2014年高考新课标2数学(理)试卷
2014年高考理科数学全国卷2(含答案解析)
绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)理科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|(1)4,}M x x x =-<∈R ,{1,0,1,2,3}N =-,则MN = ( )A .{0,1,2}B .{1,0,1,2}-C .{1,0,2,3}-D .{0,1,2,3} 2.设复数z 满足(1i)2i z -=,则z =( )A .1i -+B .1i --C .1i +D .1i -3.等比数列{}n a 的前n 项和为n S .已知32110S a a =+,59a =,则1a =( )A .13B .13-C .19D .19-4.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l ⊥n ,l α⊄,l β⊄,则( )A .αβ∥且l α∥B .αβ∥且l β⊥C .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.已知5(1)(1)ax x ++的展开式中的2x 的系数为5,则a = ( )A .4-B .3-C .2-D .1-6.执行如图的程序框图,如果输入的10N =,则输出的S = ( ) A .11112310++++B .11112!310++++!!C .11112311++++ D .11112311++++!!!7.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )8.设3log 6a =,5log 10b =,7log 14c =,则( )A .c b a >>B .b a c >>C .a c b >>D .a b c >>9.已知0a >,x ,y 满足约束条件1,3,(3).x x y y a x ⎧⎪+⎨⎪-⎩≥≤≥若2z x y =+的最小值为1,则a = ( )A .14B .12C .1D .210.已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .0x ∃∈R ,0()0f x =B .函数()y f x =的图象是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减D .若0x 是()f x 的极值点,则0()0f x '=11.设抛物线C :22(0)y px p =>的焦点为F ,点M 在C 上,||5MF =.若以MF 为直径的圆过点(0,2),则C 的方程为( )A .24y x =或28y x =B .22y x =或28y x =C .24y x =或216y x = D .22y x =或216y x =12.已知点(1,0)A -,(1,0)B ,(0,1)C ,直线(0)y ax b a =+>将ABC △分割为面积相等的两部分,则b 的取值范围是( )A .(0,1)B .21(1,)22-C .21(1,]23-D .11[,)32第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD =________. 14.从n 个正整数1,2,,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________.15.设θ为第二象限角,若π1tan()42θ+=,则sin cos θθ+=________. 16.等差数列{}n a 的前n 项和为n S .已知100S =,1525S =,则n nS 的最小值为________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)ABC △在内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin a b C c B =+.(Ⅰ)求B ;(Ⅱ)若2b =,求ABC △面积的最大值. 18.(本小题满分12分) --------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________如图,直棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点,122AA AC CB AB ===. (Ⅰ)证明:1BC ∥平面1A CD ; (Ⅱ)求二面角1D AC E --的正弦值.19.(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润. (Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57 000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的频率),利润T 的数学期望.20.(本小题满分12分)平面直角坐标系xOy 中,过椭圆M :22221(0)x y a b a b+=>>右焦点的直线30x y +-=交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(Ⅰ)求M 的方程;(Ⅱ)C ,D 为M 上的两点,若四边形ABCD 的对角线CD AD ⊥,求四边形ABCD 面积的最大值.21.(本小题满分12分)已知函数()e ln()xf x x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明:()0f x >.请考生在第22、23、24三题中任选一题作答,如果多做,则按做的第一题积分.作答时请写清题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,CD 为ABC △外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC AE DC AF =,B ,E ,F ,C 四点共圆.(Ⅰ)证明:CA 是ABC △外接圆的直径;(Ⅱ)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC △外接圆面积的比值.23.(本小题满分10分)选修4—4:坐标系与参数方程已知动点P ,Q 都在曲线C :2cos ,2sin x t y t =⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02π)α<<,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.24.(本小题满分10分)选修4—5:不等式选讲设a ,b ,c 均为正数,且1a b c ++=.证明: (Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.2014年普通高等学校招生全国统一考试(全国新课标卷2)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】解不等式2(14)x -<,得13x <<-,即|13{}M x x =<<-,而1,0,1,,3{}2N =-,所以0,}2{1,M N =,故选A .【提示】求出集合M 中不等式的解集,确定出M ,找出M 与N 的公共元素,即可确定出两集合的交集.【考点】集合的基本运算(交集),解一元二次不等式. 2.【答案】A【解析】2i 2i 1i 22i 1i 1i 1i 21+i z (+)-+====-(-)(+)-. 【提示】根据所给的等式两边同时除以1i -,得到z 的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果. 【考点】复数代数形式的四则运算. 3.【答案】C【解析】设数列{}n a 的公比为q ,若1q =,则由59a =,得19a =,此时327S =,而219+109a a =,不满足题意,因此1q ≠.∵1q ≠时,33111(1)1+10a S a a q q q --==,∴3+0111q qq =--,整理得29q =.(步骤1) ∵4519a a q ==,即1819a =,∴119a =.(步骤2) 【提示】设等比数列{}n a 的公比为q ,利用已知和等比数列的通项公式即可求出. 【考点】等比数列的通项和前n 项和. 4.【答案】D【解析】因为m α⊥,l m ⊥,l α⊄,所以l α∥.同理可得l β∥.又因为m ,n 为异面直线,所以α与β相交,且l 平行于它们的交线.故选D .【提示】由题目给出的已知条件,结合线面平行,线面垂直的判定与性质,可以直接得到正确的结论.【考点】直线与平面的位置关系. 5.【答案】D【解析】因为5(1+)x 的二项展开式的通项为5C 0)5(r rr r x ≤≤∈Z ,,则含x 2的项为221552C +C )0+5(1x ax x a x =,所以10+55a =,1a =-.【提示由题意利用二项展开式的通项公式求得展开式中2x 的系数为221552C +C )0+5(1x ax x a x =,由此解得a 的值.【考点】二项式定理 6.【答案】B【解析】由程序框图知,当1k =,0S =,1T =时,1T =,1S =;当2k =时,12T =,11+2S =; 当k =3时,123T =⨯,111+223S =+⨯;当k =4时,1234T =⨯⨯,1111+223234S =++⨯⨯⨯;;(步骤1)当k =10时,123410T =⨯⨯⨯⨯,1111+2!3!10!S =+++,k 增加1变为11,满足k N >,输出S ,所以B 正确.(步骤2)【提示】从赋值框给出的两个变量的值开始,逐渐分析写出程序运行的每一步,便可得到程序框图表示的算法的功能. 【考点】循环结构的程序框图. 7.【答案】A【解析】如图所示,该四面体在空间直角坐标系O -xyz 的图象为下图:第7题图则它在平面zOx 上的投影即正视,故选A .【提示】由题意画出几何体的直观图,然后判断以zOx 平面为投影面,则得到正视图即可. 【考点】空间直角坐标系,三视图. 8.【答案】D【解析】根据公式变形,lg6lg 21lg3lg3a ==+,lg10lg 21lg5lg5b ==+,lg14lg 21lg 7lg 7c ==+,因为lg 7lg 5g 3l >>,所以lg2lg2lg2lg7lg5lg3<<,即c b A <<.故选D . 【提示】利用log ()log log (0)a a a xy x y x y =+>、,化简a ,b ,c 然后比较3log 2,5log 2,7log 2大小即可.【考点】对数函数的化简和大小的比较. 9.【答案】B【解析】由题意作出1,3x x y ≥⎧⎨+≤⎩所表示的区域如图阴影部分所示,作直线2+1x y =,因为直线2+1x y =与直线1x =的交点坐标为(1,)1-,结合题意知直线(3)y a x =-过点(1,)1-,代入得12a =,所以12a =.第9题图【提示】先根据约束条件画出可行域,设2z x y =+,再利用z 的几何意义求最值,只需求出直线2zx y=+过可行域内的点B 时,从而得到a 值即可. 【考点】二元线性规划求目标函数的最值.10.【答案】C【解析】由于2()32f x x ax b '=++是二次函数,()f x 有极小值点0x ,必定有一个极大值点1x ,若10x x <,则()f x 在区间0(,)x -∞上不单调递减,C 不正确.【提示】利用导数的运算法则得出()00f x '∆>∆≤,分与讨论,即可得出. 【考点】利用导数求函数的极值. 11.【答案】C【解析】设点M 的坐标为00(,)x y ,由抛物线的定义,得052|+MF x p ==|,则052x p =-.(步骤1)又点F 的坐标为,02p ⎛⎫ ⎪⎝⎭,所以以MF 为直径的圆的方程为00+0()()2p x y x x y y ⎛⎫⎪-- ⎝⎭-=.(步骤2)将0x =,2y =代入得00+840px y -=,即02+2480y y -=,所以04y =. 由0202y px =,得16252p p ⎛⎫=- ⎪⎝⎭,解之得2p =,或8p =.(步骤3)所以C 的方程为24y x =或216y x =.故选C .【提示】已知抛物线焦点到抛物线上点的线段的距离和以这条线段为直径的圆上的一点,求出抛物线的方程.【考点】抛物线的定义和抛物线的标准方程. 12.【答案】B【解析】根据题意画出图形,如图(1),由图可知,直线BC 的方程为1x y +=.由1,,x y y ax b +=⎧⎨=+⎩解得1,11b a b M a a -+⎛⎫⎪++⎝⎭. 可求()0,N b ,,0b D a ⎛⎫- ⎪⎝⎭.直线y ax b =+将△ABC 分割为面积相等的两部分,∴12S S =△△BDM ABC .又12BOC ABC S S =△△,CMN ODN S S ∴=△△,即111(1)221b b b b a a -⎛⎫⨯-⨯=-⨯ ⎪+⎝⎭.整理得22(1)1b b a a -=+. 22(1)1b ab a-+∴=,11b ∴-=,11b =即b =,可以看出,当a 增大时,b 也增大.当a →+∞时,12b →,即12b <.当0a →时,直线+y ax b =接近于y b =.当y b =时,如图(2),2222(1)112CDM ABC S CN b S CO -===△△.1b ∴-1b =1b ∴>-. 由上分析可知1122b -<<,故选B .第12题图(1) 第12题图(2)【提示】已知含有参数的直线将三角形分割为面积相等的两部分和点的坐标,求出参数的取值范围.【考点】函数单调性的综合应用.第Ⅱ卷二、填空题 13.【答案】2【解析】以AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如图所示,则点A 的坐标为(0,0),点B 的坐标为(2,0),点D 的坐标为(0,2),点E 的坐标为(1,2),则1(),2AE =,)2(2,BD =-,所以2AE BD =.第13题图【提示】结合几何的关系,求出向量的数量积. 【考点】平面向量的数量积运算. 14.【答案】8【解析】从1,2,…,n 中任取两个不同的数共有2C n 种取法,两数之和为5的有(1,4),(2,3)2种,所以221C 14n =,即24111142n n n n ==(-)(-),解得8n =.【提示】列出从n 个正整数1,2,…,n 中任意取出两个不同的数的所有取法种数,求出和等于5的种数,根据取出的两数之和等于5的概率为114列式计算n 的值. 【考点】古典概型,排列组合的应用.15.【答案】 【解析】由π1tan 1tan 41tan 2θθθ+⎛⎫+== ⎪-⎝⎭,得tan 13θ=-,即1s 3in cos θθ-=.(步骤1)将其代入22sin +cos 1θθ=,得210cos 19θ=.因为θ为第二象限角,所以10cos θ-=0in 1s θ=,sin +cos 5θθ=-.(步骤2)【提示】已知等式利用两角和与差的正切函数公式及特殊角的三角函数值化简,求出tan θ的值,再根据θ为第二象限角,利用同角三角函数间的基本关系求出sin cos θθ与的值,即可求出sin cos θθ+的值.【考点】两角和与差的正切,同角三角函数的基本关系. 16.【答案】49-【解析】设数列{}n a 的首项为a 1,公差为d ,则110110910+210+450S a d d a =⨯==,① 1151151415215+10525a d a d S =⨯==+.②(步骤1) 联立①②,得13a =-,23d =,所以2(1)211032333n n n n n n S -=-+⨯=-.