初二下学期期末考试数学试卷1

合集下载

初二下册数学试卷库期末

初二下册数学试卷库期末

一、选择题(每题5分,共25分)1. 下列各数中,是质数的是()A. 29B. 28C. 27D. 302. 下列各数中,是偶数的是()A. 15B. 22C. 19D. 243. 下列各数中,是分数的是()A. 3/2B. 4/5C. 6/7D. 8/94. 下列各数中,是正数的是()A. -3B. 0C. 2D. -55. 下列各数中,是负数的是()A. 5B. -3C. 0D. 2二、填空题(每题5分,共25分)1. 0的相反数是__________。

2. 2的倒数是__________。

3. 下列各数中,最大的数是__________。

A. 2/3B. 3/4C. 4/5D. 5/64. 下列各数中,最小的数是__________。

A. -2B. -3C. -1D. 05. 下列各数中,有理数是__________。

A. √4B. √9C. √16D. √25三、解答题(每题10分,共40分)1. (10分)已知a、b是实数,且a + b = 5,ab = 6,求a² + b²的值。

2. (10分)已知m、n是实数,且m² - 2m + 1 = 0,n² - 2n + 1 = 0,求m + n的值。

3. (10分)已知a、b是实数,且a² + b² = 25,ab = -12,求a - b的值。

4. (10分)已知x、y是实数,且x² + y² = 36,xy = 6,求x + y的值。

四、应用题(每题15分,共30分)1. (15分)某工厂生产一批产品,已知每天生产60件,用了5天生产了300件,求这批产品共有多少件?2. (15分)某市去年的财政收入为100亿元,今年的财政收入比去年增加了20%,求今年的财政收入是多少亿元?五、附加题(10分)1. (10分)已知a、b是实数,且a² + b² = 1,求a + b的最大值。

2024年全新八年级数学下册期末试卷及答案(人教版)

2024年全新八年级数学下册期末试卷及答案(人教版)

2024年全新八年级数学下册期末试卷及答案(人教版)一、选择题1. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或22. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)²=a²+2ab+b²C. (a+b)²=a²+b²+2abD. (a+b)²=a²+b²2ab3. 已知x²+y²=1,则x²y²的最大值为()A. 1B. 2C. 1D. 04. 若一个等腰三角形的底边长为6,腰长为5,则其周长为()A. 16B. 15C. 14D. 125. 若一个圆柱的底面半径为2,高为3,则其体积为()A. 12πB. 18πC. 24πD. 36π6. 下列各式中,不正确的是()A. (a+b)³=a³+b³B. (a+b)³=a³+3a²b+3ab²+b³C. (a+b)³=a³+b³+3a²b+3ab²D. (a+b)³=a³+b³+3a²b3ab²7. 若一个正方形的边长为a,则其面积为()A. a²B. a³C. a⁴D. a⁵8. 若一个球的半径为r,则其表面积为()A. 4πr²B. 4πr³C. 4πr⁴D. 4πr⁵9. 若一个圆锥的底面半径为r,高为h,则其体积为()A. πr²hB. πr³hC. πr⁴hD. πr⁵h10. 下列各式中,正确的是()A. (a+b)⁴=a⁴+b⁴B. (a+b)⁴=a⁴+4a³b+6a²b²+4ab³+b⁴C. (a+b)⁴=a⁴+b⁴+4a³b+6a²b²+4ab³D. (a+b)⁴=a⁴+b⁴+4a³b6a²b²+4ab³二、填空题11. 若a²+b²=1,则a+b的最大值为_________。

初二数学期末试题及答案

初二数学期末试题及答案

初二数学期末试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是偶数?A. 3B. 5C. 2D. 7答案:C2. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A3. 计算下列算式的结果:\[ 3x - 2x + 5 = \]A. \( x + 5 \)B. \( 5x \)C. \( 3x \)D. \( 2x \)答案:A4. 一个正方形的对角线长度为5,那么它的面积是?A. 12.5B. 25C. 50D. 100答案:A5. 一个圆的半径为3,那么它的周长是?A. 6πB. 9πC. 12πD. 18π答案:C6. 一个数的绝对值是5,那么这个数可以是?A. 5B. -5C. 5或-5D. 0答案:C7. 计算下列算式的结果:\[ \frac{3}{4} + \frac{2}{5} = \]A. \( \frac{17}{20} \)B. \( \frac{15}{20} \)C. \( \frac{13}{20} \)D. \( \frac{11}{20} \)答案:A8. 一个数的立方是64,那么这个数是?A. 4B. -4C. 4或-4D. 8答案:A9. 一个数的平方是9,那么这个数是?A. 3B. -3C. 3或-3D. 9答案:C10. 计算下列算式的结果:\[ 2^3 \times 3^2 = \]A. 108B. 72C. 81D. 54答案:C二、填空题(每题2分,共20分)1. 一个数的平方是36,那么这个数是________。

答案:6或-62. 如果一个角的补角是60°,那么这个角的度数是________。

答案:120°3. 一个数的立方是27,那么这个数是________。

答案:34. 一个数的绝对值是8,那么这个数是________。

答案:8或-85. 计算下列算式的结果:\( \frac{1}{2} \times 4 = \)________。

初二期末数学试卷以及答案

初二期末数学试卷以及答案

一、选择题(每题5分,共50分)1. 下列各数中,不是有理数的是()A. -1.5B. 0.2C. √2D. 1/32. 下列函数中,自变量x的取值范围是所有实数的是()A. y = x^2B. y = √(x+1)C. y = 1/xD. y = x/(x-1)3. 已知函数y = 2x - 3,当x=4时,y的值为()A. 1B. 5C. 7D. 94. 已知一元二次方程x^2 - 4x + 3 = 0,则它的两个根分别是()A. x1 = 1,x2 = 3B. x1 = 3,x2 = 1C. x1 = -1,x2 = -3D. x1 = -3,x2 = -15. 下列各式中,是勾股数的是()A. 3, 4, 5B. 5, 12, 13C. 6, 8, 10D. 7, 24, 256. 在平面直角坐标系中,点P的坐标为(-2,3),点Q的坐标为(2,-3),则线段PQ的长度为()A. 4B. 5C. 6D. 77. 若等腰三角形底边长为8,腰长为10,则其面积是()A. 40B. 48C. 64D. 808. 在等差数列{an}中,a1 = 2,d = 3,则前10项的和S10为()A. 110B. 120C. 130D. 1409. 已知sinα = 1/2,则cosα的值为()A. √3/2B. -√3/2C. 1/2D. -1/210. 若x^2 - 2x + 1 = 0,则x的值为()A. 1B. 2C. -1D. -2二、填空题(每题5分,共50分)1. 已知函数y = -3x + 2,当x=1时,y的值为______。

2. 在等差数列{an}中,a1 = 3,d = -2,则第10项an为______。

3. 已知一元二次方程x^2 - 5x + 6 = 0,则它的两个根分别是______。

4. 在平面直角坐标系中,点A的坐标为(2,3),点B的坐标为(-2,-3),则线段AB的长度为______。

初二数学下册期末考试题及答案

初二数学下册期末考试题及答案

初二数学下册期末考试题及答案数学试卷一、选择题(每小题4分,共40分,每小题只有一个正确答案)1、下列运算中,正确的是()A.$\frac{y^2}{a}·\frac{a}{y}=y$B.$\frac{y^2}{2x}·\frac{2x}{y}=y$C.$\frac{2x}{x+a}+\frac{y}{a+b}=1$D.$\frac{2x+xy}{x+y}+\frac{a+b}{a}=\frac{a+b+2x}{a}$2、下列说法中,不正确的是()A.为了解一种灯泡的使用寿命,宜采用抽样的方法B.众数在一组数据中不一定唯一C.方差反映了一组数据与其平均数的偏离程度D.对于简单随机样本,可以用样本的方差去估计总体的方差3、能判定四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边相等,一组邻角相等C.一组对边平行,一组邻角相等D.一组对边平行,一组对角相等4、反比例函数$y=\frac{k}{x}$,在第一象限的图象如图所示,则$k$的值可能是()A.1 B.2 C.3 D.45、在平面直角坐标系中,已知点$A(1,2)$,$B(-2,3)$,$C(4,-2)$,$D(2,-1)$,则以这四个点为顶点的四边形$ABCD$是()A.矩形 B.菱形 C.正方形 D.梯形6、某校八年级(2)班的10名团员在“情系灾区献爱心”捐款活动中,捐款情况如下(单位:元):10、8、12、15、10、12、11、9、10、13,则这组数据的()A.平均数是11 B.中位数是10 C.众数是10.5 D.方差是3.97、一个三角形三边的长分别为15cm,20cm和25cm,则这个三角形最长边上的高为()A.15cmB.20cmC.25cmD.12cm8、已知,反比例函数的图像经过点$M(1,1)$和$N(-2,-3)$,则这个反比例函数是()A。

$y=\frac{11}{6x}$ B。

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。

12B。

8C。

$\frac{2}{3}$D。

$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。

5,12,13B。

1,2,5C。

1,3,2D。

4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。

$(x+2)^2=3$B。

$(x+2)^2=5$C。

$(x-2)^2=3$D。

$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。

矩形B。

菱形C。

正方形D。

无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。

$y=-x$B。

$y=x+1$C。

$y=-2x+1$D。

$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。

|。

8分。

|。

9分。

|。

10分。

|甲(频数)|。

4.|。

2.|。

3.|乙(频数)|。

3.|。

2.|。

5.|A。

$s_1^2>s_2^2$B。

$s_1^2=s_2^2$C。

$s_1^2<s_2^2$D。

无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。

1,0B。

-1,1C。

1,-1D。

无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。

初二数学期末试卷及答案

初二数学期末试卷及答案

一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √16B. √-1C. √4/3D. √-92. 若a=2,b=-3,则a²+b²的值是()A. 5B. 13C. 1D. 03. 在下列函数中,反比例函数是()A. y=2x+1B. y=x²C. y=3/xD. y=√x4. 若x=3,则方程2x-5=0的解是()A. x=1B. x=2C. x=3D. x=45. 在直角坐标系中,点A(2,3)关于y轴的对称点是()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)二、填空题(每题5分,共25分)6. 5的平方根是______,-5的平方根是______。

7. 若a=5,b=-3,则a²+b²的值是______。

8. 函数y=3x+2的斜率是______,截距是______。

9. 若x=2,则方程2x+5=0的解是______。

10. 在直角坐标系中,点B(-4,5)关于原点的对称点是______。

三、解答题(每题10分,共30分)11. (1)求下列各数的倒数:√3,-5/2,1/4。

(2)计算:-2/3 + 3/4 - 5/6。

12. (1)已知三角形ABC中,AB=6cm,BC=8cm,AC=10cm,求三角形ABC的面积。

(2)已知一次函数y=kx+b的图象经过点(2,-3)和点(-1,5),求该一次函数的解析式。

13. (1)已知数列{an}中,a₁=1,a₂=3,a₃=5,…,求第10项a₁₀。

(2)已知等差数列{bn}中,b₁=2,公差d=3,求第5项b₅。

四、应用题(每题15分,共30分)14. 小明骑自行车从家出发去学校,已知家到学校的距离为6km。

小明骑自行车的速度为15km/h,步行速度为4km/h。

若小明先骑自行车行驶2km,然后步行剩余的路程,求小明从家到学校需要的时间。

15. 某商店销售两种商品,甲商品每件售价为50元,乙商品每件售价为30元。

2023-2024学年八年级第二学期期末考试数学试卷含答案解析

2023-2024学年八年级第二学期期末考试数学试卷含答案解析
平行四边形(

A.AD=BC,AB=CD
B.AB∥CD,AD=BC
C.AD∥BC,AB∥CD
D.OA=OC,OB=OD
5.
(3 分)如图,在△ABC 中,点 D,E 分别是 AC,BC 的中点,以点 A 为圆心,AD 为半
径作圆弧交 AB 于点 F.若 AD=7,DE=5,则 BF 的长为(
第 1页(共 31页)
全体学生的测试成绩数据进行了收集、整理和分析,研究过程中的部分数据如下:
信息一:党史知识测试题共 10 道题目,每小题 10 分;
信息二:两个班级的人数均为 40 人;
信息三:九年级 1 班成绩条形统计图如图;
60×3+70×17+80×3+90×9+100×8
信息四:九年级 2 班平均分的计算过程如下:
第 6页(共 31页)
19.(9 分)如图,矩形 ABCD 的对角线 AC,BD 交于点 O,AM⊥BD 于点 M.
(1)尺规作图:过点 C 作 BD 的垂线,垂足为 N,连接 AN,CM(保留作图痕迹,不写
作法,不写结论).
(2)补全推理过程:
在矩形 ABCD 中,
∵AD∥BC,AD=BC,


=80.5
3+17+3+9+8
(分)

第 4页(共 31页)
信息五:
统计量
平均数
中位数
众数
方差
九年级 1 班
82.5
m
90
158.75
九年级 2 班
80.5
75
n
174.75
根据以上信息,解决下列问题:
(1)m=

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。

2. 如果x=2,那么x²等于______。

3. 如果a=4,b=2,那么a+b等于______。

4. 如果x=3,那么x²等于______。

三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:4x3y=73. 解答下列方程组:2a+3b=63a2b=54. 解答下列方程:3x+2y=7四、计算题(每题10分,共30分)1. 计算:2x²+3y²=6,其中x=2,y=3。

