高一函数概念和性质

合集下载

函数的概念与性质

函数的概念与性质

函数的概念与性质函数是数学中一种重要的概念,它在各个领域都有着广泛的应用。

本文将介绍函数的基本概念和性质,以帮助读者更好地理解和应用函数。

一、函数的概念函数是一个自变量和因变量之间的对应关系。

它将一个变量的值映射到另一个变量的值,通常表示为f(x),其中x为自变量,f(x)为因变量。

函数可以用图像、表格或公式的形式来表示。

函数的定义域是指自变量的所有可能取值的集合,值域是指函数对应的因变量的所有可能取值的集合。

一个函数可以在定义域内对每个自变量的取值,唯一地确定一个因变量的取值。

二、函数的性质1. 单调性:函数可以具有单调递增或单调递减的性质。

当自变量增大时,如果对应的因变量也增大,则函数为单调递增;当自变量增大时,如果对应的因变量减小,则函数为单调递减。

2. 奇偶性:函数可以具有奇函数或偶函数的性质。

当自变量取负值时,如果对应的因变量取相反数,则函数为奇函数;当自变量取负值时,如果对应的因变量不变,则函数为偶函数。

3. 零点:函数的零点是指使函数等于零的自变量的值。

如果函数的零点存在,可以用解方程的方法来求解。

4. 极值:函数的极值是指函数在其定义域上取得的最大值或最小值。

可以通过求导数或使用判别式的方法来确定函数的极值。

5. 逆函数:函数的逆函数是指满足条件f(f^(-1)(x)) = x和f^(-1)(f(x)) = x的函数。

逆函数可以将原函数的自变量与因变量互相转换。

6. 复合函数:复合函数是指函数嵌套在另一个函数中的情况。

例如f(g(x))表示将g(x)的结果作为自变量代入函数f中。

7. 函数图像:函数的图像是通过绘制自变量和因变量之间的对应关系得到的。

函数图像可以反映函数的性质和变化趋势。

8. 函数关系:函数的关系可以是线性的、二次的、指数的或对数的等。

不同的函数关系对应着不同的函数图像和性质。

总结:函数是数学中的重要概念,它描述了自变量和因变量之间的对应关系。

函数的概念和性质如零点、极值、逆函数等对于解题和理解数学问题都具有重要的意义。

高一第三章函数问题知识点

高一第三章函数问题知识点

高一第三章函数问题知识点函数是数学中一种重要的概念,是研究数量关系的基础工具。

在高一的第三章函数问题中,我们要学习各种函数的性质和运算规则。

本文将详细介绍高一第三章函数问题的知识点。

一、函数的定义与表示方法函数是数学中的一种映射关系,可以表示为y=f(x),其中x为自变量,y为因变量,f(x)为函数的表达式。

函数可以通过函数图像、函数表、解析式等多种方式表示。

二、函数的性质1. 定义域与值域:函数的定义域是自变量可能的取值范围,值域是函数取得的所有可能的值。

2. 奇偶性:函数在对称中心点具有对称性的称为偶函数,对称中心点为原点的称为奇函数。

3. 单调性:函数在定义域上的取值随自变量的增减而增减的性质。

4. 最值与极值:函数的最值是函数取得的最大值和最小值,极值是函数在某一区间内的最大值和最小值。

5. 周期性:函数在一定的区间内有规律地重复出现的性质。

三、函数的基本运算1. 函数的四则运算:函数之间可以进行加减乘除的四则运算,结果仍为函数。

2. 函数的复合:将一个函数的输出作为另一个函数的输入,形成新的函数。

3. 函数的反函数:满足f(f^(-1)(x))=x和f^(-1)(f(x))=x的函数之间称为互为反函数。

4. 函数的平移与伸缩:通过平移和伸缩可以改变函数的位置和形状。

四、常见函数的性质与图像1. 线性函数:y=kx+b,其中k为斜率,b为截距,图像为一条直线。

2. 幂函数:y=x^n,其中n为常数,图像形状由n的正负以及大小决定。

3. 指数函数:y=a^x,其中a为底数,大于1时为增长函数,小于1时为衰减函数。

4. 对数函数:y=log_a(x),其中a为底数,反映a的x次幂等于y,常见的对数函数为以10为底的常用对数函数log(x)和以e为底的自然对数函数ln(x)。

5. 三角函数:包括正弦函数、余弦函数、正切函数等,图像为周期性波动的曲线。

五、函数的应用函数在现实生活中有着广泛的应用,例如物体自由落体运动的高度与时间的关系、经济学中的供需曲线、生物学中的种群增长模型等等。

函数的概念与基本性质

函数的概念与基本性质

函数的概念与基本性质函数是数学中的一个重要概念,它在数学和其他领域中都有广泛的应用。

本文将介绍函数的概念以及其基本性质,包括定义域、值域、对应关系、单调性等。

一、函数的概念函数是两个集合之间的一种特殊关系,一般表示为 f(x),其中 x 是自变量,f(x) 是因变量。

函数的定义域是指所有可能的自变量的集合,而值域则是函数在定义域内可以取得的所有因变量的值的集合。

函数在定义域内的每个自变量都对应一个唯一的因变量。

二、函数的基本性质1. 定义域和值域:函数的定义域和值域是函数的两个基本性质。

定义域决定了函数的有效输入范围,而值域则表示函数可能的输出范围。

在函数中,定义域和值域可以是有限的集合,也可以是无限的区间。

2. 对应关系:函数的一个重要性质是具有确定的对应关系。

即在定义域内的每个自变量都对应唯一的因变量。

这种一一对应的关系使得函数具有明确的输入和输出。

3. 单调性:函数的单调性描述了函数随自变量变化时的趋势。

如果函数在定义域内的任意两个自变量 x1 和 x2 满足 x1 < x2,则有 f(x1) <f(x2),则称该函数是单调递增的。

反之,如果 f(x1) > f(x2),则称该函数是单调递减的。

4. 奇偶性:函数的奇偶性是指函数关于原点对称的性质。

如果对于定义域内的任意自变量 x,有 f(-x) = -f(x),则称函数是奇函数。

而如果有 f(-x) = f(x),则称函数是偶函数。

5. 周期性:函数的周期性表示在一定范围内,函数的图像会随着自变量的周期性变化而重复出现。

如果存在一个正数 T,使得对于定义域内的任意自变量 x,有 f(x+T) = f(x),则称函数具有周期 T。

三、函数的应用函数的概念和性质在数学和其他领域中都有广泛的应用。

在数学中,函数被用于解决各种数学问题,包括方程求解、函数图像绘制和曲线分析等。

在物理、经济学和工程学等应用领域,函数被用于建立模型和描述现象,帮助我们理解和解释自然界中的规律。

高考数学函数的定义和性质

高考数学函数的定义和性质

高考数学函数的定义和性质函数是高中数学中的重要概念之一。

它在高考数学中占有重要的地位,理解和掌握函数的定义和性质对于解题至关重要。

本文将从函数的定义、基本性质以及一些常见函数的性质等方面来进行阐述。

1. 函数的定义函数是一种特殊的关系,可以将一个集合中的每个元素与另一个集合中的唯一一个元素相关联。

用数学语言描述就是,对于集合A和B,如果存在一种规律,使得对于A中的每个元素a,都能找到B中唯一一个元素b与之对应,那么我们就可以说集合A和B之间存在一个函数f。

2. 函数的基本性质函数有一些基本的性质,包括定义域、值域、单调性、奇偶性以及周期性等。

2.1 定义域和值域定义域是指函数能够取值的所有实数的集合,常用符号表示为D;值域是指函数所有可能取得的值的集合,常用符号表示为R。

2.2 单调性单调性指函数在定义域上的增减性质。

如果在定义域内任取两个实数a和b,并且a小于b,那么函数f(x)在a处的函数值f(a)和在b处的函数值f(b)之间的大小关系可以判断函数的单调性。

2.3 奇偶性函数的奇偶性是指函数关于原点(0,0)的对称性。

如果对于定义域上的任何实数x,有f(-x) = -f(x)成立,则称函数是奇函数;如果对于定义域上的任何实数x,有f(-x) = f(x)成立,则称函数是偶函数。

