平均每人每周投递快件(x +80)件,依题意,得:8042003000+=x x .故选:D .2.(2019·湖南株洲·中考真题)关于x 的分式方程2503x x -=-的解为( )A .3-B .2-C .2D .3【答案】B【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解析】解:去分母得:2650x x --=,解得:2x =-,经检验2x =-是分式方程的解,故选B .【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.3.(2020·辽宁鞍山·中考真题)甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x 个零件,所列方程正确的是( )A .2403006x x =-B .2403006x x =+C .2403006x x=-D .2403006x x=+【答案】B【分析】根据“甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等”,列出方程即可.【解析】解:根据题意得:2403006x x =+,故选B .【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.4.(2019·四川遂宁·中考真题)关于x 的方程1242k xx x -=--的解为正数,则k 的取值范围是( )A .4k >-B .4k <C .4k >-且4k ¹D .4k <且4k ¹-【答案】C【分析】先对分式方程去分母,再根据题意进行计算,即可得到答案.【解析】解:分式方程去分母得:(24)2k x x --=,解得:44k x +=,根据题意得:404k +>,且424k +¹,解得:4k >-,且4k ¹.故选C .【点睛】本题考查分式方程,解题的关键是掌握分式方程的求解方法.5.(四川凉山·中考真题)关于x 的方程32211x mx x -=+++无解,则m 的值为( )A .﹣5B .﹣8C .﹣2D .5【答案】A【解析】解:去分母得:3x ﹣2=2x +2+m ①.由分式方程无解,得到x +1=0,即x =﹣1,代入整式方程①得:﹣5=﹣2+2+m ,解得:m =﹣5.故选A .6.(2020·广西中考真题)甲、乙两地相距600km ,提速前动车的速度为/vkm h ,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min ,则可列方程为( )A .60016003 1.2-=v v B .60060011.23v v =- C .60060020 1.2v v -= D .600600201.2v v=-【答案】A【分析】行驶路程都是600千米;提速前后行驶时间分别是:600600,1.2v v;因为提速后行车时间比提速前减少20min ,所以,提速前的时间-提速后的时间=20min .【解析】根据提速前的时间-提速后的时间=20min ,可得60060011.23-=v v 即60016003 1.2-=v v故选:A 【点睛】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.7.(2020·黑龙江牡丹江·中考真题)若关于x 的方程201m x x-=+的解为正数,则m 的取值范围是( )A .2m <B .2m <且0m ¹C .2m >D .2m >且4m ¹【答案】C【分析】先将分式方程化为整式方程,再根据方程的解为正数得出不等式,且不等于增根,再求解.【解析】解:∵解方程21mx x-=+,去分母得:()210mx x-+=,整理得:()22m x-=,∵方程有解,∴22xm=-,∵分式方程的解为正数,∴22m>-,解得:m>2,而x≠-1且x≠0,则22m-≠-1,22m-≠0,解得:m≠0,综上:m的取值范围是:m>2.故选C.【点睛】本题主要考查分式方程的解,解题的关键是掌握分式方程的解的概念.8.(2020·湖南长沙·中考真题)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,设更新技术前每天生产x万件,依据题意得()A.40050030x x=-B.40050030x x=+C.40050030x x=-D.40050030x x=+【答案】B【分析】设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,根据工作时间=工作总量÷工作效率,再结合现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同,即可得出关于x的分式方程.【解析】解:设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:40050030x x=+.故选:B.【点睛】本题考查了由实际问题列分式方程,解题的关键是找准等量关系,正确列出分式方程.9.(2020·重庆中考真题)若关于x的一元一次不等式结3132xxx a-ì£+ïíï£î的解集为x a£;且关于y的分式方程34122y a yy y--+=--有正整数解,则所有满足条件的整数a的值之积是()A.7B.-14C.28D.-56【答案】A【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可.