2. 计算:3x²2y²=5,其中x=3,y=2。

3. 计算:2a²+3b²=6,其中a=4,b=2。

五、证明题(每题10分,共20分)1. 证明:如果a+b=c,那么a+c=b。

2. 证明:如果x²=y²,那么x=y。

六、应用题(每题10分,共20分)1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,求它行驶的距离。

2. 一个长方形的长是5厘米,宽是3厘米,求它的面积。

七、简答题(每题10分,共20分)1. 简述方程的基本概念。

2. 简述不等式的基本概念。

八、论述题(每题10分,共20分)1. 论述数学在生活中的应用。

八年级数学下册期末试卷(附含答案)精选全文完整版

八年级数学下册期末试卷(附含答案)精选全文完整版

可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。

苏科版八年级下册数学期末试卷 (1)

苏科版八年级下册数学期末试卷 (1)

苏科版八年级下册数学期末试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)使二次根式的有意义的x的取值范围是( )A.x>0B.x>1C.x≥1D.x≠12.(3分)下列图形中,是中心对称图形但不是轴对称图形的为( )A.等边三角形B.平行四边形C.矩形D.圆3.(3分)下列事件中的必然事件是( )A.一箭双雕B.守株待兔C.水中捞月D.旭日东升4.(3分)下列分式中属于最简分式的是( )A.B.C.D.5.(3分)如图,已知四边形ABCD是平行四边形,对角线AC、BD交于点O,则下列结论中错误的是( )A.当AB=BC时,它是菱形B.当∠ABC=90°时,它是正方形C.当AC=BD时,它是矩形D.当AC⊥BD时,它是菱形6.(3分)在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是( )A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调查7.(3分)在Rt△ABC中,∠C=90°,∠A=30°,BC=4,D、E分别为AC、AB边上的中点,连接DE并延长DE到F,使得EF=2ED,连接BF,则BF长为( )A.2B.2C.4D.48.(3分)已知一次函数y=kx+b的图象经过一、二、四象限,则下列关于反比例函数y=的描述,其中正确的是( )A.图象在一、三象限B.y随x的增大而减小C.y随x的增大而增大D.当x<0时,y>09.(3分)已知:a2+b2=3ab(a>b>0),则的值为( )A.B.3C.D.510.(3分)如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE、BE,若AD平分∠OAE,反比例函数y=(k<0,x<0)的图象经过AE上的点A、F,且AF=EF,△ABE的面积为18,则k的值为( )A.﹣6B.﹣12C.﹣18D.﹣24二、填空题(本大题共8小题,每小题2分,共16分.)11.(2分)给出下列3个分式:,,,它们的最简公分母为.12.(2分)当x= 时,分式的值为零.13.(2分)一枚质地均匀的骰子的六个面上分别刻有1~6的点数,抛掷这枚骰子,若抛到偶数的概率记作P1,抛到奇数的概率记作P2,则P1与P2的大小关系是.14.(2分)已知实数a、b满足+|6﹣b|=0,则的值为.15.如图,面积为3的矩形OABC的一个顶点B在反比例函数y=的图象上,另三点在坐标轴上,则k= .16.(2分)如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥BC于点H,连接OH,若OA=8,OH=6,则菱形ABCD的面积为.17.(2分)已知正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象有一个交点的坐标为(3,﹣1),则关于x的不等式k1x﹣>0的解集为.18.(2分)如图,E为正方形ABCD中BC边上的一点,且AB=3BE=6,M、N分别为边CD、AB上的动点,且始终保持MN⊥AE,则AM+NE的最小值为.三、解答题(本大题共9小题,共74分.)19.(8分)计算:(1)+|3﹣|﹣()2;(2)﹣(3+)(3﹣).20.(8分)(1)计算:;(2)解方程:.21.(6分)化简代数式÷(x+),并求当x=7时此代数式的值.22.(8分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)m= ,E组对应的圆心角度数为°;(2)补全频数分布直方图;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.23.(8分)如图,在▱ABCD中,延长BC到点E,使得BC=CE,连接AE、DE.(1)求证:四边形ACED是平行四边形;(2)如果AB=AE=4,BE=2,求四边形ACED的面积.24.(8分)某文具店王老板用240元购进一批笔记本,很快售完;王老板又用600元购进第二批笔记本,所购本数是第一批的2倍,但进价比第一批每本多了2元.(1)第一批笔记本每本进价多少元?(2)王老板以每本12元的价格销售第二批笔记本,售出60%后,为了尽快售完,决定打折促销,要使第二批笔记本的销售总利润不少于48元,剩余的笔记本每本售价最低打几折?25.(8分)如图1,在矩形ABCD中,AB=6,BC=10,P是AD边上一点,将△ABP沿着直线PB折叠,得到△EBP.(1)请在图2上用没有刻度的直尺和圆规,在AD边上作出一点P,使P、E、C三点在一直线上(不写作法,保留作图痕迹),此时AP的长为;(2)请在图3上用没有刻度的直尺和圆规,在AD边上作出一点P,使BE平分∠PBC (不写作法,保留作图痕迹),此时△BEC的面积为.26.(10分)如图,在平面直角坐标系中,B、C两点在x轴的正半轴上,以线段BC为边向上作正方形ABCD,顶点A在正比例函数y=2x的图象上,反比例函数y=(x>0,k >0)的图象经过点A,且与边CD相交于点E.(1)若BC=4,求点E的坐标;(2)连接AE,OE.①若△AOE的面积为24,求k的值;②是否存在某一位置使得AE⊥OA,若存在,求出k的值;若不存在,请说明理由.27.(10分)如图,在平面直角坐标系中,矩形ABCO的边OC、OA分别在x轴、y轴上,已知B(m,4)(m>0),AB上有一点P(n,4),将△OAP绕着点O顺时针旋转60°得到△OA1P1.(1)点A1的坐标为;连接PP1,若PP1⊥x轴,则n的值为;(2)如果m﹣n=2.①当点P1落在OC上时,求CP1的长;②请直接写出CP1最小值.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.【分析】根据中a≥0得出不等式,求出不等式的解即可.【解答】解:要使有意义,必须x﹣1≥0,解得:x≥1.故选:C.2.【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A.等边三角形是轴对称图形,不是中心对称图形,故本选项不符合题意;B.平行四边形是中心对称图形但不是轴对称图形,故本选项符合题意;C.矩形既是轴对称图形,又是中心对称图形,故本选项不符合题意;D.圆既是轴对称图形,又是中心对称图形,故本选项不符合题意.故选:B.3.【分析】根据必然事件的定义即可判断.【解答】解:A、一箭双雕,是随机事件,不符合题意;B、守株待兔,是随机事件,不符合题意;C、水中捞月,是不可能事件,不符合题意;D、旭日东升,是必然事件,故选项符合题意;故选:D.4.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、是最简分式,故本选项符合题意;B、原式=﹣,不是最简分式,故本选项不符合题意;C、原式=,不是最简分式,故本选项不符合题意;D、原式=x﹣3,该式子不是最简分式,故本选项不符合题意;故选:A.5.【分析】利用矩形的判定、正方形的判定及菱形的判定方法分别判断后即可确定正确的选项.【解答】解:A、根据邻边相等的平行四边形是菱形可以得到该结论正确;B、当∠ABC=90°时,可以得到平行四边形ABCD是矩形,不能得到正方形,故错误,C、根据对角线相等的平行四边形是矩形可以判断该选项正确;D、根据对角线互相垂直的平行四边形是菱形可以得到该选项正确;故选:B.6.【分析】根据抽样调查的具体性和代表性解答即可.【解答】解:为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,在四个学校各随机抽取150名学生进行调查最具有具体性和代表性,故选:D.7.【分析】根据直角三角形的性质求出AB,进而求出AE、EB,根据三角形中位线定理得到DE∥BC,得到∠AED=∠AED=60°,根据等边三角形的判定定理和性质定理解答即可.【解答】解:在Rt△ABC中,∠C=90°,∠A=30°,BC=4,∴AB=2BC=8,∠ABC=60°,∵E为AB边上的中点,∴AE=EB=4,∵D、E分别为AC、AB边上的中点,∴DE∥BC,∴∠AED=∠AED=60°,∴∠BEF=∠ABC=60°,在Rt△AED中,∠A=30°,∴AE=2DE,∵EF=2DE,∴AE=EF,∴△BEF为等边三角形,∴BF=BE=4,故选:C.8.【分析】根据一次函数y=kx+b的图象经过一、二、四象限,可以得到k<0,b>0,从而可以得到b﹣k>0,然后根据反比例函数的性质,即可判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,∴b﹣k>0,∴反比例函数y=的图象在第一、三象限,故选项A正确;在每个象限内,y随x的增大而增大,故选项B错误、选项C错误;当x<0时,反比例函数y=的函数值y<0,故选项D错误;故选:A.9.【分析】首先进行配方,得出a+b以及a﹣b的值,进而求出答案.【解答】解:∵a>b>0,a2+b2=3ab,∴(a﹣b)2=ab,(a+b)2=5ab,∴a+b>0,a﹣b>0,∴的值为:.故选:A.10.【分析】连接BD,先由AD平分∠EAO得∠DAE=∠OAD,由矩形ABCD的性质得到∠OAD=∠ODA,从而得到∠EAD=∠ADO,故而AE∥BD,再由平行线的性质得到△ABE和△AOE的面积相等,然后设点A的坐标,结合AF=EF得到点F和点E的坐标,最后结合△AOE的面积求出k的取值.【解答】解:连接BD,则OA=OD,∴∠OAD=∠ADO,∵AD平分∠EAO,∴∠EAD=∠OAD,∴∠EAD=∠ADO,∴AE∥BD,∴S△AEB=S△AEO=18,设A(a,),∵AF=EF,∴F(2a,),E(3a,0),∴S△AEO=×(﹣3a)×=18,∴k=﹣12,故选:B.二、填空题(本大题共8小题,每小题2分,共16分.)11.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,,的分母分别是ab、a3b,abc,故最简公分母是a2bc;故答案为a2bc.12.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得x﹣2=0且x+2≠0,解得x=2.故当x=2时,分式的值为零.故答案为:2.13.【分析】直接利用概率公式求出P1,P2的值,进而得出答案.【解答】解:抛到偶数的概率P1==,抛到奇数的概率P2==,则P1=P2.故答案为:P1=P2.14.【分析】先根据非负数的和为0求出a、b的值,再代入化简.【解答】解:∵+|6﹣b|=0,又∵≥0,|6﹣b|≥0,∴a﹣3=0,6﹣b=0.∴a=3,b=6.∴==2.故答案为:15.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S =|k|.【解答】解:根据题意,知S=|k|=3,k=±3,又因为反比例函数位于第四象限,k<0,所以k=﹣3,16.【分析】由菱形的性质得OA=OC=8,OB=OD,AC⊥BD,则AC=16,再由直角三角形斜边上的中线性质求出BD的长度,然后由菱形的面积公式求解即可.【解答】解:∵四边形ABCD是菱形,∴OA=OC=8,OB=OD,AC⊥BD,∴AC=2OA=16,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH=2×6=12,∴菱形ABCD的面积=AC•BD=×16×12=96,故答案为:96.17.【分析】利用反比例函数和正比例函数的性质判断两个交点关于原点对称,然后根据关于原点对称的点的坐标特征写出另一个交点的坐标.根据交点坐标和图象即可得出不等式的解集.【解答】解:∵正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象关于原点对称,∴正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象的交点关于原点对称,∵一个交点的坐标为(3,﹣1),∴另一个交点的坐标是(﹣3,1),如图,则关于x的不等式k1x﹣>0的解集为x<﹣3或0<x<3,故答案为:x<﹣3或0<x<3.18.【分析】由勾股定理可求AE的长,由“ASA”可证△ABE≌△DAH,可得DH=AE=2,通过证明四边形NEGM是平行四边形,可得NE=MG,MN=EG=AE=2,由AM+NE =AM+MG,则当点A,点M,点G三点共线时,即AM+NE的最小值为AG,由勾股定理可求解.【解答】解:如图,过点D作DH∥MN,交AB于H,过点E作EG∥MN,过点M作MG∥NE,两直线交于点G,连接AG,∵四边形ABCD是正方形,∴AB∥CD,∠B=∠BAD=90°,∵AB=3BE=6,∴BE=2,∴AE===2,∵DH∥MN,AB∥CD,∴四边形DHNM是平行四边形,∴DH=MN,∵MN⊥AE,DH∥MN,EG∥MN,∴DH⊥AE,AE⊥EG,∴∠BAE+∠AHD=90°=∠AHD+∠ADH,∠AEG=90°,∴∠BAE=∠ADH,在△ABE和△DAH中,,∴△ABE≌△DAH(ASA),∴DH=AE=2,∴MN=DH=AE=2,∵EG∥MN,MG∥NE,∴四边形NEGM是平行四边形,∴NE=MG,MN=EG=AE=2,∴AM+NE=AM+MG,则当点A,点M,点G三点共线时,AM+NE的最小值为AG,∴AG===4,故答案为4.三、解答题(本大题共9小题,共74分.)19.【分析】(1)直接利用二次根式的性质以及绝对值的性质分别化简,进而合并得出答案;(2)直接分母有理化以及结合乘法公式计算得出答案.【解答】解:(1)原式=3+3﹣2﹣3=;(2)原式=﹣(9﹣6)=4+4+3﹣3=4+4.20.【分析】(1)先因式分解,再通分,最后同分母相加,结果化为最简分式;(2)先因式分解,再去分母、去括号、移项、合并同类项、把x系数化为一,最后一定检验.【解答】解:(1)原式=+===;(2)x(x+2)﹣(x+2)(x﹣2)=8,x2+2x﹣x2+4=8,2x=8﹣4,x=2,经检验x=2为原方程的增根,∴原方程无解.21.【分析】根据分式的加法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可.【解答】解:÷(x+)=÷==,当x=7时,原式==.22.【分析】(1)根据A组的频数和所占的百分比,可以求得本次调查的人数,然后即可计算出m的值,以及E组对应的圆心角度数;(2)根据D组所占的百分比和(1)中的结果,可以计算出D组的频数,从而可以将频数分布直方图补充完整;(3)根据直方图中的数据,可以计算出该校3000名学生中每周的课外阅读时间不小于6小时的人数.【解答】解:(1)本次调查的人数为:10÷10%=100,m%=40÷100×100%=40%,∴m=40,E组对应的圆心角度数为:×360°=14.4°,故答案为:40,14.4;(2)D组的频数为:100×25%=25,补全的频数分布直方图如右图所示;(3)3000×=870(人),答:估计该校3000名学生中每周的课外阅读时间不小于6小时的有870人.23.【分析】(1)由平行四边形的性质得AD∥BC,AD=BC,再证AD=CE,即可得出结论;(2)由等腰三角形的性质得∠ACE=90°,则平行四边形ACED是矩形,再由勾股定理得AC=,即可求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BC=CE,∴AD=CE,∵AD∥CE,∴四边形ACED是平行四边形;(2)解:由(1)得:四边形ACED是平行四边形,∵AB=AE,BC=CE=BE=,∴AC⊥BE,∴∠ACE=90°,∴平行四边形ACED是矩形,在Rt△ACE中,由勾股定理得:AC===,∴矩形ACED的面积=AC×CE=×=.24.【分析】(1)设第一批笔记本每本进价为x元,则第二批每本进价为(x+2)元,由题意:某文具店王老板用240元购进一批笔记本,很快售完;王老板又用600元购进第二批笔记本,所购本数是第一批的2倍,列出分式方程,解方程即可;(2)设剩余的笔记本每本打y折,由题意:王老板以每本12元的价格销售第二批笔记本,售出60%后,为了尽快售完,决定打折促销,要使第二批笔记本的销售总利润不少于48元,列出一元一次不等式,解不等式即可.【解答】解:(1)设第一批笔记本每本进价为x元,则第二批每本进价为(x+2)元,由题意得:,解之得:x=8,经检验,x=8为原方程的解,答:第一批笔记本每本进价为8元.(2)第二批笔记本有:=60(本),设剩余的笔记本每本打y折,由题意得:,解得:y≥7.5,答:剩余的笔记本每本最低打七五折.25.【分析】(1)以C为圆心,BC长为半径作弧交AD于点P,则∠CBP=∠CPB,而∠CBP =∠APB,所以AP=2(2)以为AB边再矩形内作等边三角形ABE,作∠ABE的角平分线BP与AD交于点P,则BE平分∠PBC,作EH⊥BC,然后求出BE,从而得到△BEC的面积.【解答】解:(1)如图2,点P为所作;∵CP=CB=10,∴PD===8,∴AP=AD﹣DP=10﹣8=2;故答案为2;(2)如图3,点P为所作,过E作EH⊥BC于H,∵△ABE为等边三角形,∴∠ABE=60°,BE=BA=6,∴∠EBC=30°,∴EH=BE=3,∴S△BEC=×10×3=15.故答案为15.26.【分析】(1)根据正方形的性质得到AB=BC=4,求得A(2,4),得到k=2×4=8,于是求得点E的坐标为;(2)①设A(a,2a)(a>0),则点,根据梯形的面积公式即可得到答案;②根据余角的性质得到∠OAB=∠BAE,根据全等三角形的性质得到OB=DE,由①可知,A(a,2a)(a>0),则点,求得OB=a,,推出k=0,于是得到答案.【解答】解:(1)在正方形ABCD中,AB=BC=4,∴A(2,4),∵A(2,4)在的图象上,∴k=2×4=8,∵OC=OB+BC=6,∴x E=6,将x E=6代入中,得:,∴点E的坐标为;(2)①设A(a,2a)(a>0),则点,∵S梯形ABCE=S△AOE=24,∴得a2=9,∴k=2a2=18;②答:不存在,理由:∵AE⊥OA,∴∠OAB+∠BAE=90°,∵∠BAD=∠BAE+∠DAE=90°,∴∠OAB=∠DAE,∵∠ABO=∠D=90°,AB=AD,∴△OAB≌△EAD(ASA),∴OB=DE,由①可知,A(a,2a)(a>0),则点,∴OB=a,,∴,∴a=0,∴k=0,∵k>0,∴不符合题意,不存在.27.【分析】(1)连接AA1,过A1作A1D⊥x轴于D,设PP1与x轴交于E,根据将△OAP 绕着点O顺时针旋转60°得到△OA1P1,B(m,4),可得∠AOA1=∠POP1=60°,OA=OA1=4,OP=OP1,即得A1D=OA1=2,OD==2,故A1(2,2),由PP1⊥x轴,可得∠POE=30°,在Rt△POE中,即得OP=8,OE=4,故n =4;(2)①连接PP1,过P作PF⊥x轴于F,由△POP1是等边三角形,PF⊥x轴,知P1F=OP1=PP1,而PF=4,即得P1F=,根据m﹣n=2,即BP=2=CF,即得CP1=CF﹣P1F=;②过A1作A1R⊥OA于R,过P1作P1S⊥A1R于S,由m﹣n=2,得m=2+n,C(2+n,0),证明△A1RO∽△P1A1S,可得OR:A1R:OA1=A1S:P1S:A1P1=1::2,OR=2,A1R=2,从而有P1(2+n,2﹣n),即得CP12=(n﹣)2+1,故CP12最小为1,CP1最小值是1.【解答】解:(1)连接AA1,过A1作A1D⊥x轴于D,设PP1与x轴交于E,如图:∵将△OAP绕着点O顺时针旋转60°得到△OA1P1,B(m,4),∴∠AOA1=∠POP1=60°,OA=OA1=4,OP=OP1,∴∠A1OD=30°,△POP1是等边三角形,∴A1D=OA1=2,OD==2,∴A1(2,2),∵△POP1是等边三角形,∴∠OPP1=60°,∵PP1⊥x轴,∴∠OEP=90°,∴∠POE=30°,在Rt△POE中,PE=OA=4,∴OP=8,OE==4,∴P(4,4),即n=4,故答案为:(2,2),;(2)①连接PP1,过P作PF⊥x轴于F,如图:∵△POP1是等边三角形,PF⊥x轴,∴P1F=OP1=PP1,∵PF=4,∴P1F==,∵m﹣n=2,即BP=2=CF,∴CP1=CF﹣P1F=;②过A1作A1R⊥OA于R,过P1作P1S⊥A1R于S,如图:∵m﹣n=2,∴m=2+n,∴C(2+n,0),∵∠OA1P1=∠OAP=90°,∴∠RA1O=90°﹣∠SA1P1=∠A1P1S,又∠A1RO=∠A1SP1,∴△A1RO∽△P1A1S,∵∠AOA1=60°,OA=OA1=4,∴OR:A1R:OA1=A1S:P1S:A1P1=1::2,OR=2,A1R=2,∵P(n,4),∴A1P1=AP=n,∴A1S=n,P1S=n,∴P1(2+n,2﹣n),∴CP12=(2+n﹣2﹣n)2+(2﹣n﹣0)2=n2﹣2n+4=(n﹣)2+1,∴n=时,CP12最小为1,∴当P1(,),C(3,0)时,CP1取最小值,最小值是1.。