(步骤2)令()n f n nS =,则32110()33f n n n =-,220()3f n n n '=-.令()0f n '=,得0n =或203n =.(步骤3)当203n >时,()0f n '>,200<<3n 时,()0f n '<,所以当203n =时,()f n 取最小值,而n ∈N +,则(6)48f =-,(7)49f =-,所以当7n =时,()f n 取最小值-49.(步骤4)【提示】已知等差数列前10项和与前15项和,求出n 与前n 项和乘积的最小值. 【考点】等差数列的前n 项,利用导数求函数的最值. 三、解答题 17.【答案】(1)π4(2【解析】(1)由已知及正弦定理得sin sin cos +sin sin A B C C B =.①又()+A B C π=-,故sin sin +sin cos +co )s i (s n A B C B C B C ==.②由①,②和π()0,C ∈得sin cos B B =,即tan 1B =,又π()0,B ∈,所以π4B =.(步骤1) (2)△ABC的面积1sin 2S ac B ==. 由已知及余弦定理得22π2cos 44+ac a c =-.(步骤2)又22+2a c ac ≥,故ac ≤,当且仅当a c =时,等号成立.因此△ABC.(步骤3)【提示】(1)已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式变形,求出tan B 的值,由B 为三角形的内角,利用特殊角的三角函数值即可求出B 的度数;(2)利用三角形的面积公式表示出三角形ABC 的面积,把sin B 的值代入,得到三角形面积最大即为ac 最大,利用余弦定理列出关系式,再利用基本不等式求出ac 的最大值,即可得到面积的最大值.【考点】正弦定理,余弦定理,三角形面积公式,两角和与差的正弦. 18.【答案】(1)连结AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连结DF ,则1BC DF ∥.因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(步骤1) (2)由AC CB AB ==,得AC BC ⊥ 以C 为坐标原点,CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz .设2CA =,则()1,1,0D ,()0,2,1E ,12,()0,2A ,(1),1,0CD =,(0),2,1CE =,12,0,2()CA =. 设111,(),n x y z =是平面A 1CD 的法向量,则10,0,n CD n CA ⎧=⎪⎨=⎪⎩即1111+0,2+20.x y x z =⎧⎨=⎩ 可取1),(,11n =--.(步骤2)同理,设m 是平面A 1CE 的法向量,则10,0,m CE m CA ⎧=⎪⎨=⎪⎩可取2,1(),2m =-.(步骤3)从而3cos ,3||||n m m n n m <>==,故6sin ,3m n <>= 即二面角D -A 1C -E .(步骤4)第18题图(1)【提示】(1)通过证明1BC 平行平面1ACD 内的直线DF ,利用直线与平面平行的判定定理证明11BC ACD 平面∥ (2).由AC CB AB ==,得AC BC ⊥以C 为坐标原点,CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz .设2CA =,111,(),n x y z =是平面A 1CD 的法向量,同理,设m 是平面A 1CE 的法向量,由3cos ,3||||n m m n n m <>==,故6sin ,3m n <>=【考点】直线与平面的判定,空间直角坐标系,空间向量及其运算.19.【答案】(1)80039000,100130,65000,130150.X X T X -≤<⎧=⎨≤≤⎩ (2)0.7(3)59400【解析】(1)当100[),130X ∈时,50030013()080039000T X X X =--=-,当130[],150X ∈时,50013065000T =⨯=. 所以80039000,10013065000,130150X X T X -≤<⎧=⎨≤≤⎩(步骤1)(2)由(1)知利润T 不少于57000元当且仅当120150X ≤≤.由直方图知需求量120[],150X ∈的频率为0.7,所以下一个销售季度内的利润T 不少于57000元的概率的估计值为0.7(步骤2)(3所以450000.1+530000.2+610000.3+650000.459400ET =⨯⨯⨯⨯=.(步骤3)【提示】(1)由题意先分段写出,当100[),130X ∈时,当130[],150X ∈时,和利润值,最后利用分段函数的形式进行综合即可.(2)由(1)知,利润T 不少于57000元,当且仅当120150X ≤≤再由直方图知需求量120[],150X ∈的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T 不少于57000元的概率的估计值.(3)利用利润T 的数学期望=各组的区间中点值x 该区间的频率之和即得.【考点】频率分布直方图,分段函数的模型,离散型随机变量的数学期望.20.【答案】(1)22163x y +=(2 【解析】(1)设11(),A x y ,22(),B x y ,00(),P x y ,则2211221x y a b +=,2222221x y a b+=,21211y y x x -=--,由此可得22121221211b x x y y a y y x x (+)-=-=(+)-. 因为120+2x x x =,120+2y y y =,0012y x =,所以222a b =(步骤1)又由题意知,M的右焦点为,故223a b -=. 因此26a =,23b =.所以M 的方程为22163x y +=.(步骤2) (2)由220,1,63x y x y ⎧+=⎪⎨+=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩或0,x y =⎧⎪⎨=⎪⎩因此||AB =.(步骤3) 由题意可设直线CD的方程为3y x n n ⎛=+-<< ⎝,设33(),C x y ,44(),D x y .由22,163y x n x y =+⎧⎪⎨+=⎪⎩得223+4+260x nx n -=.于是3,4x (步骤4) 因为直线CD 的斜率为1,所以43|||x x CD - 由已知,四边形ACBD 的面积186||||29S CD AB ==.当n =0时,S 取得最大值,最大值为.所以四边形ACBD .(步骤5)【提示】(1)把右焦点(,0)c 代入直线可解得C .设11(),A x y ,22(),B x y ,线段AB 的中点00(),P x y ,利用“点差法”即可得到a ,b 的关系式,再与222a bc =+联立即可得到a ,b ,c .(2)把直线0x y +=与椭圆的方程联立得到根与系数的关系,即可得到弦长||AB ,由CD AB ⊥,可设直线CD 的方程为y x n =+,与椭圆的方程联立得到根与系数的关系,即可得到弦长||CD .利用1||||2ACBD S AB CD =四边形即可得到关于n 的表达式,利用二次函数的单调性即可得到其最大值.【考点】椭圆的方程、椭圆的简单几何性质、点差法的应用和直线与椭圆的位置关系. 21.【答案】(1)1()e x f x x m=-+. 由0x =是()f x 的极值点得(0)0f '=,所以1m =.于是ln +)1(()xf e x x =-,定义域为()1,+-∞,1()e 1xf x x =-+.(步骤1)函数1()e 1x f x x =-+在()1,+-∞单调递增,且(0)0f '=.因此当,0()1x ∈-时,()0f x '<; 当+()0,x ∈∞时,()0f x '>.所以()f x 在()1,0-单调递减,在(0,+)∞单调递增.(步骤2)(2)当2m ≤,,()+x m ∈-∞时,l ()()n +ln +2x m x ≤,故只需证明当2m =时,()0f x >. 当2m =时,函数1()e 2x f x x =-+在()2,+-∞单调递增. 又1()0f '-<,(0)0f '>,故()0f x '=在()2,+-∞有唯一实根x 0,且0)0(1,x ∈-.(步骤3) 当2+(),x ∈-∞时,()0f x '<;当0(),+x x ∈∞时,()0f x '>,从而当0x x =时,()f x 取得最小值.由0()0f x '=得001e 2x x =+,00ln +2()x x =-,故200000()()+11022f x f x x x x x ≥)=+++=(>. 综上,当2m ≤时,()0f x >.(步骤4)【提示】(1)求出原函数的导函数,因为0x =是函数()f x 的极值点,由极值点处的导数等于0求出m 的值,代入函数解析式后再由导函数大于0和小于0求出原函数的单调区间; (2)证明当2m ≤时,()0f x >,转化为证明当2m =时()0f x >求出当2m =时函数的导函数,可知导函数在(2,)-+∞上为增函数,并进一步得到导函数在(1,0)-上有唯一零点0x ,则当0x x =时函数取得最小值,借助于0x 是导函数的零点证出0()0f x >,从而结论得证. 【考点】利用导数求函数的单调区间和极值,利用导数解决不等式问题. 22.【答案】(1)因为CD 为△ABC 外接圆的切线,所以DCB A ∠=∠,由题设知BC DCFA EA=,故CDB AEF △∽△,所以DBC EFA ∠=∠.(步骤1)因为B ,E ,F ,C 四点共圆,所以CFE DBC ∠=∠,故90EFA CFE ∠=∠=︒.所以90CBA ∠=︒,因此CA 是△ABC 外接圆的直径.(步骤2)(2)连结CE ,因为90CBE ∠=︒,所以过B ,E ,F ,C 四点的圆的直径为CE ,由DB BE =,有CE DC =,又222BC DB BA DB ==,所以222 2.4+6CA DB BC DB ==而2223DC DB D CE DA B ===,故过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值为12. (步骤3)第22题图【提示】(1)已知CD 为ABC △外接圆的切线,利用弦切角定理可得DCB A ∠=∠,及BC DCFA EA=,可知CDB AEF △∽△,于是DBC EFA ∠=∠.利用B 、E 、F 、C 四点共圆,可得CFE DBC ∠=∠,进而得到90EFA CFE ∠=∠=︒即可证明CA 是ABC △外接圆的直径;(2)要求过B 、E 、F 、C 四点的圆的面积与ABC △外接圆面积的比值.只需求出其外接圆的直径的平方之比即可.由过B 、E 、F 、C 四点的圆的直径为CE ,及DB BE =,可得CE DC =,利用切割线定理可得222BC DB BA DB ==,222 2.4+6CA DB BC DB ==,都用DB 表示即可.【考点】弦切角,圆内接四边形的性质.23.【答案】(1)cos cos 2,sin sin 2x y αααα=+⎧⎨=+⎩0()2παα<<为参数, (2)d (02π)α<< M 的轨迹过坐标原点【解析】(1)依题意有2cos (n )2si P αα,,2cos2,2si 2()n Q αα,因此cos +cos2,sin +i ()s n2M αααα.M 的轨迹的参数方程为cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩0()2παα<<为参数,.(步骤1)(2)M 点到坐标原点的距离d =(02π)α<<.当πα=时,0d =,故M 的轨迹过坐标原点.(步骤2)【提示】(1)根据题意写出P ,Q 两点的坐标:2cos (n )2si P αα,,2cos2,2si 2()n Q αα,再利用中点坐标公式得PQ 的中点M 的坐标,从而得出M 的轨迹的参数方程;(2)利用两点间的距离公式得到M 到坐标原点的距离d 证当πα=时,0d =,故M 的轨迹过坐标原点. 【考点】参数方程,轨迹方程.24.【答案】(1)由22+2b a ab ≥,22+2b c bc ≥,22+2c a ca ≥,得222++++a b c ab bc ca ≥.(步骤1)由题设得21)++(a b c =,即222+++2+2+21a b c ab bc ca =.所以3+(+)1ab bc ca ≤,即1++3ab bc ca ≤.(步骤2) (2)因为22a b a b +≥,22b c b c +≥,22c a c a+≥,故222(++(2))a b c a b c a b c b c a +++++≥,(步骤3)即222++a b c a c a c b b ++≥. 所以2221a b c b c a++≥(步骤4)【提示】(1)依题意,由21)++(a b c =,即222+++2+2+21a b c ab bc ca =,利用基本不等式可得3+(+)1ab bc ca ≤,从而得证;(2)利用基本不等式可证得:22a b a b +≥,22b c b c +≥,22c a c a +≥,三式累加即可证得结论.【考点】不等式证明,均值不等式.。
2014高考理科数学全国新课标卷2试题和答案解析解析版
2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N =( ).A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3} 2.(2013课标全国Ⅱ,理2)设复数z满足(1-i)z=2i,则z=( ).A.-1+i B.-1-I C.1+i D.1-i3.(2013课标全国Ⅱ,理3)等比数列{a n}的前n项和为S n.已知S3=a2+10a1,a5=9,则a1=( ).A.13B.13-C.19D.19-4.(2013课标全国Ⅱ,理4)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,lα,lβ,则( ).A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l 5.(2013课标全国Ⅱ,理5)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( ).A.-4 B.-3 C.-2 D.-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N=10,那么输出的S=( ).A.111 1+2310+++LB.111 1+2!3!10!+++LC.111 1+2311+++LD.111 1+2!3!11!+++L7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( ).8.(2013课标全国Ⅱ,理8)设a=log36,b=log510,c=log714,则( ).A.c>b>a B.b>c>a C.a>c>b D.a>b>c9.(2013课标全国Ⅱ,理9)已知a>0,x,y满足约束条件1,3,3.xx yy a x≥⎧⎪+≤⎨⎪≥(-)⎩若z=2x+y的最小值为1,则a =( ).A .14B .12 C .1 D .210.(2013课标全国Ⅱ,理10)已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ).A .∃x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D .若x0是f(x)的极值点,则f ′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( ).A .y2=4x 或y2=8xB .y2=2x 或y2=8xC .y2=4x 或y2=16xD .y2=2x 或y2=16x12.(2013课标全国Ⅱ,理12)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值围是( ).A .(0,1) B.1122⎛⎫- ⎪ ⎪⎝⎭ C.1123⎛⎤- ⎥ ⎝⎦ D .11,32⎡⎫⎪⎢⎣⎭ 第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。