【解析】解:解不等式3132xx-£+,解得x≤7,∴不等式组整理的7xx a£ìí£î,由解集为x≤a,得到a≤7,分式方程去分母得:y−a +3y−4=y−2,即3y−2=a ,解得:y =+23a ,由y 为正整数解且y ≠2,得到a =1,7,1×7=7,故选:A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10.(2019·黑龙江伊春·中考真题)已知关于x 的分式方程213x mx -=-的解是非正数,则m 的取值范围是( )A .3m £B .3m <C .3m >-D .3m ³-【答案】A【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可【解析】213x mx -=-,方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-,Q 分式方程213x mx -=-的解是非正数,30x -¹,30(3)30m m -£ì\í--¹î,解得,3m £,故选A .【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值11.(2020·辽宁抚顺·中考真题)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( )A .3000420080x x =- B .3000420080x x += C .4200300080x x =- D .3000420080x x =+【答案】D【分析】设原来平均每人每周投递快件x 件,则现在平均每人每周投递快件(x +80)件,根据人数=投递快递总数量÷人均投递数量,结合快递公司的快递员人数不变,即可得出关于x 的分式方程,此题得解.【解析】解:设原来平均每人每周投递快件x 件,则现在平均每人每周投递快件(x +80)件,根据快递公司的快递员人数不变列出方程,得:3000420080x x =+,故选:D .【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.12.(2019·重庆中考真题)若数a 使关于x 的不等式组12(7)34625(1)xx x a x ì--ïíï->-î…有且仅有三个整数解,且使关于y 的分式方程12311y ay y--=---的解为正数,则所有满足条件的整数a 的值之和是( )A .﹣3B .﹣2C .﹣1D .1【答案】A【分析】先解不等式组12(7)34625(1)xx x a x ì--ïíï->-î…根据其有三个整数解,得a 的一个范围;再解关于y 的分式方程12311y ay y--=---,根据其解为正数,并考虑增根的情况,再得a 的一个范围,两个范围综合考虑,则所有满足条件的整数a 的值可求,从而得其和.【解析】解:由关于x 的不等式组12(7)34625(1)x x x a x ì--ïíï->-î…,得32511x a x ìïí+>ïî…∵有且仅有三个整数解,∴25311a x +<…,1x =,2,或3.∴250111a +<…,∴532a -<<;由关于y 的分式方程12311y a y y--=---得1 2 31y a y -+=--(),∴2y a =-,∵解为正数,且1y =为增根,∴2a <,且1a ¹,∴522a -<<,且1a ¹,∴所有满足条件的整数a 的值为:﹣2,﹣1,0,其和为﹣3.故选A .【点睛】本题属于含一元一次不等式组和含分式方程的综合计算题,比较容易错,属于易错题.13.(2020·福建中考真题)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A .62103(1)-=x xB .621031=-x C .621031-=x xD .62103=x【答案】A【分析】根据“这批椽的价钱为6210文”、“每件椽的运费为3文,剩下的椽的运费恰好等于一株椽的价钱”列出方程解答.【解析】解:由题意得:62103(1)-=x x,故选A.【点睛】本题考查了分式方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,准确的找到等量关系并用方程表示出来是解题的关键.14.(2020·内蒙古呼伦贝尔·中考真题)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x 个零件,下列方程正确的是( )A .240280130x x =-B .240280130x x =-C .240280130x x+=D .240280130x x-=【答案】A【分析】设甲每天做x 个零件,根据甲做240个零件与乙做280个零件所用的时间相同,列出方程即可.【解析】解:设甲每天做x 个零件,根据题意得:240280130x x=-,故选:A .【点睛】此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.15.(2020·山东菏泽·中考真题)方程111x x x x -+=-的解是______.【答案】13x =【分析】方程两边都乘以(1)x x -化分式方程为整式方程,解整式方程得出x 的值,再检验即可得出方程的解.【解析】方程两边都乘以(1)x x -,得:2(1)(1)x x x -=+,解得:13x =,检验:13x =时,2(1)09x x -=-¹,所以分式方程的解为13x =,故答案为:13x =.【点睛】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.16.(2019·山东烟台·中考真题)若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____.