初二下学期期末考试数学试卷1

初二下学期期末考试数学试卷1

初二数学下学期期末模拟测评卷(A)考号_____班级_____ 姓名______ 得分______一、 细心填一填;相信你填得又快又准(每空2分;共30分)1.Rt ⊿ABC 中;∠C=90º;∠B=30º;则AC 与AB 两边的关系是 ;AB 边上的中线与AC 的关系是 。

2.如图1;DE ∥BC 且DB =AE;若AB =5;AC =10;则AE 的长为 :若BC =10;则DE 的长为 。

3.已知:如图2;△ABC 中;P 是边AB 上的一点;连结CP. 要使△ACP ∽△ABC;还需 要补充的一个条件是 (只需写出一个即可)ED C B A图1 图3 图24.当x___________时;分式132+x x 有意义:当m =__________时;分式392--m m 值为零。

5.黑板上画有一个图形;学生甲说它是多边形;学生乙说它是平行四边形;学 生丙说它是菱形;学生丁说它是矩形;老师说这四名同学的答案都正确;则黑板上画的图形是___________________6.平行四边形ABCD 中; AB=6cm;AC+BD=14cm ;则△AOC 的周长为_______7.矩形的对角线的夹角为120°;两对角线与两短边之和为36;则对角线的长是 ;该矩形的面积是8.等腰三角形一底角为30°;底边上的高为9cm;则这个等腰三角形的腰长是________cm;顶角是____________:9.用一块面积为450cm 2的等腰梯形彩纸做风筝;为了牢固起见;用竹条做梯形的对角线;对角线恰好互相垂直;那么至少需要竹条 cm10.如图3;□ABCD中;G是BC延长线上一点;AG与BD交于点E;与DC交于点F;则图中相似三角形共有 对。

二、 耐心选一选;选一个你认为最适合的答案(每题2分;共20分)11.下列各式:x 27;2y x +;132-x ;112--x x 是分式的个数是( ) A 、3 B 、4 C 、5D 、6 12.下列分式中是最简分式的是( )A 、3432+++x x x B 、6102+x x C 、b a 128 D 、22y x y x ++ 13、分式()34331b a b a -和()25261b a b a -的最简公分母是( )A 、18()353b a b a -:B 、()5956b a b a -: C 、12()352b a b a -: D 、()3536b a b a -: 14.若dc b a =;则下列变形中错误的是( ) A 、bd a c = B 、d c b a 11+=+ C 、c d c d a b a b +-=+- D dc d b c a =++ 15.要从一张长40cm;宽20cm 的矩形纸片中剪出长为18cm;宽为12cm 的矩形纸片则最多能剪出( )A .1张B .2张C .3张D .4张16.下列说法正确的是( )A .任何一个具有对称中心的四边形一定是正方形或矩形:B .角既是轴对称图形又是中心对称图形:C .线段、圆、矩形、菱形、正方形都是中心对称图形:D .正三角形、矩形、菱形、正方形是轴对称图形;且对称轴都有四条17.已知ABCD 是平行四边形;下列结论中不一定正确的是( )A .AB=CDB .AC=BDC .当AC ⊥BD 时;它是菱形 D .当∠ABC=90°时;它是矩形18.在□ABCD 中;∠A :∠B :∠C :∠D 的值可以是( )A .1:2:3:4B .1:2:2:1C .1:1:2:2D .2:1:2:119.梯形的面积被对角线分为1:3两部分;这梯形被它的中位线分成的两部分的面积比是( )A. 2:3B. 3:5C. 3:4D. 3:720.已知m x 21+=;m y 211+=;则y 等于( ) A 、x -2 B 、1-x x C 、12-+x x D 、11-+x x 三、 认真算一算; 培养你的计算能力21.计算题: (3′×2=6′)(1)22222y x y x xy y x --⎪⎪⎭⎫ ⎝⎛+: (2)⎪⎭⎫ ⎝⎛-÷-232212++++m m m m m :22. 解关于x 的方程(4′×2=8′)(1)225111+++x x x =: (2)()02≠--=-b a b a x a b x +:23.先化简后求值(4′):()226446222+-⋅-+÷+-+x x x x x x x ;其中3=x四、想一想;体验成功的快乐(6′)24.【Ⅰ】甲乙两人做某种机器零件;已知甲每小时比乙多做6个;甲做90个所用的时间与乙做60个所用的时间相等;求甲乙每小时各做多少个零件?五、做一做;相信你有收获25. 【Ⅰ】如图;已知正方形ABCD 中;E 是BC 的中点;F 在CD 上;且DF=3CF .求证:△ABE ∽△ECF .(8′)26.如图;等腰梯形ABCD 中;AD ∥BC;AB=DC;AC ⊥BD;过D 点作DE ∥AC 交BC 的延长线于E 点。

2023-2024学年八年级下学期期末考试数学试卷附答案解析

2023-2024学年八年级下学期期末考试数学试卷附答案解析

第1页(共17页)2023-2024学年八年级下学期期末考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项
1.(3分)下列各组数是勾股数的是(
)A .2,3,4
B .3,4,5
C .4,5,6
D .5,6,7
2.(3分)计算
r2r1−r1的结果为(
)A .1B .2
C .2r1
D .2r13.(3分)某校举行健美操比赛,甲、乙、丙三个班各选10名学生参加比赛,三个班参赛学生的平均身高都是1.65米,其方差分别是s 甲2=1.9,s 乙2=2.4,s 丙2=1.6,则参赛学生身高比较整齐的班级是(
)A .甲班B .乙班C .丙班
D .三个班一样整齐4.(3分)小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC 、BD 的中点重叠,并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是(

A .对角线互相平分的四边形是平行四边形
B .两组对角分别相等的四边形是平行四边形
C .两组对边分别相等的四边形是平行四边形
D .两组对边分别平行的四边形是平行四边形
5.(3分)下列计算正确的是(
)A .2+3=5B .42−2=3
C .3×5=8
D .6÷3=26.(3分)如图,在Rt △ABC 中,∠ACB =90°,AB =12,CD 是AB 边上的中线,则
CD 的长为()
A .24
B .12
C .8
D .6。

人教版八年级下学期期末考试数学试卷及答案(超经典)

人教版八年级下学期期末考试数学试卷及答案(超经典)

八年级下学期期末考试数学模拟试卷一.选择题1.如图,在高为3米,水平距离为4米楼梯的表面铺地毯,地毯的长度至少需()米A.4 B。

5 C。

6 D.72。

当分式有意义时,字母应满足( )A。

B. C. D。

3.若点(-5,y1)、(-3,y2)、(3,y3)都在反比例函数y= -错误!的图像上,则()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y1>y3>y24.如图,在三角形纸片ABC中,AC=6,∠A=30º,∠C=90º,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为()A.1 B. C. D.25。