2.4 周期性周期性指函数在一定区间上具有重复性质。

如果存在一个正数T,使得对于定义域上的任何实数x,有f(x+T) = f(x)成立,则称函数具有周期性。

3. 常见函数的性质在高考数学中,有许多常见的函数,其中包括一次函数、二次函数、指数函数、对数函数、三角函数等。

每个函数都有其独特的性质,掌握这些性质对于解题非常有帮助。

3.1 一次函数一次函数的一般形式为f(x) = ax + b,其中a和b为常数。

一次函数的图像是一条直线,其特点是斜率恒定。

3.2 二次函数二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b和c为常数,且a不为零。

函数的概念、性质及应用

函数的概念、性质及应用

函数的概念、性质及应用
函数是数学中用来表达一切变化及关系的基本概念,它与变量完全脱离,一般情况下
可以抽象为某一变量与另一变量之间的某种关系,用函数的方法可概括出变量之间的规律。

因此,许多数学定理的证明和应用,都是通过函数的形式来进行的,从而使得理论研究更
加严密。

函数的性质:
1、定义:定义域是函数的第一个性质,即函数之所以被称为函数,是因为它定义了
某个集合中的每个元素都分配一个唯一的值。

2、单调性:即定义域内的不同元素之间的函数值都是单调不断的。

3、可微性:可微性是指函数的值可以在任意定义域内微分并可以解出导数值。

4、对称性:对称性是指当函数定义域内的一个元素的偏导数值等于某个常数时,该
函数就具有与另一个元素的函数值之差等于此常数的特性。

应用:
1、函数在数学上的应用是最为广泛的,函数可以用来研究相关数学定理,可以用于
解决实际问题,也可以用来研究一些比较复杂的数学问题。

2、函数可以用来表示不同实际情况的转换关系,正是因为有了函数的表示,我们才
能够轻而易举的把实际问题转换成抽象数学问题。

3、函数可以用来分析物理和化学模型,例如我们可以用一些特殊的函数来表示物体
运动规律,而化学方程也是通过用函数表达出来的。

4、函数可以用来描述计算机程序操作,实际开发中函数是最重要的组成部分,通过
函数可以简化程序的复杂性。

函数的概念与性质

函数的概念与性质

函数的概念与性质函数是数学中关键的概念之一,广泛应用于各个学科领域。

本文将就函数的基本概念、性质以及应用进行论述,重点探讨函数在数学和实际问题中的重要性。

一、函数的基本概念函数是两个数集之间的一种对应关系。

通俗地说,函数可以理解为一种规则,使得对于集合A中的任意一个元素,都有一个唯一的元素与之对应在集合B中。

如果把集合A中的元素称为自变量,集合B中的元素称为因变量,那么函数就是自变量与因变量之间的确定关系。

函数一般用f(x)或者y来表示,其中x为自变量,f(x)或y为因变量。

例如,f(x) = x^2表示一个函数,它的自变量x的平方为因变量。

二、函数的性质1. 定义域与值域:函数的定义域是指能使函数有意义的自变量的取值范围,而值域是函数对应的因变量的所有可能取值。

函数的定义域和值域是函数的重要性质,也是确定函数性质的基础。

2. 单调性:函数的单调性是指函数在定义域内的取值变化的趋势。

函数可以分为递增和递减两种单调性,当函数对于任意的x1和x2,当x1小于x2时,如果f(x1)小于f(x2),则函数为递增函数;反之,如果f(x1)大于f(x2),则函数为递减函数。