【答案】3【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【解析】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3 ∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17.(2020·四川眉山·中考真题)关于x 的分式方程11222k x x-+=--的解为正实数,则k 的取值范围是________.【答案】2k >-且2k ¹【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【解析】解:11222k x x -+=--方程两边同乘(x-2)得,1+2x-4=k-1,解得22k x +=222k +¹Q ,022k +>2k \>-,且2k ¹故答案为:2k >-且2k ¹【点睛】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.18.(2020·江苏徐州·中考真题)方程981x x =-的解为_______.【答案】9.x =【分析】去分母,把分式方程转化为整式方程,解整式方程,并检验即可得到答案.【解析】解:981x x =-Q()918,x x \-= 998,x x \-= 9,x \= 经检验:9x =是原方程的根,所以原方程的根是:9.x = 故答案为:9.x =【点睛】本题考查的是分式方程的解法,掌握去分母解分式方程是解题的关键.19.(2020·广西河池·中考真题)方程121x +=12x -的解是x =_____.【答案】-3【分析】根据解分式方程的步骤解答即可,注意求出x 的值后记得要代入原方程进行检验,看是否有意义.【解析】解:方程的两边同乘(2x +1)×(x ﹣2),得:x ﹣2=2x +1,解这个方程,得:x =﹣3,经检验,x =﹣3是原方程的解,∴原方程的解是x =﹣3.故答案为:﹣3.【点睛】本题主要考查了分式的求解,首先需要注意要给等式两边同时乘以最简公分母,其次计算结束后要对方程的解进行检验,要求熟练掌握分式方程的解题规则.20.(2020·内蒙古中考真题)分式方程3122x xx x-+=--的解是_____.【答案】x =53【分析】根据分式方程的解题步骤解出即可.【解析】3122x xx x-+=-- 方程左右两边同乘x -2,得 3-x -x =x -2.移项合并同类项,得 x =53.经检验, x =53是方程的解.故答案为: x =53.【点睛】本题考查分式方程的解法,关键在于熟练掌握解法步骤注意检验.21.(2020·内蒙古包头·初三学业考试)若关于x 的方程22222x a ax x-+=--的解为非负数,则a 的取值范围是__________【答案】a≤1且1a 2¹【分析】先求出分式方程的解,然后结合方程的解为非负数,即可求出a 的取值范围.【解析】解:∵22222x a ax x-+=--,∴222(2)x a a x --=-,∴424x a x -=-,∴44x a =-;∵0x ³,20x -¹,∴440a -³,442a -¹,∴1a £,12a ¹,故答案为:1a £且12a ¹;【点睛】本题考查解分式方程,由分式方程的解求参数的取值范围,解题的关键是正确求出分式方程的解.22.(四川眉山·中考真题)已知关于x 的分式方程233x kx x -=--有正数解,则k 的取值范围为________.【答案】k <6且k ≠3分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.【解析】233x kx x -=--,方程两边都乘以(x-3),得x=2(x-3)+k ,解得x=6-k≠3,关于x 的方程程233x k x x -=--有正数解,∴x=6-k >0,k <6,且k≠3,∴k 的取值范围是k <6且k≠3.故答案为k <6且k≠3.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键.23.(2020·黑龙江大庆·中考真题)解方程:24111x x x -=--【答案】3【分析】去分母化成整式方程,求出x 后需要验证,才能得出结果;【解析】24111x x x -=--,去分母得:214x x -+=,解得:3x =.检验:把3x =代入1x -中,得-=-=¹13120x ,∴3x =是分式方程的根.【点睛】本题主要考查了分式方程的求解,准确计算是解题的关键.24.(2020·陕西中考真题)解分式方程:2312x x x --=-.【答案】x =45.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解析】解:方程2312x x x --=-,去分母得:x 2﹣4x +4﹣3x =x 2﹣2x ,移项得:-5x=-4,系数化为1得:x =45,经检验x =45是分式方程的解.【点睛】本题考查了解分式方程.利用了转化的思想,解分式方程要注意检验.25.(2020·江苏泰州·中考真题)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度.【答案】75km/h【分析】根据题意,设走线路A 的平均速度为/xkm h ,则线路B 的速度为1.5/xkm h ,由等量关系列出方程,解方程即可得到答案.【解析】解:设走线路A 的平均速度为/xkm h ,则线路B 的速度为1.5/xkm h ,则2563060 1.5x x-=,解得:50x =,检验:当50x =时,1.50x ¹,∴50x =是原分式方程的解;∴走路线B 的平均速度为:50 1.575´=(km/h );【点睛】本题考查分式方程的应用,以及理解题意的能力,解题的关键是以时间做为等量关系列方程求解.26.