推荐精品2018_2019学年高二数学上学期期中试题理(2)Word版

合集下载

北京市海淀区20中2018-2019学年高二上学期期中考试数学(理)试题Word版含解析

北京市海淀区20中2018-2019学年高二上学期期中考试数学(理)试题Word版含解析

北京市海淀区20中2018-2019学年高二上学期期中考试数学(理)试题一、选择题共8小题,每小题5分,共40分.1. 直线的倾斜角为()A. B. C. D.【答案】B所以直线的倾斜角等于,故选.2. 如果两直线,且平面,则与的位置关系是()A. 相交B.C.D. 或【答案】D【解析】试题分析:直线与平面的位置关系有三种:线在面内、线面平行、线面相交;其中能符合题目要求的有线面平行与线在面内;考点:直线与平面的位置关系;3. 若三点、、共线,则的值为()A. B. C. D.【答案】A【解析】∵三点,,在一条直线上,∴,∴,计算得出,故选A.4. 圆与圆的位置关系是()A. 相交B. 外离C. 内切D. 外切【答案】A【解析】由圆与圆可得,,,,,所以,,所以两圆的位置关系是相交,故选A.5. 若两直线与平行,则它们之间的距离为()A. B. C. D.【答案】C【解析】可化为,由两平行线之间的距离公式可得,故选.6. 已知圆,直线,,若,被圆所截得的弦的长度之比为,则的值为()A. B. C. D.【答案】C【解析】圆的圆心为,半径为,圆心到线的距离为,被圆所截得的弦的长度为,圆心到的距离为,被圆所截得的弦的长度为,结合,被圆所截得的弦的长度之比为,可得,求得,故选.7. 如图,已知三棱锥的底面是等腰直角三角形,且,侧面底面,,则这个三棱锥的三视图中标注的尺寸,,分别是()A. ,,B. ,,C. ,,D. ,,【答案】A【解析】由三棱锥及其三视图可知,为等边的高,所以,又因为为的长,所以,可得为点到的距离,由此,故选.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.8. 如图,已知平面平面,,、是直线上的两点,、是平面内的两点,且,,,,,是平面上的一动点,且有,则四棱锥体积的最大值是()A. B. C. D.【答案】A【解析】由题知:,是直角三角形,又,所以.因为,,所以.作于,则.令,则,可得,所以即为四棱锥的高,又底面为直角梯形,.所以,故选.【方法点睛】本题主要考查面面垂直的性质,棱锥的体积公式以及求最值问题,属于难题. 求最值的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图像法,本题首先根据线面关系将体积最值转化为函数求最值问题,然后应用方法①解答的.二、填空题共6小题,每小题5分,共30分.9. 已知两点,,则线段的长为__________.【答案】【解析】因为,,,所以由两点间距离公式可得线段的长为,故答案为.10. 底面直径是,高是的圆柱的侧面积为__________.【答案】【解析】因为圆柱的底面直径是,所以底面半径为,又因为圆柱的高是,所以由圆柱的侧面积公式可得圆柱的侧面积为,故答案为.11. 已知直线与直线垂直,则的值为__________.【答案】【解析】由直线与直线垂直,可得,计算得出,故答案是.12. 从点引圆的切线,则切线长是__________.【答案】【解析】因为圆的方程为,所以圆心,半径,所以,所以切线长,故答案为.13. 已知某三棱锥的三视图如图所示,则该三棱锥的最长棱的长是__________.【答案】则该三棱锥的最长棱的长是,,故答案为.14. 若动点在直线上,动点在直线上,设线段的中点为,且,则的取值范围是__________.【答案】【解析】由直线方程可知两直线斜率相等,所以,由平行线线的几何性质知的轨迹为平行于的直线,直线方程为,又点在圆的内部,故的轨迹是如图所示的线段.即原点和距离的平方.由图可知,,,,故答案为.【方法点晴】本题主要考查轨迹方程及解析几何求最值,属于难题.解决曲线轨迹中的最值问题一般有两种方法:一是几何意义,特别是用曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将曲线轨迹中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.本题是先将转化为直线上的点与原点距离的平方,然后利用几何方法解答的.三、解答题共6小题,共80分.解答应写出相应文字说明,演算步骤或证明过程.15. 求满足下列条件的曲线方程:(1)过点,两点的直线方程;(2)过点且圆心在的圆的方程.【答案】(1);(2).【解析】试题分析:(1)由,求出直线的斜率,设出直线方程,将点代入求出参数,即可得结果;(2)设圆为,将代入,得,从而可得圆的方程.试题解析:(1)∵过点,,∴,∴设直线为,将代入得:,即,∴.(2)∵圆心为,∴设圆为,将代入,得:,∴.∴.16. 如图,在直三棱柱中,,,为中点,与交于点.(1)求证:平面;(2)求证:平面;(3)求三棱锥的表面积.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)证明:连结,可得为的中位线,可得,根据线面平行的判定定理可得平面;(2)在直三棱柱中,可证平面,从而可得,又,,即可证明平面;(3),分别利用三角形面积公式求出各三角形面积,求和即可得结果.试题解析:(1)证明:连结,∵直三棱柱,,∴四边形为正方形,∴为中点,∵为中点,∴,∵平面,平面,∴平面.(2)证明:方法1,∵直三棱柱,∴,又∵,,∴平面,∵平面,∴,∵正方形,∴,又∵,∴平面.方法2:∵直三棱柱,∴平面平面,∵平面平面,,∵平面,∵平面,∴,∵正方形,∴,又∵,∴平面.(3).【方法点晴】本题主要考查线面平行的判定定理、线面垂直的判定定理、利用等积变换求三棱锥体积,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.17. 已知的三个顶点,,.(1)设,边上的中点分别为,,求所在直线方程;(2)求边上的高线所在直线方程;(3)求的面积.【答案】(1);(2);(3).【解析】试题分析:(1)由中点坐标公式可得的中点坐标,从而可得直线的斜率,再根据点斜式可得方程;(2)由两点可得的斜率,由垂直关系可得高线的斜率,点斜式可得方程;(3)可得的方程,可求到直线的距离即三角形的高,再由距离公式求得边上的高,代入面积公式可得结果.试题解析:(1)∵,,,∴,,∴,∴所在直线方程:,即.(2)∵,为,中点,∴,∴所求直线斜率,代入,得,即.(3),到距离.∵,为,中点,∴.18. 已知圆.(1)直线的方程为,直线交圆于、两点,求弦长的值;(2)从圆外一点引圆的切线,求此切线方程.【答案】(1);(2)或.【解析】试题分析:(1)由圆方程可得圆心,,先求出圆心到直线距离,根据勾股定理可得;(2)当直线为时,与圆相切,符合题意.当斜率存在时,设斜率为,可设直线,利用圆心到切线的距离等于半径列方程,即可解得的值,从而可得结果..试题解析:(1)∵圆,∴圆心,,圆心到直线距离,∴.(2)①当直线为时,与圆相切,符合题意.②当斜率存在时,设斜率为,∴直线,即,圆心到直线距离,∵直线与圆相切,∴即,∴,∴直线:,∴综上可知,切线方程为或.19. 如图,四棱锥中,底面是边长为的菱形,,,为中点.(1)求证:平面平面;(2)若,,的交点记为,求证平面;(3)在(2)的条件下求三棱锥的体积.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)根据等腰三角形的性质可得,根据菱形的性质可得,由线面垂直的判定定理可得面,根据面面垂直的判定定理可得结果;(2)由,为中点,可得,由(1)知,利用线面垂直的判定定理可得结论;(3)先证明面,则,利用棱锥的体积公式可得结果.试题解析:(1)设,连结,∴,为中点,∴,又∵底面为菱形,∴,∵,∴面,又∵面,∴面面.(2)∵,为中点,∴,又∵,,∴面.(3)过作于,∴,又∵面,面,∴.【方法点晴】本题主要考线面垂直的判定定理、面面垂直的判定定理以及利用等积变换求棱锥体积,属于难题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.20. 已知圆和定点,由圆外一点向圆引切线,切点为,且满足.(1)求实数,满足的等量关系;(2)求线段长的最小值;(3)若以为圆心所作的圆与圆有公共点,试求半径取最小值时圆的方程.【答案】(1);(2);(3).【解析】试题分析:(1)连接,则为直角三角形,利用,即可求得实数,满足的等量关系;(2)表示出利用配方法即可求出的最小值;(3)由⊙与⊙有公共点,可得,只需求出的最小值以及取得最小值时的的值,即可求出半径最小值的圆的方程.试题解析:(1)连接,∵为切点,∴,∴,∵,∴,∴.(2)∵,∴,∴.∴当时,线段长的最小值为.(3)设半径为,∵⊙与⊙有公共点,⊙半径为,∴,即且,∴,∴当时,,此时,,∴当半径取最小值时,圆方程为:.。

上海市上海中学2018-2019学年高二上学期期中数学试题(原卷+解析版)

上海市上海中学2018-2019学年高二上学期期中数学试题(原卷+解析版)
此时z最大,

由于B在直线 上,故m=1
故选:A
【点睛】本题考查了线性规划,考查了学生数形结合,转化与划归的能力,属于中档题.
16.如图, 的 边长为 , 分别是 中点,记 , ,则()
A. B.
C. D. ,但 的值不确定
【答案】C
【解析】
试题分析:因为 分别是 中点,所以根据平面向量的线性运算 可得 ,所以 由 可得 ,故选C.
(1)求向量 与 的夹角 ;
(2)若 ,且 ,求实数t的值及 .
【答案】(1) ;(2) , = .
【解析】
【分析】
(1)由向量的数量积,代值计算即可;
(2)由数量积为0,代入计算即可.
【详解】(1)因为

解得:
因为 ,所以 .
(2)

化简得:
解得:此时=Fra bibliotek==
=
【点睛】本题考查向量数量积的运算,属基础题.
19.
如图,在平面直角坐标系xOy中,平行于x轴且过点A(3 ,2)的入射光线l1
被直线l:y= x反射.反射光线l2交y轴于B点,圆C过点A且与l1,l2都相切.
(1)求l2所在直线的方程和圆C的方程;
(2)设 分别是直线l和圆C上的动点,求 的最小值及此时点 的坐标.
【答案】(1) 所在的直线方程为 ,圆C的方程为 (2)
【解析】
【详解】(1)直线 设 .
的倾斜角为 , 反射光线 所在的直线方程为
.即 .
已知圆C与 , 圆心C在过点D且与 垂直的直线上,
考点:平面向量的线性运算与数量积运算.
三、解答题
17.已知二元一次方程组的增广矩阵为 ,请利用行列式求解此方程组.

2018-2019学年上海市嘉定区嘉一中高二第二学期期中检测数学试题(Word版)

2018-2019学年上海市嘉定区嘉一中高二第二学期期中检测数学试题(Word版)

上海市嘉定区嘉一中2018-2019学年第二学期期中检测试卷高二年级 数学学科考试时间 120分钟 满分150一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分) 考生应在答题纸的相应位置直接填写结果。

1、复数iiZ 31-=的虚部是 【答案】-12、已知23)1()2321(i i Z -+-=,则=Z 【答案】21 3、已知椭圆()014222>=+a y a x 与双曲线13922=-y x 有相同的焦点,则a 的值为 【答案】44、棱长为a 的正方体外接球的表面积为 【答案】π212a5、202132i i i i ⋅⋅的值是【答案】i -6、复数i 43+的平方根是 【答案】i +2 i --27、正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为 【答案】22arccos8、已知复数Z 满足13=-Z ,则i z -的最大值为 【答案】110+9、圆锥的母线长为3cm ,底面半径为1cm ,底面圆周上有一点A ,由A 点出发绕圆锥侧面一周到点A 的最短距离为 cm 【答案】3310、如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”,在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是 【答案】2411、设双曲线)0,0(12222>>=-b a by a x 的半焦距C ,坐标原点到直线ab ay bx =+的距离等于141+c ,则c 的最小值为 【答案】412、在三角形ABC 中,BC AD AC AB ⊥⊥,,D 是垂足,则BC BD AB ⋅=2.推广到空间,三棱锥BCD A -中,,面,面BCD AO ABC AD ⊥⊥O 为垂足,且O 在三角形BCD 内,则类似的结论为 【答案】BCD BCA BCO S S S ∆∆∆⋅=2二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑 13、下列命题中正确的是( )A 、如果两条直线都平行于同一个平面,那么这两条直线互相平行B 、过一条直线有且只有一个平面与已知平面垂直C 、如果一条直线平行于一个平面内的一条直线,那么这条直线平行于这个平面D 、如果两条直线都垂直于同一平面,那么这两条直线共面 【答案】D14、如图所示,一个水平放置的图形的斜二测直观图是一个底角为 45,腰和上底均为1的等腰梯形,那么原平面图形的面积为( ) A 、221+B 、221+ C 、21+ D 、22+【答案】D15、已知直线0634:=+-y x l ,抛物线C :x y 42=上一动点P 到直线l 和y 轴距离之和的最小值是( ) A 、1 B 、2 C 、56 D 、1621【答案】A16、下列关于复数Z 的四个命题,正确的个数是( ) (1)若211=++-z z ,则复数Z 对应的动点的轨迹是椭圆 (2)若222=+--Z Z ,则复数z 对应的动点轨迹是双曲线(3)若1Re 1+=-z z ,则复数z 对应的动点的轨迹是双曲线 (4)若32≤-z ,则z 的取值范围是[]5,1; A.4 B 、1 C 、2 D 、3 【答案】B三、解答题(本大题共有5题,满分76分) 解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题14分)若复数z 满足方程:2z +z+z ()i=1-i (i 为虚数单位),求复数z【答案】1322z i =-- 或 1322z i =-+【解析】设 z a bi =+(a ,b ∈R ), 则由2z +z+z ()i=1-i,得:2221a b ai i ++=-或 1232a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴ 22121a b a ⎧+=⎨=-⎩ ,即 故 1322z i =-- 或 1322z i=-+18. (本题14分)在正四棱柱1111ABCD A B C D -中,已知底面ABCD 的边长为2,点P 是1CC 的中点,直线AP 与平面11BCC B 成30°角. (1)求1CC 的长(2)求异面直线11B C 和AP 所成角的大小 (结果用反三角函数值表示)【答案】1232a b ⎧=-⎪⎪⎨⎪=-⎪⎩【解析】(1)连结BP,设长方体的高1CC 为h 因为AB ⊥平面11BCC B 所以,∠APB 即为直线AP 与平面11BCC B 所成的角。

河北省石家庄市第二中学2018-2019学年高二上学期期中考试数学(理)试题(含精品解析)

河北省石家庄市第二中学2018-2019学年高二上学期期中考试数学(理)试题(含精品解析)