3. 奇偶性:奇函数是指当自变量为正负相等的两个数时,函数值互为相反数;偶函数是指当自变量为相反数时,函数值相等。

例如,奇函数f(x) = x^3满足f(-x) = -f(x),偶函数f(x) = x^2满足f(-x) = f(x)。

4. 对称轴:对称轴是指函数图像与某条直线的位置关系。

对于奇函数来说,对称轴为原点;而对于偶函数来说,对称轴为y轴。

这种对称性质有助于简化函数的研究和图像的绘制。

三、函数的应用函数的概念和性质在数学和实际问题中都有广泛的应用。

1. 数学中的应用:函数被广泛应用于代数、解析几何、微积分等数学学科中。

在代数中,函数是多项式、指数函数、对数函数和三角函数的重要组成部分,通过函数的运算与组合,可以推导出很多重要的数学结论。

函数的概念与性质(公式、定理、结论图表)高考数学必背知识手册

函数的概念与性质(公式、定理、结论图表)高考数学必背知识手册

第三章函数的概念与性质(公式、定理、结论图表)1.函数的概念定义一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数三要素对应关系y =f (x ),x ∈A定义域自变量x 的取值范围值域与x 的值相对应的y 的函数值的集合{f (x )|x ∈A }思考1:(1)有人认为“y =f (x )”表示的是“y 等于f 与x 的乘积”,这种看法对吗?(2)f (x )与f (a )有何区别与联系?提示:(1)这种看法不对.符号y =f (x )是“y 是x 的函数”的数学表示,应理解为x 是自变量,它是关系所施加的对象;f 是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y 是自变量的函数,当x 允许取某一具体值时,相应的y 值为与该自变量值对应的函数值.y =f (x )仅仅是函数符号,不表示“y 等于f 与x 的乘积”.在研究函数时,除用符号f (x )外,还常用g (x ),F (x ),G (x )等来表示函数.(2)f (x )与f (a )的区别与联系:f (a )表示当x =a 时,函数f (x )的值,是一个常量,而f (x )是自变量x 的函数,一般情况下,它是一个变量,f (a )是f (x )的一个特殊值,如一次函数f (x )=3x +4,当x =8时,f (8)=3×8+4=28是一个常数.2.区间及有关概念(1)一般区间的表示设a ,b ∈R ,且a <b ,规定如下:定义名称符号数轴表示{x |a ≤x ≤b }闭区间[a ,b ]{x |a <x <b }开区间(a ,b ){x |a ≤x <b }半开半闭区间[a ,b ){x |a <x ≤b }半开半闭区间(a ,b ](2)特殊区间的表示定义R{x |x ≥a }{x |x >a }{x |x ≤a }{x |x <a }符号(-∞,+∞)[a ,+∞)(a ,+∞)(-∞,a ](-∞,a )思考2:(1)区间是数集的另一种表示方法,那么任何数集都能用区间表示吗?(2)“∞”是数吗?如何正确使用“∞”?提示:(1)不是任何数集都能用区间表示,如集合{0}就不能用区间表示.(2)“∞”读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.3.函数的表示法思考:任何一个函数都可以用解析法、列表法、图表法三种形式表示吗?提示:不一定.并不是所有的函数都可以用解析式表示,不仅如此,图象法也不适用于所有函数,如D (x 0,x ∈Q ,1,x ∈∁R Q .列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段.4.分段函数如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.思考:分段函数是一个函数还是几个函数?提示:分段函数是一个函数,而不是几个函数.5.增函数与减函数的定义条件一般地,设函数f (x )的定义域为I ,区间D ⊆I :如果∀x 1,x 2∈D ,当x 1<x 2时都有f (x 1)<f (x 2)都有f (x 1)>f (x 2)结论那么就说函数f (x )在区间D 上是增函数那么就说函数f (x )在区间D 上是减函数图示思考1:增(减)函数定义中的x 1,x 2有什么特征?提示:定义中的x 1,x 2有以下3个特征:(1)任意性,即“任意取x 1,x 2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x 1<x 2;(3)属于同一个单调区间.2.函数的单调性与单调区间如果函数y =f (x )在区间D 上单调递增或单调递减,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.思考2:函数y =1x在定义域上是减函数吗?提示:不是.y =1x 在(-∞,0)上递减,在(0,+∞)上也递减,但不能说y =1x 在(-∞,0)∪(0,+∞)上递减.6.函数最大值与最小值最大值最小值条件设函数y =f (x )的定义域为I ,如果存在实数M 满足:∀x ∈I ,都有f (x )≤Mf (x )≥M∃x 0∈I ,使得f (x 0)=M结论M 是函数y =f (x )的最大值M 是函数y =f (x )的最小值几何意义f (x )图象上最高点的纵坐标f (x )图象上最低点的纵坐标思考:若函数f (x )≤M ,则M 一定是函数的最大值吗?提示:不一定,只有定义域内存在一点x 0,使f (x 0)=M 时,M 才是函数的最大值,否则不是.7.函数的奇偶性奇偶性偶函数奇函数条件设函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I结论f (-x )=f (x )f (-x )=-f (x )图象特点关于y 轴对称关于原点对称思考:具有奇偶性的函数,其定义域有何特点?提示:定义域关于原点对称.8.幂函数的概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数.9.幂函数的图象在同一平面直角坐标系中,画出幂函数y =x ,y =x 2,y =x 3,y =x 12,y =x -1的图象如图所示:10.幂函数的性质y =xy =x 2y =x 3y =x 12y =x -1定义域R R R [0,+∞){x |x ≠0}值域R [0,+∞)R [0,+∞){y |y ≠0}奇偶性奇偶奇非奇非偶奇单调性增函数x ∈[0,+∞)时,增函数x ∈(-∞,0]时,减函数增函数增函数x ∈(0,+∞)时,减函数x ∈(-∞,0)时,减函数11.常见的几类函数模型函数模型函数解析式一次函数模型f (x )=ax +b (a ,b 为常数,a ≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)分段函数模型f(x)=f1(x),x∈D1f2(x),x∈D2……fn(x),x∈D n<解题方法与技巧>1.判断对应关系是否为函数的2个条件(1)A,B必须是非空实数集.(2)A中任意一元素在B中有且只有一个元素与之对应.对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系.2.判断函数相等的方法(1)先看定义域,若定义域不同,则不相等;(2)若定义域相同,再化简函数的解析式,看对应关系是否相同.典例1:(1)下列各组函数是同一函数的是()①f(x)=-2x3与g(x)=x-2x;②f(x)=x与g(x)=x2;③f(x)=x0与g(x)=1x0;④f(x)=x2-2x-1与g(t)=t2-2t-1.A.①②B.①③C.③④D.①④(2)判断下列对应是不是从集合A到集合B的函数.①A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;②A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;③A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;④A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.(1)C[①f(x)=-2x3=|x|-2x与g(x)=x-2x的对应法则和值域不同,故不是同一函数.②g(x)=x2=|x|与f(x)=x的对应法则和值域不同,故不是同一函数.③f(x)=x0与g(x)=1x0都可化为y=1且定义域是{x|x≠0},故是同一函数.④f(x)=x2-2x-1与g(t)=t2-2t-1的定义域都是R,对应法则也相同,而与用什么字母表示无关,故是同一函数.由上可知是同一函数的是③④.故选C.](2)[解]①对于A中的元素0,在f的作用下得0,但0不属于B,即A中的元素0在B中没有元素与之对应,所以不是函数.②对于A中的元素±1,在f的作用下与B中的1对应,A中的元素±2,在f的作用下与B中的4对应,所以满足A中的任一元素与B中唯一元素对应,是“多对一”的对应,故是函数.③对于A中的任一元素,在对应关系f的作用下,B中都有唯一的元素与之对应,如±1对应1,±2对应4,所以是函数.④集合A不是数集,故不是函数.]3.函数求值的方法(1)已知f(x)的表达式时,只需用a替换表达式中的x即得f(a)的值.(2)求f(g(a))的值应遵循由里往外的原则.典例2:设f(x)=2x2+2,g(x)=1x+2,(1)求f(2),f(a+3),g(a)+g(0)(a≠-2),g(f(2)).(2)求g(f(x)).[思路点拨](1)直接把变量的取值代入相应函数解析式,求值即可;(2)把f(x)直接代入g(x)中便可得到g(f(x)).[解](1)因为f(x)=2x2+2,所以f(2)=2×22+2=10,f(a+3)=2(a+3)2+2=2a2+12a+20.因为g(x)=1x+2,所以g(a)+g(0)=1a+2+10+2=1a+2+12(a≠-2).g(f(2))=g(10)=110+2=112.(2)g(f(x))=1f(x)+2=12x2+2+2=12x2+4.4.求函数定义域的常用方法(1)若f(x)是分式,则应考虑使分母不为零.(2)若f(x)是偶次根式,则被开方数大于或等于零.(3)若f(x)是指数幂,则函数的定义域是使幂运算有意义的实数集合.(4)若f(x)是由几个式子构成的,则函数的定义域是几个部分定义域的交集.(5)若f(x)是实际问题的解析式,则应符合实际问题,使实际问题有意义.典例3:1.已知函数的解析式,求其定义域时,能否可以对其先化简再求定义域?提示:不可以.如f(x)=x+1x2-1.倘若先化简,则f(x)=1x-1,从而定义域与原函数不等价.2.若函数y=f(x+1)的定义域是[1,2],这里的“[1,2]”是指谁的取值范围?函数y =f(x)的定义域是什么?提示:[1,2]是自变量x的取值范围.函数y=f(x)的定义域是x+1的范围[2,3].5.分段函数求函数值的方法:(1)确定要求值的自变量属于哪一段区间.(2)代入该段的解析式求值,直到求出值为止.当出现f(f(x))的形式时,应从内到外依次求值.6..已知函数值求字母取值的步骤:(1)先对字母的取值范围分类讨论.