2014年高考真题——理科数学(新课标II)精校版含答案[淘高考]
2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1}B. {2}C. {0,1}D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A. - 5B. 5C. - 4+ iD. - 4 - i3.设向量a,b 满足|a+b 10|a-b 6,则a ⋅b = ( ) A. 1B. 2C. 3D. 54.钝角三角形ABC 的面积是12,AB=1,2 ,则AC=( )A. 5B.5 C. 2 D. 15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.456.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A. 1727 B. 59C. 1027D. 137.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( ) A. 4 B. 5 C. 6 D. 78.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A. 0 B. 1 C. 2 D. 39.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 210.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.33 B.93 C. 6332 D. 9411.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1, 则BM 与AN 所成的角的余弦值为( ) A. 110 B. 25C.30 D.2 12.设函数()3x f x m π=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( ) A.()(),66,-∞-⋃∞ B.()(),44,-∞-⋃∞ C.()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________.三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112na a a ++<…+.18. (本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,3,求三棱锥E-ACD 的体积.19. (本小题满分12分)(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121nii i nii tty y b tt∧==--=-∑∑,ˆˆay bt =-20. (本小题满分12分)设1F ,2F 分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N.(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .21. (本小题满分12分) 已知函数()f x =2x x e e x --- (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001)请考生在第22、23、24题中任选一题做答,如果多做,同按所做的第一题计分,做答时请写清题号.22.(本小题满分10)选修4—1:几何证明选讲如图,P 是e O 外一点,PA 是切线,A 为切点,割线PBC 与e O 相交于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交e O 于点E.证明: (Ⅰ)BE=EC ;(Ⅱ)AD ⋅DE=22PB23. (本小题满分10)选修4-4:坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦. (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24. (本小题满分10)选修4-5:不等式选讲 设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.2014年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题(1)D (2)A (3)A (4)B (5)A (6)C (7)D (8)D (9)B (10)D (11)C (12)C 二、填空题(13)12(14)1 (15)()1,3- (16)[]1,1- 三、解答题 (17)解:(Ⅰ)由131n n a a +=+得 n 111a 3().22n a ++=+ 又11322a +=,所以12n a ⎧⎫+⎨⎬⎩⎭是首项为32,公比为3的等比数列。
2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)
2014年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2} 2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.54.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.15.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.456.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.78.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.39.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.210.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】根据复数的几何意义求出z2,即可得到结论.【解答】解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A.【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1【考点】HR:余弦定理.【专题】56:三角函数的求值.【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.【解答】解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3【考点】6H:利用导数研究曲线上某点切线方程.【专题】52:导数的概念及应用.【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故选:D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.2【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B 两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=,则F(,0).∴过A,B的直线方程为y=(x﹣),即x=y+.联立,得4y2﹣12y﹣9=0.设A(x1,y1),B(x2,y2),则y 1+y 2=3,y 1y 2=﹣.∴S△OAB =S △OAF +S△OFB =×|y 1﹣y 2|==×=.故选:D .【点评】本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成角的余弦值为( ) A .B .C .D .【考点】LM :异面直线及其所成的角.【专题】5F :空间位置关系与距离.【分析】画出图形,找出BM 与AN 所成角的平面角,利用解三角形求出BM 与AN 所成角的余弦值.【解答】解:直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,如图:BC 的中点为O ,连结ON ,,则MN0B 是平行四边形,BM 与AN 所成角就是∠ANO ,∵BC=CA=CC 1,设BC=CA=CC 1=2,∴CO=1,AO=,AN=,MB===, 在△ANO 中,由余弦定理可得:cos ∠ANO===.故选:C .【点评】本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【考点】H4:正弦函数的定义域和值域.【专题】57:三角函数的图像与性质.【分析】由题意可得,f(x0)=±,且=kπ+,k∈Z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.【点评】本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x+a)10的展开式的通项公式为T r=•x10﹣r•a r,+1令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos (x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.【点评】本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【考点】3N:奇偶性与单调性的综合.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1] .【考点】J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【考点】87:等比数列的性质;8E:数列的求和.【专题】14:证明题;54:等差数列与等比数列.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.时,++…+<.∴对n∈N+【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(Ⅰ)由题意,=×(1+2+3+4+5+6+7)=4,=×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∴== =0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【考点】6B:利用导数研究函数的单调性.【专题】16:压轴题;53:导数的综合应用.【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
2014年高考新课标Ⅱ卷数学(理)试卷解析(精编版)(解析版)
2014年高考新课标Ⅱ数学(理)卷第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1} B. {2} C. {0,1} D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A. - 5 B. 5 C. - 4+ i D. - 4 - i3.设向量a,b 满足|a+b 10|a-b |=6,则a ⋅b = ( ) A. 1 B. 2 C. 3 D. 5 【答案】A【解析】因为22||()a b a b +=+=222a b a b ++⋅=10,22||()a b a b -=-=2226a b a b +-⋅=,两式相加得:228a b +=,所以1a b ⋅=,故选A.【学科网考点定位】本小题主要考查平面向量的模、平面向量的数量积等平面向量知识,熟练基础知识与基本题型是解答好本类题目的关键。
4.钝角三角形ABC 的面积是12,AB=1,2 ,则AC=( )A. 5B. 5C. 2D. 1【答案】B【解析】由面积公式得:11222B =,解得2sin 2B =,所以45B =或135B =,当45B =时,由余弦定理得:2122245AC =+-=1,所以1AC =,又因为AB=1,2,所以此时ABC ∆为等腰直角三角形,不合题意,舍去;所以135B =,由余弦定理得:21222cos135AC =+-=5,所以5AC =,故选B.【学科网考点定位】本小题主要考查余弦定理及三角形的面积公式,考查解三角形的基础知识.5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 【答案】A【解析】设A=“某一天的空气质量为优良”,B=“随后一天的空气质量为优良”,则()0.6(|)0.8()0.75P A B P B A P A ⋂===,故选A.【学科网考点定位】本小题主要考查条件概率的求法,熟练概率的基础知识是解答好本类题目的关键.6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A. 1727 B. 59C. 1027D. 13【答案】C【学科网考点定位】本小题主要考查立体几何中的三视图,考查同学们的空间想象能力. 7. 执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( )A. 4B. 5C. 6D. 78. 设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = ( ) A. 0 B. 1 C. 2 D. 3 【答案】D【解析】因为'11y a x=-+,所以切线的斜率为12a -=,解得3a =,故选D 。
2014年普通高等学校招生全国统一考试(全国Ⅱ卷)数学(理)试卷及解析
【答案解析】C.
解析:毛胚的之比为:
,故选C.
7.执行右图的程序框图,如果输入的x,t均为2,则输出的S=( )
A.4 B.5 C.6D.7
【答案解析】D.
解析:第1次循环M=2,S=5,k=1
第2次循环,M=2,S=7,k=2
第3次循环k=3>2,故输出S=7
【答案解析】[-1,1]
解析:设N点的坐标为
(1)当 时
∵
∴OM,MN的斜率分别为:
∵
∴
即
取正号时,化简(*)式得:
取负号化简(*)式得:
∴
∴
故 且
(2)当 时,取 ,此时满足题设.
(3)当 时,取 ,此时也满足题设.
综上所述,
三、解答题(本大题共8小题)
17.(12分)
已知数列 满足 .
(I)证明 是等比数列,并求 的通项公式;
A.0.8B.0.75 C. 0.6 D.0.45
【答案解析】A.
解析:设第i天空气优良记着事件 ,则 ,
∴第1天空气优良,第2天空气也优良这个事件的概率为
,故选A.
6.如图,网格纸上正方形小格子的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛胚切削而得到,则切削掉部分的体积与原来毛胚体积的比值为( )
A. B. C. D.
【答案解析】 D
解析:∵
∴抛物线C的焦点的坐标为:
所以直线AB的方程为:
故
从而
∴弦长
又∵O点到直线 的距离
∴ ,故选D.