2018-2019学年河北省石家庄二中高二(上)期中数学试卷(理科)一、选择题(本题共12个小题,每小题5分,共6分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.双曲线2x2﹣y2=8的实轴长是( )A.2B.2C.4D.42.若平面α与β的法向量分别是,则平面α与β的位置关系是( )A.平行B.垂直C.相交但不垂直D.无法确定3.已知椭圆+=1(a>b>0)的右焦点为F(3,0),点(0,﹣3)在椭圆上,则椭圆的方程为( )A. +=1B. +=1C. +=1D. +=14.双曲线﹣y2=1的顶点到其渐近线的距离等于( )A.B.C.D.5.若平面α的一个法向量为=(1,2,2),A=(1,0,2),B=(0,﹣1,4),A∉α,B∈α,则点A到平面α的距离为( )A.1B.2C.D.6.已知直线l1:4x﹣3y+7=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )A.B.C.2D.7.椭圆的焦点F1,F2,P为椭圆上的一点,已知PF1⊥PF2,则△F1PF2的面积为( )A .8B .9C .10D .128.已知直三棱柱ABC ﹣A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A .B .C .D .9.若直线l :y =ax ﹣1与抛物线C :y 2=(a ﹣1)x 恰好有一个公共点,则实数a 的值构成的集合为( )A .{﹣1,0}B .{﹣1, }C .{0, }D .{1,,0}10.直线kx ﹣y ﹣2k +2=0恒过定点A ,若点A 是双曲线﹣=1的一条弦的中点,则此弦所在的直线方程为( )A .x +4y ﹣10=0B .2x ﹣y ﹣2=0C .4x +y ﹣10=0D .4x ﹣y ﹣6=011.如图F 1、F 2是椭圆C 1: +y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .B .C .D .12.已知椭圆C 1:+=1(a >b >0)与双曲线C 2:﹣=1(m >0,n >0)有共同的焦点F 1,F 2,且在第一象限的交点为P ,满足2•=2(其中O 为原点)设C 1,C 2的离心率分别为e 1,e 2当3e 1+e 2取得最小值时,e 1的值为( )A .B .C .D .二、填空题(本题共4个小题,每题5分,共20分)13.设椭圆C1:+=1(a>b>0)的离心率为,长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于4,则曲线C2的标准方程为 .14.在正方体ABCD﹣A1B1C1D1中,M为棱AA1的中点,则直线D1B与平面MBC所成角的正弦值为 .15.已知F1,F2分别是椭圆+=1(a>b>0)的左,右焦点,现以F2(1,0)为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M,N,若过F1的直线MF1是圆F2的切线,则椭圆的长轴长为 .16.已知双曲线x2﹣=1(b>0)的左右焦点分别为F1,F2,过F2作直线l交双曲线的左支于点A,过F2作直线l的垂线交双曲线的左支于点B,若直线AB过F1,则△ABF2的内切圆圆心到F2的距离为 .三、解答题(本题共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)已知椭圆的对称轴为坐标轴且焦点在x轴上,离心率e=,短轴长为4.(I)求椭圆的方程(Ⅱ)过椭圆的右焦点作一条斜率为2的直线与椭圆交于A,B两点,求AB的中点坐标及弦长|AB|.18.(12分)在三棱锥PABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)求二面角CEMN的正弦值.19.(12分)已知抛物线y2=﹣x与直线l:y=k(x+1)相交于A、B两点,点O为坐标原点.(1)求的值;(2)若△OAB的面积等于,求直线l的方程.20.(12分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则:(Ⅰ)求双曲线C的渐进线方程.(Ⅱ)当a=1时,已知直线x﹣y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.21.(12分)已知抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点.(Ⅰ)若,求直线AB的斜率;(Ⅱ)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.22.(12分)已知动点M到定直线x=﹣4的距离是它到定点F1(﹣1,0)的距离的2倍.(Ⅰ)求动点M的轨迹方程.(Ⅱ)是否存在过点P(2,1)的直线l与动点M的轨迹相交于不同的两点A,B,满足•=?若存在,求出直线l的方程;若不存在,请说明理由.2018-2019学年河北省石家庄二中高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本题共12个小题,每小题5分,共6分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.双曲线2x2﹣y2=8的实轴长是( )A.2B.2C.4D.4【分析】根据题意,将双曲线的方程变形可得标准方程,分析可得其a的值,由双曲线实轴的定义计算可得答案.【解答】解:根据题意,双曲线方程为:2x2﹣y2=8,则其标准方程为:﹣=1,其中a==2,则其实轴长2a=4;故选:C.【点评】本题考查双曲线的几何性质,注意要现将其方程变形为标准方程.2.若平面α与β的法向量分别是,则平面α与β的位置关系是( )A.平行B.垂直C.相交但不垂直D.无法确定【分析】先计算向量与向量的数量积,根据数量积为0得到两向量垂直,从而判断出两平面的位置关系.【解答】解: =﹣2+8﹣6=0∴⊥∴平面α与平面β垂直故选:B.【点评】本题主要考查了向量数量积以及向量垂直的充要条件,同时考查了两平面的位置关系,属于基础题.3.已知椭圆+=1(a>b>0)的右焦点为F(3,0),点(0,﹣3)在椭圆上,则椭圆的方程为( )A. +=1B. +=1C. +=1D. +=1【分析】由条件根据椭圆的标准方程和简单性质可得a2﹣b2=9,0+=1,求得a2和b2的值,可得椭圆的方程.【解答】解:由题意可得a2﹣b2=9,0+=1,∴a2=18,b2=9,故椭圆的方程为+=1,故选:D.【点评】本题主要考查椭圆的标准方程和简单性质,属于基础题.4.双曲线﹣y2=1的顶点到其渐近线的距离等于( )A.B.C.D.【分析】求出双曲线的渐近线方程,顶点坐标,利用点到直线的距离求解即可.【解答】解:双曲线﹣y2=1的顶点坐标(,0),其渐近线方程为x±y=0,所以所求的距离为=.故选:C.【点评】本题考查双曲线的简单性质的应用,是基本知识的考查.5.若平面α的一个法向量为=(1,2,2),A=(1,0,2),B=(0,﹣1,4),A∉α,B∈α,则点A到平面α的距离为( )A.1B.2C.D.【分析】求出,点A到平面α的距离:d=,由此能求出结果.【解答】解:∵平面α的一个法向量为=(1,2,2),A=(1,0,2),B=(0,﹣1,4),A∉α,B∈α,∴=(1,1,﹣2),点A到平面α的距离:d===.故选:C.【点评】本题考查点到平面的距离的求法,是基础题,解题时要认真审题,注意向量法的合理运用.6.已知直线l1:4x﹣3y+7=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )A.B.C.2D.【分析】如图所示,过点F(1,0)作FQ⊥l1,交抛物线于点P,垂足为Q,过点P作PM⊥l2,垂足为M.则|PF|=|PM|,可知:|FQ是|抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值.【解答】解:如图所示,过点F(1,0)作FQ⊥l1,交抛物线于点P,垂足为Q,过点P作PM⊥l2,垂足为M.则|PF|=|PM|,可知:|FQ是|抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值.|FQ|==.故选:A.【点评】本题考查了抛物线的标准方程及其性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.7.椭圆的焦点F1,F2,P为椭圆上的一点,已知PF1⊥PF2,则△F1PF2的面积为( )A.8B.9C.10D.12【分析】先设出|PF1|=m,|PF2|=n,利用椭圆的定义求得n+m的值,平方后求得mn和m2+n2的关系,代入△F1PF2的勾股定理中求得mn的值,即可求出△F1PF2的面积.【解答】解:设|PF1|=m,|PF2|=n,由椭圆的定义可知m+n=2a,∴m2+n2+2nm=4a2,∴m2+n2=4a2﹣2nm由勾股定理可知m2+n2=4c2,求得mn=18,则△F1PF2的面积为9.故选:B.【点评】本题主要考查了椭圆的应用,椭圆的简单性质和椭圆的定义.考查了考生对所学知识的综合运用.8.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )A.B.C.D.【分析】【解法一】设M、N、P分别为AB,BB1和B1C1的中点,得出AB1、BC1夹角为MN 和NP夹角或其补角;根据中位线定理,结合余弦定理求出AC、MQ,MP和∠MNP的余弦值即可.【解法二】通过补形的办法,把原来的直三棱柱变成直四棱柱,解法更简洁.【解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【解法二】如图所示,补成四棱柱ABCD﹣A1B1C1D1,求∠BC1D即可;BC1=,BD==,C1D=,∴+BD2=,∴∠DBC1=90°,∴cos∠BC1D==.故选:C.【点评】本题考查了空间中的两条异面直线所成角的计算问题,也考查了空间中的平行关系应用问题,是中档题.9.若直线l:y=ax﹣1与抛物线C:y2=(a﹣1)x恰好有一个公共点,则实数a的值构成的集合为( )A.{﹣1,0}B.{﹣1, }C.{0, }D.{1,,0}【分析】讨论若a=1,当a=﹣1时,将直线方程代入曲线方程,运用判别式为0,解方程即可得到所求值.【解答】解:若a=1,则曲线C为y=0,直线l:y=x﹣1,即有直线与曲线的交点为(1,0),满足题意;若a=0,则曲线C为y2=﹣x,直线l:y=﹣1,即有直线与曲线的交点为(﹣1,﹣1),满足题意;若a≠1,a≠0时,则抛物线y2=(a﹣1)x的对称轴为x轴,由y=ax﹣1与抛物线y2=(a﹣1)x相切,可得:a2x2﹣(3a﹣1)x+1=0,由判别式为0,可得(3a﹣1)2﹣4a2=0,解得a=(a=1舍去),综上可得,a=0,1或.故选:D.【点评】本题考查直线与曲线的交点的个数问题,注意讨论直线与曲线相切或与对称轴平行,考查运算能力,属于中档题和易错题.10.直线kx﹣y﹣2k+2=0恒过定点A,若点A是双曲线﹣=1的一条弦的中点,则此弦所在的直线方程为( )A.x+4y﹣10=0B.2x﹣y﹣2=0C.4x+y﹣10=0D.4x﹣y﹣6=0【分析】求出定点A(2,2),设A是弦P1P2的中点,且P1(x1,y1),P2(x2,y2),利用点差法能求出以A(2,2)为中点的双曲线的弦所在的直线方程.【解答】解:直线kx﹣y﹣2k+2=0恒过定点A(2,2),双曲线﹣=1方程可化为:4x2﹣y2=8,设A(2,2)是弦P1P2的中点,且P1(x1,y1),P2(x2,y2),则x1+x2=4,y1+y2=4.∵P1,P2在双曲线上,∴,∴4(x1+x2)(x1﹣x2)﹣(y1﹣y2)(y1+y2)=0,∴4×4(x1﹣x2)=4(y1﹣y2),∴k==4,∴以A(2,2)为中点的双曲线的弦所在的直线方程为:y﹣2=4(x﹣2),整理得4x﹣y﹣6=0.故选:D.【点评】本题考查直线方程的求法,是中档题,解题时要认真审题,注意点差法和根的判别式的合理运用.11.如图F1、F2是椭圆C1: +y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( )A.B.C.D.【分析】不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1: +y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2c=2,∴双曲线C2的离心率e===.故选:D.【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.12.