函数的图象经过点(1,-2),则k的值为()A. B. C. 2 D。

-26. 如果矩形的面积为6cm2,那么它的长cm与宽cm之间的函数关系用图象表示大致( )A B D7.A。

正方形8. 0,则x的值为()A.3 B。

3或-3 C。

-3 D。

09。

甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时甲追上乙.那么甲的速度是乙的速度的()A.倍B。

倍C。

倍 D.倍10.如图,把一张平行四边形纸片ABCD沿BD对折。

使C点落在E处,BE与AD相交于点D.若∠DBC=15°,则∠BOD=A.130 ° B.140 ° C.150 °D。

160°二.填空题11。

已知-=8,则的值是12.边长为8,15,17的△ABC内有一点P到三边距离相等,则这个距离为13. 如果函数y=是反比例函数,那么k=____, 此函数的解析式是__ ______14.若点P是反比例函数上的一点,PD⊥轴于点D,则△POD的面积为15. 从一个班抽测了6名男生的身高,将测得的每一个数据(单位:cm)都减去165.0cm,其结果ABCDE如下:−1。

2,0.1,−8.3,1.2,10。

8,−7.0这6名男生中最高身高与最低身高的差是 __________ ;这6名男生的平均身高约为 ________ (结果保留到小数点后第一位)三、解答题16.( 6分)解方程:17. (7分) 先化简,再求值:,其中.18.(7分)如图,已知一次函数y=k 1x+b 的图象与反比例函数y=的图象交于A (1,-3),B (3,m )两点,连接OA 、OB .(1)求两个函数的解析式;(2)求△AOB 的面积. 19.(8(1)计算小军上学期平时的平均成绩; (2)如果学期总评成绩按扇形图所示的权重计算,问小军上学期的总评成绩是多少分? 20.(8分)如图,以△ABC 的三边为边,在BC 的同侧作三个等边△ABD 、△BEC 、△ACF .(1)判断四边形ADEF 的形状,并证明你的结论;(2)当△ABC 满足什么条件时,四边形ADEF 是菱形?是矩形? 21.(10分)为预防甲型H1N1流感,某校对教室喷洒药物进行消毒。

八年级下期末数学试卷(解析版)

八年级下期末数学试卷(解析版)

八年级(下)期末数学试卷姓名成绩一、选择题(本题有10个小题.每小题3分.共30分)1.在4(x﹣1)(x+2)=5.x2+y2=1.5x2﹣10=0.2x2+8x=0.=x2+3中.是一元二次方程的个数为()A.2个 B.3个 C.4个 D.5个2.下列四组线段中.能组成直角三角形的是()A.a=1.b=2.c=3 B.a=2.b=3.c=4 C.a=2.b=4.c=5 D.a=3.b=4.c=53.函数y=kx+b的图象如图所示.则()(4题)A.k>0.b>0 B.k>0.b<0 C.k<0.b>0 D.k<0.b<04.如图.把矩形ABCD沿EF对折后使两部分重合.若∠1=50°.则∠AEF=()A.110°B.115°C.120°D.130°5.下列命题中.真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个B.2个C.1个D.0个6.三角形的三边长为a.b.c.且满足(a+b)2=c2+2ab.则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形7.关于x的一元二次方程x2﹣2x+2k=0有实数根.则k的取值范围是()A.B.k≤C.D.k≥8.若把一次函数y=2x﹣3的图象向上平移3个单位长度.得到图象对应的函数解析式为()A.y=2x B.y=2x﹣6 C.y=4x﹣3 D.y=﹣x﹣39.如图.在正方形ABCD外侧.作等边三角形ADE.AC.BE相交于点F.则∠BFC为()A.75°B.60°C.55°D.45°10.小明的爸爸早晨出去散步.从家走了20分到达距离家800米的公园.他在公园休息了10分.然后用30分原路返回家中.那么小明的爸爸离家的距离S(单位:米)与离家的时间t(单位:分)之间的函数关系图象大致是()A.B.C.D.二、填空题:每题4分.共36分.11.在函数y=中.自变量x的取值范围是.12.若x=2是一元二次方程x2+x+c=0的一个解.则c2=.13.正比例函数y=kx的图象经过点(﹣2.4).则k=.14.如图.在▱ABCD中.∠B=60°.∠BCD的平分线交AD点E.若CD=3.四边形ABCE 的周长为13.则BC长为.15.一次函数y=2x﹣3的图象不经过第象限.16.一个凸多边形共有35条对角线.它是边形.17.四边形ABCD为菱形.该菱形的周长为16.面积为8.则∠ABC为度.18.某厂前年的产值为50万元.今年上升到72万元.这两年的年平均增长率是.19.如图.BD为矩形ABCD的对角线.点E在BC上.连接AE.AE=5.EC=7.∠C=2∠DAE.则BD=.(19题)三、解答题:共54分.20(10分).解下列方程:(1)x(x﹣1)=2(x﹣1)(2)2x2﹣x﹣4=0.21(8分).如图所示网格是由边长为1的小正方形组成.点A.B.C位置如图所示.在网格中确定点D.使以A.B.C.D为顶点的四边形的所有内角都相等.(1)确定点D的位置并画出以A.B.C.D为顶点的四边形;(2)直接写出(1)中所画出的四边形的周长和面积.22(9分).如图.点E.F为▱ABCD的对角线BD上的两点.连接AE.CF.∠AEB=∠CFD.求证:AE=CF.23(13分).如图.△ABC中.∠C=90°.BC=5厘米.AB=5厘米.点P从点A出发沿AC边以2厘米/秒的速度向终点C匀速移动.同时.点Q从点C出发沿CB边以1厘米/秒的速度向终点B匀速移动.P、Q两点运动几秒时.P、Q两点间的距离是2厘米?24(14分).利民商店经销某种商品.该种商品的进价为每件80元.该商店销售商品每件售价高于进价但每件售价不超过120元.当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.设该商品的销售单价为x元.每天售出商品的数量为y件.(1)求y与x之间的函数关系式;(不必写出自变量x的取值范围)(2)利民商店在销售该商品时除成本外每天还需支付各种费用1000元.该商店某天销售该商品共获利8000元.求这一天的销售单价为多少元?八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10个小题.每小题3分.共30分)1.在4(x﹣1)(x+2)=5.x2+y2=1.5x2﹣10=0.2x2+8x=0.=x2+3中.是一元二次方程的个数为()A.2个 B.3个 C.4个 D.5个【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:只含有一个未知数.并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【解答】解:4(x﹣1)(x+2)=5.5x2﹣10=0.2x2+8x=0.是一元二次方程.共3个.故选:B.2.下列四组线段中.能组成直角三角形的是()A.a=1.b=2.c=3 B.a=2.b=3.c=4 C.a=2.b=4.c=5 D.a=3.b=4.c=5【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A、∵12+22=5≠32.∴不能构成直角三角形.故本选项错误;B、∵22+32=13≠42.∴不能构成直角三角形.故本选项错误;C、∵22+42=20≠52.∴不能构成直角三角形.故本选项错误;D、∵32+42=25=52.∴能构成直角三角形.故本选项正确.故选D.3.函数y=kx+b的图象如图所示.则()A.k>0.b>0 B.k>0.b<0 C.k<0.b>0 D.k<0.b<0【考点】一次函数图象与系数的关系.【分析】根据函数y=kx+b的图象所经过的象限与单调性回答.【解答】解:根据图象知.函数y=kx+b的图象经过第一、二、四象限.∴k<0.b>0.故选C.4.如图.把矩形ABCD沿EF对折后使两部分重合.若∠1=50°.则∠AEF=()A.110°B.115°C.120° D.130°【考点】翻折变换(折叠问题).【分析】根据折叠的性质.对折前后角相等.【解答】解:根据题意得:∠2=∠3.∵∠1+∠2+∠3=180°.∴∠2=÷2=65°.∵四边形ABCD是矩形.∴AD∥BC.∴∠AEF+∠2=180°.∴∠AEF=180°﹣65°=115°.故选B.5.下列命题中.真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个 B.2个 C.1个 D.0个【考点】命题与定理.【分析】利用矩形的判定方法、菱形的判定方法及平行四边形的判定方法分别判断后即可确定正确的选项.【解答】解:①对角线相等且平分的四边形是矩形.故错误.错误.是假命题;②三条边相等的四边形是菱形.错误.是假命题;③一组对边平行且相等的四边形是平行四边形.正确.是真命题.故选C.6.三角形的三边长为a.b.c.且满足(a+b)2=c2+2ab.则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【考点】勾股定理的逆定理.【分析】对等式进行整理.再判断其形状.【解答】解:化简(a+b)2=c2+2ab.得.a2+b2=c2所以三角形是直角三角形.故选:C.7.关于x的一元二次方程x2﹣2x+2k=0有实数根.则k的取值范围是()A.B.k≤C.D.k≥【考点】根的判别式.【分析】判断上述方程的根的情况.只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=1.b=﹣2.c=2k.∴△=b2﹣4ac=22﹣4×1×(2k)=4﹣8k.关于x的一元二次方程x2﹣2x+2k=0有实数根.∴4﹣8k≥0.解得k≤.故选B.8.若把一次函数y=2x﹣3的图象向上平移3个单位长度.得到图象对应的函数解析式为()A.y=2x B.y=2x﹣6 C.y=4x﹣3 D.y=﹣x﹣3【考点】一次函数图象与几何变换.【分析】根据上下平移k不变.b值加减即可得出答案.【解答】解:将直线y=2x﹣3向上平移3个单位后的直线解析式y=2x﹣3+3=2x.故选A9.如图.在正方形ABCD外侧.作等边三角形ADE.AC.BE相交于点F.则∠BFC为()A.75°B.60°C.55°D.45°【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°.AB=AE.由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°.再运用三角形的外角性质即可得出结果.【解答】解:∵四边形ABCD是正方形.∴∠BAD=90°.AB=AD.∠BAF=45°.∵△ADE是等边三角形.∴∠DAE=60°.AD=AE.∴∠BAE=90°+60°=150°.AB=AE.∴∠ABE=∠AEB==15°.∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.10.小明的爸爸早晨出去散步.从家走了20分到达距离家800米的公园.他在公园休息了10分.然后用30分原路返回家中.那么小明的爸爸离家的距离S(单位:米)与离家的时间t(单位:分)之间的函数关系图象大致是()A.B.C.D.【考点】函数的图象.【分析】本题是分段函数的图象问题.要根据行走.休息.回家三个阶段判断.【解答】解:第10﹣20分.离家的距离随时间的增大而变大;20﹣30分.时间增大.离家的距离不变.函数图象与x轴平行;30﹣60分.时间变大.离家越来越近.故选:D.二、填空题:每题3分.共30分.11.在函数y=中.自变量x的取值范围是x≠﹣2.【考点】函数自变量的取值范围.【分析】根据分式有意义.分母不等于0列式计算即可得解.【解答】解:由题意得.x+2≠0.解得x≠﹣2.故答案为:x≠﹣2.12.若x=2是一元二次方程x2+x+c=0的一个解.则c2=36.【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义.把x=2代入方程x2+x+c=0即可求得c的值.进而求得c2的值.【解答】解:依题意.得22+2+c=0.解得.c=﹣6.则c2=(﹣6)2=36.故答案为:36.13.正比例函数y=kx的图象经过点(﹣2.4).则k=﹣2.【考点】一次函数图象上点的坐标特征.【分析】直接把点(﹣2.4)代入y=kx.然后求出k即可.【解答】解:把点(﹣2.4)代入y=kx得解得:k=﹣2.故答案为:﹣214.如图.在▱ABCD中.∠B=60°.∠BCD的平分线交AD点E.若CD=3.四边形ABCE 的周长为13.则BC长为5.【考点】平行四边形的性质.【分析】利用平行四边形的对边相等且互相平行.进而得出DE=CD=3.再求出AE+BC=7.BC﹣AE=3.即可求出BC的长.【解答】解:∵CE平分∠BCD交AD边于点E.∴∠ECD=∠ECB.∵在平行四边形ABCD中.AD∥BC.AB=CD=3.AD=BC.∠D=∠B=60°.∴∠DEC=∠ECB.∴∠DEC=∠DCE.∴DE=CD=3.∴△CDE是等边三角形.∴CE=CD=3.∵四边形ABCE的周长为13.∴AE+BC=13﹣3﹣3=7①.∵AD﹣AE═DE=3.即BC﹣AE=3②.由①②得:BC=5;故答案为:5.15.一次函数y=2x﹣3的图象不经过第二象限.【考点】一次函数的性质.【分析】先根据一次函数的性质判断出此函数图象所经过的象限.再进行解答即可.【解答】解:∵一次函数y=2x﹣3中.k=2>0.∴此函数图象经过一、三象限.∵b=﹣3<0.∴此函数图象与y轴负半轴相交.∴此一次函数的图象经过一、三、四象限.不经过第二象限.故答案为:二.16.一个凸多边形共有35条对角线.它是十边形.【考点】一元二次方程的应用;多边形的对角线.【分析】设它是n边形.从任意一个顶点发出的对角线有n﹣3条.则n边形共有对角线条.即可列出方程:.求解即可.【解答】解:设它是n边形.根据题意得:=35.解得n1=10.n2=﹣7(不符题意.舍去).故它是十边形.故答案为:十.17.四边形ABCD为菱形.该菱形的周长为16.面积为8.则∠ABC为30或150度.【考点】菱形的性质.【分析】此题菱形的形状不确定所以要分当∠A为钝角和锐角时分别求出∠ABC的度数即可.【解答】解:如图1所示:当∠A为钝角.过A作AE⊥BC.∵菱形ABCD的周长为l6.∴AB=4.∵面积为8.∴AE=2.∴∠ABE=30°.∴∠ABC=60°.当∠A为锐角是.过D作DE⊥AB.∵菱形ABCD的周长为l6.∴AD=4.∵面积为8.∴DE=2.∴∠A=30°.∴∠ABC=150°.故答案为:30或150.18.某厂前年的产值为50万元.今年上升到72万元.这两年的年平均增长率是20%.【考点】一元二次方程的应用.【分析】由于设每年的增长率为x.那么去年的产值为50(1+x)万元.今年的产值为50(1+x)(1+x)万元.然后根据今年上升到72万元即可列出方程.【解答】解:设每年的增长率为x.依题意得50(1+x)(1+x)=72.即50(1+x)2=72.解得:x=0.2.x=﹣2.2(舍去)故答案为:20%19.如图.BD为矩形ABCD的对角线.点E在BC上.连接AE.AE=5.EC=7.∠C=2∠DAE.则BD=13.【考点】矩形的性质.【分析】直接利用矩形的性质结合等腰直角三角形的性质得出AB.BE的长.再利用勾股定理得出BD的长.【解答】解:∵四边形ABCD是矩形.∴∠ABC=∠C=90°.AD∥BC.∵∠C=2∠DAE.∴∠DAE=45°.∴AB=BE.∵AE=5.∴AB=BE=5.∵EC=7.∴AD=BC=12.∴BD==13.故答案为:13.三、解答题:第21题8分.第22题6分.第23-25题每题8分.共60分.20.解下列方程:(1)x(x﹣1)=2(x﹣1)(2)2x2﹣x﹣4=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣公式法.【分析】(1)方程移项后.提取公因式.利用两数相乘积为0两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程利用公式法求出解即可.【解答】解:(1)方程移项得:x(x﹣1)﹣2(x﹣1)=0.分解因式得:(x﹣1)(x﹣2)=0.解得:x1=1.x2=2;(2)这里a=2.b=﹣1.c=﹣4.∵△=1+32=33.∴x=.21.如图所示网格是由边长为1的小正方形组成.点A.B.C位置如图所示.在网格中确定点D.使以A.B.C.D为顶点的四边形的所有内角都相等.(1)确定点D的位置并画出以A.B.C.D为顶点的四边形;(2)直接写出(1)中所画出的四边形的周长和面积.【考点】勾股定理.【分析】(1)根据题意可知以A.B.C.D为顶点的四边形是矩形.作出矩形ABCD即为所求;(2)根据勾股定理可求AB、CD的长度.再根据进行的周长公式和面积公式计算即可求解.【解答】解:(1)如图所示:(2)AB==.BC==2.周长为(2+)×2=6.面积为2×=10.22.如图.点E.F为▱ABCD的对角线BD上的两点.连接AE.CF.∠AEB=∠CFD.求证:AE=CF.【考点】平行四边形的性质.【分析】由平行四边形的性质得出AB=CD.∠BAE=∠CDF.由AAS证明证得△ABE≌△CDF.继而证得结论.【解答】证明:∵四边形ABCD是平行四边形.∴AB=CD.AB∥CD.∴∠BAE=∠DCF.在△ABE和△CDF中..∴△ABE≌△CDF(AAS).∴AE=CF.23.如图.△ABC中.∠C=90°.BC=5厘米.AB=5厘米.点P从点A出发沿AC边以2厘米/秒的速度向终点C匀速移动.同时.点Q从点C出发沿CB边以1厘米/秒的速度向终点B匀速移动.P、Q两点运动几秒时.P、Q两点间的距离是2厘米?【考点】一元二次方程的应用.【分析】首先表示出PC和CQ的长.然后利用勾股定理列出有关时间t的方程求解即可.【解答】解:设P、Q两点运动x秒时.P、Q两点间的距离是2厘米.在△ABC中.∠C=90°.BC=5厘米.AB=5厘米.∴AC===10(厘米).∴AP=2x 厘米CQ=x厘米CP=(10﹣2x)厘米.在Rt△CPQ内有PC2+CQ2=PQ2.∴(10﹣2x)2+x2=(2)2.整理得:x2﹣8x+12=0.解得:x=2或x=6.当x=6时CP=10﹣2x=﹣2<0.∴x=6不合题意舍去.∴P、Q两点运动2秒时.P、Q两点间的距离是2厘米.24.利民商店经销某种商品.该种商品的进价为每件80元.该商店销售商品每件售价高于进价但每件售价不超过120元.当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.设该商品的销售单价为x元.每天售出商品的数量为y件.(1)求y与x之间的函数关系式;(不必写出自变量x的取值范围)(2)利民商店在销售该商品时除成本外每天还需支付各种费用1000元.该商店某天销售该商品共获利8000元.求这一天的销售单价为多少元?【考点】一次函数的应用;一元二次方程的应用.【分析】(1)首先利用当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.进而求出每天可表示出销售商品数量;(2)设商场日盈利达到8000元时.每件商品售价为x元.根据每件商品的盈利×销售的件数=商场的日盈利.列方程求解即可.【解答】解:(1)由题意得:y=200+10=﹣10x+1400;(2)由题意可得:(﹣10x+1400)(x﹣80)﹣1000=8000.整理得:x2﹣220x+12100=0.解得:x1=x2=110.答:这一天的销售单价为110元.25.点E在正方形ABCD的边BC上.点F在AE上.连接FB.FD.∠ABF=∠AFB.(1)如图1.求证:∠AFD=∠ADF;(2)如图2.过点F作垂线交AB于G.交DC的延长线于H.求证:DH=2AG;(3)在(2)的条件下.若EF=2.CH=3.求EC的长.【考点】四边形综合题.【分析】(1)利用等腰三角形的性质结合正方形的性质得出AF=AD.则∠AFD=∠ADF;(2)首先得出四边形AGHN为平行四边形.得出FM=MD.进而NF=NH.ND=NH.即可得出答案;(3)首先得出△ADN≌△DCP(ASA).进而PC=DN.再利用在Rt△ABE 中.BE2+AB2=AE2.求出答案.【解答】(1)证明:∵∠ABF=∠AFB.∴AB=AF.∵四边形ABCD为正方形.∴AB=AD.∴AF=AD.∴∠AFD=∠ADF;(2)证明:如图1所示:过点A作DF的垂线分别交DF.DH于M.N两点∵GF⊥DF.∴∠GFD=∠AMD=90°.∴AN∥GH.∵四边形ABCD为正方形.∴AG∥NH.∴四边形AGHN为平行四边形.∴AG=NH.∵AF=AD.AM⊥FD.∴FM=MD.连接NF.则NF=ND.∴∠NFD=∠NDF.∵∠NFD+∠NFH=∠NDF+∠H.∴∠NFH=∠H.∴NF=NH.∴ND=NH.∴DH=2NH=2AG;(3)解:延长DF交BC于点P.如图2所示:∵四边形ABCD为正方形.∴AD∥BC.∴∠ADF=∠FPE.∴∠PFE=∠AFD=∠ADF=∠FPE.∴EF=EP=2.∵∠DAM+∠ADM=∠ADM+∠PDC.∴∠DAM=∠PDC.∵四边形ABCD为正方形.∴AD=DC.∠ADN=∠DCP.在△ADN和△DCP中.∴△ADN≌△DCP(ASA).∴PC=DN.设EC=x.则PC=DN=x+2.DH=2x+4.∵CH=3.∴DC=AB=BC=AF=2x+1∴AE=2x+3.BE=x+1.在Rt△ABE中.BE2+AB2=AE2.∴(x+1)2+(2x+1)=(2x+3)2.整理得:x2﹣6x+7=0.解得:x1=7.x2=﹣1(不合题意.舍去)∴EC=7.26.在平面直角坐标系内.点O为坐标原点.直线y=x+3交x轴于点A.交y轴于点B.点C在x轴正半轴上.△ABC的面积为15.(1)求直线BC的解析式;(2)横坐标为t的点P在直线AB上.设d=OP2.求d与t之间的函数关系式.(不必写出自变量取值范围)(3)在(2)的条件下.当∠BPO=∠BCA时.求t的值.【考点】一次函数综合题.【分析】(1)先求出点A.B坐标.用△ABC的面积为15.求出点C的坐标.用待定系数法求出直线BC解析式;(2)在Rt△OPD中.有OP2=OD2+PD2.代入化简得d=t2+3t+9.(3)先判断出∠EBA=∠OBA.再分两种情况.①点P在第一象限.用PD=OD建立方程求出t.②当点P位于如图2所示P1位置时.用P1O=PO.建立方程求解即可.【解答】解:直线y=x+3交x轴于点A.交y轴于点B.当x=0时y=3.当y=0时.x=﹣6.∴A(﹣6.0)B(0.3).∴OA=6.OB=3.=AC×OB=(OA+OC)×OB.∴S△ABC∴15=(6+OC)×3∴OC=4.∴C(4.0).设直线BC的解析式为y=kx+b.则:∴k=∴直线BC的解析式为y=﹣x+3.(2)横坐标为t的点P在直线AB上.∴P(t.t+3)过点P作x轴的垂线.点D为垂足.如图1.∴D(t.0)在Rt△OPD中.有OP2=OD2+PD2∴d=t2+(t+3)2=t2+3t+9.(3)在在Rt△OBC内有BC2=OB2+OC2∴BC==5过点A作BC的垂线.点E为垂足.如图2S△ABC=BC•AE=15.∴AE=6∴AO=AE.∵∠AEB=∠AOB=90°∴∠EBA=∠OBA当点P位于第一象限时.∠BOP=∠ABO﹣∠APO=∠EBO﹣∠BCO=(∠EBO﹣∠BCO)=∠BOC=45°∴∠POD=∠PDO=45°.∴PD=OD.∴t+3=t.∴t=6当点P位于如图2所示P1位置时.∠BP1O=∠BCA=∠BPO∴P1O=PO.∴P1O2=PO2.∴t2+3t+9=×62+3×6+9.解得:t=﹣或t=6(舍去)综上所述:当∠BPO=∠BCA时t的值为6或﹣.。