11.直三棱柱 中,∠BCA=90°,M,N分别是 , 的中点, ,则BM与AN的夹角的余弦值为( )
2014年高考真题——理科数学(新课标Ⅱ)解析版
2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1} B.{2} C.{0,1} D.{1,2}考点:交集及其运算.专题:集合.分析:求出集合N的元素,利用集合的基本运算即可得到结论.解答:解:∵N={x|x2﹣3x+2≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.点评:本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5 B.5C.﹣4+i D.﹣4﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数的几何意义求出z2,即可得到结论.解答:解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A点评:本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5考点:平面向量数量积的运算.专题:平面向量及应用.分析:将等式进行平方,相加即可得到结论.解答:解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.点评:本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1考点:余弦定理.专题:三角函数的求值.分析:利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B 为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.解答:解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.点评:此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.45考点:相互独立事件的概率乘法公式.专题:概率与统计.分析:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.解答:解:设随后一天的空气质量为优良的概率为p,则有题意可得0.75×p=0.6,解得p=0.8,故选:A.点评:本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.解答:解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π.切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.点评:本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7考点:程序框图.专题:算法和程序框图.分析:根据条件,依次运行程序,即可得到结论.解答:解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.点评:本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.解答:解:,∴y′(0)=a﹣1=2,∴a=3.故答案选D.点评:本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10 B.8C.3D.2考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.点评:本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB 的面积为()A.B.C.D.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.解答:解:由y2=3x,得2p=3,p=,则F().∴过A,B的直线方程为y=,即.联立,得.设A(x1,y1),B(x2,y2),则,.∴==.故选:D.点评:本题考查直线与圆锥曲线的关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.考点:异面直线及其所成的角.专题:空间位置关系与距离.分析:画出图形,找出BM与AN所成角的平面角,利用解三角形求出BM与AN所成角的余弦值.解答:解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC 的中点为O,连结ON,,则MN0B是平行四边形,BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO=,AN=,MB===,在△ANO中,由余弦定理可得:cos∠ANO===.故选:C.点评:本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)考点:正弦函数的定义域和值域.专题:三角函数的图像与性质.分析:由题意可得,f(x0)=±,且=kπ+,k∈z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.解答:解:由题意可得,f(x0)=±,且=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.点评:本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.考点:二项式系数的性质.专题:二项式定理.分析:在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.解答:解:(x+a)10的展开式的通项公式为T r+1=•x10﹣r•a r,令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.考点:三角函数的最值;两角和与差的余弦函数;两角和与差的正弦函数.专题:三角函数的求值.分析:由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.解答:解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.点评:本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).考点:函数奇偶性的性质;函数单调性的性质.专题:函数的性质及应用.分析:根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.解答:解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)点评:本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1].考点:直线与圆的位置关系.专题:直线与圆.分析:画出图形即可得到结果.解答:解:由题意画出图形如图:∵点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,∴圆心到MN的距离为1,要使MN=1,才能使得∠OMN=45°,图中M′显然不满足题意,当MN垂直x轴时,满足题意,∴x0的取值范围是[﹣1,1].故答案为:[﹣1,1].点评:本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.考点:数列的求和;等比数列的性质.专题:证明题;等差数列与等比数列.分析:(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.解答:证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,<=,∴当n=1时,成立,当n≥2时,++…+1+…+==<.∴对n∈N+时,++…+<.点评:本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱柱P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.考点:二面角的平面角及求法;棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:空间位置关系与距离.分析:(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AF至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.解答:(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AF至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AF=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.点评: 本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:年份 2007 2008 2009 2010 2011 2012 2013年份代号t 1 2 3 4 5 6 7人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.考点:线性回归方程.专题:计算题;概率与统计.分析: (Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b 的值,再求出a 的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t 的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.解答:解:(Ⅰ)由题意,=(1+2+3+4+5+6+7)=4,=(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3, ∴===0.5,=﹣=4.3﹣0.5×4=2.3.∴y 关于t 的线性回归方程为=0.5t+2.3; (Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得: =0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.点评: 本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F 1,F 2分别是C :+=1(a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN|=5|F 1N|,求a ,b .考点: 椭圆的应用.专题: 圆锥曲线中的最值与范围问题.分析: (1)根据条件求出M 的坐标,利用直线MN 的斜率为,建立关于a ,c 的方程即可求C 的离心率; (2)根据直线MN 在y 轴上的截距为2,以及|MN|=5|F 1N|,建立方程组关系,求出N 的坐标,代入椭圆方程即可得到结论.解答: 解:(1)∵M 是C 上一点且MF 2与x 轴垂直,∴M 的横坐标为c ,当x=c 时,y=,即M (c ,),若直线MN 的斜率为, 即tan ∠MF 1F 2=,即b 2==a 2﹣c 2, 即c 2﹣﹣a 2=0, 则, 解得e=. (Ⅱ)由题意,原点O 是F 1F 2的中点,则直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点, 故=4,即b 2=4a ,由|MN|=5|F 1N|,解得|DF 1|=2|F 1N|,设N (x 1,y 1),由题意知y 1<0,则,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.点评:本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数发是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).考点:利用导数研究函数的单调性.专题:压轴题;导数的综合应用.分析:对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g'(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.解答:解:(Ⅰ)由f(x)得f'(x)=e x+e﹣x﹣2,即f'(x)≥0,当且仅当e x=e﹣x即x=0时,f'(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g'(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x﹣2b+2).①∵e x+e﹣x≥2,e x+e﹣x+2≥4,∴当2b≤4,即b≤2时,g'(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即时,g'(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)由(Ⅱ)知,.当b=2时,由,得;当时,有,由,得.所以ln2的近似值为0.693.点评:1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC 的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.考点:与圆有关的比例线段;相似三角形的判定.专题:选作题;几何证明.分析:(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.解答:证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.点评:本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程ρ=2cosθ,θ∈[0,].(Ⅰ)求C的参数方程;(Ⅱ)设点D在C上,C在D处的切线与直线l:y=x+2垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.考点:参数方程化成普通方程;利用导数研究曲线上某点切线方程;圆的参数方程.专题:坐标系和参数方程.分析:(Ⅰ)半圆C的极坐标方程化为直角坐标方程为(x﹣1)2+y2=1,令x﹣1=cosα∈[﹣1,1],y=sinα,可得半圆C的参数方程.(Ⅱ)由题意可得直线CD和直线l平行.设点D的坐标为(1+cosα,sinα),根据直线CD和直线l的斜率相等求得cotα的值,可得α的值,从而得到点D的坐标.解答:解:(Ⅰ)半圆C的极坐标方程ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,化为直角坐标方程为(x﹣1)2+y2=1,x∈[0,2]、y∈[0,1].令x﹣1=cosα∈[﹣1,1],y=sinα,α∈[0,π].故半圆C的参数方程为,α∈[0,π].(Ⅱ)设点D在C上,C在D处的切线与直线l:y=x+2垂直,∴直线CD和直线l平行,故直线CD和直线l斜率相等.设点D的坐标为(1+cosα,sinα),∵C(1,0),∴=,解得tanα=,即α=,故点D的坐标为(,).点评:本题主要考查把极坐标方程化为直角坐标方程,把直角坐标方程化为参数方程,注意参数的范围,属于基础题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.解答:解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<≤3.综上可得,a的取值范围(,).点评:本题主要考查绝对值三角不等时,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
2014年新课标2卷理科数学高考真题及标准答案
掌门1对1教育 高考真题2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N ={}2|320x x x -+≤,则M N ⋂=( )A. {1} B . {2} C . {0,1} D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )A . - 5 B. 5 C. - 4+ i D. - 4 - i3.设向量a,b 满足|a+b |10a -b |6,则a ⋅b = ( )A. 1 B. 2 C . 3 D. 54.钝角三角形AB C的面积是12,A B=1,BC 2 ,则AC=( ) A . 5 B . 5 C. 2 D. 15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8 B. 0.75 C. 0.6 D. 0.456.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727B. 59 C. 1027 D. 137.执行右图程序框图,如果输入的x,t均为2,则输出的S = ( )A. 4 B . 5 C. 6 D. 78.设曲线y=ax-l n(x+1)在点(0,0)处的切线方程为y=2x,则a =A. 0 B. 1 C. 2 D. 39.设x ,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A . 10B . 8 C. 3 D. 210.设F 为抛物线C:23y x =的焦点,过F且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OA B的面积为( )A .B.C. 6332D. 94 11.直三棱柱ABC-A 1B1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1, 则BM 与AN 所成的角的余弦值为( )A. 110 B. 25 C.D. 12.设函数()x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞ B . ()(),44,-∞-⋃∞ C. ()(),22,-∞-⋃∞ D.()(),14,-∞-⋃∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案)14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.16.设点M(0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式; (Ⅱ)证明:1231112n a a a ++<…+. 18. (本小题满分12分)如图,四棱锥P-ABCD 中,底面AB CD 为矩形,PA ⊥平面ABC D,E 为PD 的中点. (Ⅰ)证明:PB ∥平面A EC;(Ⅱ)设二面角D -A E-C为60°,AP =,求三棱锥E-AC D的体积.。