已知椭圆C1:+=1(a>b>0)与双曲线C2:﹣=1(m>0,n>0)有共同的焦点F1,F2,且在第一象限的交点为P,满足2•=2(其中O为原点)设C1,C2的离心率分别为e1,e2当3e1+e2取得最小值时,e1的值为( )A.B.C.D.【分析】由2•=2,故||=2||cos∠POF2,即x P=,由焦半径公式可得:PF1=a+=x P+m⇒e1e2=2,3e1+e2取,当且仅当3e1=e2时取等号,即.【解答】解:∵2•=2,故||=2||cos∠POF2,即x P=由焦半径公式可得:PF1=a+=x P+m⇒2c2=am⇒e1e2=23e1+e2取,当且仅当3e1=e2时取等号,即故选:A.【点评】本题考查了双曲线离心率,属于中档题.二、填空题(本题共4个小题,每题5分,共20分)13.设椭圆C1:+=1(a>b>0)的离心率为,长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于4,则曲线C2的标准方程为 ﹣=1 .【分析】在椭圆C1中,由题设条件能够得到a,b,曲线C2是以F1(﹣5,0),F2(5,0),为焦点,实轴长为4的双曲线,由此可求出曲线C2的标准方程.【解答】解:在椭圆C1中,椭圆C1:+=1(a>b>0)的离心率为,长轴长为26,a=13,c=5,b=12,椭圆C1的焦点为F1(﹣5,0),F2(5,0),椭圆方程为:.曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于4,a=2,则c=5,则b=.故C2的标准方程为:,故答案为:.【点评】本题考查圆锥曲线的性质和应用,解题时要注意公式的灵活运用,注意区分椭圆和双曲线的性质.14.在正方体ABCD﹣A1B1C1D1中,M为棱AA1的中点,则直线D1B与平面MBC所成角的正弦值为 .【分析】设正方体ABCD﹣A1B1C1D1中棱长为2,建立空间直角坐标系,利用向量法能求出直线D1B与平面MBC所成角的正弦值.【解答】解:设正方体ABCD﹣A1B1C1D1中棱长为2,如图建立空间直角坐标系,则D1(0,0,2),B(2,2,0),M(2,0,1),C(0,2,0),=(﹣2,﹣2,2),=(0,﹣2,1),=(﹣2,0,0),设平面MBC的法向量=(x,y,z),则,取y=1,得=(0,1,2),设直线D1B与平面MBC所成角为θ,则sinθ===.故直线D1B与平面MBC所成角的正弦值为.故答案为:.【点评】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.15.已知F1,F2分别是椭圆+=1(a>b>0)的左,右焦点,现以F2(1,0)为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M,N,若过F1的直线MF1是圆F2的切线,则椭圆的长轴长为 +1 .【分析】由题意画出图形,利用椭圆定义可得|MF1|=2a﹣1,则Rt△F1MF2中,由勾股定理求得a,则答案可求.【解答】解:如图,由题意可知,|MF2|=c=1,则|MF1|=2a﹣1,则Rt△F1MF2中,由勾股定理可得(2a﹣1)2+12=4,解得:a=.∴椭圆的长轴长为.故答案为:.【点评】本题考查椭圆的简单性质,考查数形结合的解题思想方法,是中档题.16.已知双曲线x2﹣=1(b>0)的左右焦点分别为F1,F2,过F2作直线l交双曲线的左支于点A,过F2作直线l的垂线交双曲线的左支于点B,若直线AB过F1,则△ABF2的内切圆圆心到F2的距离为 2 .【分析】设内切圆的圆心为I,由直线AF2和直线BF2垂直,运用内角平分线定可得ABF2为等腰直角三角形,运用勾股定理和三角形的等积法,可得半径r,即可得到所求距离.【解答】解:设内切圆的圆心为I,由直线AF2和直线BF2垂直,可得I在x轴上, ====1,可得三角形ABF2为等腰直角三角形,设|AF2|=m,则设|BF2|=m,|AB|=m,即有内切圆的半径r满足r•(4m﹣4)=m2,又m=2m﹣4,解得r=2,m=4+2,即有|IF2|=r=2,故答案为:2.【点评】本题考查双曲线的定义、方程和性质,注意定义法和内角平分线定理的运用,考查三角形的等积法和勾股定理的应用,考查运算能力,属于中档题.三、解答题(本题共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)已知椭圆的对称轴为坐标轴且焦点在x轴上,离心率e=,短轴长为4.(I)求椭圆的方程(Ⅱ)过椭圆的右焦点作一条斜率为2的直线与椭圆交于A,B两点,求AB的中点坐标及弦长|AB|.【分析】(Ⅰ)由已知, =,2b=4,由此能求出椭圆的标准方程.(Ⅱ)椭圆的右焦点为(1,0),直线AB方程为:y=2(x﹣1),由,得3x2﹣5x=0,由此能求出A(0,﹣2),B(),进而能求出|AB|.【解答】解:(Ⅰ)由已知, =,2b=4,∴b=2∵b2=a2﹣c2=5c2﹣c2=4c2=4,∴c2=1,a2=5,∴椭圆的标准方程为: +=1.……………………(4分)(Ⅱ)椭圆的右焦点为(1,0),∴直线AB方程为:y=2(x﹣1)…………………………设A(x1,y1),B(x2,y2),由,得3x2﹣5x=0,解得x1=0,x2=,…………………………(7分)设AB中点坐标为(x0,y0),则=,,所以AB的中点为(),…………………………(9分)∵A(0,﹣2),B(),∴|AB|==.…………………………(10分)【点评】本题考查椭圆方程的求法,考查弦长的求法,考查椭圆、直线方程、中点坐标公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.18.(12分)在三棱锥PABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)求二面角CEMN的正弦值.【分析】(1)取AB中点F,连接MF、NF,由已知可证MF∥平面BDE,NF∥平面BDE.得到平面MFN∥平面BDE,则MN∥平面BDE;(2)由PA⊥底面ABC,∠BAC=90°.可以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角CEMN的余弦值,进一步求得正弦值.【解答】(1)证明:取AB中点F,连接MF、NF,∵M为AD中点,∴MF∥BD,∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.∵N为BC中点,∴NF∥AC,又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.又MF∩NF=F.∴平面MFN∥平面BDE,则MN∥平面BDE;(2)解:∵PA⊥底面ABC,∠BAC=90°.∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E(0,2,2),则=(1,2,﹣1),=(0,2,1),设平面MEN的一个法向量为=(x,y,z),由,得,取z=2,得=(4,﹣1,2).由图可得平面CME的一个法向量为=(1,0,0).∴cos<,>==.∴二面角CEMN的余弦值为,则正弦值为.【点评】本题考查直线与平面平行的判定,考查了利用空间向量求解空间角,考查计算能力,是中档题.19.(12分)已知抛物线y2=﹣x与直线l:y=k(x+1)相交于A、B两点,点O为坐标原点.(1)求的值;(2)若△OAB的面积等于,求直线l的方程.【分析】(1)联立直线与抛物线方程,化为关于y的一元二次方程,由根与系数关系求出A,B两点的横纵坐标的和与积,直接运用数量积的坐标运算求解;(2)直接代入三角形面积公式求解即可【解答】解:(1)设,由题意可知:k≠0,∴,联立y2=﹣x得:ky2+y﹣k=0显然:△>0,∴,∴=(﹣y12)(﹣y22)+y1y2=(﹣1)2+1=0,(2)∵S△OAB=×1×|y1﹣y2|===,解得:k=±,∴直线l的方程为:2x+3y+2=0或2x﹣3y+2=0.【点评】本题考查了直线和圆锥曲线的关系,考查了平面向量数量积的坐标运算,训练了三角形面积的求法,是中档题.20.(12分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则:(Ⅰ)求双曲线C的渐进线方程.(Ⅱ)当a=1时,已知直线x﹣y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.【分析】(Ⅰ)由题意通过离心率推出c2=3a2,得到,然后求解双曲线的渐近线方程.(Ⅱ)当a=1时,双曲线C的方程为x2﹣.设A、B两点的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0),联立直线与双曲线方程,利用韦达定理,结合已知条件求解m即可.【解答】(本小题满分12分)解:(Ⅰ)由题意,得,∴c2=3a2∴b2=c2﹣a2=2a2,即∴所求双曲线C的渐进线方程………………(Ⅱ)由(1)得当a=1时,双曲线C的方程为x2﹣.……6分设A、B两点的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0),由,得x2﹣2mx﹣m2﹣2=0(判别式△>0),∴x0==m,y0=x0+m=2m,…………(10分)∵点M(x0,y0),在圆x2+y2=5上,∴m2+4m2=5,∴m=±1.……(12分)(本题学生用“点差法”也给分)【点评】本题考查圆锥曲线的综合应用,直线与双曲线的位置关系的应用,考查转化思想以及计算能力.21.(12分)已知抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点.(Ⅰ)若,求直线AB的斜率;(Ⅱ)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.【分析】(Ⅰ)依题意F(1,0),设直线AB方程为x=my+1.将直线AB的方程与抛物线的方程联立,得y2﹣4my﹣4=0.由此能够求出直线AB的斜率.(Ⅱ)由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于2S△AOB.由此能求出四边形OACB的面积最小值.【解答】(本小题满分13分)(Ⅰ)解:依题意F(1,0),设直线AB方程为x=my+1.…(1分)将直线AB的方程与抛物线的方程联立,消去x得y2﹣4my﹣4=0.…(3分)设A(x1,y1),B(x2,y2),所以y1+y2=4m,y1y2=﹣4.①…(4分)因为,所以y1=﹣2y2.②…联立①和②,消去y1,y2,得.…(6分)所以直线AB的斜率是.…(7分)(Ⅱ)解:由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于2S△AOB.…(9分)因为…(10分)=,…(12分)所以m=0时,四边形OACB的面积最小,最小值是4.…(13分)【点评】本题考查直线斜率的求法,考查四边形面积的最小值的求法,综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.22.(12分)已知动点M到定直线x=﹣4的距离是它到定点F1(﹣1,0)的距离的2倍.(Ⅰ)求动点M的轨迹方程.(Ⅱ)是否存在过点P(2,1)的直线l与动点M的轨迹相交于不同的两点A,B,满足•=?若存在,求出直线l的方程;若不存在,请说明理由.【分析】(Ⅰ)设M(x,y)(x>﹣4),由题意得==|x+4|=2+,由此能求出动点M的轨迹方程.(Ⅱ)设直线l的方程为y=k(x﹣2)+1,由,得(4k2+3)x2﹣8(2k2﹣k)x+8(2k2﹣2k﹣1)=0,利用根的判别式、韦达定理、向量的数量积,结合已知条件能求出存在直线l满足条件,其方程为x﹣2y=0.【解答】解:(Ⅰ)设M(x,y)(x>﹣4),由题意得==|x+4|=2+,…………………………(2分)整理得动点M的轨迹方程为: =1.…………………………(4分)(Ⅱ)假设存在符合题意的直线l,由题意知直线斜率存在,设直线l的方程为y=k(x﹣2)+1,由,消去y得(4k2+3)x2﹣8(2k2﹣k)x+8(2k2﹣2k﹣1)=0,由△=64(2k2﹣k)k2﹣32(4k2+3)(2k2﹣2k﹣1)>0,得6k+3>0,解得k>﹣,设A(x1,y1),B(x2,y2),则,x1x2=,…………………………(8分)由,得(x1﹣2)(x2﹣2)+(y1﹣1)(y2﹣1)=,则(x1﹣2)(x2﹣2)(k2+1)=,即[x1x2﹣2(x1+x2)+4](k2+1)=,所以[﹣+4](k2+1)=,整理得=,解得k=,…………………………(10分)又k>﹣,所以k=,故存在直线l满足条件,其方程为y=,即x﹣2y=0.…………………………(12分)【点评】本题考查动点的轨迹方程的求法,考查满足条件的直线方程是否存在的判断与求法,考查根的判别式、韦达定理、向量的数量积等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.。