(2)然后代入不同的解析式中.(3)通过解方程求出字母的值.(4)检验所求的值是否在所讨论的区间内.提醒:求某条件下自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后相应求出自变量的值,切记代入检验.典例4:求下列函数的定义域:(1)f(x)=2+3x-2;(2)f(x)=(x-1)0+2x+1;(3)f(x)=3-x·x-1;(4)f(x)=(x+1)2x+1-1-x.[思路点拨]要求函数的定义域,只需分母不为0,偶次方根中被开方数大于等于0即可.[解](1)当且仅当x-2≠0,即x≠2时,函数f(x)=2+3x-2有意义,所以这个函数的定义域为{x|x≠2}.x-1≠0,2x+1≥0,x+1≠0,解得x>-1且x≠1,所以这个函数的定义域为{x|x>-1且x≠1}.3-x≥0,x-1≥0,解得1≤x≤3,所以这个函数的定义域为{x|1≤x≤3}.(4)要使函数有意义,自变量x x+1≠0,1-x≥0,解得x≤1且x≠-1,即函数定义域为{x|x≤1且x≠-1}.已知函数f(x x+1,x≤-2,x2+2x,-2<x<2,2x-1,x≥2.(1)求f(-5),f(-3),f f -52的值;(2)若f(a)=3,求实数a的值.[解](1)由-5∈(-∞,-2],-3∈(-2,2),-52∈(-∞,-2],知f(-5)=-5+1=-4,f(-3)=(-3)2+2×(-3)=3-2 3.∵f -52=-52+1=-32,而-2<-32<2,∴f f -52-32=-32+2×-32=94-3=-34.(2)当a≤-2时,a+1=3,即a=2>-2,不合题意,舍去.当-2<a<2时,a2+2a=3,即a2+2a-3=0.∴(a-1)(a+3)=0,解得a=1或a=-3.∵1∈(-2,2),-3∉(-2,2),∴a =1符合题意.当a ≥2时,2a -1=3,即a =2符合题意.综上可得,当f (a )=3时,a =1或a =2.7.利用定义证明函数单调性的步骤(1)取值:设x 1,x 2是该区间内的任意两个值,且x 1<x 2.(2)作差变形:作差f (x 1)-f (x 2),并通过因式分解、通分、配方、有理化等手段,转化为易判断正负的式子.(3)定号:确定f (x 1)-f (x 2)的符号.(4)结论:根据f (x 1)-f (x 2)的符号及定义判断单调性.提醒:作差变形是证明单调性的关键,且变形的结果是几个因式乘积的形式.典例5:证明函数f (x )=x +1x 在(0,1)上是减函数.[思路点拨]设元0<x 1<x 2<1―→作差:f (x 1)-f (x 2)――→变形判号:f (x 1)>f (x 2)――→结论减函数[证明]设x 1,x 2是区间(0,1)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1+1x 1x 2+1x 2=(x 1-x 21x 1-1x 2x 1-x 2)+x 2-x1x 1x 2=(x 1-x 2)1-1x 1x 2=(x 1-x 2)(-1+x 1x 2)x 1x 2∵0<x 1<x 2<1,∴x 1-x 2<0,0<x 1x 2<1,则-1+x 1x 2<0,∴(x 1-x 2)(-1+x 1x 2)x 1x 2>0,即f (x 1)>f (x 2),∴f (x )=x +1x 在(0,1)上是减函数.8.函数单调性的应用(1)函数单调性定义的“双向性”:利用定义可以判断、证明函数的单调性,反过来,若已知函数的单调性可以确定函数中参数的取值范围.(2)若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子集上也是单调的.典例6:(1)若函数f (x )=-x 2-2(a +1)x +3在区间(-∞,3]上是增函数,则实数a 的取值范围是________.(2)已知函数y =f (x )是(-∞,+∞)上的增函数,且f (2x -3)>f (5x -6),则实数x 的取值范围为________.[思路点拨](1)分析f (x )的对称轴与区间的关系――→数形结合建立关于a 的不等式――→求a 的范围(2)f (2x -3)>f (5x -6)――――――――――――――――→f (x )在(-∞,+∞)上是增函数建立关于x 的不等式――→求x 的范围(1)(-∞,-4](2)(-∞,1)[(1)∵f (x )=-x 2-2(a +1)x +3的开口向下,要使f (x )在(-∞,3]上是增函数,只需-(a +1)≥3,即a ≤-4.∴实数a 的取值范围为(-∞,-4].(2)∵f (x )在(-∞,+∞)上是增函数,且f (2x -3)>f (5x -6),∴2x -3>5x -6,即x <1.∴实数x 的取值范围为(-∞,1).]9.利用单调性求函数的最大(小)值的一般步骤(1)判断函数的单调性.(2)利用单调性求出最大(小)值.2.函数的最大(小)值与单调性的关系(1)若函数f (x )在区间[a ,b ]上是增(减)函数,则f (x )在区间[a ,b ]上的最小(大)值是f (a ),最大(小)值是f (b ).(2)若函数f (x )在区间[a ,b ]上是增(减)函数,在区间[b ,c ]上是减(增)函数,则f (x )在区间[a ,c ]上的最大(小)值是f (b ),最小(大)值是f (a )与f (c )中较小(大)的一个.提醒:(1)求最值勿忘求定义域.(2)闭区间上的最值,不判断单调性而直接将两端点值代入是最容易出现的错误,求解时一定注意.典例7:已知函数f (x )=2x +1x +1.(1)判断函数在区间(-1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[2,4]上的最大值和最小值.[解](1)f (x )在(-1,+∞)上为增函数,证明如下:任取-1<x 1<x 2,则f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1),因为-1<x 1<x 2⇒x 1+1>0,x 2+1>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0⇒f (x 1)<f (x 2),所以f (x )在(-1,+∞)上为增函数.(2)由(1)知f (x )在[2,4]上单调递增,所以f(x)的最小值为f(2)=2×2+12+1=53,最大值f(4)=2×4+14+1=95.10.解实际应用题的四个步骤(1)审题:解读实际问题,找出已知条件、未知条件,确定自变量和因变量的条件关系.(2)建模:建立数学模型,列出函数关系式.(3)求解:分析函数性质,利用数学知识探究问题解法(一定注意自变量的取值范围).(4)回归:数学问题回归实际问题,写出答案.典例8:一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元.(年利润=年销售总收入-年总投资)(1)求y(万元)与x(件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?[解](1)当0<x≤20时,y=(33x-x2)-x-100=-x2+32x-100;当x>20时,y=260-100-x=160-x.故y -x2+32x-100,0<x≤20,160-x,x>20(x∈N*).(2)当0<x≤20时,y=-x2+32x-100=-(x-16)2+156,x=16时,ymax=156.而当x>20时,160-x<140,故x=16时取得最大年利润,最大年利润为156万元.即当该工厂年产量为16件时,取得最大年利润为156万元.11.巧用奇、偶函数的图象求解问题(1)依据:奇函数⇔图象关于原点对称,偶函数⇔图象关于y轴对称.(2)求解:根据奇、偶函数图象的对称性可以解决诸如求函数值或画出奇偶函数图象的问题.典例9:已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f(x)<0的x的取值集合.[解](1)因为函数f(x)是奇函数,所以y=f(x)在[-5,5]上的图象关于原点对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.(2)由图象知,使函数值y<0的x的取值集合为(-2,0)∪(2,5).12.比较大小的求解策略,看自变量是否在同一单调区间上.(1)在同一单调区间上,直接利用函数的单调性比较大小;(2)不在同一单调区间上,需利用函数的奇偶性把自变量转化到同一单调区间上,然后利用单调性比较大小.典例10:函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是()A.f (1)<f 52<72B.f 72<f (1)<52C.f 72<f 52f (1)D.f 52<f (1)<72[思路点拨]y =f (x +2)是偶函数―→f (x )的图象关于x =2对称――→[0,2]上递增比较大小B [∵函数f (x +2)是偶函数,∴函数f (x )的图象关于直线x =2对称,∴52f 32f 72=12,又f (x )在[0,2]上单调递增,∴f 12<f (1)<3272f (1)<5213.判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.典例11:(1)在函数y =1x2,y =2x 2,y =x 2+x ,y =1中,幂函数的个数为()A.0B.1C.2D.3(2)若函数f (x )是幂函数,且满足f (4)=3f (2),则f 12(1)B (2)13[(1)∵y =1x2=x -2,∴是幂函数;y =2x 2由于出现系数2,因此不是幂函数;y =x 2+x 是两项和的形式,不是幂函数;y =1=x 0(x ≠0),可以看出,常函数y =1的图象比幂函数y =x 0的图象多了一个点(0,1),所以常函数y =1不是幂函数.(2)设f (x )=x α,∵f (4)=3f (2),∴4α=3×2α,解得α=log 23,∴12=12log 23=13.]14.解决幂函数图象问题应把握的两个原则(1)依据图象高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图象越靠近x轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图象越远离x轴(简记为指大图高).(2)依据图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y=x-1或y=x 12或y=x3)来判断.典例12:点(2,2)与点-2,-12f(x),g(x)的图象上,问当x为何值时,有:(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).[解]设f(x)=xα,g(x)=xβ.∵(2)α=2,(-2)β=-12,∴α=2,β=-1,∴f(x)=x2,g(x)=x-1.分别作出它们的图象,如图所示.由图象知,(1)当x∈(-∞,0)∪(1,+∞)时,f(x)>g(x);(2)当x=1时,f(x)=g(x);(3)当x∈(0,1)时,f(x)<g(x).。