2014年高考理科数学试卷及答案-甘肃省
2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1} B. {2} C. {0,1} D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,zxxk 12z i =+,则12z z =( ) A. - 5 B. 5 C. - 4+ i D. - 4 - i3.设向量a,b 满足|a+b 10|a-b 6,则a ⋅b = ( ) A. 1 B. 2 C. 3 D. 54.钝角三角形ABC 的面积是12,AB=1,2 ,则AC=( )A. 5 5 C. 2 D. 15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A. 0.8 B. 0.75 C. 0.6 D. 0.456.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A. 1727B. 59C. 1027D. 137.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( ) A. 4 B. 5 C. 6 D. 78.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A. 0 B. 1 C. 2 D. 39.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 210.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) 33938 C. 6332 D. 9411.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( )A. 110B. 25302212.设函数()3x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m的取值范围是( )A. ()(),66,-∞-⋃∞B. ()(),44,-∞-⋃∞C. ()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞第Ⅱ卷 本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案)14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得zxxk ∠OMN=45°,则0x 的取值范围是________.三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112na a a ++<…+.18. (本小题满分12分) 如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,3,求三棱锥E-ACD 的体积.19. (本小题满分12分)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表: 年份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii ni i t t y y b t t∧==--=-∑∑,ˆˆay bt =- 20. (本小题满分12分)设1F ,2F 分别是椭圆C:()222210y x a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N. (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .21. (本小题满分12分) 已知函数()f x =2x x e e x ---zxxk (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.41422 1.4143<<,估计ln2的近似值(精确到0.001)请考生在第22、23、24题中任选一题做答,如果多做,有途高考网同按所做的第一题计分,做答时请写清题号.22.(本小题满分10)选修4—1:几何证明选讲 如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交O 于点E.证明: (Ⅰ)BE=EC ; (Ⅱ)AD ⋅DE=22PB23. (本小题满分10)选修4-4:坐标系与参数方程 在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴 为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.zxxk (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24. (本小题满分10)选修4-5:不等式选讲 设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.2014年普通高等学校招生全国统一考试理科数学试题参考答案一、 选择题 (1)D (2)A (3)A (4)B (5)A (6)C (7)D( 8)D (9)B (10)D (11)C (12)C 二、 填空题(13)12(14)1 (15)(-1,3) (16)[-1,1]三、解答题(17)解:(1)由131m m a a +=+得1113().22m m a a ++=+又113a 22+=,所以,{12m a + } 是首项为32,公比为3的等比数列。
2014年陕西理科数学高考试卷(带详解)
2014年陕西高考数学试题(理)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(本大题共10小题,每小题5分,共50分).1.已知集合,则( )【测量目标】集合的基本运算.【考查方式】用描述法写出两集合,求其交集.【难易程度】容易【参考答案】B【试题分析】2.函数的最小正周期是( )【测量目标】三角函数的基本性质.【考查方式】已知三角函数表达式求其周期.【难易程度】容易【参考答案】B【试题分析】.3.定积分的值为( )【测量目标】定积分.【考查方式】给出解析式求定积分【难易程度】容易【参考答案】C【试题解析】=.4.根据右边框图,对大于2的整数,得出数列的通项公式是( )【测量目标】等比数列的通项公式、程序框图得出程序运算【考查方式】利用程序框图求等比数列【难易程度】中等【参考答案】C【试题分析】∴是=2,q=2的等比数列.选C.5.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )【测量目标】空间几何体体积的运算.【考查方式】给出正四棱锥在球上,求球的体积【难易程度】容易【参考答案】D【试题解析】侧棱长为底面边长为1的正四棱柱.底面对角线长为,中点为.所以其半径为,所以其体积为V==.6.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )【测量目标】随机事件概率【考查方式】给出随机事件求其概率【难易程度】容易【参考答案】B【试题分析】5中取2个有10种,距离小于边长只能是中心到4的顶点共4种,7.下列函数中,满足“”的单调递增函数是( )A. B. C. D.【测量目标】函数的基本性质.【考查方式】给出一特点,求满足特点的增函数【难易程度】中等【参考答案】B【试题分析】只有D不是递增函数.对B来说,.8.原命题为“若互为共轭复数,则”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A.真,假,真B.假,假,真C.真,真,假D.假,假,假【测量目标】命题的判断【考查方式】对某一命题的逆命题、否命题、逆否命题的真假性判断.【难易程度】中等【参考答案】A【试题分析】原命题和逆否命题等价,逆命题和否命题等价.因为为递减数列,∴原命题为真,逆命题为真∴四个命题全真,选A.9.设样本数据的均值和方差分别为1和4,若(为非零常数, ),则的均值和方差分别为( )A. B. C. D.【测量目标】样本数据的均值和方差的性质.【考查方式】给出数据关系求数据均值和方差关系.【难易程度】容易【参考答案】A【试题分析】样本数据加同一个数,均值也加此数,方差不变10.如图,某飞行器在4千米高空水平飞行,从距着陆点的水平距离10千米处下降,已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )A. B. C. D.【测量目标】函数的解析式、导数的意义【考查方式】以图片形式给出条件求出函数解析式【难易程度】中等【参考答案】A【试题分析】由题意可知(-5,2)和(2,-5)和(0,0)在函数中,将三点带入等式成立的有A、B、D,再由(-5,2)和(2,-5)处为极值点,即有只有A 符合条件故选A.二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.已知则=________.【测量目标】指数与对数函数【考查方式】给出指数和对数函数求未知数【难易程度】容易【参考答案】【试题分析】.12.若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______.【测量目标】圆的标准方程、对称的意义.【考查方式】给出圆心点关于直线的对称点以及半径求圆的标准方程【难易程度】容易【参考答案】【试题解析】因为(1,0)关于y=x对称的点为(0,1),所以其圆心点为(1,0),且半径为1所以圆的标准方程为.13.设,向量,若,则_______.【测量目标】三角函数的计算、向量的基本性质.【考查方式】用三角函数值来表示向量,利用其关系求正切值【难易程度】中等【参考答案】【试题分析】∵,,∴即解得.14.观察分析下表中的数据:多面体 面数()顶点数() 棱数()三棱锥 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中,所满足的等式是_________.【测量目标】类比推理.【考查方式】给出几个同类事物推理关系式【难易程度】容易【参考答案】F+V-E=2【试题解析】由题目归类推理容易的F+V-E=2.15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)(不等式选做题)设,且,则的最小值为 .【测量目标】最值【考查方式】给出限定条件求最小值【难易程度】中等【参考答案】【试题分析】∵∴,则,∴.(几何证明选做题)如图,中,,以为直径的半圆分别交于点,若,则 .【测量目标】几何图形【考查方式】给出图形,给出关系式求未知量【难易程度】中等【参考答案】3【试题分析】∵△AEF与△ACB相似∵且BC=6,AC=2AE,∴EF=3.(坐标系与参数方程选做题)在极坐标系中,点到直线的距离是 .【测量目标】极坐标、点到直线距离.【考查方式】给出直线极坐标及极坐标点的坐标求点到直线距离.【难易程度】容易【参考答案】1【试题分析】∵极坐标点对应直角坐标系点,直线=即对应,∴点到直线的距离.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分)16.(本小题满分12分)的内角所对的边分别为.(I)若成等差数列,证明:;(II)若成等比数列,且a=2c求的最小值.【测量目标】等差数列、等比数列、正弦定理、余弦定理.【考查方式】(1)用等差数列根据正弦定理证明三角函数关系(2)等比数列根据余弦定理求最值.【难易程度】中等【试题分析】(Ⅰ)因为a,b,c成等差,所以2b=a+c,即2sin B=sin A+sin C因为sin B=sin(A+C)所以Sin A+sin C=2sin(A+C).(Ⅱ)∵a,b,c成等比,且c=2a∴∴cos B=.17.(本小题满分12分)四面体及其三视图如图所示,过棱的中点作平行于,的平面分别交四面体的棱于点.(1)证明:四边形是矩形;(2)求直线与平面夹角的正弦值.【测量目标】空间几何体、线面的夹角大小【考查方式】计算集合体体积、计算线面夹角的正弦值.【难易程度】中等【试题分析】(1)证明:由该四面体的三视图可知,,,由题设,∥面,面面,面面,∥,∥,∥.同理∥,∥,∥.四边形是平行四边形,又,平面,,∥,∥,,四边形是矩形.(2)如图,以为坐标原点建立空间直角坐标系,则,,,,,,设平面的一个法向量,∥,∥,,即得,取,=.18.(本小题满分12分)在直角坐标系中,已知点,点在三边围成的区域(含边界)上.(1)若,求;(2)设,用表示,并求的最大值.【测量目标】平面坐标系,向量的基本运算.【考查方式】在平面坐标系中给出相关点并给出约束条件利用向量的基本运算求向量的模、根据相关关系式求最值问题【难易程度】较难【试题解析】(1)因为,所以,即得,所以.(2),,即,两式相减得:,令,由图可知,当直线过点时,取得最大值1,故的最大值为1.19.(本小题满分12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:300500作物产物(kg)概率0.50.5610作物市场价格(元/kg)概率0.40.6(1)设表示在这块地上种植1季此作物的利润,求的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.【测量目标】随机事件分布列.【考查方式】根据给出的条件写出分布列,计算不同季节不少于产量的概率【难易程度】中等【试题解析】设A表示事件“作物产量为300kg”,B表示事件“作物市场价格为6元/kg”,由题设知,,因为利润=产量市场价格-成本,所以所有可能的取值为:,,,,,,,所以的分布列为:400020008000.30.50.2(2)设表示事件“第季利润不少于2000元”,由题意知相互独立,由(1)知,.3季利润均不少于2000元的概率为;3季中有2季利润不少于2000元的概率为.所以,这3季中至少有2季的利润不少于2000元的概率为. 20.(本小题满分13分)如图,曲线由上半椭圆和部分抛物线连接而成,的公共点为,其中的离心率为.(1)求的值;(2)过点的直线与分别交于(均异于点),若,求直线的方程.【测量目标】椭圆与抛物线性质.直线与椭圆的关系【考查方式】给出约束条件利用椭圆和抛物线的性质求椭圆的标准方程,利用直线特点及与椭圆关系求直线解析式.【难易程度】较难【试题解析】(1)在,方程中,令,可得b=1,且得是上半椭圆的左右顶点,设的半焦距为,由及,解得,所以,,由(1)知,上半椭圆的方程为,易知,直线与轴不重合也不垂直,设其方程为,代入的方程中,整理得:(*),设点的坐标,由韦达定理得,又,得,从而求得,所以点的坐标为,同理,由得点的坐标为,,,,,即,,,解得,经检验,符合题意,故直线的方程为.21.(本小题满分14分)设函数,其中是的导函数.(1),求的表达式;(2)若恒成立,求实数的取值范围;(3)设,比较与的大小,并加以证明.【测量目标】导函数、等差数列、函数的单调性、类比推理【考查方式】根据给出的条件解得函数解析式,推到取值范围、证明先关命题.【难易程度】较难【试题解析】,,.(1),,,,,即,当且仅当时取等号,当时,,当时,,,,即,数列是以为首项,以1为公差的等差数列,,,当时,,.(2)在范围内恒成立,等价于成立,令,即恒成立,,令,即,得,当即时,在上单调递增,,所以当时,在上恒成立;当即时,在上单调递增,在上单调递减,所以,设,,因为,所以,即,所以函数在上单调递减,所以,即,所以不恒成立,综上所述,实数的取值范围为.(3)由题设知:,,比较结果为:,证明如下:上述不等式等价于,在(2)中取,可得,令,则,即,故有,,,,上述各式相加可得:,结论得证.。
2014年贵州省高考数学试卷(理科)(全国新课标Ⅱ)(附答案解析)