2024年人教版初二数学下册期末考试卷(附答案)

2024年人教版初二数学下册期末考试卷(附答案)

一、选择题(每题1分,共5分)1. 若a > b,则下列哪个选项一定成立?A. a + c > b + cB. a c > b cC. ac > bcD. a/c > b/c2. 下列哪个数是有理数?A. √3B. πC. 1/2D. √13. 已知等差数列的前三项分别是2,5,8,求第10项。

A. 29B. 30C. 31D. 324. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 等边三角形5. 若|a 3| = 4,则a的值为?A. 7B. 1C. 7或1D. 4二、判断题(每题1分,共5分)1. 两个负数相乘,结果是正数。

()2. 任何数乘以1都等于它本身。

()3. 0既不是正数也不是负数。

()4. 两个锐角相加一定大于90度。

()5. 任何数都有相反数。

()三、填空题(每题1分,共5分)1. 两个互为相反数的和是______。

2. 任何数乘以______都等于它本身。

3. 两个负数相乘,结果是______。

4. 两个锐角相加一定______90度。

5. 任何数都有______数。

四、简答题(每题2分,共10分)1. 简述等差数列的定义。

2. 简述等边三角形的性质。

3. 简述矩形的性质。

4. 简述平行四边形的性质。

5. 简述勾股定理。

五、应用题(每题2分,共10分)1. 已知等差数列的前三项分别是2,5,8,求第10项。

2. 已知等边三角形的周长为18,求它的面积。

3. 已知矩形的周长为20,求它的面积。

4. 已知平行四边形的面积为30,求它的周长。

5. 已知直角三角形的两条直角边分别为3和4,求它的斜边。

六、分析题(每题5分,共10分)1. 分析并解答:已知a > b,c > d,那么a + c与b + d的大小关系。

2. 分析并解答:已知等差数列的前三项分别是2,5,8,求第10项。

七、实践操作题(每题5分,共10分)1. 请用直尺和圆规作一个等边三角形。

青岛版八年级下册数学期末试卷 (1)

青岛版八年级下册数学期末试卷 (1)