高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试题本卷分Ⅰ(选择题)、Ⅱ卷(非选择题)两部分,其中Ⅰ卷1至2页,第二卷2至4页,共150分,考试时间120分钟。

第Ⅰ卷(选择题,共60分)一、单选题:本题共12个小题,每小题5分1.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.有下列四个命题:(1)“若,则,互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若(4)“若,则,则有实数解”的逆否命题;”的逆否命题.其中真命题为()A.(1)(2)B.(2)(3)C.(4)D.(1)(2)(3)3.若则为()A.等边三角形B.等腰直角三角形C.有一个内角为30°的直角三角形D.有一个内角为30°的等腰三角形4.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞)B.(-∞,3)C.(1,3)D.5.为的内角,,的对边分别为,,,若,,,则的面积A.B.C.D.6.已知中,,则等于()A.B.或C.D.或7.等差数列的前项和为,若,则等于()A.58B.54C.56D.528.已知等比数列中,,,则()A.2B.C.D.49.已知,则z=22x+y的最小值是A.1B.16C.8D.4)10.若关于的不等式的解集为,则的取值范围是(A.B.C.D.11.当a>0,关于代数式,下列说法正确的是()A.有最小值无最大值B.有最大值无最小值C.有最小值也有最大值D.无最小值也无最大值12.在△ABC中,AB=2,C=,则AC+BC的最大值为A.B.3C.4D.2第Ⅱ卷(非选择题,共90分)二、填空题:共4个小题,每小题5分,共20分13.命题的否定是______________.114.已知的三边长构成公差为 2 的等差数列,且最大角的正弦值为 ,则这个三角形的周长为________.15.已知数列{a n }的前 n 项和为 S n ,a 1=1,当 n≥2时,a n +2S n - =n ,则 S 2017的值____ ___16.已知变量满足约束条件 若目标函数 的最小值为2,则的最小值为__________.三、解答题:共 6 题,共 70 分,解答应写出必要的文字说明、证明过程或演算步骤。

河南省郑州市2018-2019学年高二上学期期中考试数学(理)试题Word版含答案

河南省郑州市2018-2019学年高二上学期期中考试数学(理)试题Word版含答案

河南省郑州市2018-2019学年高二上学期期中考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在ABC ∆中,2,4a b A π===,则角B = ( )A .6π B .6π或56π C .3πD .56π2. “20x x ><或” 是“11x<” 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .即不充分也不必要条件3. 已知正项数列 {}n a 中,()22212111,2,22n n n a a a a a n +-===+≥,则6a =( )A .16B .4C ..454. 命题“0,x R n N *∀∈∃∈,使得20n x >”的否定形式是( )A .0,x R n N *∀∈∃∈,使得20n x ≤B .,x R n N *∀∈∀∈使得,2n x ≤ C. 00,x R n N *∃∈∃∈,使得 200n x ≤ D .0,x R n N *∃∈∀∈,使得20n x ≤5. 《莱茵德纸草书》 是世界上最古老的数学著作之一,书中有这样的一道题: 把 120个面包分成 5份,使每份的面包数成等差数列,且较多的三份之和恰好是较少的两份之和的 7倍,则最少的那份面包个数为( )A .4B .3 C.2 D . 16. 已知数列n S 为等比数列{}n a 的前n 项和,8242,14S S ==, 则2016S = ( ) A .25222- B .25322- C.100822- D .201622-7. 设,a b 是非零实数, 若a b > ,则一定有 ( ) A .11a b < B .2a ab > C.2211ab a b > D .11a b a b->- 8. 设等差数列{}n a 的前n 项和 n S ,且满足201620170,0S S ><,对任意正整数n , 都有n k a a ≥,则 k 的值为 ( )A .1006B .1007 C.1008 D .1009 9. 若实数,x y 满足0xy >,则22x y x y x y+++的最大值为( ) A.2 B.24+ D.4-10. 若对于任意的[]1,0x ∈-,关于x 的不等式2320x ax b ++≤恒成立, 则222a b +-的最小值为( )A .15-B .54 C.45 D .1411. 在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若(),1cos cos ,23A b C c A b π=-==,则ABC ∆的面积为( )A.D12. 设{},min ,,a a b a b b a b≤⎧=⎨>⎩,若()2f x x px q =++的图象经过两点()(),0,,0αβ ,且存在正整数 n ,使得1n n αβ<<<+成立,则 ( )A .()(){}1min ,14f n f n +>B .()(){}1min ,14f n f n +< C.()(){}1min ,14f n f n += D .()(){}1min ,14f n f n +≥第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 若0,0,2a b a b ab >>+=,则3a b +的最小值为 __________. 14. 已知两个等差数列 {}n a 和{}n b 的前 n 项和分别为,n n S T ,若231n n S nT n =+,则 823746a ab b b b +=++ __________.15. 在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且2,3,4a b c ===,则s i n2s i n CA= _________. 16. 已知数列{}n a 的通项公式为3nn a =,记数列{}n a 的前n 项和为n T ,若对任意的3,362n n N T k n *⎛⎫∈+≥- ⎪⎝⎭恒成立, 则实数 k 的取值范围 _________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知命题12:,p x x 是方程210x mx --=的两个实根 ,且不等式21243a a x x +-≤-对任意的m R ∈恒成立;命题:q 不等式220x x a ++<有实数解. 若命题p q ∨为真,p q ∧为假, 求实数 a 的取值范围.18. (本小题满分12分)在等比数列{}n a 中,公比1q ≠,等差数列{}n b 满足11243133,,a b a b a b ====. (1)求数列{}n a 的{}n b 通项公式;(2)记n n n c a b =,求数列{}n c 的前n 项和n S .19.(本小题满分12分)某人上午7时, 乘摩托艇以匀速()/840vkm h v ≤≤从A 港出发到距100km 的B 港去, 然后乘汽车以匀速()/30100wkm h w ≤≤自B 港向距300km 的C 市驶去.应该在同一天下午4至9点到达C 市. 设乘坐汽车、 摩托艇去目的地所需要的时间分别是,xh yh .(1)作图表示满足上述条件的,x y 范围;(2)如果已知所需的经费()()1003528p x y =+-+-(元),那么,v w 分别是多少时p 最小? 此时需花费多少元?20. (本小题满分12分)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,()cos25cos 2B A C -+=. (1)求角B 的值;(2)若 1cos 7A =,ABC ∆的面积为求BC 边上的中线长. 21.(本小题满分12分)某城市响应城市绿化的号召, 计划建一个如图所示的三角形 ABC 形状的主题公园,其中一边利用现成的围墙BC , 长度为米, 另外两边,AB AC 使用某种新型材料围成, 已知120,,(,BAC AB x AC y x y ∠===单位均为米).(1)求 ,x y 满足的关系式(指出,x y 的取值范围);(2)在保证围成的是三角形公园的情况下,如何设计能使所用的新型材料总长度最短? 最短长度是多少?22. (本小题满分12分)设正项数列{}n a 的前n 项和n S ,且满足22n n n S a a =+.(1)求数列{}n a 的通项公式; (2)若数列1221n n n n n a a b a a ++++=+,数列{}n b 的前n 项和为n T ,求证:122n T n <+.河南省郑州市2018-2019学年高二上学期期中考试数学(理)试题参考答案一、选择题(每小题5分,共60分)1-5. ABBDC 6-10.BCDDA 11-12. DB 二、填空题(每小题5分,共20分)13. 7+914 15. 1- 16. 2,27⎡⎫+∞⎪⎢⎣⎭三、解答题17.解:若p 为真,不等式21243a a x x +-≤-对任意的 m R ∈恒成立,243a a +-m R ∈恒成立,2432a a +-≤,解得51a -≤≤,若q 为真,不等式220x x a ++<有解,2440a ∆=->,解得1a <,因为命题p q ∨为真,p q ∧ 为假,所以,p q , 一真一假.(1)p 真q 假,则51,11a a a -≤≤⎧∴=⎨≥⎩.(2)若p 假q 真,则51,51a a a a <->⎧∴<-⎨<⎩或,综上,a 的取值范围是{}|51a a a <-=或.18.解:(1)由已知得: 2234133,3,33,312a q a q b d b d ===+=+,即23333312q d q d=+⎧⎨=+⎩,解得2031d d q q ==⎧⎧⎨⎨==⎩⎩或 ( 舍) ,所以2d =,所以3,21nn n a b n ==+.19.解:(1)依题意得 100300525,,840,30100,310,22y x v w x y v w ==≤≤≤≤∴≤≤≤≤① 由于乘汽车、摩托艇所需的时间和x y +应在9至 14个小时之间,即914x y ≤+≤ ② 因此,满足①②的点(),x y 的存在范围是图中阴影部分(包括边界)(2)()()100352813132p x y x y =+-+-=--,上式表示斜率为32-的直线,当动直线13132p x y =--通过图中的阴影部分区域(包括边界),通过点A 时,p 值最小.由1410x y x +=⎧⎨=⎩得 104x y =⎧⎨=⎩,即当10,4x y ==时,p 最小. 此时,25,30,v w p ==的最小值为 93元. 20.解:(1)由条件知 22cos 15cos 2B B -+=,即22cos 5cos 30B B +-= ,解得 1cos 2B =或cos 3B =-(舍去)又0B π<<, 3B π∴=.(2)由于11cos ,sin sin 3572A A S bc A bc =∴===∴=. ①又由正弦定理得,sinsin 33b cA ππ=⎛⎫+ ⎪⎝⎭,又1sin sin cos ,5732214A A A b c π⎛⎫+=+=∴= ⎪⎝⎭, ② 由① ②知,7,5b c ==,由余弦定理得,8,a BC ==边上的中线AD ==21.解:(1)在ABC ∆中,由余弦定理,得222222cos ,2cos12030000AB AC AB AC A BC x y xy +-=∴+-=,即 2230000x y xy ++=,由正弦定理,得200,200sin ,060,0sin sin sin AB AC BC x C C x C B A ====∴=<<∴<<同理0y <<(2)要使所用的新型材料总长度最短只需x y +最小,由(1)知,()23000x y xy =+-,由于22x y xy +⎛⎫≤ ⎪⎝⎭,当且仅当x y =时,等号成立. 所以()()()()2222300044x y x y x y xy x y ++=+-≥+-=,所以200x y +≤,故当,AB AC 边长均为100米时,所用材料长度最短为 200米.22.解:(1)由题意可得221112,2n n n n n n S a a S a a ---=+=+, 两式相减得, 22112n n n n n a a a a a --=-++ ,所以22110n n n n a a a a -----=,即()()1110n n n n a a a a --+--=,又因为数列{}n a 为正项数列,所以11n n a a -+=.即数列{}n a 为等差数列,又1n =时,21112a a a =+,所以111,1n a a a n n ==+-=.(2)由(1)知1221n n n b n n ++=+++,又因为121111112212112n n n b n n n n n n ++=+=-++=+-++++++, 所以()12111111...22...2...233412n n T b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫=+++=++++-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦所以12111 (22222)n n T b b b n n n =+++=+-<++.。