函数的概念与性质

函数的概念与性质

函数一、函数的有关概念 1、 函数的定义:设A 、B 为非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A B →为从集合A 到集合B 的一个函数,记作:y=f(x),x A ∈其中x 叫做自变量,x 的取值范围叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(叫做函数的值域。

2、分段函数:如果一个函数在定义域的不同子集上因对应法则不同而用几个不同的式子来表示,这样的函数叫做分段函数。

注:分段函数的求法是分别求出各个区间上的函数关系,再组合在一起,但要注意各区间之间的点要不重不漏。

3、 复合函数:如果y=f(u)的定义域与y=g(x)的值域有交集,那么函数y=f(g(x))叫做复合函数,其中y=f(u)叫做外层函数,u=g(x)叫做内层函数。

4、 (1)映射:设A 、B 是两个集合,如果按照某种确定的对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作:A B → (2)象、原象设给定一个集合A 到集合B 的映射,且a B b A ∈∈且,如果元素a 和元素b 对应,元素b 叫做元素a 的象,元素a 叫做元素b 的原象. 满射、单设、一一映射注:设集合A 有n 个元素,集合B 有m 个元素,则从A 到B 的映射有nm 个. 注:1) 函数的三要素:定义域,值域,对应法则; 2)两个函数是同一函数的条件:三要素相同。

函数的概念【例题1】下列各组函数中,表示同一函数的是( )A.f(x)=x ,g(x)=2x B. f(x)=2x ,g(x)=2)(xC.f(x)=112--x x ,g(x)=x+1 D.f(x)=11-⋅+x x ,g(x)=12-x【练习】存在函数f(x)满足,对于任意x ∈R 都有A. f(sin2x)=sinxB. f(sin2x)=x 2+xC. f(x 2+1)=1x +D. f(x 2+2x)= 1x + 分段函数【例题】函数⎩⎨⎧>≤+=1,lg 1,1)(2x x x x x f ,则f(f(10))=A.lg101B.2C.1D.0【练习】⎩⎨⎧≥<+-=0,0,3)(x a x a x x f x(a>0且a ≠1)是R 上的减函数,则a 的取值范围是( ) A.(0,1) B.[31,1) C.(0, 31] D.(0, 32]【例题】设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x f xx ,则满足f(x)≤2的x 的取值范围是( ) A.[-1,2] B.[0,2] C.[1,+∞) D.[0,+∞)【练习】若函数⎩⎨⎧>+≤+-=2,log 32,6(x x x x f xa ),(a>0且a ≠1)的值域是[4,+∞),则实数a 的取值范围是( )。

高中数学函数的概念和性质

高中数学函数的概念和性质

高中数学函数的概念和性质数学是一门抽象的学科,而函数是其中一个最基本、最重要的概念之一。

函数在高中数学中占据着非常重要的地位,它不仅是数学的基础,也是理解其他数学分支的关键。

本文将介绍高中数学函数的概念和性质。

一、概念函数是一种数学关系,它将一个集合的元素映射到另一个集合的元素上。

在函数中,输入的值被称为自变量,输出的值被称为因变量。

函数可以用各种符号表示,例如f(x)、g(x)等。

高中数学中主要研究的是实函数,即自变量和因变量都是实数。

函数的定义域是自变量的取值范围,值域是因变量的取值范围。

例如,对于函数f(x)=x^2,定义域是所有实数集合R,而值域是非负实数集合[0,+∞)。

二、性质1. 定义域与值域:函数的定义域和值域是函数的基本性质。

在确定定义域和值域时,我们需要注意函数的特殊情况,例如有理函数的分母不能为零等。

2. 奇偶性:函数的奇偶性是指函数关于y轴的对称性。

如果对于定义域内的任意x值,有f(-x) = f(x),则函数为偶函数;如果对于定义域内的任意x值,有f(-x) = -f(x),则函数为奇函数。

3. 单调性:函数的单调性描述了函数随着自变量增大或减小而变化的趋势。

如果对于定义域内的任意两个数a和b(a < b),有f(a) ≤f(b),则函数为递增函数;如果对于定义域内的任意两个数a和b(a < b),有f(a) ≥ f(b),则函数为递减函数。

4. 极值与最值:函数的极值是指函数在一定范围内取得的最大值或最小值。

我们可以通过求导数或研究函数的图像来确定函数的极值和最值。

5. 对称轴与顶点:对于二次函数,它们的图像通常是一个抛物线。

抛物线的对称轴是垂直于底边并通过顶点的直线,而顶点是抛物线的最低点或最高点。

6. 图像的平移和伸缩:通过对函数进行平移和伸缩,我们可以改变函数的图像。

例如,对于函数f(x),f(x + a)表示将函数图像向左平移a 个单位,而f(kx)(k>1)表示将函数图像在x轴方向上压缩,函数图像变窄。

函数的概念与性质知识点

函数的概念与性质知识点

函数的概念与性质1函数的概念:一般地,设B A ,是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 与它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作A x x f y ∈=),(,其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合}|)({A x x f ∈叫做函数的值域,值域是集合B 的子集.2函数的三要素:定义域、对应关系、值域.求函数定义域的原则:(1)若()f x 为整式,则其定义域是R ;(2)若()f x 为分式,则其定义域是使分母不为0的实数集合;(3)若()f x 是二次根式(偶次根式),则其定义域是使根号内的式子不小于0的实数集合;(4)若()0f x x =,则其定义域是}{0x x ≠;(5)若()()0,1x f x a a a =>≠,则其定义域是R ;(6)若()()log 0,1a f x x a a =>≠,则其定义域是}{0x x >;(7)若x x f tan )(=,则其定义域是},2|{Z k k x x ∈+≠ππ;求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数.5函数的单调性:(1)单调递增:设任意D x x ∈21,(I D ⊆,I 是()f x 的定义域),当12x x <时,有12()()f x f x <.特别的,当函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意D x x ∈21,(I D ⊆,I 是()f x 的定义域),当12x x <时,有12()()f x f x >.特别的,当函数在它的定义域上单调递增时,该函数称为减函数.6单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间. 7复合函数的单调性:同增异减.8函数的最大值、最小值:一般地,设函数)(x f y =的定义域为I ,如果存在实数M 满足:I x ∈∀,都有))(()(M x f M x f ≥≤;I x ∈∃0使得M x f =)(0,那么称M 是函数的最大(小)值.9函数的奇偶性:偶函数:一般地,设函数)(x)ff=-,(xf-,且)y=的定义域为I,如果I(xx∈∀,都有Ix∈那么函数叫做偶函数;偶函数的图象关于y轴对称;偶函数)y=满足(xf xff==x-;|))(|()(xf奇函数:一般地,设函数)f(x)x=f--,∀,都有If(xy=的定义域为I,如果Ix∈-,且)x∈(那么函数叫做奇函数;奇函数的图象关于原点对称;若奇函数)fy=的定义域中有零,则其函数图象必(x过原点,即(0)0f=.10幂函数:一般地,函数αxy=叫做幂函数,其中x是自变量,α是常数.11幂函数()f x xα=的性质:①所有的幂函数在()1,1;0,+∞都有定义,并且图象都通过点()②如果0α>,则幂函数的图象过原点,并且在区间[)0,+∞上是增函数;③如果0α<,则幂函数的图象在区间()0,+∞上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地逼近y轴,当x趋向于+∞时,图象在x轴上方无限地逼近x轴;④在直线1x的右侧,幂函数图象“指大图高”;=⑤幂函数图象不出现于第四象限.。