2014年贵州省高考数学试卷(理科)(全国新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1. 设集合M ={0, 1, 2},N ={x|x 2−3x +2≤0},则M ∩N =( ) A.{1} B.{2} C.{0, 1} D.{1, 2}2. 设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,则z 1z 2=( ) A.−5 B.5 C.−4+i D.−4−i3. 已知向量a →,b →满足|a →+b →|=√10,|a →−b →|=√6,则a →⋅b →= ( ) A.1 B.2 C.3 D.54. 钝角三角形ABC 的面积是12,AB =1,BC =√2,则AC =( ) A.5 B.√5C.2D.15. 某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.8 B.0.75C.0.6D.0.456. 如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.137. 执行如图所示的程序框图,若输入的x ,t 均为2,则输出的S =( )A.4B.5C.6D.78. 设曲线y =ax −ln (x +1)在点(0, 0)处的切线方程为y =2x ,则a =( ) A.0 B.1 C.2 D.39. 设x ,y 满足约束条件{x +y −7≤0x −3y +1≤03x −y −5≥0 ,则z =2x −y 的最大值为( )A.10B.8C.3D.210. 设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30∘的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.3√34B.9√38C.6332D.9411. 直三棱柱ABC −A 1B 1C 1中,∠BCA =90∘,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A.110 B.25C.√3010D.√2212. 设函数f(x)=√3sinπxm,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是() A.(−∞, −6)∪(6, +∞) B.(−∞, −4)∪(4, +∞)C.(−∞, −2)∪(2, +∞)D.(−∞, −1)∪(1, +∞)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)(x+a)10的展开式中,x7的系数为15,则a=________12.函数f(x)=sin(x+2φ)−2sinφcos(x+φ)的最大值为________.已知偶函数f(x)在[0, +∞)单调递减,f(2)=0,若f(x−1)>0,则x的取值范围是________.设点M(x0, 1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45∘,则x0的取值范围是________.三、解答题:解答应写出文字说明,证明过程或验算步骤.已知数列{a n}满足a1=1,a n+1=3a n+1.(1)证明{a n+12}是等比数列,并求{a n}的通项公式;(2)证明:1a1+1a2+⋯+1a n<32.如图,四棱锥P−ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB // 平面AEC;(2)设二面角D−AE−C为60∘,AP=1,AD=√3,求三棱锥E−ACD的体积.某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:b̂=∑ni=1(t i−t¯)(y i−y¯)∑n i=1(t i−t¯)2,â=y¯−b̂t¯.设F1,F2分别是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为34,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.已知函数f(x)=e x−e−x−2x.(1)讨论f(x)的单调性;(2)设g(x)=f(2x)−4bf(x),当x>0时,g(x)>0,求b的最大值;(3)已知1.4142<√2<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD⋅DE=2PB2.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=]2cosθ,θ∈[0, π2(Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=√3x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)|+|x−a|(a>0).设函数f(x)=|x+1a(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.参考答案与试题解析2014年贵州省高考数学试卷(理科)(全国新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求. 1.【答案】 D【考点】一元二次不等式的解法 交集及其运算【解析】求出集合N 的元素,利用集合的基本运算即可得到结论. 【解答】解:∵ N ={x|x 2−3x +2≤0} ={x|(x −1)(x −2)≤0} ={x|1≤x ≤2}, ∴ M ∩N ={1, 2}. 故选D . 2. 【答案】 A【考点】 复数的运算 【解析】根据复数的几何意义求出z 2,即可得到结论. 【解答】z 1=2+i 对应的点的坐标为(2, 1),∵ 复数z 1,z 2在复平面内的对应点关于虚轴对称, ∴ (2, 1)关于虚轴对称的点的坐标为(−2, 1), 则对应的复数,z 2=−2+i ,则z 1z 2=(2+i)(−2+i)=i 2−4=−1−4=−5, 3.【答案】 A【考点】平面向量数量积的性质及其运算律 【解析】将等式进行平方,相加即可得到结论. 【解答】解:∵ |a →+b →|=√10,|a →−b →|=√6, ∴ 分别平方得a →2+2a →⋅b →+b →2=10,a →2−2a →⋅b →+b →2=6.两式相减得4a →⋅b →=10−6=4, 即a →⋅b →=1. 故选A . 4. 【答案】 B【考点】 解三角形 余弦定理同角三角函数间的基本关系【解析】利用三角形面积公式列出关系式,将已知面积,AB ,BC 的值代入求出sin B 的值,分两种情况考虑:当B 为钝角时;当B 为锐角时,利用同角三角函数间的基本关系求出cos B 的值,利用余弦定理求出AC 的值即可. 【解答】解:∵ 钝角三角形ABC 的面积是12,AB =c =1,BC =a =√2, ∴ S =12ac sin B =12,即sin B =√22, 当B 为钝角时,cos B =−√1−sin 2B =−√22, 利用余弦定理得:AC 2=AB 2+BC 2−2AB ⋅BC ⋅cos B =1+2+2=5, 即AC =√5,当B 为锐角时,cos B =√1−sin 2B =√22, 利用余弦定理得:AC 2=AB 2+BC 2−2AB ⋅BC ⋅cos B =1+2−2=1,即AC =1,此时AB 2+AC 2=BC 2,即△ABC 为直角三角形,不合题意,舍去, 则AC =√5. 故选B . 5. 【答案】 A【考点】相互独立事件的概率乘法公式 【解析】设随后一天的空气质量为优良的概率为p ,则由题意可得0.75×p =0.6,由此解得p 的值. 【解答】解:设随后一天的空气质量为优良的概率为p , 则由题意可得0.75×p =0.6, 解得p =0.8.故选A.6.【答案】C【考点】由三视图求体积【解析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π⋅2+22π⋅4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:54π−34π54π=1027.7.【答案】D【考点】程序框图【解析】根据条件,依次运行程序,即可得到结论.【解答】若x=t=2,则第一次循环,1≤2成立,则M=11×2=2,S=2+3=5,k=2,第二次循环,2≤2成立,则M=22×2=2,S=2+5=7,k=3,此时3≤2不成立,输出S=7,8.【答案】D【考点】利用导数研究曲线上某点切线方程【解析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】y′=a−1x+1,∴y′(0)=a−1=2,∴a=3.9. 【答案】B【考点】简单线性规划【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x−y得y=2x−z,平移直线y=2x−z,由图象可知当直线y=2x−z经过点C时,直线y=2x−z的截距最小,此时z最大.由{x+y−7=0x−3y+1=0,解得{x=5y=2,即C(5, 2)代入目标函数z=2x−y,得z=2×5−2=(8)10.【答案】D【考点】直线与抛物线结合的最值问题抛物线的标准方程【解析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=32,则F(34, 0).∴过A,B的直线方程为y=√33(x−34),即x=√3y+34.联立{y2=3x,x=√3y+34,得4y2−12√3y−9=0.设A(x1, y1),B(x2, y2),则y1+y2=3√3,y1y2=−94.∴S△OAB=S△OAF+S△OFB=12×34|y1−y2|=38√(y 1+y 2)2−4y 1y 2 =38×√(3√3)2+9 =94. 故选D . 11. 【答案】 C【考点】异面直线及其所成的角 【解析】画出图形,找出BM 与AN 所成角的平面角,利用解三角形求出BM 与AN 所成角的余弦值. 【解答】 解:如图,直三棱柱ABC −A 1B 1C 1中,∠BCA =90∘, M ,N 分别是A 1B 1,A 1C 1的中点, 设BC 的中点为O ,连结ON , 则MN = // 12B 1C 1=OB ,则MNOB 是平行四边形, BM 与AN 所成角就是∠ANO , ∵ BC =CA =CC 1, 设BC =CA =CC 1=2,∴ CO =1,AO =√5,AN =√5, MB =√B 1M 2+BB 12=√(√2)2+22=√6, 在△ANO 中,由余弦定理可得: cos ∠ANO =AN 2+NO 2−AO 22AN⋅NO=62×√5×√6=√3010. 故选C . 12.【答案】 C【考点】正弦函数的定义域和值域 【解析】由题意可得,f(x 0)=±√3,且 πx0m =kπ+π2,k ∈z ,再由题意可得当m 2最小时,|x 0|最小,而|x 0|最小为12|m|,可得m 2>14m 2+3,由此求得m 的取值范围. 【解答】解:由题意可得,f(x 0)=±√3,且 πx0m =kπ+π2,k ∈Z , 即 x 0=2k+12m .再由x 02+[f(x 0)]2<m 2,可得当m 2最小时,|x 0|最小,而|x 0|最小为12|m|,∴ m 2>14m 2+3,∴ m 2>4.求得 m >2或m <−2, 故选C .二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答) 【答案】12【考点】二项式定理及相关概念 【解析】在二项展开式的通项公式中,令x 的幂指数等于3,求出r 的值,即可求得x 7的系数,再根据x 7的系数为15,求得a 的值. 【解答】(x +a)10的展开式的通项公式为 T r+1=C 10r⋅x 10−r ⋅a r ,令10−r =7,求得r =3,可得x 7的系数为a 3⋅C 103=120a 3=15, ∴ a =12,【答案】 1【考点】三角函数的最值三角函数中的恒等变换应用【解析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sin x ,从而求得函数的最大值. 【解答】解:函数f(x)=sin(x+2φ)−2sinφcos(x+φ)=sin[(x+φ)+φ]−2sinφcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ−2sinφcos(x+φ) =sin(x+φ)cosφ−cos(x+φ)sinφ=sin[(x+φ)−φ]=sin x,故函数f(x)的最大值为1,故答案为:1.【答案】(−1, 3)【考点】函数奇偶性的性质函数单调性的性质【解析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x−1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0, +∞)单调递减,f(2)=0,∴不等式f(x−1)>0等价为f(x−1)>f(2),即f(|x−1|)>f(2),∴|x−1|<2,解得−1<x<3.故答案为:(−1, 3).【答案】[−1, 1]【考点】直线与圆的位置关系【解析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】由题意画出图形如图:点M(x0, 1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45∘,则∠OMN的最大值大于或等于45∘时一定存在点N,使得∠OMN=45∘,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[−1, 1].三、解答题:解答应写出文字说明,证明过程或验算步骤. 【答案】证明:(1)a n+1+12a n+12=3a n+1+12a n+12=3(a n+12)a n+12=3,∵a1+12=32≠0,∴数列{a n+12}是以首项为32,公比为3的等比数列,∴a n+12=32×3n−1=3n2,即a n=3n−12;(2)由(1)知1a n=23n−1,当n≥2时,∵3n−1>3n−3n−1,∴1a n=23n−1<23n−3n−1=13n−1,∴当n=1时,1a1=1<32成立,当n≥2时,1a1+1a2+⋯+1a n<1+13+132+⋯+13n−1=1−(13)n1−13=32(1−13n)<32.∴对n∈N+时,1a1+1a2+⋯+1a n<32.【考点】数列与不等式的综合等比数列的前n项和等比关系的确定等比数列的通项公式【解析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即b n+1b n=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n }的通项公式;(Ⅱ)将1a n 进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】 证明:(1)a n+1+12a n +12=3a n +1+12a n +12=3(a n +12)a n +12=3,∵ a 1+12=32≠0,∴ 数列{a n +12}是以首项为32,公比为3的等比数列,∴ a n +12=32×3n−1=3n 2,即a n =3n −12;(2)由(1)知1a n=23n −1,当n ≥2时,∵ 3n −1>3n −3n−1, ∴1a n=23n −1<23n −3n−1=13n−1,∴ 当n =1时,1a 1=1<32成立,当n ≥2时, 1a 1+1a 2+⋯+1a n <1+13+132+⋯+13n−1 =1−(13)n1−13=32(1−13n )<32.∴ 对n ∈N +时,1a 1+1a 2+⋯+1a n<32.【答案】(1)证明:连接BD 交AC 于O 点,连接EO ,∵ O 为BD 中点,E 为PD 中点, ∴ EO // PB ,∵ EO ⊂平面AEC ,PB ⊄平面AEC , ∴ PB // 平面AEC .(2)解:延长AE 至M 连结DM ,使得AM ⊥DM ,∵ 四棱锥P −ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD , ∴ CD ⊥平面AMD ,∵ 二面角D −AE −C 为60∘, ∴ ∠CMD =60∘,∵ AP =1,AD =√3,∠ADP =30∘, ∴ PD =2,E 为PD 的中点.AE =1, ∴ DM =√32, CD =√32×tan 60∘=32.三棱锥E −ACD 的体积为:13×12AD ⋅CD ⋅12PA=13×12×√3×32×12×1=√38.【考点】与二面角有关的立体几何综合题 直线与平面平行的判定 柱体、锥体、台体的体积计算【解析】(1)连接BD 交AC 于O 点,连接EO ,只要证明EO // PB ,即可证明PB // 平面AEC ;(2)延长AE 至M 连结DM ,使得AM ⊥DM ,说明∠CMD =60∘,是二面角的平面角,求出CD ,即可三棱锥E −ACD 的体积.【解答】(1)证明:连接BD 交AC 于O 点,连接EO ,∵O为BD中点,E为PD中点,∴EO // PB,∵EO⊂平面AEC,PB⊄平面AEC,∴PB // 平面AEC.(2)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P−ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∵二面角D−AE−C为60∘,∴∠CMD=60∘,∵AP=1,AD=√3,∠ADP=30∘,∴PD=2,E为PD的中点.AE=1,∴DM=√32,CD=√32×tan60∘=32.三棱锥E−ACD的体积为:13×12AD⋅CD⋅12PA=13×12×√3×32×12×1=√38.【答案】解:(1)由题意,t¯=17×(1+2+3+4+5+6+7)=4,y¯=17×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑(t i−t¯)27i=1=28,∑(t i−t¯)7i=1(y i−y¯)=14b̂=1428=0.5â=y¯−b̂t¯=4.3−0.5×4=2.3.