(2020·辽宁沈阳·中考真题)某工程队准备修建一条长3000m 的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?【答案】原计划每天修建盲道300米【分析】可设原计划每天修建盲道x 米,由“实际每天修建盲道的长度比原计划增加25%”可知实际每天修建(125%)x +米,表示出原计划和实际修建3000m 的盲道所用的时间,根据“提前2天完成这一任务”可列出关于x 的分式方程,求解即可.【解析】解:设原计划每天修建盲道x 米,根据题意,得300030002(125%)x x-=+.解这个方程,得300x =.经检验:300x =是所列方程的根.答:原计划每天修建盲道300米【点睛】本题主要考查了分式方程的实际应用,正确理解题意,找准题中等量关系列出方程是解题的关。

(专题精选)初中数学分式全集汇编及答案解析

(专题精选)初中数学分式全集汇编及答案解析

(专题精选)初中数学分式全集汇编及答案解析一、选择题1.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为( )A .5×107B .5×10﹣7C .0.5×10﹣6D .5×10﹣6【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】2.在等式[]209()a a a ⋅-⋅=中,“[]”内的代数式为( )A .6aB .()7a -C .6a -D .7a【答案】D【解析】【分析】 首先利用零指数幂性质将原式化简为[]29a a ⋅=,由此利用同底数幂的乘除法法则进一步进行分析即可得出答案.【详解】()01a -=Q ,则原式化简为:[]29a a ⋅=,∴[]927a a -==,故选:D .【点睛】本题主要考查了零指数幂的性质与同底数幂的乘除法运算,熟练掌握相关概念是解题关键.3.在下列四个实数中,最大的数是( )A .B .0C .12-D .13【答案】C【解析】【分析】根据实数的大小比较法则即可得.【详解】 1122-=则四个实数的大小关系为11023-<<< 因此,最大的数是12-故选:C .【点睛】 本题考查了实数的大小比较法则,掌握大小比较法则是解题关键.4.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( )A .5.035×10﹣6B .50.35×10﹣5C .5.035×106D .5.035×10﹣5【答案】A【解析】试题分析:0.000 005 035m ,用科学记数法表示该数为5.035×10﹣6,故选A .考点:科学记数法—表示较小的数.5.x 的取值范围为( ). A .x≥2B .x≠2C .x≤2D .x <2 【答案】D【解析】【分析】根据被开方式大于且等于零,分母不等于零列式求解即可.【详解】∴2x 0x 20-≥⎧⎨-≠⎩ ∴x <2故选:D【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.6.要使分式81x -有意义,x 应满足的条件是( ) A .1x ≠-B .0x ≠C .1x ≠D .2x ≠【答案】C【解析】【分析】直接利用分式有意义的条件得出答案.【详解】 要使分式81x -有意义, 则x-1≠0,解得:x≠1.故选:C .【点睛】此题考查分式有意义的条件,正确把握分式的定义是解题关键.7.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为( )A .0.432×10-5B .4.32×10-6C .4.32×10-7D .43.2×10-7【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,这里1<a <10,指数n 是由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解: 0.00000432=4.32×10-6,故选B .【点睛】本题考查科学记数法.8.数字0.00000005m ,用科学记数法表示为( )m .A .70.510-⨯B .60.510-⨯C .7510-⨯D .8510-⨯【答案】D【解析】【分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】将0.00000005用科学记数法表示为8510-⨯.故选D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.下列计算正确的是( ).A 2=-B .2(3)9--=C .0( 3.14)0x -=D .2019(1)|4|5---=- 【答案】D【解析】【分析】直接利用二次根式的性质以及负指数幂的性质、零指数幂的性质分别化简得出答案.【详解】A 2=,故此选项错误;B 、(-3)-2=19,故此选项错误; C 、(x-3.14)0=1,故此选项错误;D 、(-1)2019-|-4|=-5,正确.故选:D .【点睛】此题考查二次根式的性质以及负指数幂的性质、零指数幂的性质,正确化简各数是解题关键.10.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是()n n A .2-B .1-C .2D .3【答案】C【解析】 分析:先把括号内通分,再把分子分解后约分得到原式22m m =+,然后利用2220m m +-=进行整体代入计算. 