高一数学必修1-函数的概念及基本性质

高一数学必修1-函数的概念及基本性质

§1·函数的概念(一)函数的有关概念设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的函数,记作)(x f y =, x ∈A其中x 叫自变量,x 的取值范围A 叫做函数)(x f y =的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)((⊆B )叫做函数y=f(x)的值域.函数符号)(x f y =表示“y 是x 的函数”,有时简记作函数)(x f . (1)函数实际上就是集合A 到集合B 的一个特殊对应 B A f →:这里 A, B 为非空的数集.(2)A :定义域,原象的集合;{}A x x f ∈|)(:值域,象的集合,其中{}A x x f ∈|)( ⊆ B ;f :对应法则 ,x ∈A , y ∈B(3)函数符号:)(x f y = ↔y 是 x 的函数,简记 )(x f (二)已学函数的定义域和值域1.一次函数b ax x f +=)()0(≠a :定义域R, 值域R; 2.反比例函xkx f =)()0(≠k :定义域{}0|≠x x , 值域{}0|≠x x ; 3.二次函数c bx ax x f ++=2)()0(≠a :定义域R值域:当0>a 时,⎭⎬⎫⎩⎨⎧-≥a b ac y y 44|2;当0<a 时,⎭⎬⎫⎩⎨⎧-≤a b ac y y 44|2(三)函数的值:关于函数值 )(a f例:)(x f =2x +3x+1 则 f(2)=22+3×2+1=11注意:1︒在)(x f y =中f 表示对应法则,不同的函数其含义不一样2︒)(x f 不一定是解析式,有时可能是“列表”“图象”3︒)(x f 与)(a f 是不同的,前者为变数,后者为常数(四)函数的三要素: 对应法则f 、定义域A 、值域{}A x x f ∈|)( 只有当这三要素完全相同时,两个函数才能称为同一函数(五)区间的概念和记号:在研究函数时,常常用到区间的概念,它是数学中常用的述语和符号.设a,b ∈R ,且a<b.我们规定:①满足不等式a ≤x ≤b 的实数x 的集合叫做闭区间,表示为[a,b]; ②满足不等式a<x<b 的实数x 的集合叫做开区间,表示为(a,b );③满足不等式a ≤x<b 或a<x ≤b 的实数x 的集合叫做半开半闭区间,分别表示为[a ,b) ,(a ,b]. 这里的实数a 和b 叫做相应区间的端点.这样实数集R 也可用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.还可把满足x ≥a ,x>a ,x ≤b ,x<b 的实数x 的集合分别表示为[a ,+∞),(a ,+∞),(- ∞,b ],(- ∞,b). 【例题解析】例1 判断下列各式,哪个能确定y 是x 的函数?为什么?(1)x 2+y =1 (2)x +y 2=1 (3)1x x 1y --= (4)y=x -1x +-例2 求下列函数的定义域: (1)()f x = (2)xx x x f -+=0)1()(例3 已知函数)(x f =32x -5x+2,求f(3), f(-2), f(a+1).例4 已知⎪⎩⎪⎨⎧+=10)(x x f π )0()0()0(>=<x x x ,求)1(f ,)1(-f ,)0(f ,)]}1([{-f f f讨论:函数y=x 、y=(x )2、y=23xx 、y=44x 、y=2x 有何关系?例5 下列各组中的两个函数是否为相同的函数? ⑴3)5)(3(1+-+=x x x y 52-=x y ⑵111-+=x x y )1)(1(2-+=x x y练习:下列各组中的两个函数是否为相同的函数? ① ()f x = 0(1)x -;()g x = 1.② ()f x = x ; ()g x ③ ()f x = x 2;()g x = 2(1)x +.④ ()f x = | x | ;()g x 例6 已知函数)(x f =4x+3,g(x)=x 2,求f[f(x)],f[g(x)],g[f(x)],g[g(x)].复合函数:设 f (x )=2x -3,g (x )=x 2+2,则称 f [g (x )] =2(x 2+2)-3=2x 2+1(或g [f (x )] =(2x -3)2+2=4x 2-12x +11)为复合函数例7求下列函数的值域(用区间表示):(1)y =x 2-3x +4; (2)()f x =(3)y =53x -+; (4)2()3x f x x -=+.例8 ※ 动手试试1. 若2(1)21f x x +=+,求()f x .2. 一次函数()f x 满足[()]12f f x x =+,求()f x .练习 已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)满足条件f (x -1)=f (3-x )且方程f (x )=2x 有等根,求f (x )的解析式.函数的概念习题:1.如下图可作为函数)(x f =的图像的是( )(D )2.对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。

函数的概念和性质

函数的概念和性质

函数的概念和性质函数是数学中一种重要的概念,为描述数值之间的依赖关系提供了一种有效的方式。

在本文中,我们将探讨函数的概念和性质,以及它在数学中的应用和重要性。

一、函数的概念函数可以理解为一种特殊的关系,它将一个集合中的元素映射到另一个集合中的元素,且每个输入元素对应唯一的输出元素。

通常用符号表示为:f: X → Y,其中X为输入集合,Y为输出集合。

例如,f(x) = x^2就是一个函数,它将输入的实数x映射到其平方的输出。

在函数中,输入集合X也被称为定义域,输出集合Y也被称为值域。

函数的定义域和值域可以是实数集、整数集、自然数集等。

函数在实际问题中的应用非常广泛,如在物理学、经济学、工程学等各个领域中都有应用。

二、函数的性质函数具有许多重要的性质,以下是其中的几个:1. 定义域和值域:在函数定义中,定义域和值域是函数的两个重要概念。

定义域是指函数的输入范围,即所有满足函数定义的元素的集合;而值域则是函数的输出范围,即所有可能的输出元素的集合。

2. 单调性:函数的单调性描述了函数值的增减规律。

一个函数可以是递增的(在定义域中,随着输入值的增加,函数值也随之增加)或递减的(随着输入值的增加,函数值减少)。

3. 奇偶性:奇偶性是指函数的对称性质。

如果对于所有x在定义域中,有f(-x) = -f(x),则函数为奇函数;如果对于所有x在定义域中,有f(-x) = f(x),则函数为偶函数。

例如,f(x) = sin(x)是奇函数,而f(x) = x^2是偶函数。

4. 周期性:周期性是指函数在一定范围内重复的性质。

如果存在一个正数T,对于所有x在定义域中,有f(x+T) = f(x),则函数为周期函数。

例如,f(x) = sin(x)是周期为2π的函数。

5. 极限:函数的极限描述了函数在某一点附近的趋势。

如果当x趋近于某个特定值时,函数的值也趋近于一个特定的常数,我们称该常数为函数在此点的极限。

极限在微积分中有着重要的应用。

高一函数的概念与性质

高一函数的概念与性质

高一函数的概念与性质高一数学中,函数是一种重要的数学概念,也是解决实际问题的重要工具。

理解函数的概念和性质对于学生学好高中数学非常关键。

本文将详细介绍函数的概念与性质。

一、函数的概念函数是自变量与因变量之间的一种对应关系。

具体来说,设有两个非空数集合A和B,若对于集合A中的每个元素,集合B中都有对应的唯一元素与之对应,则称这种对应关系为函数,记作y=f(x),其中x是自变量,y是因变量。

例如,设A={1,2,3},B={2,4,6},若设f(x)=2x,则可以得到以下对应关系:x,123f(x),246这种对应关系满足每个自变量都对应着唯一的因变量,因此可以称之为函数。