∴y关于t的线性回归方程为ŷ=0.5t+2.3;(2)由(1)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入ŷ=0.5t+2.3,得:ŷ=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【考点】回归分析的初步应用求解线性回归方程【解析】(1)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(2)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(1)由题意,t¯=17×(1+2+3+4+5+6+7)=4,y¯=17×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑(t i−t¯)27i=1=28,∑(t i−t¯)7i=1(y i−y¯)=14b̂=1428=0.5â=y¯−b̂t¯=4.3−0.5×4=2.3.∴y关于t的线性回归方程为ŷ=0.5t+2.3;(2)由(1)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入ŷ=0.5t+2.3,得:y ̂=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元. 【答案】解:(1)由题意,知M(c,b 2a ),则b 2a2c =34,化简得2b 2=3ac .将b 2=a 2−c 2代入2b 2=3ac , 解得ca =12或ca =−2(舍去). 故椭圆C 的离心率为12.(2)由题意,如图所示:知原点O 为F 1F 2的中点,MF 2//y 轴,所以直线MF 1与y 轴的交点D(0,2)是线段MF 1的中点, 故b 2a =4,即b 2=4a , ①由|MN|=5|F 1N|,得|DF 1|=2|F 1N|. 设N(x 1,y 1),由题意知y 1<0, 则{2(−c −x 1)=c ,−2y 1=2,解得{x 1=−32c ,y 1=−1.将(−32c,−1)代入椭圆C 的方程,得9c 24a 2+1b 2=1,②将①及c 2=a 2−b 2代入②,得9(a 2−4a)4a 2+14a =1,所以a =7,b 2=4a =28. 故a =7,b =2√7.【考点】 椭圆的离心率直线与椭圆结合的最值问题 椭圆的应用 【解析】 此题暂无解析 【解答】解:(1)由题意,知M(c,b 2a ), 则b 2a2c =34,化简得2b 2=3ac . 将b 2=a 2−c 2代入2b 2=3ac , 解得ca=12或ca=−2(舍去).故椭圆C 的离心率为12.(2)由题意,知原点O 为F 1F 2的中点,MF 2//y 轴, 所以直线MF 1与y 轴的交点D(0,2)是线段MF 1的中点, 故b 2a =4,即b 2=4a , ①由|MN|=5|F 1N|,得|DF 1|=2|F 1N|. 设N(x 1,y 1),由题意知y 1<0, 则{2(−c −x 1)=c ,−2y 1=2,解得{x 1=−32c ,y 1=−1.将(−32c,−1)代入椭圆C 的方程,得9c 24a 2+1b 2=1,②将①及c 2=a 2−b 2代入②,得9(a 2−4a)4a 2+14a=1,所以a =7,b 2=4a =28. 故a =7,b =2√7. 【答案】解:(1)由f(x)得f′(x)=e x +e −x −2≥2√e x ⋅e −x −2=0, 即f′(x)≥0,当且仅当e x =e −x 即x =0时,f′(x)=0, ∴ 函数f(x)在R 上为增函数. (2)g(x)=f(2x)−4bf(x)=e 2x −e −2x −4b(e x −e −x )+(8b −4)x ,则g′(x)=2[e 2x +e −2x −2b(e x +e −x )+(4b −2)] =2[(e x +e −x )2−2b(e x +e −x )+(4b −4)] =2(e x +e −x −2)(e x +e −x +2−2b). e x +e −x ≥2,e x +e −x +2≥4,①当2b ≤4,即b ≤2时,g′(x)≥0,当且仅当x =0时取等号, 从而g(x)在R 上为增函数,而g(0)=0, ∴ x >0时,g(x)>0,符合题意.②当b >2时,若x 满足2<e x +e −x <2b −2, 即{2<e x +e −xe x +e −x <2b −2, 得0<x <ln (b −1+√b 2−2b),此时,g′(x)<0, 又由g(0)=0知,当0<x ≤ln (b −1+√b 2−2b)时, g(x)<0,不符合题意.综合①、②知,b ≤2,得b 的最大值为2.(3)∵ 1.4142<√2<1.4143,根据(2)中g(x)=e2x−e−2x−4b(e x−e−x)+(8b−4)x,为了凑配ln2,并利用√2的近似值,故将ln√2即12ln2代入g(x)的解析式中,得g(ln√2)=32−2√2b+2(2b−1)ln2.当b=2时,由g(x)>0,得g(ln√2)=32−4√2+6ln2>0,从而ln2>8√2−312>8×1.4142−312=0.6928;令ln(b−1+√b2−2b)=ln√2,得b=3√24+1>2,当0<x≤ln(b−1+√b2−2b)时,由g(x)<0,得g(ln√2)=−32−2√2+(3√2+2)ln2<0,得ln2<18+√228<18+1.414328<0.6934.所以ln2的近似值为0.693.【考点】利用导数研究函数的最值利用导数研究函数的单调性对数及其运算【解析】对第(1)问,直接求导后,利用基本不等式可达到目的;对第(2)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(3)问,根据第(2)问的结论,设法利用√2的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算g(ln√2),最后可估计ln2的近似值.【解答】解:(1)由f(x)得f′(x)=e x+e−x−2≥2√e x⋅e−x−2=0,即f′(x)≥0,当且仅当e x=e−x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(2)g(x)=f(2x)−4bf(x)=e2x−e−2x−4b(e x−e−x)+(8b−4)x,则g′(x)=2[e2x+e−2x−2b(e x+e−x)+(4b−2)]=2[(e x+e−x)2−2b(e x+e−x)+(4b−4)]=2(e x+e−x−2)(e x+e−x+2−2b).e x+e−x≥2,e x+e−x+2≥4,①当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e−x<2b−2,即{2<e x+e−xe x+e−x<2b−2,得0<x<ln(b−1+√b2−2b),此时,g′(x)<0,又由g(0)=0知,当0<x≤ln(b−1+√b2−2b)时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(3)∵ 1.4142<√2<1.4143,根据(2)中g(x)=e2x−e−2x−4b(e x−e−x)+(8b−4)x,为了凑配ln2,并利用√2的近似值,故将ln√2即12ln2代入g(x)的解析式中,得g(ln√2)=32−2√2b+2(2b−1)ln2.当b=2时,由g(x)>0,得g(ln√2)=32−4√2+6ln2>0,从而ln2>8√2−312>8×1.4142−312=0.6928;令ln(b−1+√b2−2b)=ln√2,得b=3√24+1>2,当0<x≤ln(b−1+√b2−2b)时,由g(x)<0,得g(ln√2)=−32−2√2+(3√2+2)ln2<0,得ln2<18+√228<18+1.414328<0.6934.所以ln2的近似值为0.693.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】【答案】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90∘,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90∘,∴OE⊥BC,∴E是BĈ的中点,∴BE=EC;(2)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB⋅PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD⋅DC=PB⋅2PB,∵AD⋅DE=BD⋅DC,∴AD⋅DE=2PB2.【考点】相似三角形的判定与圆有关的比例线段【解析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是BĈ的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD⋅DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90∘,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90∘,∴OE⊥BC,∴E是BĈ的中点,∴BE=EC;(2)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB⋅PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD⋅DC=PB⋅2PB,∵AD⋅DE=BD⋅DC,∴AD⋅DE=2PB2.【选修4-4:坐标系与参数方程】【答案】(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0, π2],即ρ2=2ρcosθ,可得C的普通方程为(x−1)2+y2=1(0≤y≤1).可得C的参数方程为{x=1+cos ty=sin t(t为参数,0≤t≤π).(2)设D(1+cos t, sin t),由(1)知C是以C(1, 0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tan t=√3,t=π3.故D的直角坐标为(1+cosπ3,sinπ3),即(32, √32).【考点】参数方程与普通方程的互化【解析】(1)利用{ρ2=x2+y2x=ρcosθ即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=√3x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0, π2],即ρ2=2ρcosθ,可得C的普通方程为(x−1)2+y2=1(0≤y≤1).可得C的参数方程为{x=1+cos ty=sin t(t为参数,0≤t≤π).(2)设D(1+cos t, sin t),由(1)知C是以C(1, 0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tan t=√3,t=π3.故D的直角坐标为(1+cosπ3,sinπ3),即(32, √32).六、解答题(共1小题,满分0分)【答案】(1)证明:∵a>0,∴f(x)=|x+1a|+|x−a|≥|(x+1a)−(x−a)|=|a+1a|=a+1a≥2√a⋅1a=2,故不等式f(x)≥2成立.(2)解:∵f(3)=|3+1a|+|3−a|<5,∴当a>3时,不等式即a+1a<5,即a2−5a+1<0,解得3<a<5+√212.当0<a≤3时,不等式即6−a+1a<5,即a2−a−1>0,求得1+√52<a≤3.综上可得,a的取值范围(1+√52, 5+√212).【考点】不等式的证明绝对值不等式的解法与证明【解析】(Ⅰ)由a>0,f(x)=|x+1a|+|x−a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+1a|+|3−a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】(1)证明:∵a>0,∴f(x)=|x+1a |+|x−a|≥|(x+1a)−(x−a)|=|a+1a |=a+1a≥2√a⋅1a=2,故不等式f(x)≥2成立.(2)解:∵f(3)=|3+1a|+|3−a|<5,∴当a>3时,不等式即a+1a<5,即a2−5a+1<0,解得3<a<5+√212.当0<a≤3时,不等式即6−a+1a<5,即a2−a−1>0,求得1+√52<a≤3.综上可得,a的取值范围(1+√52, 5+√212).。
2014年高考新课标Ⅱ卷数学(理)试卷解析(精编版)(解析版)
2014年高考新课标Ⅱ数学(理)卷第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( )A. {1}B. {2}C. {0,1}D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )A. - 5B. 5C. - 4+ iD. - 4 - i3.设向量a,b 满足|a+b |=10,|a-b |=6,则a ⋅b = ( )A. 1B. 2C. 3D. 5【答案】A【解析】因为22||()a b a b +=+=r u r r r 222a b a b ++⋅r r r r =10,22||()a b a b -=-=r u r r r 2226a b a b +-⋅=r r r r ,两式相加得:228a b +=r r ,所以1a b ⋅=r r ,故选A.【学科网考点定位】本小题主要考查平面向量的模、平面向量的数量积等平面向量知识,熟练基础知识与基本题型是解答好本类题目的关键。
4.钝角三角形ABC 的面积是12,AB=1,BC=2 ,则AC=( ) A. 5 B.5 C. 2 D. 1【答案】B 【解析】由面积公式得:112sin 22B ⨯=,解得2sin 2B =,所以45B =o 或135B =o ,当45B =o 时, 由余弦定理得:21222cos45AC =+-o =1,所以1AC =,又因为AB=1,BC=2,所以此时ABC ∆为等腰直角三角形,不合题意,舍去;所以135B =o ,由余弦定理得:21222cos135AC =+-o =5,所以5AC =,故选B.【学科网考点定位】本小题主要考查余弦定理及三角形的面积公式,考查解三角形的基础知识.5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.45【答案】A【解析】设A=“某一天的空气质量为优良”,B=“随后一天的空气质量为优良”,则()0.6(|)0.8()0.75P A B P B A P A ⋂===,故选A. 【学科网考点定位】本小题主要考查条件概率的求法,熟练概率的基础知识是解答好本类题目的关键.6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727B. 59C. 1027D. 13【答案】C【学科网考点定位】本小题主要考查立体几何中的三视图,考查同学们的空间想象能力.7. 执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( )A. 4B. 5C. 6D. 78. 设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = ( )A. 0B. 1C. 2D. 3【答案】D 【解析】因为'11y a x =-+,所以切线的斜率为12a -=,解得3a =,故选D 。
2014年普通高等学校招生全国统一考试(全国新课标Ⅱ卷)数学试题(理科)解析版
2014年普通高等学校招生全国统一考试(四川卷)数 学(文史类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。
满分150分。
考试时间120分钟。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将本试题卷和答题卡一并交回。
第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
第Ⅰ卷共10小题。
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的。
1、已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则A B =I ( ) A 、{1,0}- B 、{0,1} C 、{2,1,0,1}-- D 、{1,0,1,2}- 1、解:A={x|(x+1)(x ﹣2)≤0}={x|﹣1≤x ≤2},又集合B 为整数集, 故A ∩B={﹣1,0,1,2}, 故选D2、在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。