青岛版八年级下册数学期末试卷一、选择题(本大题共12个小题,共36分,每小题给出的四个选项中,只有一个选项符合题意)1.(3分)在,,0,﹣2这四个数中,为无理数的是( )A.B.C.0D.﹣22.(3分)的平方根是( )A.B.±C.2D.±23.(3分)下列二次根式中,最简二次根式是( )A.B.C.﹣D.4.(3分)已知点A(a,1)与点B(﹣4,b)关于原点对称,则a﹣b的值为( )A.﹣5B.5C.3D.﹣35.(3分)代数式+中x的取值范围在数轴上表示为( )A.B.C.D.6.(3分)设a、b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是( )A.1.5B.2C.2.5D.37.(3分)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A 到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是( )A.向左平移1个单位,再向下平移1个单位B.向左平移(2﹣1)个单位,再向上平移1个单位C.向右平移个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位8.(3分)如图,▱ABCD的对角线AC,BD相交于点O,且AC=4,E,F,G分别是AO,OB,OC的中点,且△EFG的周长为7,则▱ABCD的周长为( )A.10B.15C.20D.259.(3分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是( )A.(4,5)B.(5,4)C.(4,4)D.(5,3)10.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买( )A.16个B.17个C.33个D.34个11.(3分)如图,在矩形ABCD中,BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,则EF的长是( )A.3B.C.5D.12.(3分)小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是( )A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小华到学校的时间是7:55D.小明跑步的平均速度是100米/分二、填空题(本题共5小题,每小题3分,满分15分,只要求填写最后的结果)13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= .14.(3分)已知不等式组的解集是2<x<3,则a+b的值是 .15.(3分)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是 .16.(3分)如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′D=6,则BN的长是.17.(3分)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为 .三、解答题(本题共8小题,共69分,解答应写出必要的文字说明、推理过程或演算步骤)18.(7分)解下列不等式或不等式组,并把解集在数轴上表示出来:(1)﹣≥1;(2).19.(8分)计算:(1)5﹣+2;(2)(+2)+(﹣)2.20.(8分)如图,在平行四边形ABCD中,点M是边AD上的点,连接MB,MC,点N为BC边上的动点,点E,F为MB,MC上的两点,连接NE,NF,且∠BNE=∠CMD,∠BEN=∠NFC.求证:四边形MENF为平行四边形.21.(8分)在平面直角坐标系中,△ABC顶点坐标分别为:A(2,5)、B(﹣2,3)、C(0,2).线段DE的端点坐标为D(2,﹣3),E(6,﹣1).(1)线段AB先向 平移 个单位,再向 平移 个单位与线段ED重合;(2)将△ABC绕点P旋转180°后得到的△DEF,使AB的对应边为DE,直接写出点P 的坐标,并画出△DEF;(3)求点C在旋转过程中所经过的路径l的长.22.(8分)已知在四边形ABCD中,作AE∥BC交BD于O点且OB=OD,交DC于点E,连接BE,∠ABD=∠EAB,∠DBE=∠EBC.求证:四边形ABED为矩形.23.(10分)某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?24.(10分)在直角坐标系中,已知A,B是x轴上的两点,且A(6,0),AB=10,点M 是y轴上一点,连接BM,将△ABM沿过A,M的直线AM折叠,点B恰好落在y轴的点B′处.(1)求直线AB′的函数表达式;(2)求直线AM的函数表达式.25.(10分)如图,等腰三角形ABC中,AB=AC,AD平分∠BAC交BC于点D,在线段AD上任取一点P(点A除外),过点P作EF∥AB,分别交AC,BC于点E和点F,作PQ∥AC,交AB于点Q,连接QE.(1)求证:四边形AEPQ为菱形;(2)当点P在何处时,菱形AEPQ的面积为四边形EFBQ面积的一半?参考答案与试题解析一、选择题(本大题共12个小题,共36分,每小题给出的四个选项中,只有一个选项符合题意)1.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:,0,﹣2是有理数,是无理数,故选:A.2.【分析】根据计算立方根,再根据平方根的定义解答即可.【解答】解:=2,2的平方根为:,故的平方根为:,故选:B.3.【分析】根据最简二次根式的定义判断即可.【解答】解:A、=,故此选项不符合题意;B、=2,故此选项不符合题意;C、﹣是最简二次根式,故此选项符合题意;D、=|a|,故此选项不符合题意.故选:C.4.【分析】利用关于原点对称点的坐标性质得出a的值即可.【解答】解:∵点A(a,1)与点B(﹣4,b)关于原点对称,∴a=4,b=﹣1.∴a﹣b=4﹣(﹣1)=5.故选:B.5.【分析】根据被开方数是非负数且分母不能为零,可得答案.【解答】解:由题意,得3﹣x≥0且x﹣1≠0,解得x≤3且x≠1,在数轴上表示如图,故选:A.6.【分析】由该三角形的周长为6,斜边长为2.5可知a+b+2.5=6,再根据勾股定理和完全平方公式即可求出ab的值.【解答】解:∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5,①∵a、b是直角三角形的两条直角边,∴a2+b2=2.52,②由②得a2+b2=(a+b)2﹣2ab=2.52∴3.52﹣2ab=2.52ab=3,故选:D.7.【分析】过点B作BH⊥OA,交OA于点H,利用勾股定理可求出OB的长,进而可得点A向左或向右平移的距离,由菱形的性质可知BC∥OA,所以可得向上或向下平移的距离,问题得解.【解答】解:过B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是平行四边形,过B作BH⊥x轴于H,∵B(1,1),∴OB==,∵A(,0),∴C(1+,1)∴OA=OB,∴则四边形OACB是菱形,∴平移点A到点C,向右平移1个单位,再向上平移1个单位而得到,故选:D.8.【分析】由平行四边形的性质得出OA=OC,AB=CD,AD=BC,由三角形中位线定理可得出EF=AB,FG=BC,求出EG=2,则可求出EF+FG,可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵E,F,G分别是AO,OB,OC的中点,∴EG=AC,EF=AB,FG=BC,∵AC=4,∴EG=2,∵△EFG的周长为7,∴EF+FG=7﹣2=5,∴AB+BC=2EF+2FG=2×(EF+FG)=2×5=10,∴▱ABCD的周长为2AB+2BC=2×10=20.故选:C.9.【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故选:B.10.【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.11.【分析】由折叠可得BF=AB=6,AE=EF,可求DF=4,根据勾股定理可求EF的长.【解答】解:∵四边形ABCD是矩形∴AB=CD=8,∠A=90°∵AB=6,AD=8∴BD==10∵将△ABE沿BE折叠,使点A恰好落在对角线BD上F处∴AB=BF=6,AE=EF,∠A=∠BFE=90°∴DF=4Rt△DEF中,DE2=EF2+DF2(8﹣AE)2=AE2+16∴AE=3即EF=3故选:A.12.【分析】根据函数图象中各拐点的实际意义求解可得.【解答】解:A.由图象可知,小明吃早餐用时13﹣8=5(分钟),此选项不合题意;B.小华到学校的平均速度是1200÷(13﹣8)=240(米/分),此选项不合题意;C.小华到学校的时间是7:53,此选项符合题意;D.小明跑步的平均速度是(1200﹣500)÷(20﹣13)=100(米/分),此选项不合题意;故选:C.二、填空题(本题共5小题,每小题3分,满分15分,只要求填写最后的结果)13.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.14.【分析】根据不等式组的解集即可得出关于a、b而愿意方程组,解方程组即可得出a、b值,将其代入计算可得.【解答】解:解不等式x+1<2a,得:x<2a﹣1,解不等式x﹣b>1,得:x>b+1,所以不等式组的解集为b+1<x<2a﹣1,∵不等式组的解集为2<x<3,∴b+1=2、2a﹣1=3,解得:a=2、b=1,∴a+b=3,故答案为:3.15.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x>ax+3的解集即可.【解答】解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x>ax+3的解集为x<﹣1.故答案为:x<﹣116.【分析】由正方形的性质得出BC=CD=9,则B'C=3,由折叠的性质得出BN=B'N,设BN=x,由勾股定理列出方程可得出答案.【解答】解:∵四边形ABCD是正方形,∴BC=CD=9,∵B'D=6,∴B'C=3,∵将四边形ABCD沿MN折叠,使点B落在CD边上的B′处,∴BN=B'N,设BN=x,∵B'N2=B'C2+CN2,∴x2=32+(9﹣x)2,∴x=5.故答案为5.17.【分析】根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.【解答】解:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴有,解得:,∴直线CD′的解析式为y=﹣x﹣2.令y=0,则0=﹣x﹣2,解得:x=﹣,∴点P的坐标为(﹣,0).故答案为(﹣,0).三、解答题(本题共8小题,共69分,解答应写出必要的文字说明、推理过程或演算步骤)18.【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)去分母,得:3x﹣2(x﹣1)≥6,去括号,得:3x﹣2x+2≥6,移项,得:3x﹣2x≥6﹣2,合并同类项,得:x≥4,表示在数轴上如下:(2)解不等式5x﹣7<3(x+1),得:x<5,解不等式x﹣1≥7﹣x,得:x≥4,∴不等式组的解集为4≤x<5,表示在数轴上如下:19.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的乘法法则和完全平方公式计算.【解答】解:(1)原式=﹣2+6=5;(2)原式=+2×6+6﹣2+3=6+12+6﹣6+3=21.20.【分析】由平行四边形的性质得AD∥BC,则∠MCB=∠CMD,再证EN∥MC,得∠NFC =∠ENF,然后证NF∥MB,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠MCB=∠CMD,∵∠BNE=∠CMD,∴∠BNE=∠MCB,∴EN∥MC,∴∠NFC=∠ENF,∵∠BEN=∠NFC,∴∠BEN=∠ENF,∴NF∥MB,∴四边形MENF为平行四边形.21.【分析】(1)直接利用平移的性质得出平移规律即可;(2)利用旋转的性质得出对应点位置进而得出答案;(3)利用弧长公式进而求出答案.【解答】解:(1)AB先向右平移4个单位,再向下平移6个单位与ED重合;故答案为:右,4,下,6;(2)如图所示:P(2,1),画出△DEF;(3)点C在旋转过程中所经过的路径长l=.22.【分析】证OA=OB,OE=OB,则OA=OE,再由OB=OD,得四边形ABED是平行四边形,然后证AE=BD,即可得出结论.【解答】证明:∵∠ABD=∠EAB,∴OA=OB,∵AE∥BC,∴∠AEB=∠EBC,∵∠DBE=∠EBC,∴∠AEB=∠DBE,∴OE=OB,∴OA=OE,∵OB=OD,∴四边形ABED是平行四边形,∵OA=OB,OA=OE,∴OA=OE=OB=OD,∴AE=BD,∴平行四边形ABED为矩形.23.【分析】(1)设A种货物运输了x吨,设B种货物运输了y吨,根据题意可得到一个关于x的不等式组,解方程组求解即可;(2)运费可以表示为x的函数,根据函数的性质,即可求解.【解答】解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司5月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的运输费为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.24.【分析】(1)由题知,AB沿AM翻转到AB′,可通过折叠的性质推出,线段AB=AB′=10,利用勾股定理即可求得B′的坐标,然后根据待定系数法即可求得AB′的解析式;(2)利用勾股定理求出点M坐标,然后根据待定系数法即可求得直线AM的解析式.【解答】解:(1)∵A(6,0),AB=10,∴OA=6,AB′=10,∵AB′2=AO2+B′O2∴OB′=8,∴B′(0,±8),设直线AB′的解析式为y=kx±8,把A(6,0)代入得,0=6k±8,∴k=﹣或,∴直线AB′的函数表达式为y=﹣x+8或y=x﹣8;(2)在△MOB中,设OM=a,则MB=OB′﹣MO=8﹣a,∵AB=10,OA=6,∴OB=4,∴OB2=MB2﹣MO2即16=(8﹣a)2﹣a2,∴a=3,M(0,±3),设直线MA的解析式为y=kx+b,∴或,解得:或,∴直线AM的解析式为:y=﹣x+3或y=x﹣3.25.【分析】(1)先证出四边形AEPQ为平行四边形,关键是找一组邻边相等,由AD平分∠BAC和PE∥AQ可证∠EAP=∠EP A,得出AE=EP,即可得出结论;(2)S菱形AEPQ=EP•h,S平行四边形EFBQ=EF•h,若菱形AEPQ的面积为四边形EFBQ面积的一半,则EP=EF,因此P为EF中点时,S菱形AEPQ=S四边形EFBQ.【解答】(1)证明:∵EF∥AB,PQ∥AC,∴四边形AEPQ为平行四边形,∴∠BAD=∠EP A,∵AB=AC,AD平分∠CAB,∴∠CAD=∠BAD,∴∠CAD=∠EP A,∴EA=EP,∴四边形AEPQ为菱形.(2)解:P为EF中点,即AP=AD时,S菱形AEPQ=S四边形EFBQ∵四边形AEPQ为菱形,∴AD⊥EQ,∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴EQ∥BC,又∵EF∥AB,∴四边形EFBQ为平行四边形.作EN⊥AB于N,如图所示:则S菱形AEPQ=EP•EN=EF•EN=S四边形EFBQ.。

初二数学下册期末考试试卷及答案

初二数学下册期末考试试卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长是()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是二次函数?()A. y = 2x² 3x + 1B. y = x² + 4C. y = 3x + 2D. y = 5x² 4x + 13. 在直角坐标系中,点(3, 4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的面积是()A. 60cm²B. 78cm²C. 84cm²D. 90cm²5. 下列哪个数是无理数?()A. √9B. √16C. √3D. √1二、判断题(每题1分,共5分)6. 若a > b,则a² > b²。

()7. 两个等腰直角三角形的面积一定相等。

()8. 一次函数的图像是一条直线。

()9. 二次函数的图像是一个抛物线。

()10. 两个负数相乘的结果是正数。

()三、填空题(每题1分,共5分)11. 若一个圆的半径为r,则这个圆的面积是______。

12. 一次函数y = 3x 5的图像与y轴的交点是______。

13. 二次函数y = x² 4x + 4的顶点坐标是______。

14. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的高是______。

15. 两个相同的数相乘,结果是这个数的______。

四、简答题(每题2分,共10分)16. 请简述勾股定理的内容。

17. 什么是等腰三角形?请给出一个例子。

18. 请解释一次函数的图像是一条直线的原理。

19. 什么是二次函数的顶点?如何找到它?20. 请解释无理数的概念,并给出一个例子。

五、应用题(每题2分,共10分)21. 一个长方形的长度是10cm,宽度是5cm,求这个长方形的面积。

八年级下册数学期末试卷综合测试卷(word含答案)(1)

八年级下册数学期末试卷综合测试卷(word含答案)(1)