函数还可以通过图象来表示。

函数的图象是平面直角坐标系上的一条曲线,其中自变量x的取值范围对应着横轴,因变量y的取值范围对应着纵轴。

函数的图象有助于我们更直观地理解函数的性质。

二、函数的性质1.定义域和值域函数的定义域是指自变量x可以取的值的集合。

在函数的定义域内,函数是有意义的。

如果一个值不在函数的定义域内,将没有对应的函数值。

函数的值域是函数在定义域内所有可能的函数值的集合。

它是因变量的取值范围。

2.单调性与增减性函数可以具有单调递增性或单调递减性。

函数f(x)是单调递增的,当且仅当对于定义域内的任意x1和x2,当x1<x2时,有f(x1)≤f(x2)。

函数f(x)是单调递减的,当且仅当对于定义域内的任意x1和x2,当x1<x2时,有f(x1)≥f(x2)。

若函数在定义域的每一段上都是单调递增或单调递减的,则称该函数为增函数或减函数。

3.奇偶性函数的奇偶性是指函数图象关于坐标系的一些特点的对称性。

一个函数f(x)是奇函数,当且仅当f(-x)=-f(x),即函数图象关于原点对称。

一个函数f(x)是偶函数,当且仅当f(-x)=f(x),即函数图象关于y轴对称。

4.周期性函数的周期性是指函数图象具有其中一种重复性质,即函数值在一定范围内以其中一数值为间隔重复出现。

函数的概念与性质

函数的概念与性质

函数的概念与性质函数是数学中一个重要的概念,它是数学中研究变量之间关系的工具之一。

本文将从函数的概念、函数的性质以及函数应用等方面进行探讨。

一、函数的概念函数是数学中的一种关系,它揭示了自变量与因变量之间的对应关系。

具体而言,对于一个函数来说,每个自变量只对应一个确定的因变量。

函数常用符号表示为 f(x),其中 x 表示自变量,f(x) 表示因变量。

函数可以用图像、表格或符号等形式进行表示。

在坐标平面上,函数的图像由一系列有序的点组成,其中每个点的横坐标对应自变量,纵坐标对应因变量。

函数也可以通过表格的方式进行表示,列出自变量与因变量的对应关系。

二、函数的性质1. 定义域和值域:函数的定义域是指自变量可能取值的范围,而值域则是函数对应的因变量的取值范围。

函数的定义域和值域可以是实数集、自然数集等。

2. 单调性:函数的单调性描述了函数图像的变化趋势。

如果函数在定义域内递增,称为递增函数;如果函数在定义域内递减,称为递减函数。

3. 奇偶性:函数的奇偶性与函数在图像中关于原点(0,0)的对称性相关。

如果对于任意 x,有 f(-x) = -f(x),则称该函数为奇函数;如果对于任意 x,有 f(-x) = f(x),则称该函数为偶函数。

4. 零点:函数的零点是指使函数取值为零的自变量的值。

零点对应于函数图像与 x 轴的交点。

5. 极值:函数在定义域内取得的最大值和最小值称为极值。

极大值对应于函数图像的局部最高点,极小值对应于函数图像的局部最低点。

三、函数的应用函数在数学和实际生活中有广泛的应用。

在数学中,函数用于描述数学对象之间的关系,例如线性函数、指数函数和对数函数等,这些函数被广泛应用于代数、几何和概率等数学分支中。

在实际生活中,函数用于描述各种自然现象和社会现象。

例如,经济学中的需求函数和供给函数描述了商品价格与需求量和供给量之间的关系;物理学中的运动函数描述了物体在不同时间和空间位置的变化规律。

高一数学必修一函数的概念与性质知识点总结

高一数学必修一函数的概念与性质知识点总结

高一数学必修一函数的概念与性质知识点总结一、内容描述高一数学必修一函数的概念与性质知识点总结涵盖了高中阶段关于函数基础概念及其性质的核心内容。

文章首先介绍了函数的基本概念,包括函数的定义、表示方法以及函数的性质等。

文章详细阐述了函数的性质,包括单调性、奇偶性、周期性以及复合函数的性质等。

文章还介绍了函数图像的画法及其与性质之间的关系,以及如何利用函数性质解决实际问题。

文章总结了函数在数学学习中的重要性,强调掌握函数概念与性质对于后续数学学习的基础作用。

通过本文的学习,学生可以更好地理解和掌握函数知识,为后续数学学习打下坚实的基础。

1. 简述函数概念的重要性函数是描述自然现象和规律的重要工具。

在物理、化学、生物等自然学科中,许多现象的变化过程都可以通过函数关系进行描述。

物理学中的运动规律、化学中的化学反应速率与浓度的关系等,都需要借助函数概念进行建模和分析。

函数是数学体系中的核心和基础。

函数连接了代数、几何、三角学等多个分支,是数学知识和方法综合运用的基础。

对函数概念的深入理解,有助于我们更好地理解和掌握数学的其它分支和领域。

函数也是解决实际问题的重要工具。

在现实生活中,很多问题的解决都需要建立数学模型,而函数作为构建数学模型的基本元素之一,能够帮助我们准确地描述问题并找到解决方案。

在经济学、统计学、工程学等领域,函数的运用非常广泛。

函数概念的重要性不言而喻。

高一学生在学习数学时,应深入理解函数的概念,掌握其性质和特点,为后续学习和解决实际问题打下坚实的基础。

2. 引出本文目的:总结函数的概念与性质本文旨在系统梳理和归纳高一数学必修一课程中函数的核心概念与基本性质。

函数是数学中的核心概念之一,具有广泛的应用领域。

在高中阶段,学生需要深入理解函数的基础定义、性质和图像特征,为后续学习奠定坚实基础。

本文的目的在于帮助学生全面总结函数的相关知识点,加深对函数概念与性质的理解,以便更好地掌握和应用函数这一重要的数学工具。

函数概念与性质

函数概念与性质

函数概念与性质函数是数学中一个非常重要的概念,广泛应用于数学、物理、计算机科学等领域。

本文将围绕函数的概念和性质展开论述。

一、函数的概念函数是一个映射关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素。

在数学上,函数常常用符号表示,如f(x)或y =f(x)。

其中,x被称为自变量,y被称为因变量。

函数可以理解为数学世界中的“机器”,将给定的输入映射为唯一的输出。

二、函数的性质1. 定义域和值域:函数的定义域是输入的所有可能取值的集合,而值域是输出的所有可能取值的集合。

函数的定义域和值域决定了函数的有效输入和输出范围。

2. 单调性:函数的单调性描述了函数值随自变量的增减而变化的趋势。

如果函数随着自变量的增加而递增,则称其为递增函数;如果函数随着自变量的减少而递增,则称其为递减函数。

3. 奇偶性:函数的奇偶性指函数在定义域内的变化情况。

如果函数满足f(-x) = -f(x),则函数为奇函数;如果函数满足f(-x) = f(x),则函数为偶函数。

4. 对称轴:偶函数的对称轴为y轴,即函数图像关于y轴对称;奇函数没有对称轴。

5. 极值与最值:在函数连续的情况下,极值是指函数在一定区间内取得的最大值或最小值;最值是指函数在整个定义域内取得的最大值或最小值。

6. 零点:函数在定义域内使得f(x) = 0的点称为函数的零点或根。

零点是函数图像与x轴的交点。

三、函数的图像特征函数的图像是通过绘制自变量和因变量的关系得到的。

通过观察函数图像,可以了解函数的基本特征。

1. 函数图像的凹凸性:如果函数在某一区间内的图像是向上凹的,则称函数在该区间具有上凹性;如果函数在某一区间内的图像是向下凹的,则称函数在该区间具有下凹性。

2. 零点图像:零点是函数与x轴的交点,绘制函数图像时,零点对应的点会与x轴相交。

3. 驻点与拐点:函数图像上的驻点是函数在某一点上的导数为零的点;拐点则是函数图像上出现凹凸变化的点。

四、实例分析以一元二次函数为例,分析函数概念和性质的具体应用。

函数的概念及性质

函数的概念及性质
返回 下一张
①.函数的单调性 一般地,设函数f(x)的定义域为 I : 如果对于属于定义域 I 内某个区间上的任意两个
自变量的值x1 , x2,当x1<x2时,都有f(x1)<f(x2),
那么就说f(x)在这个区间上是增函数. 如果对于属于定义域I内某个区间上的任意两个自
变量的值x1 , x2,当x1<x2时,都有f(x1)>f(x2),那
(C)h(x)=
2 x 1
(D)s(x)=log 1
2
(-x)
2.如果函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上 是减函数,那么实数a的取值范围是( ) (A)(-∞,-3) (B)(-∞,-3) (C)(-3,+∞) (D)(-∞,3)
返回 下一张
3. f (x) 是定义在R上的单调函数,且f (x) 的图
2.已知函数f(x)的定义域为[a,b],则f(2x-1)的定义 域为
3.已知f(x2)的定义域为[-1,1],则f(2x)的定 义域为
返回 下一张
函数的值域
①.函数的值域取决于定义域和对应法则,不论 采取什么方法求函数的值域都应先考虑其定义 域. ②.应熟悉掌握一次函数、二次函数、指数、对 数函数的值域,它是求解复杂函数值域的基础.
5.一一映射 设f:A→B是集合A到集合B的一个映射.如果在这个映射下, 对于集合A中的不同元素,在集合B中有不同的象,而且 B中每一个元素都有原象,那么这个映射就叫做A到B上 的一一映射.
返回 下一张
函数的定义域
①.能使函数式有意义的实数x的集合称为函数的定义域.求 函数的定义域的主要依据是:
(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1.