江苏省苏州市2018-2019学年高二上学期期中考试数学试卷(含精品解析)

江苏省苏州市2018-2019学年高二上学期期中考试数学试卷(含精品解析)

2018-2019学年江苏省苏州市高二(上)期中数学试卷一、填空题(本大题共14小题,共70.0分)1.直线x+y+√3=0的倾斜角为______.2.在正方体ABCD-A1B1C1D1中,直线AD1与平面ABCD所成的角的大小为______.3.已知A(-1,-3),B(5,3),则以线段AB为直径的圆的方程为______.(写成标准方程)4.直线l经过点(1,1),且在两坐标轴上的截距相反,则直线l的方程是______.5.若直线l1:(m+3)x+4y+3m-5=0与l2:2x+(m+5)y-8=0平行,则m的值为______.6.经过圆x2+2x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是______.7.圆(x-2)2+(y-3)2=1关于直线x+y-1=0对称的圆的方程是______.8.正三棱锥P-ABC中,若底面边长为a,侧棱长为√2a,则该正三棱锥的高为______.9.已知m,n是两条不重合的直线,α,β是两个不重合的平面,给出下列命题:①若m⊂β,α∥β,则m∥α;②若m∥β,α∥β,则m∥α;③若m⊥α,β⊥α,m∥n,则n∥β;④若m⊥α,n⊥β,α∥β,则m∥n.其中正确的结论有______.(请将所有正确结论的序号都填上)10.设点A(-2,3),B(3,2)若直线ax+y+2=0与线段AB有公共点,则a的取值范围是______.11.有一根高为3π,底面半径为1的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为______(结果用π表示).12.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x+2y+1=0的两条切线,A,B为切点,C是圆心,那么四边形PACB面积的最小值为______.13.△ABC的一个顶点是A(3,-1),∠B,∠C的平分线分别是x=0,y=x,则直线BC的方程是______.14.已知定点M(0,2),N(-2,0),直线l:kx-y-3k+2=0(k为常数),对l上任意一点P,都有∠MPN为锐角,则k的取值范围是______.二、解答题(本大题共6小题,共80.0分)15.如图:在正方体ABCD-A1B1C1D1中,E为棱DD1的中点(1)求证:BD1∥平面AEC(2)求证:AC⊥BD1.16.设△ABC顶点坐标A(0,a),B(-√3a,0),C(√3a,0),其中a>0,圆M为△ABC的外接圆.(1)求圆M的方程(2)当a变化时,圆M是否过某一定点,请说明理由.17.如图,在三棱柱ABC-A1B1C1中,AB⊥BC,BC⊥BC1,AB=BC1,E,F分别为线段AC1,A1C1的中点.(1)求证:EF∥面BCC1B1;(2)求证:BE⊥平面AB1C1.18.已知直线l过点P(1,1),并与直线l1:x-y+3=0和l2:2x+y-6=0分别交于点A、B,若线段AB被点P平分.求:(1)直线l的方程;√5的圆的方程.(2)以O为圆心且被l截得的弦长为8519.已知等腰梯形PDCB中,PB=3,DC=1,PD=BC=√2,A为PB边上一点,且PA=1,将△PAD沿AD折起,使平面PAD⊥平面ABCD.(1)求证:平面PAD⊥平面PCD.(2)在线段PB上是否存在一点M,使截面AMC把几何体分成的两部分的体积之比为V多面体PDCMA:V三棱锥M-ACB=2:1?(3)在M满足(2)的条件下,判断PD是否平行于平面AMC.20.如图,在平面直角坐标系xOy中,已知点A(0,3)和直线l:y=2x-4,设圆C的半径为1,圆心在直线l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线.①求圆C的方程;②求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.答案和解析1.【答案】135°【解析】解:直线x+y+=0的斜率为-1;所以直线的倾斜角为135°.故答案为135°.求出直线的斜率,即可得到直线的倾斜角.本题考查直线的有关概念,直线的斜率与直线的倾斜角的关系,考查计算能力.2.【答案】45°【解析】解:∵正方体ABCD-A1B1C1D1中,∴D1D⊥平面ABCD,∴直线AD是直线AD1在平面ABCD内的射影,∴∠D1AD=α,就是直线AD1平面ABCD所成角,在直角三角形AD1AD中,AD1=D1D,∴∠D1AD=45°故答案为:45°在正方体ABCD-A1B1C1D1中,证明D1D⊥平面ABCD,则∠D1AD=α,就是直线AD1平面ABCD所成角,解直角三角形D1AD即可.考查直线和平面所成的角,求直线和平面所成的角关键是找到斜线在平面内的射影,把空间角转化为平面角求解,属基础题3.【答案】(x-2)2+y2=18【解析】解:∵A(-1,-3),B(5,3),则以线段AB为直径的圆的圆心C(2,0),半径为AC==3,故圆的方程为(x-2)2+y2=18,故答案为:为(x-2)2+y2=18.先根据条件求出圆心坐标和半径,可得线段AB为直径的圆的方程.本题主要考查求圆的方程的方法,关键是求出圆心坐标和半径,属于基础题.4.【答案】x-y=0【解析】解:当直线l经过原点时,直线l在两坐标轴上截距均等于0,故直线l的斜率为1,∴所求直线方程为y=x,即x-y=0.当直线l不过原点时,设其方程+=1,又l经过点(1,1),则可得-=0≠1,此时不存在,故所求直线l的方程为x-y=0.故答案为x-y=0当直线l经过原点时,直线l在两坐标轴上截距均等于0,所求直线方程为y=x,当直线l不过原点时,此时a不存在.本题主要考查用点斜式、截距式求直线的方程,体现了分类讨论的数学思想,属于基础题.5.【答案】-7【解析】解:∵直线l1:(m+3)x+4y+3m-5=0与l2:2x+(m+5)y-8=0平行,∴,解得m=-7.∴m的值为-7.故答案为:-7.由直线l1:(m+3)x+4y+3m-5=0与l2:2x+(m+5)y-8=0平行,能求出m的值.本题考查实数值的求法,考查直线与直线平行的性质等基础知识,考查运算求解能力,是基础题.6.【答案】x-y+1=0【解析】解:易知点C为(-1,0),而直线与x+y=0垂直,我们设待求的直线的方程为y=x+b,将点C的坐标代入马上就能求出参数b的值为b=1,故待求的直线的方程为x-y+1=0.故答案为:x-y+1=0.先求圆心,再求斜率,可求直线方程.明确直线垂直的判定,会求圆心坐标,再求方程,是一般解题思路.7.【答案】(x+2)2+(y+1)2=1【解析】解:(x-2)2+(y-3)2=1的圆心为(2,3),半径为1点(2,3)关于直线x+y-1=0对称的点为(-2,-1)∴圆(x-2)2+(y-3)2=1关于直线x+y-1=0对称的圆的圆心为(-2,-1),半径为1 即圆的方程为(x+2)2+(y+1)2=1故答案为:(x+2)2+(y+1)2=1先求出圆心和半径,然后根据对称性求出圆心关于直线x+y-1=0对称的圆的圆心,而圆对称形状不变,从而半径不变,即可求得圆的方程.本题主要考查了关于直线对称的圆的方程,同时考查了对称点的求解,属于基础题.8.【答案】√15a3【解析】解:如图,取BC中点D,连接AD,并取底面中心O,则O为AD的三等分点,且OA=,PA=,在Rt△POA中,求得OP=a,即该正三棱锥的高为,故答案为:.作出底面中心O,利用直角三角形POA容易求出高.此题考查了三棱锥高的求法,属容易题.9.【答案】①④【解析】解:①是正确命题,因为两个平面平行时,一个平面中的线与另一个平面一定没有公共点,故有线面平行;②不正确,因为一条直线平行于两个平行平面中的一个平面,则它与另一个平面的位置关系是平行或者在面内,故不正确;③不正确,因为由m⊥α,m∥n可得出n⊥α,再由β⊥α,可得n∥β或n⊂β,故不正确;④是正确命题,因为两个直线分别垂直于两个互相平行的平面,一定可以得出两线平行.综上,①④是正确命题故答案为①④本题研究空间中线面平行与线线平行的问题,根据相关的定理对四个命题进行探究,得出正误,即可得到答案,①②③由线面平行的条件判断,④由线线平行的条件判断,易得答案本题考查空间中直线与平面之间的位置关系,熟练掌握线面平行的方法与线线平行的方法是准确判断正误的关键,几何的学习,要先记牢定义与定理,再对应其几何特征进行理解培养出空间形象感知能力,方便做此类题 10.【答案】(-∞,-43]∪[52,+∞)【解析】解:∵直线ax+y+2=0恒过定点(0,-2),斜率为-a , 如图,,,∴若直线ax+y+2=0与线段AB 有交点, 则-a≥或-a≤-.即a≤-或a≥. 故答案为:(-∞,-]∪[,+∞). 由题意画出图形,数形结合得答案.本题考查了直线系方程的应用,考查了数形结合的解题思想方法,是基础题. 11.【答案】5π【解析】解:∵圆柱型铁管的高为3π,底面半径为1,又∵铁丝在铁管上缠绕2圈,且铁丝的两个端点落在圆柱的同一母线的两端,则我们可以得到将圆柱面展开后得到的平面图形如下图示:其中每一个小矩形的宽为圆柱的周长2πcm,高为圆柱的高3π,则大矩形的对称线即为铁丝的长度最小值.此时铁丝的长度最小值为:=5π故答案为:5π.本题考查的知识点是圆柱的结构特征,数形结合思想、转化思想在空间问题中的应用,由圆柱型铁管的高为3π,底面半径为1,铁丝在铁管上缠绕2圈,且铁丝的两个端点落在圆柱的同一母线的两端,则我们可以得到将圆柱面展开后得到的平面图形,然后根据平面上求两点间距离最小值的办法,即可求解.解答本题的关键是要把空间问题转化为平面问题,另外使用数形结合的思想用图形将满足题目的几何体表示出来,能更加直观的分析问题,进而得到答案.12.【答案】2√65【解析】解:如图,直线3x+4y+8=0与圆x2+y2-2x+2y+1=0相离,化圆x2+y2-2x+2y+1=0为(x-1)2+(y+1)2=1,圆心坐标为C(1,-1),半径为1.连接CA,CB,则CA⊥PA,CB⊥PB,则四边形PACB的面积等于两个全等直角三角形PAC与PBC的面积和.∵AC 是半径,为定值1,要使三角形PAC 的面积最小,则PC 最小, |PC|=,∴|PA|=.∴四边形PACB 面积的最小值为2×.故答案为:.由题意画出图形,可知要使四边形PACB 面积最小,则P 为过圆心作直线3x+4y+8=0的垂线得垂足,由点到直线的距离公式求得PC ,再由勾股定理得弦长,代入三角形面积公式得答案.本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法,属于中档题.13.【答案】2x -y +5=0【解析】解:∵∠B 、∠C 的平分线分别是x=0,y=x ,∴AB 与BC 对于x=0对称,AC 与BC 对于y=x 对称. ∴A (3,-1)关于x=0的对称点A'(-3,-1)在直线BC 上, A 关于y=x 的对称点A''(-1,3)也在直线BC 上. 代入两点式方程可得,故所求直线BC 的方程:2x-y+5=0. 故答案为:2x-y+5=0分析题意,求出A 关于x=0,y=x ,的对称点的坐标,都在直线BC 上,利用两点式方程求解即可.本题考查点关于直线对称点的求法,直线方程的求法,属中档题.14.【答案】(-∞,4−√3014)∪(4+√3014,+∞) 【解析】解:由于对于l 上任意一点P ,∠MPN 恒为锐角,故以MN 为直径的圆与直线l :kx-y-3k+2=0相离.而MN的中点,即圆心为H(-1,1),则点H到直线l:kx-y-3k+2=0的距离大于半径MN=,即>,即(1-4k)2>2(1+k2),解得k<,或 k>,故答案为:(-∞,)∪(,+∞)由题意可得,以MN为直径的圆与直线l:kx-y-2k+2=0相离,故圆心H(-1,1)到直线l:kx-y-3k+2=0的距离大于半径,即>,由此解得k 的范围.本题主要考查点到直线的距离公式,直线和圆的位置关系,绝对值不等式的解法,体现了转化的数学思想,属于中档题.15.【答案】证明:(1)连接BD交AC于F,连EF.因为F为正方形ABCD对角线的交点,所长F为AC、BD的中点.在DD1B中,E、F分别为DD1、DB的中点,所以EF∥D1B.又EF⊂平面EAC,所以BD1∥平面EAC.(2)由正方形的性质可得AC⊥BD又由正方体的几何特征可得:D1D⊥平面ABCD又∵AC⊂平面ABCD∴AC⊥D1D又∵D1D∩BD=D∴AC⊥平面D1DB∵BD1⊂平面D1DB∴AC⊥BD1【解析】(1)欲证BD1∥平面EAC,只需在平面EAC内找一条直线BD1与平行,根据中位线定理可知EF∥D1B,满足线面平行的判定定理所需条件,即可得到结论;(2)根据正方形的性质及正方体的几何特征,结合线面垂直的性质,可得AC⊥BD,AC⊥D1D,由线面垂直的判定定理可得AC⊥平面D1DB,再由线面垂直的性质即可得到AC⊥BD1本题考查的知识点是直线与平面平行的判定,直线与平面垂直的判定,直线与平面垂直的性质,熟练掌握空间线线,线面垂直及平行的判定定理,性质定理及几何特征是解答此类问题的关键.16.【答案】解:(1)△ABC是等腰三角形,对称轴为x=0.外接圆的圆心肯定在x=0上.作AC的中垂线,垂足为D,交y轴于M,M即为外接圆的圆心.AC=a.因为A(0,a),C(√3a,0),故∠MAC=60°,AD=12△AMD又是一个∠MAD=60°的直角三角形.故AM=2a.所以,点M的坐标为(0,-a),圆的半径r=MA=MB=MC=2a.故圆M的方程为:x2+(y+a)2=4a2(a>0).(2)假设圆M过某一定点(x,y).那么当a变化时,圆M仍然过点(x,y),此点不会随着a的变化而变化.那么,现在令a变成了b,即a≠b.有x2+(y+b)2=4b2,两式相减化简得:(2y+a+b)(a-b)=4(a+b)(a-b).因为a≠b,即a-b≠0,所以,2y+a+b=4(a+b).得:y=3(a+b).2得出,y是一个根据a和b取值而变化的量.与我们之前假设的y是一个不随a变化而变化的定量矛盾,所以,圆M不过定点.【解析】(1)确定圆心与半径,即可求圆M的方程(2)利用反证法进行判断.本题考查圆的方程,考查反证法,考查学生分析解决问题的能力,属于中档题.17.【答案】解:(1)∵E,F分别为线段AC1,A1C1的中点.∴EF是三角形AA1C1的中位线,∴EF∥AA1,又AA1∥BB1,∴EF∥BB1,∵EF⊄面BCC1B1,BB1⊂面BCC1B1,∴EF∥面BCC1B1.(2)∵AB⊥BC,BC⊥BC1,∴BC⊥面ABC1,∴BC⊥BE,同时BC∥B1C1,∵AB=BC1,E是线段AC1的中点.∴BC⊥AC1,∵AC1∩B1C1=C1,∴BE⊥平面AB1C1【解析】(1)根据线面平行的判定定理,证明EF∥BB1;从而证明EF∥面BCC1B1;(2)根据线面垂直的判定定理证明BE⊥平面AB1C1.本题主要考查空间直线和平面平行和垂直的判定,要求熟练掌握线面平行和垂直的判定定理.并能灵活应用.18.【答案】解:(1)依题意可设A (m ,n )、B (2-m ,2-n ),则{2(2−m)+(2−n)−6=0m−n+3=0,即{2m +n =0m−n=−3,解得m =-1,n =2.即A (-1,2),又l 过点P (1,1),用两点式求得AB 方程为y−12−1=x−1−1−1,即:x +2y -3=0. (2)圆心(0,0)到直线l 的距离d =|0+0−3|√1+4=3√5,设圆的半径为R ,则由R 2=d 2+(4√55)2, 求得R 2=5,故所求圆的方程为x 2+y 2=5.【解析】(1)依题意可设A (m ,n )、B (2-m ,2-n ),分别代入直线l 1 和l 2的方程,求出m=-1,n=2,用两点式求直线的方程.(2)先求出圆心(0,0)到直线l 的距离d ,设圆的半径为R ,则由,求得R 的值,即可求出圆的方程.本题主要考查直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,用两点式求直线的方程,属于中档题.19.【答案】解:(1)因为PDCB 为等腰梯形,PB =3,DC =1,PA =1,则PA ⊥AD ,CD ⊥AD .又因为面PAD ⊥面ABCD ,面PAD ∩面ABCD =AD ,CD ⊂面ABCD ,故CD ⊥面PAD .又因为CD ⊂面PCD ,所以平面PAD ⊥平面PCD . (2)所求的点M 即为线段PB 的中点,证明如下: 设三棱锥M -ACB 的高为h 1,四棱锥P -ABCD 的高为h 2当M 为线段PB 的中点时,ℎ1ℎ2=MB PB =12.所以V M−ACBVp−ABCD=13S MCB ℎ113S ABCD ℎ2=13所以截面AMC 把几何体分成的两部分V PDCMA :V M -ACB =2:1.(3)当M 为线段PB 的中点时,直线PD 与面AMC 不平行.证明如下:(反证法)假设PD ∥面AMC ,连接DB 交AC 于点O ,连接MO . 因为PD ⊂面PDB ,且面AMC ∩面PBD =MO ,所以PD ∥MO . 因为M 为线段PB 的中点时,则O 为线段BD 的中点,即DOOB =11. 面AB ∥DC ,故DOOB =DCAB =12,故矛盾.所以假设不成立,故当M 为线段PB 的中点时,直线PD 与平面AMC 不平行. 【解析】(1)证明平面与平面垂直是要证明CD ⊥面PAD ;(2)已知V 多面体PDCMA :V 三棱锥M-ACB 体积之比为2:1,求出V M-ACB :V P-ABCD 体积之比,从而得出两多面体高之比,从而确定M 点位置.(3)利用反证法证明当M 为线段PB 的中点时,直线PD 与平面AMC 不平行. 本题主要考查面面垂直的判定定理、多面体体积、线面平行判定以及反证法的应用,属于中等难度题.20.【答案】解:(1)由{y =x −1y=2x−4得圆心C 为(3,2),∵圆C 的半径为1,∴圆C 的方程为:(x -3)2+(y -2)2=1,显然切线的斜率一定存在,设所求圆C 的切线方程为y =kx +3,即kx -y +3=0, ∴√k 2+1=1∴|3k +1|=√k 2+1,∴2k (4k +3)=0∴k =0或者k =−34,∴所求圆C 的切线方程为:y =3或者y =−34x +3.即y =3或者3x +4y -12=0.(2)∵圆C 的圆心在在直线l :y =2x -4上, 所以,设圆心C 为(a ,2a -4),则圆C 的方程为:(x -a )2+[y -(2a -4)]2=1, 又∵MA =2MO ,∴设M 为(x ,y )则√x 2+(y −3)2=2√x 2+y 2整理得:x 2+(y +1)2=4设为圆D , ∴点M 应该既在圆C 上又在圆D 上 即:圆C 和圆D 有交点,∴1≤CD ≤3,∴|2−1|≤√a 2+[(2a −4)−(−1)]2≤|2+1|, 由5a 2-12a +8≥0得a ∈R , 由5a 2-12a ≤0得0≤a ≤125,综上所述,a 的取值范围为:[0,125]. 【解析】(1)求出圆心C 为(3,2),圆C 的半径为1,得到圆的方程,切线的斜率一定存在,设所求圆C 的切线方程为y=kx+3,即kx-y+3=0,利用圆心到直线的距离等于半径,求解k 即可得到切线方程.(2)设圆心C 为(a ,2a-4),圆C 的方程为:(x-a )2+[y-(2a-4)]2=1,设M 为(x ,y )列出方程得到圆D的方程,通过圆C和圆D有交点,得到1≤CD≤3,转化求解a的取值范围.本题考查直线与圆的方程的综合应用,圆心切线方程的求法,考查转化思想以及计算能力.。