详解:原式2222244(2)(2)222m m m m m m m m m m m m m +++=⋅=⋅=+=+++, ∵2220m m +-=,∴222m m ,+= ∴原式=2.故选C.点睛:考查分式的混合运算,掌握运算法则是解题的关键.注意整体代入法的应用.11.计算21133x x x ⎛⎫-• ⎪+⎝⎭的结果是( )A .13x x -B .13x x --C .13x x +D .13x x+- 【答案】A【解析】【分析】先计算括号内的运算,然后根据分式乘法的运算法则进行计算,即可得到答案.【详解】 解:21133x x x ⎛⎫-• ⎪+⎝⎭ =22133x x x x ⎛⎫-• ⎪+⎝⎭=2(1)(1)3(1)x x x x x +-•+ =13x x-; 故选:A .【点睛】本题考查了分式的化简,以及分式的混合运算,解题的关键是熟练掌握运算法则进行计算.12.0000036=3.6×10-6;故选:A .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.化简22a b b a +-的结果是( ) A .1a b - B .1b a - C .a ﹣b D .b ﹣a【答案】B【解析】【分析】原式分子分母提取公因式变形后,约分即可得到结果.【详解】原式= a+b )()b a b a +-(= 1b a- 故答案选B.【点睛】本题考查的知识点是约分,解题的关键是熟练的掌握约分.14.式子()()()()()()a b b c c a b c c a a b c a a b b c ---++------的值不可能等于( )A .﹣2B .﹣1C .0D .1【答案】C【解析】【分析】根据分式的加减运算,对式子进行化简,然后根据分式有意义,即可得出答案.【详解】 解:()()()()()()-------a b b c c a ++b c c-a a-b b c a b b c=()()()()()()+-+----222a-b b c c a a b b c c a ,分式的值不能为0,因为只有a =b =c 时,分母才为0,此时分式没意义,故选:C .【点睛】本题主要考察了分式的加减运算以及分式有意义的定义,解题的关键是分式的加减运算要正确进行通分,以及注意分式的分母不能为零.15.a 的取值范围是( ) A .a≥-1B .a≤1且a≠-2C .a≥1且a≠2D .a>2【答案】B【解析】【分析】直接利用二次根式有意义的条件分析得出答案.【详解】1-a≥0且a+2≠0, 解得:a≤1且a≠-2.故选:B .【点睛】 此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.16.计算2111x x x x -+-+的结果为( )A .-1B .1C .11x +D .11x - 【答案】B【解析】【分析】 先通分再计算加法,最后化简.【详解】2111x x x x -+-+ =221(1)11x x x x x --+-- =2211x x -- =1,故选:B.【点睛】此题考查分式的加法运算,正确掌握分式的通分,加法法则是解题的关键.17.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁【答案】D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断. 【详解】∵22211x x x x x-÷-- =2221·1x x x x x --- =()2212·1x x x x x---- =()()221·1x x x x x----=()2x x -- =2x x -, ∴出现错误是在乙和丁,故选D .【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.18.下列说法正确的是()A .若 A 、B 表示两个不同的整式,则A B 一定是分式 B .()2442a a a ÷=C .若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍 D .若35,34m n ==则2532m n -= 【答案】C【解析】【分析】 根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可.【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称A B 是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确. D. 若35,34m n ==则()22253332544m n m n -=÷=÷=,故此选项错误. 故选:C【点睛】 本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.19.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣【答案】D【解析】【分析】由科学记数法知90.000000007710-=⨯;【详解】解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.20.如果30x y -= ,那么代数式()2223x y x x y y ⎛⎫+-÷- ⎪⎝⎭的值为( ) A .23 B .2 C .-2 D .32【答案】A【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x =3y 代入化简可得.