高一函数概念与性质知识点归纳

高一函数概念与性质知识点归纳

高一函数概念与性质知识点归纳在高一数学中,函数是一个非常重要的概念。

理解函数的概念及其性质,对于学习高中数学以及解决实际问题都具有重要的意义。

下面将对高一函数概念与性质的知识点进行归纳总结。

一、函数的定义函数是一个相互对应的关系,它将一个集合的元素(称为自变量)与另一个集合的元素(称为因变量)一一对应。

通常表示为:y = f(x)。

二、函数的图像与曲线函数的图像是自变量与因变量之间的关系在平面直角坐标系中的表现形式。

函数的图像通常为曲线,曲线上的点表示自变量和因变量之间的对应关系。

三、函数的性质1. 定义域和值域:函数的定义域是指自变量的取值范围,值域是指因变量的取值范围。

2. 奇偶性:如果函数满足对任意x,有f(-x) = f(x),则函数为偶函数;如果对任意x,有f(-x) = -f(x),则函数为奇函数。

3. 单调性:函数的单调性指的是函数在定义域上的取值的增减情况。

可以分为增函数和减函数。

4. 周期性:如果对任意x,有f(x+T) = f(x),其中T>0,则函数为周期函数,T称为函数的周期长度。

5. 极值与最值:函数在定义域内某一点上的函数值称为该点的函数值。

如果函数在某一区间内的函数值都小于(或大于)其他点的函数值,则该点对应的x值称为函数在该区间内的极小值(或极大值)。

函数在定义域上的极值称为最值。

6. 对称轴:函数的对称轴是指曲线关于某一直线对称。

四、基本函数与常用函数1. 一次函数:y = kx + b,其中k为斜率,b为常数。

2. 二次函数:y = ax^2 + bx + c,其中a、b、c为常数。

3. 幂函数:y = x^a,其中a为常数。

4. 指数函数:y = a^x,其中a为常数且a>0且a≠1。

5. 对数函数:y = loga(x),其中a为常数且a>0且a≠1。

6. 三角函数:包括正弦函数、余弦函数和正切函数等。

五、函数的运算与性质1. 四则运算:函数之间可以进行加、减、乘、除的运算。

高一的函数知识点总结

高一的函数知识点总结

高一的函数知识点总结函数作为数学中的一个核心概念,是高一数学课程中的重要组成部分。

本文将对高一阶段所学的函数知识进行梳理和总结,以帮助学生更好地理解和掌握这一概念。

一、函数的基本概念函数是指一个从一个集合(称为定义域)到另一个集合(称为值域)的映射关系,通常用符号f表示。

对于函数f,如果输入值x属于定义域,那么f(x)就是x在函数f下的对应输出值。

函数可以用多种方式表示,如公式、表格、图形等。

二、函数的性质函数的性质包括单调性、奇偶性、周期性等。

1. 单调性:函数在某个区间内,如果随着x的增加,f(x)也增加,则称函数在该区间内单调递增;如果f(x)减少,则称单调递减。

2. 奇偶性:如果对于所有的x,都有f(-x)=-f(x),则称函数f为奇函数;如果f(-x)=f(x),则称偶函数。

3. 周期性:如果存在一个非零实数T,使得对于所有的x,都有f(x+T)=f(x),那么T是函数f的一个周期。

三、函数的图像函数的图像是函数在坐标平面上的表现形式,通过图像可以直观地了解函数的性质和特点。

1. 直线:表示线性函数,如y=2x+3。

2. 抛物线:表示二次函数,如y=ax^2+bx+c。

3. 曲线:表示其他复杂的函数,如指数函数、对数函数等。

四、函数的应用函数在实际生活中有着广泛的应用,如物理中的运动规律、经济学中的成本收益分析等。

1. 物理中的函数:描述物体运动的速度、加速度等与时间的关系。

2. 经济学中的函数:描述成本、收益与产量的关系。

五、函数的运算函数的运算包括四则运算、复合函数、反函数等。

1. 四则运算:两个函数的和、差、积、商都是新的函数。

2. 复合函数:如果有两个函数f和g,那么(f(g(x)))表示新的函数,称为f和g的复合函数。

3. 反函数:如果函数f的每个y值都有唯一的x值与之对应,那么这个对应关系f的逆称为f的反函数。

六、函数的极限与连续性函数的极限描述了函数值在某个点附近的变化趋势,连续性则是函数图像无间断的属性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用图象观察函数的单调性也是一种常见的方法,教材中所有基本初等函数的单调性都是由图象观察得到的.
对于y=f[φ(x)]型双重复合形式的函数的增减性,可通过换元,令u=φ(x),然后分别根据u=φ(x),y=f(u)在相应区间上的增减性进行判断,一般有“同则增,异则减”这一规律.
此外,利用导数研究函数的增减性,更是一种非常重要的方法,这一方法将在后面的复习中有专门的讨论,这里不再赘述.
函数的奇偶性
一、基本的知识点:
设函数 的定义域为 ,如果对 内的任意一个 ,都有 ,
且 ,则这个函数叫奇函数。
(如果已知函数是奇函数,当函数的定义域中有0时,我们可以得出 )
设函数 的定义域为 ,如果对 内的任意一个 ,都有 ,
若 ,则这个函数叫偶函数。
从定义我们可以看出,讨论一个函数的奇、偶性应先对函数的定义域进行判断,看其定义域是否关于原点对称。也就是说当 在其定义域内时, 也应在其定义域内有意义。
图像特征
如果一个函数是奇函数 这个函数的图象关于坐标原点对称。
如果一个函数是偶函数 这个函数的图象关于 轴对称。
二、基本题型
1、判断奇偶性的步骤
2、判断下列函数的奇、偶性。
三、函数奇偶性的应用
1、已知 为奇函数,求a
3、已知 是奇函数,当 时, ,求当 时, 得解析式。
4、设 的定义域是 ,对于任意 都有 时 ,讨论(1) 的奇、偶性并加以证明;
2、证明单调性的步骤
(1)
(2)
(3)
3、复合函数的单调性:同增异减
复合函数 在公共定义域上的单调性:
注意:先求定义域,单调区间是定义域的子集
二、基本题型及方法:
1、证明、研究单调性和单调区间
证明下列函数在给定区间上的单调性

,研究函数 在 上的单调性
2、单调性的应用
已知函数 在 上是减函数,求 的取值范围
优著教育学科教师辅导讲义
学员编号:年级:高一课时数:1小时
学员姓名:辅导科目:数学学科教师:刘朝波
课 题
函数的概念、基本题型、基本方法
授课日期及时段
2014年1月20日16:30—17:30
教学目的
掌握函数的基本题型与解题方法Βιβλιοθήκη 教学内容典型例题函数的性质
函数的单调性
一.基本知识点:
定义:一般地,设 的定义域为 :
如果对于定义域 内某个区间 上的任意两个自变量的值 ,当 时,都有 ,那么就说函数 在区间 上是增函数;区间 称为单调递增区间。
如果对于定义域 内某个区间 上的任意两个自变量的值 ,当 时,都有 ,那么就说函数 在区间 上是减函数;区间 称为单调递减区间。
函数的单调性是函数的一个重要性质,在给定区间上,判断函数增减性,最基本的方法就是利用定义:在所给区间任取x1,x2,当x1<x2时判断相应的函数值f(x1)与f(x2)的大小.
(2) 在 上的单调性并加以证明。
定义在[1,3]上的函数f(x)是减函数,解不等式
3、抽象函数单调性
设函数f(x)是定义在R上的函数,对任意实数m,n都有f(m)f(n)=f(m+n),且x<0时f(x)>1,
(1)证明f(0)=1;当x>0时,0<f(x)<1;f(x)是R上的减函数;
(2)如果对任意实数x,y都有 恒成立,求实数a的取值范围
相关文档
最新文档