四川省成都市电子科技大学实验中学2018-2019学年高二上学期期中理科数学试题

四川省成都市电子科技大学实验中学2018-2019学年高二上学期期中理科数学试题

四川省成都市电子科技大学实验中学2018-2019学年高二上学期期中理科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在空间直角坐标系中,点B 是(1,2,3)A 在yOz 坐标平面内的射影,O 为坐标原点,则||OB 等于( ) ABC.D2.双曲线()222210,0x y a b a b-=>>的一条渐近线方程为34y x =,则双曲线的离心率为( ). A .54B .43C .53D .453.已知椭圆2222C :1(0)x y a b a b+=>>的离心率为12,且椭圆C 的长轴长与焦距之和为6,则椭圆C 的标准方程为( )A .2241256x y +=B .22142x y +=C .2212x y +=D .22143x y +=4.设x ,y 满足约束条件360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,则目标函数32z x y =-+的最小值为()A .4B .2-C .6-D .8-5.双曲线221916x y -=上一点M 到左焦点1F 的距离为7,N 是1MF 的中点,则||ON =( ) A .132B .4C .132或4 D .132或12 6.下列四个命题,其中说法正确的是( ) A .若p q ∧是假命题,则p q ∨也是假命题B .命题“若x ,y 都是偶数,则x y +也是偶数”的逆命题为真命题C .“2340x x --=”是“4x =”的必要不充分条件D .命题“若2340x x --=,则4x =”的否命题是“若4x ≠,则2340x x --≠”7.已知点P 是以1F 、2F 为焦点的椭圆()222210x y a b a b +=>>上一点,若12PF PF ⊥,21tan 2PF F ∠=,则椭圆的离心率e =( )A .3B .13C .23D .128.两个圆C 1:x 2+y 2+2ax +a 2-4=0(a∈R)与C 2:x 2+y 2-2by -1+b 2=0(b∈R)恰有三条公切线,则ab 的最大值为( ) A .5B .92C .4D .329.已知圆()()22:1225C x y -+-=及直线()()():21174l m x m y m m R +++=+∈,则直线l 过的定点及直线与圆相交得的最短弦长分别为( ).A .()3,1,B .()2,1,C .()3,1-,D .()2,1-,10.过点()引直线l 与曲线y =A ,B 两点,O 为坐标原点,当OA OB ⊥值时,直线l 的斜率等于( ).A .3B .-C .3±D11.已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且1223F PF π∠=,则椭圆和双曲线的离心率之积的范围是( )A .(1)+∞,B .(0)1,C .D .)+∞12.设双曲线2222:1x y C a b-=(0,0a b >>)的左右焦点分别为12,F F ,以12,F F 为直径的圆与双曲线左支的一个交点为P ,若以1OF (O 为坐标原点)为直径的圆与2PF 相切,则双曲线C 的离心率为( )A B .34-+ C D .37+二、填空题13.设x ,y 满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则221y x ++的最大值是______.14.已知点P 在抛物线28x y =上,点(2,4)A -,F 是焦点,则||||PF PA +的最小值为_____________.15.已知圆C 的方程22100x y x +-=,求与y 轴相切且与圆C 外切的动圆圆心P 的轨迹方程______.16.设双曲线()222210,0x y a b a b-=>>的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于A 、B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若(),OP OA OB λμλμ=+∈R ,18λμ=,则该双曲线的离心率为______.三、解答题17.已知命题:2214x y k k +=-表示焦点在x 轴上的椭圆,命题:22131k x k y -+-=()()表示双曲线.若或为真,且为假,求k 的取值范围.18.某公司计划2011年在甲、乙两个电视台做总时间不超过300分钟的广告,广告费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.假定甲、乙两个电视台为该公司每分钟所做的广告,能给公司带来的收益分别为0.3 万元和0.2万元.问:该公司如何分配在甲、乙两个电视台的广告时间,才能使公司收益最大,最大收益是多少万元?19.在平面直角坐标系xOy 中,已知圆O :224x y +=和点(1,1)P -,过点P 的直线l 交圆O 于A B 、两点(1)若||AB =,求直线l 的方程; (2)设弦AB 的中点为M ,求点M 的轨迹方程20.已知抛物线2:2(03)C y px p =<<的焦点为F ,点(,Q m 在抛物线C 上,且||3QF =.(1)求抛物线C 的标准方程及实数m 的值;(2)直线l 过抛物线C 的焦点F ,且与抛物线C 交于,A B 两点,若AOB (O 为坐标原点)的面积为4,求直线l 的方程.21.已知椭圆()2222:10x y E a b a b+=>>的焦距为点()0,2P 关于直线y x =-的对称点在椭圆E 上.(1)求椭圆E 的方程.(2)如图,过点P 的直线l 与椭圆E 交于两个不同的点C ,D (点C 在点D 的上方),试求COD △面积的最大值.22.P (x 0,y 0)(x 0≠±a )是双曲线E :22221x y a b-=(a >0,b >0)上一点,M ,N 分别是双曲线E 的左,右顶点,直线PM ,PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A ,B 两点,O 为坐标原点,C 为双曲线上一点,满足OC OA OB λ=+,求λ的值.参考答案1.B 【详解】试题分析:因为点B 是()1,2,3A 在yOz 坐标平面内的射影,所以(0,2,3)B ,OB ∴==B .考点:空间中两点间的距离公式. 2.A 【分析】 由渐近线方程可知34b a ,根据,,a bc 的关系直接求离心率. 【详解】因为由渐近线方程得34ba,22916b a =,222916c a a -=, 得222516c a =,54c a =. 所以双曲线的离心率为54. 故选:A. 3.D 【分析】根据椭圆的离心率为12,椭圆的长轴长与焦距之和为6,结合性质222a b c =+ ,列出关于a 、b 、c 的方程组,求出a 、b ,即可得结果.【详解】依题意椭圆C :22221(0)x y a b a b+=>>的离心率为12得12c a =,椭圆C 的长轴长与焦距之和为6,226a c +=,解得2a =,1c =,则b =所以椭圆C 的标准方程为:22143x y +=,故选D .【点睛】本题考查椭圆的简单性质与椭圆方程的求法,属于简单题.用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程()222210x y a b a b +=>>或22221x y b a+=()0a b >>;③找关系:根据已知条件,建立关于a 、b 、c 的方程组;④得方程:解方程组,将解代入所设方程,即为所求. 4.C 【分析】画出约束条件表示的平面区域,结合图形找出最优解,从而求出目标函数的最小值. 【详解】画出约束条件360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩表示的平面区域,如图所示;由32z x y =-+得3122y x z =+,平移直线3122y x z =+,由图象可知当直线3122y x z =+经过点A 时,直线的截距最小,此时z 最小;由3600x y y --=⎧=⎨⎩,解得()2,0A ,此时3206min z =-⨯+=-,32z x y ∴=-+的最小值为6-.故选C . 【点睛】本题考查了简单的线性规划的应用问题,是基础题. 5.A 【解析】由题意,左焦点坐标为(−5,0),右顶点坐标为(3,0),由于点M 到左焦点的距离为7,故点M 只能在左支上,点M 到右焦点的距离为23713⨯+=,根据中位线定理可得:132ON = 故选A 6.C 【解析】对于A. 若p q ∧是假命题,则p q ,至少有一个为假命题,但当p q ,一真一假时p q ∨也是真命题,A 不正确;对于B. 命题“若x ,y 都是偶数,则x y +也是偶数”的逆命题为:“若x y +都是偶数,则x y ,也是偶数”真命题,易知两个奇数的和也是偶函数,B 不正确;对于C. 由2340x x --=,得4x =或1x =-,所以“2340x x --=”是“4x =”的必要不充分条件正确;对于D. 命题“若2340x x --=,则4x =”的否命题是“若2340x x --≠,则4x ≠”,D 不正确. 故选C. 7.A 【分析】作出图形,利用椭圆的定义以及21tan 2PF F ∠=,可求得143a PF =,223aPF =,结合勾股定理可求得椭圆离心率e 的值. 【详解】点P 是以1F 、2F 为焦点的椭圆()222210x y a b a b+=>>上一点,12PF PF ⊥,1212tan 2PF PF F PF ∠==,122PF PF ∴=, 122PF PF a +=,可得143a PF =,223a PF =, 由勾股定理可得2221212PF PF F F +=,即222049a c =,2259c a ∴=,因此,该椭圆的离心率为3e =. 故选:A. 【点睛】本题考查椭圆离心率的计算,考查椭圆定义的应用,考查计算能力,属于中等题. 8.B 【解析】圆C 1:x 2+y 2+2ax+a 2﹣4=0的标准方程为(x+a )2+y 2=4;圆C 2:x 2+y 2﹣2bx ﹣1+b 2=0的标准方程为x 2+(y ﹣b )2=1∵两圆外切,=3,∵a 2+b 2≥2ab,∴ab 92≤ , 故选C . 9.A 【分析】由直线方程有()4270x y m x y +-++-=,进而确定定点,由过定点的直线l 与圆交点的最短弦为圆心与定点连线与l 垂直时所得到的弦,应用几何法求最短弦长即可. 【详解】(1)将直线化为直线系方程:()4270x y m x y +-++-=. 联立方程40x y +-=与270x y +-=,得点()3,1; 将点()3,1代入直线方程,不论m 为何值时都满足方程, ∴直线l 恒过点()3,1;(2)当直线l 垂直于圆心(1,2)与定点()3,1所在直线时弦长最短,斜率为2,代入方程得34m =-,此时直线l 方程为250x y --=,所以最短弦为故选:A.【点睛】关键点点睛:由直线方程的特征知直线过定点,再由过定点直线与圆相交的最短弦为该直线与圆心与定点连线垂直时的弦. 10.A 【分析】方法一:利用AOB 的面积,求点到直线的距离,再求直线的斜率;方法二:设直线方程0kx y -+=,利用点到直线的距离求弦长以及面积,利用三角形的面积取得最大值时,求直线的斜率.. 【详解】方法一:根据三角形的面积公式和圆的弦的性质求解.由于y =()2210x y y +=≥,直线l 与()2210x y y +=≥交于AB 两点,如图所示,11sin 22ACB S AOB =∠≤△,且当90AOB ∠=︒时,AOBS取得最大值,此时AB =,点O 到直线l ,则30OCB ∠=︒,所以直线l 的斜角为30°,则斜率为3.方法二:由y ,得()2210x y y +=≥.所以曲线y =x 轴上方的部分(含与x 轴的交点),设直线l 的斜率为k ,要保证直线l 与曲线有两个交点,且直线不与x 轴重合, 则01k <<,直线l的方程为(0y k x -=+,即0kx y -+=. 则原点O 到l的距离d =,l 被半圆截得的半弦长为=则ABO S ==△==令211t k =+,则ABO S =△, 当3t 4=,即21314k =+时,ABO S 有最大值为12. 此时由21314k =+,解得3k =故选:A【点睛】思路点睛:本题考查直线与圆的位置关系,本题第一种方程,重点是分析几何关系,即点到直线的距离后就可知道斜率,第二种方程,重点是由条件可知当OA OB ⊥时,此时AOB 的面积最小,即用斜率k 表示面积,求最值,得到直线的斜率.11.A【解析】设椭圆方程中的定长为12a ,双曲线方程中的定长为22a ,由题意可得:12112222PF PF a PF PF a ⎧+=⎪⎨-=⎪⎩,解得:112212PF a a PF a a ⎧=+⎪⎨=-⎪⎩, 在12PF F △中应用余弦定理有:()()()()22212121212242cos3c a a a a a a a a π=++-++-, 整理可得:2221234a a c +=,则:2212314e e +=, 结合()()120,1,1,e e ∈∈+∞取特殊值进行排除:取12e e ==此时12e e =,排除BD 选项,取12e e ==此时12e e =排除C 选项, 本题选择A 选项.12.D【解析】试题分析:解:设以1OF (O 为坐标原点)为直径的圆与2PF 相切于点K ,圆心为点M ,1PF m = ,2PF n = ,由题意可知:2222222{4n m am n c c a b -=+==+,解得:{m a a = ,设21PF F α∠=,则tan m n α==, 在2Rt MKF中可得:2tan KM KF α==,据此可得:22c b -= ,整理可得:(()422291890c a c a -++= ,则:(()4291890e e -++= ,分解因式有:(()229910e e ⎡⎤--⨯-=⎣⎦, 双曲线的离心率1e ≠,故:(2990e --= ,解得:22e == ,双曲线的离心率:e ==本题选择D 选项.点睛:在双曲线的几何性质中,涉及较多的为离心率和渐近线方程.求双曲线离心率或离心率范围的两种方法:一种是直接建立e 的关系式求e 或e 的范围;另一种是建立,,a b c 的齐次关系式,将b 用,a c 表示,令两边同除以a 或2a 化为e 的关系式,进而求解.13.10【分析】画出不等式组表示的平面区域,数形结合即可求出.【详解】 约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,对应的平面区域如下图所示:由于221211y y x x ++=⨯++, 其中11y x ++表示的几何意义,表示平面上一定点()1,1Q --与可行域内任一点(),P x y 连线斜率,由图易得当P 为点()0,4A 时,11y x ++取得最大值5, 从而221y x ++的最大值10. 故答案为:10.【点睛】方法点睛:线性规划常见类型,(1)y b z x a-=-可看作是可行域内的点到点(),a b 的斜率; (2)z ax by =+,可看作直线a z y x b b =-+的截距问题; (3)()()22z x a y b =-+-可看作可行域内的点到点(),a b 的距离的平方. 14.6【分析】先判确定点A 在抛物线的内部,利用抛物线的定义将PF PA +的最值问题转化成d PA +的最值问题(其中d 为点P 到抛物线的准线距离),结合图形可知d PA +的最小值.【详解】因为()2284-<⨯,所以点A 在抛物线内部.如图,过点P ,A 分别作准线l 的垂线,垂足分别为Q ,B ,则PF PQ =,易知当A ,P ,Q 三点共线时,PF PA +最小,即AB .易得点A 到准线l 的距离为()44262p ⎛⎫--=--= ⎪⎝⎭. 故PF PA +的最小值为6.【点睛】与抛物线上的点到焦点的距离有关的最值问题,一般都是利用抛物线的定义,将到准线距离转化为到准线的距离,然后通过数形结合直接判断出取最值时所满足的条件,这样就能避免繁琐的代数运算.15.()2200y x x =>或()00y x =< 【分析】可得当动圆在y 轴右侧,轨迹为抛物线,当动圆在y 轴左侧,轨迹是x 负半轴,即可得出轨迹方程.【详解】方程22100x y x +-=化为()22525x y -+=,若动圆在y 轴右侧,则动圆圆心到定点()5,0与到定直线5x =-的距离相等,其轨迹是抛物线,方程为()2200y x x =>, 若动圆在y 轴左侧,则动圆圆心轨迹是x 负半轴,方程为()00y x =<,综上,动圆圆心P 轨迹方程是()2200y x x =>或()00y x =<. 故答案为:()2200y x x =>或()00y x =<. 【点睛】本题考查抛物线的轨迹方程,解题的关键是通过已知结合抛物线的定义得出轨迹为抛物线.16【分析】先由题中得到双曲线的渐近线方程,设焦点(),0F c ,根据题中条件,求出A 、B 、P 的坐标,根据向量的坐标表示,求出λ,μ;利用18λμ=,得出,,a b c 之间关系,进而可得离心率.【详解】 双曲线的渐近线为:b y x a=±, 设焦点(),0F c ,因为过点F 作与x 轴垂直的直线l 交两渐近线于A 、B 两点,且与双曲线在第一象限的交点为P , 则,bc A c a ⎛⎫ ⎪⎝⎭,, bc B c a ⎛-⎫ ⎪⎝⎭,2, b c aP ⎛⎫ ⎪⎝⎭, 因为OP OA OB λμ=+,所以()()2, ,bc c a b c aλμλμ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭, 所以1λμ+=,b c λμ-=,解得:2c b c λ+=,2c b cμ-=, 又由18λμ=,得:222148c b c -=,即()2222148c c a c --=,则2212a c =,所以22e =,则e =.【点睛】关键点点睛:求解本题的关键在于根据条件先得到A 、B 、P 三点的坐标,根据(),OP OA OB λμλμ=+∈R ,以及18λμ=,利用向量的坐标表示,以及双曲线的性质,即可求解.17.12k <≤或.【解析】试题分析:先分析每个命题为真命题时,k 的取值范围,p 真时有40k k >->即24k <<,q 真时有即13k <<;由p 或q 为真,p 且q 为假可知命题p 与q 一真一假,由“p 真q 假”和“p 假q 真”分别求出k 的取值范围,再求并集即可.试题解析:当p 正确时,40k k >->,即 24k <<;当q 正确时,,即 13k <<;由题设,若p 和q 有且只有一个正确,则(1)p 正确q 不正确,∴24{13k k k <<≤≥或 ∴;(2)q 正确p 不正确,∴24{13k k k ≤><<或 ∴12k <≤; ∴综上所述,若p 和q 有且仅有一个正确,k 的取值范围是12k <≤或. 考点:1.逻辑联结词与命题;2.椭圆的标准方程;3.双曲线的标准方程.18.甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大是70万元.【详解】设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元,由题意得300{5002009000000.x y x y x y +≤+≤≥≥,,,目标函数为30002000z x y =+.二元一次不等式组等价于300{5290000.x y x y x y +≤+≤≥≥,,,作出二元一次不等式组所表示的平面区域,即可行域.如图:作直线:300020000l x y +=,即320x y +=.平移直线l ,从图中可知,当直线l 过M 点时,目标函数取得最大值.联立300{52900.x y x y ,+=+=解得100200x y ==,. ∴点M 的坐标为(100200),. max 30002000700000z x y ∴=+=(元)答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.19.(1)1x =-或1y =;(2)220x y x y ++-=【分析】(1)考虑直线l 的斜率存在和不存在两种情况:斜率不存在时直接通过点的坐标计算弦长判断是否满足即可;斜率存在时,利用半径、半弦长、圆心到到直线距离构成勾股定理求解直线方程;(2)设(),M x y ,利用向量数量积的坐标运算表示OM MP ⊥,由此可求得关于,x y 的等式,即为M 的轨迹方程.【详解】(1)当l 的斜率不存在时,则:1l x =-,此时y =AB =满足, 当l 的斜率存在时,设():11l y k x =++,因为2R =,2AB =1=,,解得0k =,所以:1l y =,综上:l 的方程为1x =-或1y =;(2)设(),M x y ,因为OM MP ⊥且()(),,1,1OM x y MP x y ==---,所以0OM MP ⋅=,所以220x x y y ++-=,所以M 的轨迹方程为220x y x y ++-=.【点睛】(1)圆的问题中,已知弦长求解直线方程时要注意到直线的斜率不存在这种特殊情况; (2)求解轨迹方程的两种思路:<1>借助曲线的定义去求解轨迹方程;<2>根据题意找到等量关系,列出等式并化简得到关于,x y 的最简等式即为轨迹方程.20.(1) 24y x =,2m =(2) 1x =-.【详解】试题分析:(1)由抛物线的定义及点N 的纵坐标为1,得|NF|,结合|NF|=2,求出p 的值,即可求抛物线C 的方程;(2)设直线l 的方程为:y=kx+1,代入抛物线方程,利用弦长公式求出|AB|,再求出O 到AB 的距离,利用△AOB 的面积为4,求出k 的值,即可求直线l 的方程.试题解析:(Ⅰ)因为抛物线C 过点(Q m ,28pm ∴= 又因为3QF =, 32p m +=, 03p <<,解得:2,2p m ==24y x ∴=,2m =;(Ⅱ)24y x =的焦点()1,0F ,设所求的直线方程为:1x my =+由214x my y x=+⎧⎨=⎩,消去x 得:2440y my --= 因为直线l 与抛物线C 交于,A B 两点,216160m ∴∆=+>,设()()1122,,,A x y B x y ,121244y y m y y +=⎧⎨=-⎩,12y y -== 所以AOB的面积为12142OF y y =⨯-==, 解得:23,m m =∴=l 的方程为:1x =-.21.(1)2214x y +=;(2)1. 【分析】(1)根据椭圆的焦距为c =()0,2P 关于直线y x =-的对称点在椭圆E 上,得到()2,0-在椭圆E 上,进而得到a 即可.(2)设过点()0,2P 的直线方程为2y mx =+,与椭圆方程联立,求得弦长CD 以及点O 到直线CD 的距离,代入面积公式求解. 【详解】(1)因为椭圆()2222:10x y E a b a b+=>>的焦距为2c ∴=c =()0,2P 关于直线y x =-的对称点在椭圆E 上,()2,0∴-在椭圆E 上,2a ∴=,2221b a c ∴=-=,2214x y ∴+=. (2)设过点()0,2P 的直线方程为2y mx =+,联立方程组可得22214y mx x y =+⎧⎪⎨+=⎪⎩, 消y 可得()221416120m x mx +++=,2430m =->△,设(),C C C x y ,(),y D D D x ,21614C D m x x m ∴+=-+,21214C D x x m =+,CD ∴== ∴点O 到直线CD 的距离d =142COD S CD d ∴=⋅=△, 设214m t +=,则4t >,COD S ∴===△ 当8t =时,取得最大值,即为1.【点睛】方法点睛:圆锥曲线中的三角形最值问题的求法:一般由直线与曲线联立求得弦长及相应点的直线的距离,得到含参数的△OMN 的面积的表达式,再应用基本不等式或函数法求最值. 22.(1)e =;(2)λ=0或λ=-4. 【分析】(1) 由点()00()P x y x a ≠±,在双曲线上,2200221x y a b -=,利用000015y y x a x a ⋅=-+化简得到答案.(2)联立方程根据韦达定理得到1221252354c x x b x x ⎧+=⎪⎪⎨⎪=⎪⎩,设()33,OC x y OC OA OB λ==+,代入数本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

广西贵港市2018-2019学年高二七校联考期中数学试题(解析版)

广西贵港市2018-2019学年高二七校联考期中数学试题(解析版)