在这个问题中,5000名居民的阅读时间的全体是( ) A 、总体 B 、个体C 、样本的容量D 、从总体中抽取的一个样本 2、解:根据题意,结合总体、个体、样本、样本容量的定义可得,5000名居民的阅读时间的全体是总体,故选:A3、为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点( ) A 、向左平行移动1个单位长度 B 、向右平行移动1个单位长度 C 、向左平行移动π个单位长度 D 、向右平行移动π个单位长度 3、解:∵由y=sinx 到y=sin (x+1),只是横坐标由x 变为x+1,∴要得到函数y=sin (x+1)的图象,只需把函数y=sinx 的图象上所有的点向左平行移动1个单位长度.故选:A4、某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )(锥体体积公式:13V Sh =,其中S 为底面面积,h 为高)A 、3B 、2 CD 、1侧视图俯视图112222114、解:由三棱锥的俯视图与侧视图知:三棱锥的一个侧面与底面垂直,高为,底面为等边三角形,边长为2, ∴三棱锥的体积V=××2××=1.故选:D .5、若0a b >>,0c d <<,则一定有( ) A 、a b d c > B 、a b d c <C 、a b c d >D 、a bc d< 5、解:不妨令a=3,b=1,c=﹣3,d=﹣1, 则,∴C 、D 不正确;,∴A 不正确,B 正确. 故选:B6、执行如图的程序框图,如果输入的,x y R ∈,那么输出的S 的最大值为( ) A 、0 B 、1 C 、2 D 、36、解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y 的最大值,画出可行域如图:当时,S=2x+y 的值最大,且最大值为2.故选:C .7、已知0b >,5log b a =,lg b c =,510d =,则下列等式一定成立的是( ) A 、d ac = B 、a cd = C 、c ad = D 、d a c =+ 7、解:由5d =10,可得,∴cd=lgb1lg 5=log 5b=a . 故选:B .8、如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75o ,30o ,此时气球的高是60m ,则河流的宽度BC 等于( )A 、240(31)m -B 、180(21)m -C 、120(31)m -D 、30(31)m +8、解:如图,由图可知,∠DAB=15°,∵tan15°=tan (45°﹣30°)===23.在Rt △ADB 中,又AD=60,∴DB=AD •tan15°=60×(23)=120﹣3 在Rt △ADB 中,∠DAC=60°,AD=60, ∴DC=AD •tan60°3∴BC=DC ﹣3120﹣3)=1203-1)(m ).30°75°60mA∴河流的宽度BC 等于120(3-1)m . 故选:C .9、设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )A 、[5,25]B 、[10,25]C 、[10,45]D 、[25,45] 9、解:由题意可知,动直线x+my=0经过定点A (0,0),动直线mx ﹣y ﹣m+3=0即 m (x ﹣1)﹣y+3=0,经过点定点B (1,3),∵动直线x+my=0和动直线mx ﹣y ﹣m+3=0始终垂直,P 又是两条直线的交点, ∴PA ⊥PB ,∴|PA|2+|PB|2=|AB|2=10.由基本不等式可得|PA|2+|PB|2≤(|PA|+|PB|)2≤2(|PA|2+|PB|2), 即10≤(|PA|+| PB|)2≤20,可得10≤(|PA|+|PB|)2≤25, 故选:B10、已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=u u u r u u u r (其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( )A 、2B 、3C 、1728D 、10 10、解:设直线AB 的方程为:x=ty+m ,点A (x 1,y 1),B (x 2,y 2),直线AB 与x 轴的交点为M ((0,m ),21·cn ·jy ·com 由⇒y 2﹣ty ﹣m=0,根据韦达定理有y 1•y 2=﹣m ,∵OA OB u u u r u u u rg=2,∴x 1•x 2+y 1•y 2=2,从而,∵点A ,B 位于x 轴的两侧,∴y 1•y 2=﹣2,故m=2. 不妨令点A 在x 轴上方,则y 1>0,又, ∴S △ABO +S △AFO ==.当且仅当,即时,取“=”号,∴△ABO 与△AFO 面积之和的最小值是3,故选B .第Ⅱ卷 (非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所示的答题区域内作答。
2014年新课标II卷高考理科数学试卷(带详解)
2014年普通高等学校招生全国统一考试 理科(新课标卷Ⅱ)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={0,1,2},N ={}2|320x x x -+≤,则M ∩N =( )A.{1}B.{2}C.{0,1}D.{1,2} 【测量目标】并集的运算.【考查方式】用描述法表示两集合求两集合并集 【难易程度】容易 【参考答案】D【试题解析】集合N =[1,2],故M ∩N ={1,2}.2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,1z =2+i ,则12z z =( ) A.-5 B.5 C.-4+i D.-4-i 【测量目标】复数代数的基本运算.【考查方式】给出一复数并给出另一复数与其的关系求两复数乘积. 【难易程度】容易 【参考答案】A【试题解析】由题知2z =-2+i ,所以12z z =(2+i)(-2+i)=2i -4=-53.设向量a ,b 满足|a +b |=10,|a -b |=6,则a·b =( ) A.1 B.2 C.3 D.5【测量目标】向量的基本运算【考查方式】给出限定条件求两向量乘积 【难易程度】容易 【参考答案】A【试题解析】由已知得|a +b |2=10,|a -b |2=6,两式相减,得4a ·b =4,所以a ·b =1. 4.钝角三角形ABC 的面积是12,AB =1,BC =2 ,则AC =( )A.5B.5C.2D.1 【测量目标】三角函数【考查方式】利用三角函数求三角形其中一边边长 【难易程度】容易 【参考答案】B【试题解析】根据三角形面积公式,得12BA ·BC ·sin B =12,即12×1×2×sin B =12,得sin B =22,其中C <A .若B 为锐角,则B =π4,所以AC =2122122+-⨯⨯⨯=1=AB ,易知A 为直角,此时△ABC 为直角三角形,所以B 为钝角,即B =3π4,所以AC =212212()2+-⨯⨯⨯-=5.5.某地区空气质量监测资料表明,一天的空气质量为优良学科网的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.8 B.0.75 C.0.6 D.0.45ZX066(第5题图)【测量目标】随机事件的概率. 【考查方式】给出随机事件求概率 【难易程度】容易 【参考答案】A【试题解析】设“第一天空气质量为优良”为事件A ,“第二天空气质量为优良”为事件B ,则P (A )=0.75,P (AB )=0.6,由题知要求的是在事件A 发生的条件下事件B 发生的概率,根据条件率公式得P (B |A )=()()p AB p A =0.60.75=0.8. 6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13【测量目标】三视图【考查方式】给出三视图计算其几何图形的体积之比 【难易程度】容易 【参考答案】C【试题解析】该零件是一个由两个圆柱组成的组合体,其体积为π×23×2+π×22×4=34π(cm 3),原毛坯的体积为π×23×6=54π(cm 3),切削掉部分的体积为54π-34π=20π(cm 3),故所求的比值为20π54π=1027. 7.执行右图程序框图,如果输入的x ,t 均为2,则输出的S= ( ) A. 4 B. 5 C. 6 D. 7ZX067(第7题图)【测量目标】程序框图【考查方式】运行程序框图的结论 【难易程度】容易 【参考答案】D【试题解析】逐次计算,可得M =2,S =5,k =2;M =2,S =7,k =3,此时输出S =7. 8.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A.0 B.1 C. 2 D. 3 【测量目标】导数的意义【考查方式】给原函数式并给出在某点的切线方程求原式上的未知量. 【难易程度】中等 【参考答案】D【试题解析】y '=a -11x +,根据已知得,当x =0时,y '=2,代入解得a =3. 9.设x ,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A.10B.8C.3D.2 【测量目标】线性规划【考查方式】做出不等式的平面区域,求目标函数的最大值 【难易程度】容易 【参考答案】B【试题解析】已知不等式组表示的平面区域如图中的阴影部分所示,根据目标函数的几何意义可知,目标函数在点A (5,2)处取得最大值,故目标函数的最大值为2×5-2=8.ZX73(第9题图)10.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334B. 938 C. 6332 D. 94【测量目标】抛物线的基本性质【考查方式】给出抛物线的标注方程并给出约束条件求锁定区域三角形的面积 【难易程度】中等 【参考答案】D【试题解析】抛物线的焦点为F 3,04⎛⎫⎪⎝⎭,则过点F 且倾斜角为30°的直线方程为y =3334x ⎛⎫- ⎪⎝⎭,即x =3y +34,代入抛物线方程得2y -33y -94=0.设A ()11,x y ,B ()22,x y ,则12y y +=33,1294y y =-,则121||||2OAB S OF y y =-△21399(33)4().2444=⨯⨯-⨯-=11.直三棱柱ABC -111A B C 1中,∠BCA =90°,M ,N 分别是11A B ,11AC 的中点,BC =CA =1CC ,则BM与AN 所成的角的余弦值为( )A.110B.25C.3010D.22【测量目标】余弦定理、空间几何体的相关性质 【考查方式】给出约束条件求异面直线的余弦值 【难易程度】中等 【参考答案】C【试题解析】如图,E 为BC 的中点.由于M ,N 分别是11A B ,11AC 的中点,故MN ∥11B C 且MN =1112B C ,故MN ∥BE ,所以四边形MNEB 为平行四边形,所以EN ∥BM ,所以直线AN ,NE 所成的角即为直线BM ,AN 所成的角.设BC =1,则1B M =1112A B =22,所以MB =112+=62=NE ,AN =AE =52,在△ANE 中,根据余弦定理得cos ∠ANE =655304441065222+-=⨯⨯.ZX74(第11题图)12.设函数()π3sin x f x m=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-+∞B. ()(),44,-∞-+∞C. ()(),22,-∞-+∞D.()(),14,-∞-+∞【测量目标】函数的基本计算和极值的性质的应用.【考查方式】给出解析式并给予约束条件求未知量的取值范围. 【难易程度】中等 【参考答案】C【试题解析】函数f (x )的极值点满足πx m =π2+k π,即x =m 12k ⎛⎫+ ⎪⎝⎭,k ∈Z ,且极值为3±,问题等价于存在0k 使之满足不等式22201()32m k m ++<.因为212k ⎛⎫+ ⎪⎝⎭的最小值为14,所以只要22134m m +<成立即可,即24m >,解得m >2或m <-2,故m 的取值范围是(-∞,-2)∪(2,+∞). 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,学科网每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 【测量目标】二项式定理【考查方式】给出一解析式求其展开式某项的系数 【难易程度】容易 【参考答案】12【试题解析】展开式中7x 的系数为3310C 15,a =即318a =,解得12a =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年普通高等学校招生全国统一考试 理科
(新课标卷二Ⅱ)
第Ⅰ卷
一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,学科网只有一项是符合题目要求的.
1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1}
B. {2}
C. {0,1}
D. {1,2}
2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,zxxk 12z i =+,则12z z =( ) A. - 5
B. 5
C. - 4+ i
D. - 4 - i
3.设向量a,b 满足|a+b
|a-b
a ⋅
b = ( ) A. 1
B. 2
C. 3
D. 5
4.钝角三角形ABC 的面积是12
,AB=1,
,则AC=( )
A. 5
B.
C. 2
D. 1
5.某地区空气质量监测资料表明,一天的空气质量为优良学科网的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )
A. 0.8
B. 0.75
C. 0.6
D. 0.45
6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A. 1727 B. 59 C. 1027 D. 13
7.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( ) A. 4 B. 5 C. 6 D. 7
8.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A. 0 B. 1 C. 2 D. 3
9.设x,y 满足约束条件70310350x y x y x y +-⎧⎪
-+⎨⎪--⎩
≤≤≥,则2z x y =-的最大值为
( )
A. 10
B. 8
C. 3
D. 2
10.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C
于A,B 两点,O 为坐标原点,则△OAB 的面积为( )
A.
B.
C. 6332
D. 94
11.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,
则BM 与AN 所成的角的余弦值为( ) A. 110 B. 25
C.
D.
12.设函数(
)x f x m
π=.若存在()f x 的极值点0x 满足()2
2200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( ) A.
()()
,66,-∞-⋃∞ B.
()()
,44,-∞-⋃∞ C.
()(),22,-∞-⋃∞
D.()(),14,-∞-⋃∞
第Ⅱ卷
本卷包括必考题和选考题两部分.第13题~第21题为必考题,学科网每个试题考生必
须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题
13.()10
x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.
15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.
16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得zxxk ∠OMN=45°,则0x 的取值范围是________.
三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)
已知数列{}n a 满足1a =1,131n n a a +=+.
(Ⅰ)证明{
}
12
n a +是等比数列,并求{}n a 的通项公式;
(Ⅱ)证明:1231112
n
a a a ++<…+.
18. (本小题满分12分)
如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB ∥平面AEC ;
(Ⅱ)设二面角D-AE-C 为60°,AP=1,
E-ACD 的体积.
19. (本小题满分12分)
某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:
(Ⅰ)求y 关于t 的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:
()()
()
1
2
1
n
i
i
i n
i i t t y y b t t ∧
==--=
-∑∑,ˆˆa
y bt =-
20. (本小题满分12分)
设1F ,2F 分别是椭圆()222210y x a b a b
+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N.
(Ⅰ)若直线MN 的斜率为34
,求C 的离心率;
(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .
21. (本小题满分12分) 已知函数()f x =2x x e e x ---zxxk (Ⅰ)讨论()f x 的单调性;
(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;
(Ⅲ)已知1.4142 1.4143<
<,估计ln2的近似值(精确到0.001)
请考生在第22、23、24题中任选一题做答,如果多做,学科网同按所做的第一题计分,做答时请写清题号.
22.(本小题满分10)选修4—1:几何证明选讲
如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交
于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交O 于点E.证明: (Ⅰ)BE=EC ;
(Ⅱ)AD ⋅DE=22PB
23. (本小题满分10)选修4-4:坐标系与参数方程
在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,
0,2πθ⎡⎤∈⎢⎥
⎣⎦
.zxxk (Ⅰ)求C 的参数方程;
(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.
24. (本小题满分10)选修4-5:不等式选讲 设函数()f x =1(0)x x a a a
++->
(Ⅰ)证明:()f x ≥2;
(Ⅱ)若()35f <,求a 的学科网取值范围.。