【详解】 解:()2223x y x x y y ⎛⎫+-÷- ⎪⎝⎭=()22213xy x y y x y -+-g =()2()13x y y x y --g =3x y y- ∵30x y -=,∴x=3y , ∴32333x y y y y y --==, 故选:A .【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程经典试题详解汇编5. (2010年浙江省东阳县)使分式12-x x有意义,则x 的取值范围是( ) A.21≥x B.21≤x C. 21>x D.21≠x 【关键词】分式有意义 【答案】D11.(2010年山东省青岛市)某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设m x 管道,那么根据题意,可得方程 .【关键词】分式方程【答案】()()12030012030120%120180301.2x xx x-+=++=或16.(2)(2010年山东省青岛市)化简:22142a a a+--. 【关键词】分式计算 【答案】(2)解:原式 =()()21222a a a a -+--()()()()222222a a a a a a +=-+-+-()()()()()2222222a a a a a a a -+=+--=+-12a =+.1、(2010年宁波市)先化简,再求值:21422++--a a a ,其中3=a 。

【关键词】分式运算 【答案】 解:原式21)2)(2(2++-+-=a a a a 222121+=+++=a a a当2=a 时,原式52232=+=2、(2010浙江省喜嘉兴市)若分式3621x x -+的值为0,则( ) A .x =-2 B .x =-12C .x =12D .x =2 【关键词】分式分子、分母特点 【答案】D18、(2010浙江省喜嘉兴市)(2)解方程:1x x ++1x x-=2 【关键词】分式方程【答案】)1(2)1)(1(2+=-++x x x x x ,x x x x 221222+=-+,x 21=-,21-=x .经检验,原方程的解是21-=x . 12、(2010年浙江省金华).分式方程112x =-的解是 . 【关键词】分式方程 【答案】 x =3;17、(2010年浙江台州市)(2)解方程:123-=x x . 【关键词】分式方程 【答案】x x 233=- 3=x . 经检验:3=x 是原方程的解.所以原方程的解是3=x .7.(2010年益阳市) 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是 A.203525-=x x B.x x 352025=- C.203525+=x x D.xx 352025=+ 【关键词】分式方程 【答案】C18.(2010江西)解方程:224124x x x -+=+-【关键词】分式方程【答案】解:方程的两边同乘以24x -,得22(2)44x x -+=-,解得3x =,检验:当3x =时,240x -≠,所以3x =是原方程的根. 12.(2010山东德州)方程xx 132=-的解为x =___________. 【关键词】分式方程 【答案】-317.(2010山东德州)先化简,再求值:1112221222-++++÷--x x x x x x ,其中12+=x . 【关键词】分式、分母有理化 【答案】解:原式=11)1()1(2)1)(1(22-+++÷-+-x x x x x x =11)1(2)1()1)(1(22-+++⋅-+-x x x x x x =11)1(22-+--x x x=)1(2-x x.当12+=x 时,原式=422+.(2010年广东省广州市)若分式51-x 有意义,则实数x 的取值范围是_______. 【关键词】分式的意义 【答案】5≠x(2010年广东省广州市)已知关于x 的一元二次方程)0(012≠=++a bx ax 有两个相等的实数根,求4)2(222-+-b a ab 的值。

【关键词】分式化简,一元二次方程根的判别式【答案】解:∵)0(012≠=++a bx ax 有两个相等的实数根, ∴⊿=240b ac -=,即240b a -=.∵2222222222244444)2(aab b a a ab b a a ab b a ab =+-=-++-=-+- ∵0a ≠,∴4222==a b a ab1.(2010年重庆)解方程:.111=+-xx x 【答案】 解:方程两边同乘)1(-x x ,得)1(12-=-+x x x x 整理,得12=x . 解得 21=x . 经检验,21=x 是原方程的解,所以原方程的解是21=x .2.(2010年重庆)先化简,再求值:xx x x x 24)44(222+-÷-+,其中1-=x . 【答案】解:原式=)2()2)(2(442+-+÷-+x x x x x x x=)2)(2()2()2(2-++⋅-x x x x x x =2-x .当1-=x 时,原式=-1-2=-3.18.解方程:x x -1+ 1x =1解:x 2+x -1= x (x -1) 2 x =1 x =21 经检验:x =21是原方程的解.21.(2010重庆市)先化简,再求值:(x 2+4x -4)÷ x 2-4x 2+2x,其中x =-1解:原式=4244222-+⋅+-x x x x x x =)2)(2()2()2(2-++⋅-x x x x x x =2-x 当x =-1时,原式=2-x =-1.6.