2018-2019学年广西贵港市七校联考高二(上)期中数学试卷一、选择题(本大题共12小题,共60.0分)1.椭圆2x 2+3y 2=6的焦距是( )A. 2B. C. D. 2(3‒2)252(3+2)2.某校1000名学生中,O 型血有400人,A 型血有250人,B 型血有250人,AB 型血有100人,为了研究血型与性格的关系,按照分层抽样的方法从中抽取样本.如果从A 型血中抽取了10人,则从AB 型血中应当抽取的人数为( )A. 4B. 5C. 6D. 73.甲、乙两位同学在5次考试中的数学成绩用茎叶图表示如图,中间一列的数字表示数学成绩的十位数字,两边的数字表示数学成绩的个位数字.若甲、乙两人的平均成绩分别是、,则下列说法正确的是( )x 甲x 乙A. ,甲比乙成绩稳定 B. ,乙比甲成绩稳定x 甲<x 乙x 甲<x 乙C. ,甲比乙成绩稳定D. ,乙比甲成绩稳定x 甲>x 乙x 甲>x 乙4.命题:“∃x ∈R ,2sin x ≥1”的否定是( )A. ,B. ,∃x ∈R 2sinx <1∀x ∈R 2sinx ≥1C. ,D. ,∃x ∈R 2sinx ≤1∀x ∈R 2sinx <15.下列四个命题:①“等边三角形的三个内角均为60°”的逆命题②“全等三角形的面积相等”的否命题③“若k >0,则方程x 2+2x -k =0有实根”的逆否命题④“若ab ≠0,则a ≠0”的否命题其中真命题的个数是( )A. 0个B. 1个C. 2个D. 3个6.已知α,β为第一象限的两个角,则“α>β”是“sinα>sinβ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7.已知F 1(-1,0),F 2(1,0)是椭圆的两个焦点,过F 1的直线l 交椭圆于M ,N 两点,若△MF 2N 的周长为8,则椭圆的标准方程为( )A.B.C.D.x 24+y 23=1y 24+x 23=1x 216+y 215=1y 216+x 215=18.已知函数f (x )=log 2x ,若在[1,4]上随机取一个实数x 0,则使得f (x 0)≥1成立的概率为( )A.B.C.D.131223349.现从某单位200名职工中用系统抽样抽取40名职工作样本进行体格检查,将全体职工按1-200随机编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号).若第五组抽出的号码是22,则第8组抽出的号码应是( )A. 32B. 36C. 37D. 5210.如表是某厂1~4月份用水量(单位:百吨)的一组数据.由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是=-0.7x +a ,则a =( )∧y 月份x 1234用水量y4.5432.5A. B. C. D. 10.5 5.15 5.2 5.2511.某程序框图如图所示,该程序运行后输出S 的值是( )A. 126B. 105C. 91D. 6612.从椭圆上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是x 2a2+y 2b 2=1(a >b >0)椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( )A. B. C. D. 24122232二、填空题(本大题共4小题,共20.0分)13.从{1,2,3,4}中随机选一个数a ,从{1,2}中随机选一个数b ,则a >b 的概率等于______.14.方程+=1表示焦点在x 轴上的椭圆,则实数m 的取值范围为______.x 216‒m y 2m +415.用秦九韶算法求多项式f (x )=x 4+2x 3-3x 2+x +5求x =2的值时,v 3的值为______.16.设命题p :,命题q :x 2-(2a +1)x +a (a +1)≤0,若p 是q 的充分不必要条件,则实数a 的取值范围2x ‒1x ‒1<0是______.三、解答题(本大题共6小题,共70.0分)17.某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.(1)问各班被抽取的学生人数各为多少人?(2)求平均成绩;(3)在抽取的所有学生中,任取一名学生,求分数不小于90分的概率.18.已知命题p :(x +1)(x -5)≤0,命题q :1-m ≤x <1+m (m >0).(1)若p 是q 的充分条件,求实数m 的取值范围;(2)若m =5,“p ∨q ”为真命题,“p ∧q ”为假命题,求实数x 的取值范围.19.已知椭圆C :+=1(a >b >0)的一个长轴顶点为A (2,0),离心率为y =k (x -1)与椭圆C 交于x 2a 2y 2b 222不同的两点M ,N ,(Ⅰ)求椭圆C 的方程;(Ⅱ)当△AMN 的面积为时,求k 的值.10320.某研究性学习小组对春季昼夜温差大小与某种花卉种子发芽多少间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:日期3月1日3月2日3月3日3月4日3月5日温差x 101113128发芽数y (颗)2325302616该学习小组确定的研究方案是:先从这样5组数据中选取3组求线性回归方程,剩下的2组数据用于回归方程的检验.(1)请根据3月2日至3月4日的数据,求出y 关于x 的回归方程;(2)若由线性回归方程得到的估计数据与所选的验证数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的.试问(1)所得的线性回归方程是否可靠?(=,=-)∧b ∑ni =1x i y i ‒nx ⋅y∑n i =1x 2i ‒nx 2∧a y ∧bx 21.某中学组织了一次高二文科学生数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.(Ⅰ)若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?(Ⅱ)在(Ⅰ)中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.222.已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线x-y+2=0的距离为3.(1)求椭圆的方程;(2)设椭圆与直线y=kx+m(k≠0)相交于不同的两点M、N.当|AM|=|AN|时,求m的取值范围.答案和解析1.【答案】A【解析】解:椭圆2x2+3y2=6可化为,∴c==1,∴椭圆2x2+3y2=6的焦距是2c=2,故选:A.把椭圆的方程化为标准形式,求出a、b、c的值,可得焦距2c的值.本题考查椭圆的标准方程以及椭圆的简单性质的应用,属于基础题.2.【答案】A【解析】解:∵A型血有250人从A型血中抽取了10人∴每个个体被抽到的概率是p=∵AB型血有100人,∴AB型血的人要抽取100×=4故选:A.根据A型血的人数和A型血所抽取的人数,得到在抽样过程中每个个体被抽到的概率,利用这个概率乘以AB血型的人数,得到要抽取得人数.本题考查分层抽样,本题解题的关键是在抽样过程中每个个体被抽到的概率相等,这种题目在高考题中会出现,是一个基础题.3.【答案】B【解析】解:由题意可知甲的成绩为:72,77,78,86,92,乙的成绩为:78,88,88,90,91,∴=(72+77+78+86+92)=81,=(78+88+88+90+91)=87,=[(72-81)2+(77-81)2+(78-81)2+(86-81)2+(92-81)2]≈7.94,=[(78-87)2+(88-87)2+(88-87)2+(90-87)2+(91-87)2]≈5.20,∴<,且<,乙比甲成绩稳定.故选:B.由茎叶图可得原式数据,可得各自的平均值和方差,比较可得结论.本题考查茎叶图,考查平均值和方差,属基础题.4.【答案】D【解析】解:∵“存在性命题”的否定一定是“全称命题”,∴命题:“∃x∈R,2sinx≥1”的否定是:∀x∈R,2sinx<1.故选:D.存在性命题”的否定一定是“全称命题”.本题考查命题的否定,命题的否定即命题的对立面.“全称量词”与“存在量词”正好构成了意义相反的表述.如“对所有的…都成立”与“至少有一个…不成立”;“都是”与“不都是”等,所以“全称命题”的否定一定是“存在性命题”,“存在性命题”的否定一定是“全称命题”.5.【答案】C【解析】解:对于①,“等边三角形的三个内角均为60°”的逆命题为“三个内角均为60°的三角形是等边三角形”,故①正确;对于②,“全等三角形的面积相等”的否命题为“不全等三角形的面积不相等”,故②错;对于③,“若k>0,则方程x2+2x-k=0有实根”是真命题,其逆否命题一定是真命题,故③正确;对于④,“若ab≠0,则a≠0”的否命题为:“若ab=0,则a=0”,故④错;故选:C.①,“等边三角形的三个内角均为60°”的逆命题为“三个内角均为60°的三角形是等边三角形”;②,“全等三角形的面积相等”的否命题为“不全等三角形的面积不相等“;③,“若k>0,则方程x2+2x-k=0有实根”是真命题,其逆否命题一定是真命题;④,“若ab≠0,则a≠0”的否命题为:“若ab=0,则a=0”.本题考查了命题真假的判定,涉及到了三角函数的基础知识,属于中档题.6.【答案】D【解析】解:∵角α,β的终边在第一象限,∴当α=+2π,β=,满足α>β,但sinα=sinβ,则sinα>sinβ不成立,即充分性不成立,若当α=,β=+2π,满足sinα>sinβ,但α>β不成立,即必要性不成立,故“α>β”是“sinα>sinβ”的既不必要也不充分条件,故选:D.根据三件函数的定义和关系式,结合充分条件和必要条件的定义进行判断.本题主要考查充分条件和必要条件的判断,比较基础.7.【答案】A【解析】【分析】本题主要考查椭圆的定义及标准方程的求解,属于基础题.由题意可知△MF2N的周长为4a,从而可求a的值,进一步可求b的值,则椭圆方程可求.【解答】解:由题意,4a=8,∴a=2,∵F1(-1,0)、F2(1,0)是椭圆的两焦点,∴b2=3,∴椭圆方程为:.故选A.8.【答案】C【解析】解:本题属于几何概型解不等式log2x≥1,可得x≥2,∴在区间[1,4]上随机取一实数x,该实数x满足不等式1≤log2x的概率为=.故选:C.解不等式log2x≥1,可得x≥2,以长度为测度,即可求在区间[1,4]上随机取一实数x,该实数x满足不等式1≤log2x的概率.本题考查几何概型,解题的关键是解不等式,确定其测度.9.【答案】C【解析】解:根据系统抽样的定义和方法,若第五组抽出的号码是22,分组的间距为5,则第6组抽出的号码应是27,则第7组抽出的号码应是32,则第8组抽出的号码应是37,故选:C.根据系统抽样的定义和方法,根据五组抽出的号码是22,分组的间距为5,从而求得第8组抽出的号码.本题主要考查系统抽样的定义和方法,根据五组抽出的号码是22,分组的间距为5,从而求得第8组抽出的号码,属于基础题.10.【答案】D【解析】解:=(1+2+3+4)=2.5,=(4.5+4+3+2.5)=3.5,将(2.5,3.5)代入线性回归直线方程是:=-0.7x+a,可得3.5=-1.75+a,故a=5.25,故选:D.首先求出x,y的平均数,根据所给的线性回归方程知道b的值,根据样本中心点满足线性回归方程,把样本中心点代入,得到关于a的一元一次方程,解方程即可.本题考查回归分析,考查样本中心点满足回归直线的方程,考查求一组数据的平均数,是一个运算量比较小的题目,并且题目所用的原理不复杂,是一个好题.11.【答案】B【解析】解:第1次循环得到S=-1,n=2,第2次循环得到S=-1+4,n=3,第3次循环得到S=-1+4-9,n=4,…由框图知,当n=15时输出结果,此时S=-1+4-9+16-…+142∵-1+4-9+16-…+142=3+7+11+15+…+27=105故选:B.先写出前三次循环的结果,得出当n=15时输出结果,此时S=-1+4-9+16-…+142,利用分组求和的方法求出值.本题考查求循环结构中输出的结果,常参与写出前几次循环的结果找规律,考查数列求和的方法;分组求和.12.【答案】C【解析】解:依题意,设P(-c,y0)(y0>0),则+=1,∴y0=,∴P(-c,),又A(a,0),B(0,b),AB∥OP,∴k AB=k OP,即==,∴b=c.设该椭圆的离心率为e,则e2====,∴椭圆的离心率e=.故选:C.依题意,可求得点P的坐标P(-c,),由AB∥OP⇒k AB=k OP⇒b=c,从而可得答案.本题考查椭圆的简单性质,求得点P的坐标(-c,)是关键,考查分析与运算能力,属于中档题.13.【答案】5 8【解析】解:从{1,2,3,4}中随机选一个数a,从{1,2}中随机选一个数b,基本事件总数n=4×2=8,a>b包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),共5个,a>b的概率p=.故答案为:.基本事件总数n=4×2=8,a>b包含的基本事件有5个,由此能求出a>b的概率.本题考查概率的求法,考查列举法等基础知识,考查运算求解能力,是基础题.14.【答案】-4<m<6【解析】解:∵方程+=1表示焦点在x 轴上的椭圆,∴,解得-4<m <6.故答案为:-4<m <6.由题意可得关于m 的不等式组,求解得答案.本题考查椭圆的标准方程,考查椭圆的简单性质,是基础题.15.【答案】11【解析】解:∵f (x )=(((x+2)x-3)x+1)x+5,∴v 0=1,v 1=1×2+2=4,v 2=4×2-3=5v 3=5×2+1=11故答案为:11先把f (x )=a n x n +a n-1x n-1+a n-2x n-2+…+a 1x+a 0化为f (x )=(…(a n x+a n-1)x+a n-2)x+…+a 1)x+a 0, 然后按照v 0=a n ,v 1=v 0x+a n-1,v 2=v 1x+a n-2,v 3=v 2x+a n-3,…,v n =v n-1x+a 0进行计算.本题考查了秦九韶算法,属中档题.16.【答案】[0,]12【解析】解:由,得(2x-1)(x-1)<0,解得,所以p :.由x 2-(2a+1)x+a (a+1)≤0得[x-(a+1)](x-a )≤0,即a≤x≤a+1,即q :a≤x≤a+1,要使p 是q 的充分不必要条件,则,解得所以a 的取值范围是[0,], 故答案为:[0,].先求出命题p ,q 的等价条件,利用p 是q 的充分不必要条件,确定实数a 的取值范围.本题主要考查充分条件和必要条件的应用,利用分数不等式和一元二次不等式的解法求出对应的解是解决本题的关键.17.【答案】解:(1)由频率分布条形图知,抽取的学生总数为=100(人);50.05∵各班被抽取的学生人数成等差数列,设其公差为d ,由4×22+6d =100,解得d =2;∴各班被抽取的学生人数分别是22人,24人,26人,28人;…(4分)(2)样本数据的平均数是75×0.05+85×0.20+95×0.35+105×0.25+115×0.10+125×0.05=98,∴平均成绩为98; …(8分)(3)在抽取的学生中,任取一名学生,分数不小于90(分)的概率为0.35+0.25+0.1+0.05=0.75. …(12分)【解析】(1)根据频率分布图,求出抽取的学生总数,由等差数列的知识,求出各班被抽取的学生数;(2)求出样本数据的平均数即可;(3)求出分数不小于90(分)的频率即可.本题考查了频率分布直方图的应用问题,解题时应利用图中数据进行有关的计算,是基础题.18.【答案】解:(1)由命题p :(x +1)(x -5)≤0,化为-1≤x ≤5.命题q :1-m ≤x <1+m (m >0).∵p 是q 的充分条件,∴[-1,5]⊆[1-m ,1+m ),∴,解得m >4.{1‒m ≤‒15<1+m 则实数m 的取值范围为(4,+∞).(2)∵m =5,∴命题q :-4≤x <6.∵“p ∨q ”为真命题,“p ∧q ”为假命题,∴命题p ,q 为一真一假.当p 真q 假时,可得,解得x ∈∅.{‒1≤x ≤5x <‒4或x ≥6当q 真p 假时,可得,解得-4≤x <-1或5<x <6.{x <‒1或x >5‒4≤x <6因此x 的取值范围是[-4,-1)∪(5,6).【解析】(1)由于p 是q 的充分条件,可得[-1,5]⊆[1-m ,1+m ),解出即可;(2)由于“p ∨q”为真命题,“p ∧q”为假命题,可得命题p ,q 为一真一假.即可即可.本题考查了简易逻辑的有关知识、不等式的解法,属于中档题.19.【答案】解:(Ⅰ)∵椭圆一个顶点为A (2,0),离心率为,22∴{a =2c a=22a 2=b 2+c 2∴b =2∴椭圆C 的方程为;x 24+y 22=1(Ⅱ)直线y =k (x -1)与椭圆C 联立,消元可得(1+2k 2)x 2-4k 2x +2k 2-4=0{y =k(x ‒1)x 24+y 22=1设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=,4k 21+2k 2x 1x 2=2k 2‒41+2k 2∴|MN |==1+k 2×(x 1+x 2)2‒4x 1x 22(1+k 2)(4+6k 2)1+2k 2∵A (2,0)到直线y =k (x -1)的距离为d =|k|1+k 2∴△AMN 的面积S =12|MN|d =|k|4+6k 21+2k 2∵△AMN 的面积为103∴|k|4+6k 21+2k 2=103∴k =±1.【解析】(Ⅰ)根据椭圆一个顶点为A (2,0),离心率为,可建立方程组,从而可求椭圆C 的方程;(Ⅱ)直线y=k (x-1)与椭圆C 联立,消元可得(1+2k 2)x 2-4k 2x+2k 2-4=0,从而可求|MN|,A (2,0)到直线y=k (x-1)的距离,利用△AMN 的面积为,可求k 的值.本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查三角形面积的计算,解题的关键是正确求出|MN|.20.【答案】解:(1)由题意得:=12,=27,x y由公式==,^b ∑n i =1x i y i ‒nx ⋅y ∑n i =1x 2i ‒nx 252∴=-=-3,^a y ^b x 故回归方程是:=x -3;^y 52(2)x =10时,=22,|22-23|<2,^y 同理x =8时,=17,|17-16|<2,^y ∴所得线性回归方程是可靠的.【解析】(1)求出x ,y 的平均数,求出系数,,求出回归方程即可;(2)代入相应的x 的值,检验即可.本题考查了回归方程问题,考查函数代入求值,是一道常规题.21.【答案】解:(Ⅰ)由题意可得,男生优秀人数为100×(0.01+0.02)×10=30人,女生优秀人数为100×(0.015+0.03)×10=45人.(Ⅱ)因为样本容量与总体中的个体数的比是,530+45=115所以样本中包含男生人数为人,女生人数为人,30×115=245×115=3设两名男生为A 1,A 2,三名女生为B 1,B 2,B 3,则从5人中任意选取2人构成的所有基本事件为:{A 1,A 2},{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{B 1,B 2},{B 1,B 3},{B 2,B 3}共10个,每个样本被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件C :“选取的2人中至少有一名男生”,则事件C 包含的基本事件有:{A 1,A 2},{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3}共7个,所以,即选取的2人中至少有一名男生的概率为.P(C)=710710【解析】(Ⅰ)根据频率分布直方图求出男、女生优秀人数即可;(Ⅱ)求出样本中的男生和女生的人数,求出所有的基本事件以及满足条件的基本事件的个数,从而求出满足条件的概率即可.本题考查了频率分布问题,考查条件概率问题,是一道中档题.22.【答案】解:(1)依题意可设椭圆方程为,x 2a 2+y 2=1则右焦点F ()由题设a 2‒1,0|a 2‒1+22|2=3解得a 2=3故所求椭圆的方程为;x 23+y 2=1(2)设P 为弦MN 的中点,由{y =kx +m x 23+y 2=1得(3k 2+1)x 2+6mkx +3(m 2-1)=0由于直线与椭圆有两个交点,∴△>0,即m 2<3k 2+1①∴从而x p =x M +x N 2=‒3mk 3k 2+1y p =kx p +m =m 3k 2+1∴又|AM |=|AN |,∴AP ⊥MN ,k Ap =y p +1x p =‒m +3k 2+13mk 则即2m =3k 2+1②‒m +3k 2+13mk =‒1k 把②代入①得2m >m 2解得0<m <2由②得解得.k 2=2m ‒13>0m >12故所求m的取范围是().12,2【解析】(1)依题意可设椭圆方程为,由题设解得a 2=3,故所求椭圆的方程为.(2)设P 为弦MN 的中点,由得(3k 2+1)x 2+6mkx+3(m 2-1)=0,由于直线与椭圆有两个交点,∴△>0,即m 2<3k 2+1.由此可推导出m 的取值范围.本题考查直线与椭圆的位置关系,解题时要认真审题,仔细解答.。