八年级下册数学期末试卷综合测试卷(word含答案)(1) 一、选择题1.函数y=35xx--的自变量x的取值范围是()A.x≠5B.x>3且x≠5C.x≥3D.x≥3且x≠5 2.由下列线段组成的三角形不是直角三角形的是()A.7,24,25 B.4,5,41C.3,5,4 D.4,5,6 3.下列关于平行四边形的命题中,错误的是()A.两组对角分别相等的四边形是平行四边形B.一组对边相等,另一组对边平行的四边形是平行四边形C.一组对边平行,一组对角相等的四边形是平行四边形D.一组对边平行且相等的四边形是平行四边形4.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数()cm183183183183方差 5.7 3.5 6.78.6要从中选择一名发挥稳定的运动员去参加比赛,应该选择()A.甲B.乙C.丙D.丁5.如图,已知矩形ABCD的对角线AC的长为10cm,连结矩形各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为()cm.A.20 B.202C.203D.256.如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为()A.20º B.25º C.30º D.35º7.如图,在△ABC中,BC=2∠C=45°,若D是AC的三等分点(AD>CD),且AB =BD ,则AB 的长为( )A .2B .5C .3D .528.一条公路旁依次有A 、B 、C 三个村庄,甲、乙两人骑自行车分别从A 村、B 村同时出发前往C 村,甲、乙之间的距离()km s 与骑行时间()t h 之间的函数关系如图所示,下列结论:①A 、B 两村相距8km ;②甲出发2h 后到达C 村;③甲每小时比乙我骑行8km ;④相遇后,乙又骑行了15min 或45min 时两人相距2km .其中正确结论的个数是( )A .1B .2C .3D .4二、填空题9.若13x x --在实数范围内有意义,则x 的取值范围是____________. 10.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,已知4OA =,菱形ABCD 的面积为24,则BD 的长为______.11.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为_____12.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分BED ∠,若1AB =,45EBC ∠=︒,则DE 的长为__________.13.已知一次函数y x b =-+的图象过点()8,2,那么此一次函数的解析式为__________. 14.若顺次连接四边形ABCD 四边中点所得的四边形是菱形,则原四边形的对角线AC 、BD 所满足的条件是________.15.在平面直角坐标系中,矩形OABC 的顶点O 为坐标原点,顶点A ,C 分别在x 轴和y 轴上,OA =4,OC =3,D 为AB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,则点E 的坐标为_____.16.如图,∠ABD =∠BDC =90°,AB =12,BC =8,CD =10A 与点D 重合,折痕为HG ,则线段BH 的长为___.三、解答题17.计算:(1)218×12﹣24;(2)48÷3﹣12×12+24. 18.如图,在甲村到乙村的公路一旁有一块山地正在开发.现A 处需要爆破,已知点A 与公路上的停靠站B ,C 的距离分别为400 m 和300 m ,且AC ⊥AB .为了安全起见,如果爆破点A 周围半径260 m 的区域内不能有车辆和行人,问在进行爆破时,公路BC 段是否需要暂时封闭?为什么?19.如图,4×10长方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A ,B ,E ,F 都在格点上,按下列要求作图,使得所画图形的顶点均在格点上. (1)在图中画出以AB 为边的正方形ABCD ;(2)在图中画出以EF 为边的等腰三角形EFG ,且△EFG 的周长为1010+; (3)在(1)(2)的条件下,连接CG ,则线段CG 的长为 .20.如图,在ABCD 中,两条对角线AC 和BD 相交于点O ,并且6BD =,8AC =,5BC =.(1)AC 与BD 有什么位置关系?为什么?(2)四边形ABCD 是菱形吗?为什么?21.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a 23+,求2281a a -+的值.他是这样分析与解的:∵a 23+2323(23)(23)-=+-, ∴23a -= ∴2(2)3,a -= 2443a a -+=∴241a a -=-, ∴2281a a -+=2(24)1a a -+=2(1)11⨯-+=-.请你根据小明的分析过程,解决如下问题:(1)若a 21-,直接写出2481a a -+的值是 . (21315375121119+++++ 22.为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买A 、B 两种不同型号的篮球共300个.已知购买3个A 型篮球和2个B 型篮球共需340元,购买2个A 型篮球和1个B 型篮球共需要210元.(1)求购买一个A 型篮球、一个B 型篮球各需多少元?(2)若该校计划投入资金W 元用于购买这两种篮球,设购进的A 型篮球为t 个,求W 关于t 的函数关系式;(3)学校在体育用品专卖店购买A 、B 两种型号篮球共300个,经协商,专卖店给出如下优惠:A 种球每个降价8元,B 种球打9折,计算下来,学校共付费16740元,学校购买A 、B 两种篮球各多少个?23.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为秒.(1)直接写出的面积(用含的代数式表示).(2)当点M 落在BC 边上时,求的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的的值;若不存在请说明理由(不能添加辅助线). 24.如图,在平面直角坐标系中,直线28y x =+与x 轴交于点A,与y 轴交于点B,过点B 的直线x 轴于点C ,且AB=BC .(1)求直线BC 的表达式(2)点P 为线段AB 上一点,点Q 为线段BC 延长线上一点,且AP=CQ,PQ 交x 轴于点P ,设点Q 的横坐标为m ,求PBQ ∆的面积(用含m 的代数式表示)(3)在(2)的条件下,点M 在y 轴的负半轴上,且MP=MQ ,若45BQM ︒∠=求点P 的坐标.25.如图,Rt △CEF 中,∠C =90°,∠CEF ,∠CFE 外角平分线交于点A ,过点A 分别作直线CE ,CF 的垂线,B ,D 为垂足.(1)∠EAF = °(直接写出结果不写解答过程);(2)①求证:四边形ABCD 是正方形.②若BE =EC =3,求DF 的长.(3)如图(2),在△PQR 中,∠QPR =45°,高PH =5,QH =2,则HR 的长度是 (直接写出结果不写解答过程).【参考答案】一、选择题1.D解析:D【分析】根据二次根式和分式有意义的条件列出不等式,求解不等式即可.【详解】根据题意得:x﹣3≥0且x﹣5≠0,解得x≥3且x≠5.∴自变量x的取值范围是x≥3且x≠5.故选:D.【点睛】本题考查了二次根式和分式由意义的条件,理解二次根式和分式由意义的条件是解题的关键.2.D解析:D【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】解:A、∵72+242=625=252,∴能够成直角三角形,故本选项不符合题意;B、∵42+52412,∴能够成直角三角形,故本选项不符合题意;C、∵32+42=52,∴能够成直角三角形,故本选项不符合题意;D、∵42+52≠62,∴不能够成直角三角形,故本选项符合题意.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.B解析:B【解析】【分析】根据平行四边形的判定方法,一一判断即可.【详解】解:A. 两组对角分别相等的四边形是平行四边形,正确;根据平行四边形的判定方法,可得结论;B. 一组对边相等,另一组对边平行的四边形是平行四边形,错误;如:等腰梯形;C. 一组对边平行,一组对角相等的四边形是平行四边形正确,由题意可以证明两组对边分别平行,四边形是平行四边形;D. 一组对边平行且相等的四边形是平行四边形,正确,根据平行四边形的判定方法,可得结论.故选:B【点睛】本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考基础题.4.B解析:B【解析】【分析】首先比较出甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的方差的大小关系,然后根据方差越大,波动性越大,判断出应该选择谁参加比赛即可.【详解】解:因为3.5<5.7<6.7<8.6,所以乙最近几次选拔赛成绩的方差最小,所以要从中选择一名发挥稳定的运动员去参加比赛,应该选择乙.故选:B.【点睛】此题主要考查了方差的含义和应用,要熟练掌握,解答此题的关键是要明确:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.A解析:A【分析】连接BD,根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线相等,从而算出周长即可.【详解】连接BD,∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=1AC=5cm,同理EF=5cm,2∵四边形ABCD是矩形,∴根据矩形的对角线相等,即BD=AC=10cm,∵H、E是AD与AB的中点,∴EH是△ABD的中位线,∴EH=1BD=5cm,同理FG=5cm,2∴四边形EFGH的周长为20cm.故选A.【点睛】熟练掌握矩形对角线相等和三角形中位线等于第三边的一半的性质是解决本题的关键. 6.C解析:C【解析】【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.【详解】∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故选:C.【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.7.B解析:B【解析】【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理2222215AB BE AE =+=+=即可.【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴()22222+222BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点, ∴CD =13AC ,AD =AC -CD =1233AC AC AC -=, ∴AE =DE =121233AC AC ⨯==CD , ∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理2222215AB BE AE =+=+=.故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键. 8.C解析:C【分析】由图像与纵轴的交点可得出A 、B 两地的距离;当s=0时,即为甲、乙相遇的时候,同理根据图像的拐点判断其他即可.【详解】解:由图像可知A 村、B 村相离8km ,故①正确;甲出发2h 后到达C 村,故②正确;当0≤t≤1时,易得一次函数的解析式为s=-8t+8,故甲的速度比乙的速度快8km/h ,故③正确;当1≤t≤1.5时,函数图象经过点(1,0)(1.5,4)设一次函数的解析式为s=kt+b则有:104 1.5k b k b =+⎧⎨=+⎩解得21k b =⎧⎨=⎩ ∴s=2t+1当s=2时,得2=2t+1,解得t=0.5<1,不符合题意,④错误.故答案为C.【点睛】本题考查了一次函数的应用和函数与方程的思想,解题的关键在于读懂图象,根据图像的信息进行解答.二、填空题9.1≥x 且3x ≠【解析】【分析】根据分母不等于0,且被开方数是非负数列式求解即可.【详解】由题意得10x -≥且30x -≠解得1≥x 且3x ≠故答案为:1≥x 且3x ≠【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.10.A解析:6【解析】【分析】根据菱形的性质得到AC =8,根据菱形的面积等于两条对角线乘积的一半,即可求解.【详解】解:∵四边形ABCD 为菱形;∴AC =2OA =8,12ABCD S AC BD =⋅菱形, ∴12482BD =⨯⨯, ∴BD =6,故答案为:6【点睛】本题考查了菱形的性质,解题的关键是熟记菱形面积的两种表示法:(1)底乘高,(2)对角线乘积的一半,本题运用的是第二种.11.E解析:8【解析】【分析】根据正方形的面积等于边长的平方,由正方形PQED 的面积和正方形PRQF 的面积分别表示出PR 的平方及PQ 的平方,又三角形PQR 为直角三角形,根据勾股定理求出QR 的平方,即可求小正方形的边长.【详解】如图,∵正方形PQED 的面积等于225,∴即PQ 2=225,∵正方形PRGF 的面积为289,∴PR 2=289,又△PQR 为直角三角形,根据勾股定理得:PR 2=PQ 2+QR 2,∴QR 2=PR 2−PQ 2=289−225=64,∴QR=8,即字母A 所代表的正方形的边长为8.【点睛】本题考查勾股定理,根据勾股定理求出小正方形的面积是关键.12.D21【分析】由矩形的性质和角平分线的定义得出∠DEC =∠ECB =∠BEC ,推出BE =BC ,求得 AE =AB =1,然后依据勾股定理可求得BC 的长;【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEC =∠BCE ,∵EC 平分∠DEB ,∴∠DEC =∠BEC ,∴∠BEC =∠ECB ,∴BE =BC ,∵四边形ABCD 是矩形,∴∠A =90°,AD BC =∵∠ABE =45°,∴∠ABE =∠AEB =45°,∴AB =AE =1,由勾股定理得:BE ==,∴BC =AD =BE, ∴1DE AD AE =-,1.【点睛】本题考查了矩形的性质,等腰三角形的性质与判定,勾股定理的应用;熟练掌握矩形的性质,证出BE =BC 是解题的关键.13.10y x =-+【分析】用待定系数法即可得到答案.【详解】解:把()8,2代入y x b =-+得82b -+=,解得10b =,所以一次函数解析式为10y x =-+.故答案为10y x =-+【点睛】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.14.A解析:AC BD =【分析】如下图,根据三角形中位线的定理,可得AG=EF=12AC ,GF=AE=12BD ,再根据菱形四条边相等的性质,可得出AC 与BD 的关系.【详解】如下图,点E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点∵点E、F是AB、BC的中点∴EF=12AC同理可得:AG=EF=12AC,GF=AE=12BD∵要使得四边形HEFG是菱形,则HE=EF=FG=GH ∴只需AC=BD即可故答案为:AC=BD【点睛】本题考查菱形的性质和三角形中位线的性质,解题关键是得出AG=EF=12 AC,GF=AE=12 BD.15.(,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解析:(83,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解:作点D关于x轴对称点F,如图,∵四边形OABC 是矩形,∴OC =BD =3,点C 的坐标为()0,3,∵D 为AB 边的中点,∴AD =32, ∵OA =4,∴D 点的坐标为34,2⎛⎫ ⎪⎝⎭,则F 点的坐标为34,2⎛⎫- ⎪⎝⎭, 根据轴对称的性质可得:EF =ED ,∴C △CDE =CD +CE +DE =CD +CE +EF ,其中CD 为定值,当CE +EF 值最小时,△CDE 周长最小,此时点C ,E ,F 三点共线,设直线CF 的解析式为:()0y kx b k =+≠,将()0,3和34,2⎛⎫- ⎪⎝⎭代入解析式得: 3342b k b =⎧⎪⎨+=-⎪⎩,解得:983k b ⎧=-⎪⎨⎪=⎩, ∴直线CF 的解析式为:938y x =-+, 令0y =,得:9308x -+=, 解得:83x =, ∴点E 坐标(83,0), 故答案为:803⎛⎫ ⎪⎝⎭,. 【点睛】本题考查一次函数与轴对称的综合运用,理解最短路径的求解方法,熟悉待定系数法求一次函数解析式是解题关键.16.5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH 中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=2,∴BD=,由题意,得解析:5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=∴BD=由题意,得AH=HD,设BH=x,则AH=12﹣x=HD,在Rt△BDH中,由勾股定理得,HB2+BD2=HD2,即x2)2=(12﹣x)2,解得x=5,即HB=5,故答案为:5.【点睛】本题考查了翻折变换,勾股定理.掌握翻折变换的性质及勾股定理是解题的关键.三、解答题17.(1);(2)【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)解析:(1)2)4【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)===(22=4=4=【点睛】本题主要考查了利用二次根式的化简和二次根式的混合运算,熟练掌握相关计算法则是解题的关键.18.需要封闭,理由见解析【分析】过作于 先求解 再利用等面积法求解 再与260比较,可得答案.【详解】解:过作于所以进行爆破时,公路BC 段需要暂时封闭.【点睛】解析:需要封闭,理由见解析【分析】过A 作AK BC ⊥于,K 先求解,BC 再利用等面积法求解,AK 再与260比较,可得答案.【详解】解:过A 作AK BC ⊥于,K,400,300,AB AC AB AC22500,BC AB AC11,AB AC BC AK22AK300400500,240,AK240260,所以进行爆破时,公路BC段需要暂时封闭.【点睛】本题考查的是勾股定理的应用,利用等面积法求解直角三角形斜边上的高,掌握“等面积法求解直角三角形斜边上的高”是解题的关键.19.(1)见解析;(2)见解析;(3)【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为等腰三角形即可;(3)解析:(1)见解析;(2)见解析;(35【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为1010(3)由勾股定理求出CG即可.【详解】解:(1)如图,所作正方形ABCD即为以AB为边的正方形ABCD;(2)如图,所作△EFG即为以EF为边的等腰三角形EFG,且△EFG的周长为1010+(3)如图,CG22+512【点睛】本题考查作图-应用与设计,勾股定理,解题的关键是理解题意,根据GE=GF=5画出等腰三角形.20.(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC, OB的长,再利用勾股定理逆定理求出∠BOC=90,可得AC与BD的位置关系;(解析:(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC,OB的长,再利用勾股定理逆定理求出∠BOC=90︒,可得AC与BD的位置关系;(2)菱形的判定方法:对角线互相垂直平分的四边形是菱形,可得答案.【详解】解:(1)AC⊥BD;理由如下:在ABCD中,132==OB BD,142OC AC==∵22291625+=+==OB OC BC∴∠BOC=90︒∴AC⊥BD.(2)四边形ABCD是菱形∵四边形ABCD是平行四边形(已知),AC⊥BD(已证)∴四边形ABCD是菱形.【点睛】此题主要考查了菱形的判定,平行四边形的性质,以及勾股定理的逆定理的运用,解题的关键是根据条件证出BO2+CO2=CB2.21.(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵a=,∴4a2-8a+1=4×()2-8×()+1=5;(2)解析:(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵, ∴4a 2-8a+1)2-8×)+1=5;(2)原式=12×=12×) =12×10=5.点睛:本题主要考查了分母有理化,利用分母有理化化简是解答此题的关键. 22.(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求 解析:(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:()30150000300W t t =+≤≤;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求解即可得; (2)A 型篮球t 个,则B 型篮球为()300t -个,根据单价、数量、总价的关系即可得; (3)根据A 型篮球与B 型篮球的优惠政策求出单价,然后代入(2)解析式中求解即可得.【详解】解:(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意可得:323402210x y x y +=⎧⎨+=⎩, 解得:8050x y =⎧⎨=⎩,∴一个A 型篮球为80元,一个B 型篮球为50元;(2)A 型篮球t 个,则B 型篮球为()300t -个,根据题意可得:()()805030030150000300W t t t t =+-=+≤≤,∴函数解析式为:()30150000300W t t =+≤≤;(3)根据题意可得:A 型篮球单价为()808-元,B 型篮球单价为500.9⨯元,则()()16740808500.9300t t =-+⨯⨯-,解得:120t =,300180t -=,∴A 型篮球120个,则B 型篮球为180个. 【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应方程是解题关键.23.(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,. 【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是解析:(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,.【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是等腰直角三角形,然后根据等腰直角三角形的性质可得AH 的长,最后根据等腰直角三角形的面积公式即可得; (2)先根据平行四边形的性质可得,从而可得,再根据三角形中位线定理可得是的中位线,从而可得,然后与(1)所求的建立等式求解即可得;(3)分①当点H 是AB 的中点时,;②当点Q 与点E 重合时,;③当时,三种情况,分别求解即可得.【详解】 (1)由题意得:,点Q 为AP 的中点,,四边形ABCD 是矩形,,是BAD的角平分线,,,是等腰直角三角形,,则的面积为;(2)如图1,四边形PQHM是平行四边形,,点M在BC边上,,点Q为AP的中点,是的中位线,,由(1)知,,则,解得;(3)由题意,有以下三种情况:①如图2,当点H是AB的中点时,则,四边形PQHM是平行四边形,,,在和中,,由(2)可知,此时;②如图3,当点Q与点E重合时,在和中,,,,则,解得;③如图4,当时,四边形ABCD是矩形,四边形PQHM是平行四边形,,,在和中,,,,在中,,是等腰直角三角形,,,在中,,是等腰直角三角形,,则由得:,解得;综上,如图2,当时,;如图3,当时,;如图4,当时,.【点睛】本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.24.(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG解析:(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,由“AAS”可证△AGP≌△CHQ,可得AG=HC=m-4,PG=HQ=2m-8,由“AAS”可证△PEF≌△QCF,可得S△PEF=S△QCF,即可求解;(3)如图2,连接AM,CM,过点P作PE⊥AC,由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=4,可求m的值,可得点P的坐标.【详解】解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(-4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴AO=CO=4,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:804bk b=⎧⎨=+⎩,解得:28kb=-⎧⎨=⎩,∴直线BC解析式为:y=-2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,设△PBQ的面积为S,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,-2m+8)∴HQ=2m-8,CH=m-4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m-4,PG=HQ=2m-8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠PAE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF=S△QCF,∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB的面积,∴S=S△ABC-S△PAE=12×8×8-12×(2m-8)×(2m-8)=16m-2m2;(3)如图2,连接AM,CM,过点P作PE⊥AC,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=4,∴2m-8=4,∴m=6,∴P(-2,4).【点睛】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.25.(1)45;(2)①见解析;②DF的长为2;(3)【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=DFE,∠AEF=BEF,求得∠解析:(1)45;(2)①见解析;②DF的长为2;(3)15 7【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=12∠DFE,∠AEF=12∠BEF,求得∠AEF+∠AFE=12(∠DFE+∠BEF),根据三角形的内角和定理即可得到结论;(2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABCD是正方形;②设DF=x,根据已知条件得到BC=6,由①得四边形ABCD是正方形,求得BC=CD=6,根据全等三角形的性质得到BE=EG=3,同理,GF=DF=x,根据勾股定理列方程即可得到结论;(3)把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,得出MG=DG=MP=PH=6,GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR 中,由勾股定理得出方程,解方程即可.【详解】解:(1)∵∠C=90°,∴∠CFE+∠CEF=90°,∴∠DFE+∠BEF=360°﹣90°=270°,∵AF平分∠DFE,AE平分∠BEF,∴∠AFE=12∠DFE,∠AEF=12∠BEF,∴∠AEF +∠AFE =12(∠DFE +∠BEF )=12⨯270°=135°,∴∠EAF =180°﹣∠AEF ﹣∠AFE =45°, 故答案为:45;(2)①作AG ⊥EF 于G ,如图1所示:则∠AGE =∠AGF =90°, ∵AB ⊥CE ,AD ⊥CF , ∴∠B =∠D =90°=∠C , ∴四边形ABCD 是矩形,∵∠CEF ,∠CFE 外角平分线交于点A , ∴AB =AG ,AD =AG , ∴AB =AD ,∴四边形ABCD 是正方形; ②设DF =x , ∵BE =EC =3, ∴BC =6,由①得四边形ABCD 是正方形, ∴BC =CD =6,在Rt △ABE 与Rt △AGE 中,AB AGAE AE=⎧⎨=⎩ , ∴Rt △ABE ≌Rt △AGE (HL ), ∴BE =EG =3, 同理,GF =DF =x ,在Rt △CEF 中,EC 2+FC 2=EF 2, 即32+(6﹣x )2=(x +3)2, 解得:x =2, ∴DF 的长为2; (3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=5,∴GQ=3,设MR=HR=a,则GR=5﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(5﹣a)2+32=(2+a)2,解得:a=157,即HR=157;故答案为:157.【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、角平分线的性质、勾股定理、矩形的判定、翻折变换的性质等知识;本题综合性强,有一定难度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学下学期期末模拟测评卷(A)
考号_____班级_____ 姓名______ 得分______
一、 细心填一填,相信你填得又快又准(每空2分,共30分)
1.Rt ⊿ABC 中,∠C=90º,∠B=30º,则AC 与AB 两边的关系是 ,AB 边上
的中线与AC 的关系是 。