(2010江苏泰州,6,3分)下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③方程1312112-=+--x x x 的解是0=x ;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有( ) A.1个 B.2个 C.3个 D.4个 【答案】B【关键词】轴对称与中心对称 随机抽样 分式方程的解法 简单的推理19.(2010江苏泰州,19(2),8分)计算:(2))212(112aa a a a a +-+÷--. 【答案】原式=()21112a a a a a ---÷+=()()()21111a a a a a a +--⋅+-=211a a +-+ =()121a a a +-++=121a a a +--+=11a -+.【关键词】分式的加减乘除混合运算1.(2010年浙江省绍兴市)化简1111--+x x ,可得( ) A .122-x B .122--x C .122-x x D .122--x x【答案】B2.(2010年宁德市)化简:=---ba bb a a _____________. 【答案】118.解方程:x x -1+ 1x =1解:x 2+x -1= x (x -1) 2 x =1 x =21经检验:x =21是原方程的解.21.(2010重庆市)先化简,再求值:(x 2+4x -4)÷ x 2-4x 2+2x,其中x =-1解:原式=4244222-+⋅+-x x x x x x =)2)(2()2()2(2-++⋅-x x x x x x =2-x 当x =-1时,原式=2-x =-1.(2010年浙江省东阳市)使分式12-x x有意义,则x 的取值范围是 ( )A.21≥x B.21≤x C. 21>x D.21≠x 【关键词】分式 分式有意义 【答案】D1.(2010年四川省眉山市)解方程:2111x x x x++=+ 【关键词】分式方程【答案】解:2(1)(21)(1)x x x x x ++=++解这个整式方程得:12x =-经检验:12x =-是原方程的解.∴原方程的解为12x =-.2.(2010年福建省晋江市)分式方程0242=+-xx 的根是( ) .A.2-=xB. 0=xC.2=xD.无实根 【关键词】分式方程的根 【答案】C3.(2010年福建省晋江市)先化简,再求值:x x x x x x11132-⋅⎪⎭⎫ ⎝⎛+--,其中22-=x 【关键词】分式运算、化简求值【答案】解一:原式=()()()()()()x x x x x x x x x x 111111132-⋅⎥⎦⎤⎢⎣⎡+---+-+= ()()x x x x x x x x 11133222-⋅+-+-+ = ()()xx x x x x 1114222-⋅+-+ =()()()()()xx x x x x x 111122-+⋅+-+ =()22+x当22-=x 时,原式=()2222+-=22解二:原式=xx x x x x x x 1111322-⋅+--⋅- =()()()()xx x x x x x x x x 1111113+-⋅+-+-⋅-= ()()113--+x x = 133+-+x x =42+x当22-=x 时,原式=2224-+()=224.(2010年辽宁省丹东市)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:【关键词】分式方程的实际应用【答案】解:设原来每天加固x 米,根据题意,得926004800600=-+xx . 去分母,得 1200+4200=18x (或18x =5400) 解得 300x =. 检验:当300x =时,20x ≠(或分母不等于0). ∴300x =是原方程的解. 答:该地驻军原来每天加固300米.5. (2010年浙江省东阳市)使分式12-x x有意义,则x 的取值范围是 ( ) A.21≥x B.21≤x C. 21>x D.21≠x 【关键词】分式有意义的条件 【答案】D你们是用9天完成4800米长的大坝加固任务的?我们加固600米后,采用新的加固模式,这样每天加固长度是原来的2通过这段对话,请你求出该地驻军原来每天加固的米数.15. (2010年安徽中考) 先化简,再求值:aa a a a -+-÷--2244)111(,其中1-=a 【关键词】分式的运算 【答案】解:()()22211442(1)1122a a a a a aa a a a a a --+--÷=⋅=----- 当a=-1时,原式=112123a a -==---1、(2010年宁波市)先化简,再求值:21422++--a a a ,其中3=a 。

【关键词】分式运算 【答案】 解:原式21)2)(2(2++-+-=a a a a222121+=+++=a a a当2=a 时,原式52232=+=1.(2010福建泉州市惠安县)先化简下面代数式,再求值:aa a a ---211, 其中2-=a 【关键词】分式化简求值【答案】原式=)1(1)1(2---a a a a a =)1()1)(1(--+a a a a =a a 1+;当2-=a 时,原式=212-+-=212. (2010年山东聊城)使分式2x +12x -1无意义的x 的值是( )A .x =-12B .x =12C .x ≠-12D .x ≠ 12 【关键词】分式的意义 【答案】B3.(2010年山东聊城)化简:2a —(a —1) +a 2—1a +1.【关键词】分比化简【答案】2a —(a -1)+(a -1)=2a19、(2010年宁波)先化简,再求值:21422++--a a a ,其中3=a 。

相关文档
最新文档