2.如图1,DE ∥BC 且DB =AE ,若AB =5,AC =10,则AE 的长为 ;若BC
=10,则DE 的长为 。

3.已知:如图2,△ABC 中,P 是边AB 上的一点,连结CP. 要使△ACP ∽△ABC ,还
需 要补充的一个条件是 (只需写出一个即可)
E
D C B
A
图1 图3 图2
4.当x___________时,分式132+x x 有意义;当m =__________时,分式3
92--m m 值为零。

5.黑板上画有一个图形,学生甲说它是多边形,学生乙说它是平行四边形,学 生丙说它
是菱形,学生丁说它是矩形,老师说这四名同学的答案都正确,则黑板上画的图形是
___________________
6.平行四边形ABCD 中, AB=6cm ,AC+BD=14cm ,则△AOC 的周长为_______
7.矩形的对角线的夹角为120°,两对角线与两短边之和为36,则对角线的长是 ,
该矩形的面积是
8.等腰三角形一底角为30°,底边上的高为9cm ,则这个等腰三角形的腰长是________cm ,
顶角是____________;
9.用一块面积为450cm 2的等腰梯形彩纸做风筝,为了牢固起见,用竹条做梯形的对角线,
对角线恰好互相垂直,那么至少需要竹条 cm
10.如图3,□ABCD中,G是BC延长线上一点,AG与BD交于点E,与DC交于点F,
则图中相似三角形共有 对。

二、 耐心选一选,选一个你认为最适合的答案(每题2分,共20分)
11.下列各式:x 27,2y x +,132-x ,1
12--x x 是分式的个数是( ) A 、3 B 、4 C 、5
D 、6 12.下列分式中是最简分式的是( )
A 、3432+++x x x
B 、6102+x x
C 、b a 128
D 、22y
x y x ++ 13、分式()34331
b a b a -和()25261
b a b a -的最简公分母是( )
A 、18()353b a b a -;
B 、()5
956b a b a -; C 、12()352b a b a -; D 、()3
536b a b a -; 14.若d
c b a =,则下列变形中错误的是( ) A 、b
d a c = B 、d c b a 11+=+ C 、c d c d a b a b +-=+- D d
c d b c a =++ 15.要从一张长40cm ,宽20cm 的矩形纸片中剪出长为18cm ,宽为12cm 的矩形纸片则最
多能剪出( )
A .1张
B .2张
C .3张
D .4张
16.下列说法正确的是( )
A .任何一个具有对称中心的四边形一定是正方形或矩形;
B .角既是轴对称图形又是中心对称图形;
C .线段、圆、矩形、菱形、正方形都是中心对称图形;
D .正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条
17.已知ABCD 是平行四边形,下列结论中不一定正确的是( )
A .AB=CD
B .AC=BD
C .当AC ⊥B
D 时,它是菱形 D .当∠ABC=90°时,它是矩形
18.在□ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )
A .1:2:3:4
B .1:2:2:1
C .1:1:2:2
D .2:1:2:1
19.梯形的面积被对角线分为1:3两部分,这梯形被它的中位线分成的两部分的面积比是
( )
A. 2:3
B. 3:5
C. 3:4
D. 3:7
20.已知m x 21+=,m y 211+
=,则y 等于( ) A 、x -2 B 、1-x x C 、12-+x x D 、1
1-+x x 三、 认真算一算, 培养你的计算能力
21.计算题: (3′×2=6′)
(1)22222y x y x xy y x --⎪⎪⎭
⎫ ⎝⎛+; (2)⎪⎭⎫ ⎝⎛-÷-232212++++m m m m m ;
22. 解关于x 的方程(4′×2=8′)
(1)225111+++
x x x =; (2)()02≠--=-b a b a x a b x +;
23.先化简后求值(4′):()
226446222+-⋅-+÷+-+x x x x x x x ,其中3=x
四、想一想,体验成功的快乐(6′)
24.【Ⅰ】甲乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个所用的时间与
乙做60个所用的时间相等,求甲乙每小时各做多少个零件?
五、做一做,相信你有收获
25. 【Ⅰ】如图,已知正方形ABCD 中,E 是BC 的中点,F 在CD 上,且DF=3CF .
求证:△ABE ∽△ECF .(8′)
26.如图,等腰梯形ABCD 中,AD ∥BC ,AB=DC ,AC ⊥BD ,过D 点作DE ∥AC 交BC 的延长线于
E 点。

(8′)
⑴证明:四边形ACED 是平行四边形;
⑵若AD=3,BC=7,求梯形ABCD 的面积;
27. (本题10分)如图,在等腰直角⊿ABC 中,O 是斜边AC 的中点,P 是斜边AC
上的一个动点,D 为BC 上的一点,且PB=PD ,DE ⊥AC ,垂足为E 。

(1) 试论证PE 与BO 的位置关系和大小关系。

(2) 设AC=2a , AP=x , 四边形PBDE 的面积为y , 试写出y 与x
之间的函数关系式,并写出自变量x 的取值范围。

A B C
D
E F E D C O B A
P
附加题: 仔细想一想,相信你一定行
27.(本题10分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克. 经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.
(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?
(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利
28.(本题10分)如图:在大小为4×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的顶点上,请在图中画一个△A1B1C1 ,使△A1B1C1∽△ABC(相似比不为1),且点A1 、B1 、C1 都在单位正方形的顶点上。

相关文档
最新文档