山西省太原市2018-2019学年高二上学期期中考试数学试卷(含精品解析)

山西省太原市2018-2019学年高二上学期期中考试数学试卷(含精品解析)

2018-2019学年山西省太原市高二(上)期中数学试卷一、选择题(本大题共12小题,共36.0分)1. 在空间直角坐标系Oxyz 中,点A (1,2,3)关于yOz 平面对称的点的坐标为( )A. (−1,2,3)B. (1,−2,3)C. (1,2,−3)D. (−1,−2,−3) 2. 由下列主体建筑物抽象得出的空间几何体中为旋转体的是( )A.B.C.D.3. 已知A (0,1),B (0,-1),则直线AB 的倾斜角为( )A. 0∘B. 90∘C. 180∘D. 不存在 4. 下列四面体中,直线EF 与MN 可能平行的是( )A.B.C.D.5. 已知点A (2,3)在直线11:2x +ay -1=0上,若l 2∥l 1,则直线l 2的斜率为( )A. 2B. −2C. 12D. −126. 设a ,b ,c 为三条不同的直线,α,β,γ为三个不同的平面,则下列纳论成立的是( )A. 若a ⊥b 且b ⊥c ,则a//cB. 若α⊥β且β⊥γ,则α//γC. 若a ⊥α且a//b ,则b ⊥αD. 若α⊥β且a//α,则a ⊥β7. 已知圆C 的一条直径的端点坐标分别是(4,1)和(-2,3),则圆C 的方程是( )A. (x +1)2+(y +2)2=10B. (x −1)2+(y −2)2=40C. (x −1)2+(y −2)2=10D. (x +1)2+(y +2)2=408. 一个长方体由同一顶点出发的三条棱的长度分别为2,2,3,则其外接球的表面积为( )A. 68πB. 17πC. 28πD. 7π9. 已知x ,y 满足不等式组{x −y +1≥02x −y −1≤0x +y +1≥0,则z =5x +2y 的最大值为( )A. 12B. 16C. 18D. 2010. 直线ax +y +a =0与直线x +ay +a =0在同一坐标系中的图象可能是( )A. B.C. D.11.如图,在正方体ABCD-A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,给出下面结论:①直线A1H与该正方体各棱所成角相等;②直线A1H与该正方体各面所成角相等;③过直线A1H的平面截该正方体所得截面为平行四边形;④垂直于直线A1H的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为()A. ①③B. ②④C. ①②④D. ①②③12.一条光线从点P(-2,4)射出,经直线x-y+2=0反射后与圆x2+y2+4x+3=0相切,则反射光线所在直线的方程是()A. x+√15y−2=0B. √15x+y−2=0C. x−√15y−2=0 D. √15x−y−2=0二、填空题(本大题共4小题,共16.0分)13.已知点A(3,-3),B(0,2),则线段AB的中点坐标是______.14.已知直线l1:x-2y=1,l2:mx+(3-m)y+1.若l1⊥l2,则实数m=______.15.某三棱锥的三视图如图所示,图中三个三角形均为直角三角形,则x2+y2=______.16.△ABC中,∠C=90°,∠A=60°,AB=2,M为AB中点,将△BMC沿CM折叠,当平面BMC⊥平面AMC时,A,B两点之间的距离为______.三、解答题(本大题共7小题,共68.0分)17.已知△ABC的三个顶点的坐标是A(1,1),B(2,3),C(3,-2).(1)求BC边所在直线的方程;(2)求△ABC的面积.18.已知正方体ABCD-A1B1C1D1.(1)求证:AD1∥平面C1BD;(2)求证:AD1⊥平面A1DC.19.已知圆C的方程为x2+y2-4tx-2ty+5t2-4=0(t>0).(1)设O为坐标原点求直线OC的方程;(2)设直线y=x+1与圆C交于A,B两点,若|AB|=2√2,求实数t的值.20.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为矩形,且AD=2AB=√3PA=2,AE⊥PD,垂足为E.(1)求PD与平面ABCD所成角的大小;(2)求三棱锥P-ABE的休积.21.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=BC,AD=DC,E为棱PC上不与点C重合的点.(1)求证:平面BED⊥平而PAC;(2)若PA=AC=2,BD=4√3,且二面角E-BD-C的平面角为45°,求三棱锥P-BED3的体积.22.已知圆C1:(x-1)2+(y+5)2=50,圆C2:(x+1)2+(y+1)2=10.(1)证明圆C1与圆C2相交;(2)若圆C3经过圆C1与圆C2的交点以及坐标原点,求圆C3的方程.23.已知圆C1:x2+y2+2x-4y+1=0,圆C2:x2+y2-4x-5=0.(1)试判断圆C1与圆C2是否相交,若相交,求两圆公共弦所在直线的方程,若不相交,说明理由;(2)若直线y=kx+1与圆C1交于A,B两点,且OA⊥OB,求实数k的值.答案和解析1.【答案】A【解析】解:在空间直角坐标系Oxyz中,点A(1,2,3)关于yOz平面对称的点的坐标为(-1,2,3).故选:A.根据关于yOz平面对称,x值变为相反数,其它不变这一结论直接写结论即可.本题考查空间向量的坐标的概念,考查空间点的对称点的坐标的求法,属于基础题.2.【答案】B【解析】解:在A中,主体建筑物抽象得出的空间几何体不为旋转体,故A错误;在B中,主体建筑物抽象得出的空间几何体为旋转体,故B正确;在C中,主体建筑物抽象得出的空间几何体不为旋转体,故C错误;在D中,主体建筑物抽象得出的空间几何体不为旋转体,故D错误.故选:B.利用旋转体的定义、性质直接求解.本题考查旋转体的判断,考查旋转体的定义及性质等基础知识,考查运算求解能力,是基础题.3.【答案】B【解析】解:∵直线经过A(0,1),B(0,-1)两点,∴直线AB的斜率不存在,∴直线AB的倾斜角90°.故选:B.由直线经过A(0,1),B(0,-1)两点,直线AB的斜率不存在,从而能求出直线AB的倾斜角.本题考查直线的倾斜角的求法,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.4.【答案】C【解析】解:根据过平面内一点和平面外一点的直线,与平面内不过该点的直线异面,可判定A,B中EF,MN异面;D中,若EF∥MN,则过EF的平面与底面相交,EF就跟交线平行,则过点N有两条直线与EF 平行,不可能;故选:C.利用异面直线判定定理可确定A,B错误;利用线面平行的性质定理和过直线外一点有且仅有一条直线与已知直线平行,可判定D错误.此题考查了异面直线的判定方法,线面平行的性质等,难度不大.5.【答案】A【解析】解:∵点A(2,3)在直线11:2x+ay-1=0上,∴2×2+3a-1=0,解得a=-1,∴直线l1:2x-y-1=0,∵l2∥l1,∴直线l2的斜率k=2.故选:A.由点A(2,3)在直线11:2x+ay-1=0上,求出直线l1:2x-y-1=0,再由l2∥l1,能示出直线l2的斜率.本题考查直线的斜率的求法,考查直线与直线平行的性质等基础知识,考查运算求解能力,是基础题.6.【答案】C【解析】解:由a,b,c为三条不同的直线,α,β,γ为三个不同的平面,知:在A中,若a⊥b且b⊥c,则a与c相交、平行或异面,故A错误;在B中,若α⊥β且β⊥γ,则α与γ相交或平行,故B错误;在C中,若a⊥α且a∥b,则由线面垂直的判定定理得b⊥α,故C正确;在D中,若α⊥β且a∥α,则a与β相交、平行或a⊂β,故D错误.故选:C.在A中,a与c相交、平行或异面;在B中,α与γ相交或平行;在C中,由线面垂直的判定定理得b⊥α;在D中,a与β相交、平行或a⊂β.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.7.【答案】C【解析】解:圆C的一条直径的端点坐标分别是(4,1)和(-2,3),故利用中点公式求得圆心为(1,2),半径为=,故圆的方程为(x-1)2+(y-2)2=10,故选:C.利用中点公式求得圆心坐标,再求出半径,可得圆C的方程.本题主要考查求圆的方程的方法,关键是求出圆心和半径,属于基础题.8.【答案】B【解析】解:长方体的外接球直径即为长方体的体对角线,由题意,体对角线长为:=,外接球的半径R=,=17π,故选:B.利用长方体的外接圆直径为体对角线,容易得解.此题考查了长方体的外接球面积,属容易题.9.【答案】B【解析】解:作出x,y满足不等式组对应的平面区域,由z=5x+2y,得y=x+z,平移直线y=x+z,由图象可知当直线y=x+z,经过点B时,直线y=x+z的截距最大,此时z最大.由,得A(2,3),此时z的最大值为z=5×2+2×3=16,故选:B.作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.10.【答案】D【解析】解:直线ax+y+a=0与直线x+ay+a=0不可能平行,故B错误;当a>0时,直线ax+y+a=0是减函数,直线x+ay+a=0是减函数,故A和C都错误;当a<0时,直线ax+y+a=0是增函数,与y轴交于正半轴,直线x+ay+a=0是增函数,与y轴交于负半轴,故A,B,C和D都错误.综上,正确答案是a>0,直线ax+y+a=0与直线x+ay+a=0在同一坐标系中的图象可能是D.故选:D.根据a的符号,分类讨论,利用数形结合思想和排除法能求出结果.本题考查函数图象的判断,考查直线的图象与性质等基础知识,考查运算求解能力,是基础题.11.【答案】D【解析】解:如图,在正方体ABCD-A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,连接A1C,可得A1C⊥AB1,A1C⊥AD1,即有A1C⊥平面AB1D1,直线A1H与直线A1C重合,直线A1H与该正方体各棱所成角相等,均为arctan,故①正确;直线A1H与该正方体各面所成角相等,均为arctan,故②正确;过直线A1H的平面截该正方体所得截面为A1ACC1为平行四边形,故③正确;垂直于直线A1H的平面与平面AB1D1平行,截该正方体,所得截面为三角形或六边形,不可能为五边形.故④错误.故选:D.由A1C⊥平面AB1D1,直线A1H与直线A1C重合,结合线线角和线面角的定义,可判断①②;由四边形A1ACC1为矩形,可判断③;由垂直于直线A1H的平面与平面AB1D1平行,可判断④.本题考查线线角和线面角的求法,以及正方体的截面的形状,考查数形结合思想和空间想象能力,属于中档题.12.【答案】A【解析】解:点P(-2,4)关于直线x-y+2=0的对称点为Q(2,0),设反射光线所在直线方程为:y=k(x-2),即kx-y-2k=0,依题意得:=1,解得:k=±,依题意舍去k=故反射线所在直线方程为:x+y-2=0,故选:A.根据光学性质,点P(-2,4)关于直线x-y+2=0对称的点在反射线所在直线上,设出所求直线方程,然后用点到直线的距离等于半径,求出斜率,舍去正值即可.本题考查了直线与圆的位置关系.属中档题.13.【答案】(32,−12)【解析】解:设A、B的中点为P(x0,y0),由A(3,-3)、B(0,2),再由中点坐标公式得:,.∴线段AB的中点坐标为().故答案为:().直接利用中点坐标公式求解.本题考查了中点坐标公式,是基础题.14.【答案】2【解析】解:∵直线l1:x-2y=1,l2:mx+(3-m)y+1.l1⊥l2,∴1×m+-2×(3-m)=0,解得m=2.故答案为:2.利用直线与直线垂直的性质直接求解.本题考查实数值的求法,考查直线与直线垂直的性质等基础知识,考查运算求解能力,是基础题.15.【答案】34【解析】解:由三视图还原原几何体如图,该几何体为三棱锥,侧棱PA⊥底面ABC,底面三角形ABC是以∠ABC为直角的直角三角形.则x2+y2=x2+PA2+AD2=(PA2+AB2)+AD2=52+32=34.故答案为:34.由三视图还原原几何体,该几何体为三棱锥,侧棱PA⊥底面ABC,底面三角形ABC是以∠ABC为直角的直角三角形,然后利用勾股定理转化求解.本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.16.【答案】√102【解析】解:取MC中点O,连结AO,BO,∵△ABC中,∠C=90°,∠A=60°,AB=2,M为AB中点,∴AC=BM=AM=CM=1,∴AO==,BO===,AO⊥MC,将△BMC沿CM折叠,当平面BMC⊥平面AMC时,AO⊥平面BMC,∴AO⊥BO,∴A,B两点之间的距离|AB|===.故答案为:.取MC中点O,连结AO,BO,推导出AC=BM=AM=CM=1,AO==,BO==,AO⊥MC,AO⊥平面BMC,AO⊥BO,由此能求出A,B两点之间的距离.本题考查两点间距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.17.【答案】解:(1)∵B(2,3),C(3,-2),∴边BC所在的直线方程为y−(−2)3−(−2)=x−32−3,即5x+y-13=0;(2)设B到AC的距离为d,则S△ABC=12|AC|⋅d,|AC|=√(3−1)2+(−2−1)2=√13,AC方程为:y−(−2)1−(−2)=x−31−3即:3x+2y-5=0∴d=|3×2+2×3−5|√32+22=7√13.∴S△ABC=12×√13×7√13=72.【解析】(1)直接由两点式直线方程公式求解即可;(2)求出B到AC的距离为d,再求AC的距离,然后利用面积公式求解即可.本题考查两点式直线方程公式,考查点到直线的距离公式的应用,考查计算能力,是中档题.18.【答案】证明:(1)∵正方体ABCD-A1B1C1D1.∴C1D1∥A1B1,C1D1=A1B1,又AB∥A1B1,AB=A1B1,∴C1D1∥AB,C1D1=AB,∴四边形C1D1AB是平行四边形,∴AD1∥C1B,∵C1B⊂平面C1BD,AD1⊄平面C1BD,∴AD1∥平面C1BD.(2)∵正方体ABCD-A1B1C1D1.∴A1D⊥AD1,CD⊥平面A1ADD1,∵AD1⊂平面A1ADD1,∴CD⊥AD1,又A1D∩CD=D,∴AD1⊥平面A1DC.【解析】(1)推导出四边形C1D1AB是平行四边形,从而AD1∥C1B,由此能证明AD1∥平面C1BD.(2)推导出A1D⊥AD1,CD⊥平面A1ADD1,CD⊥AD1,由此能证明AD1⊥平面A1DC.本题考查线面平行、线面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.【答案】解:(1)圆C的方程为x2+y2-4tx-2ty+5t2-4=0(t>0),即(x-2t)2+(y-t)2=4,故圆心C(2t,t),故直线OC的方程为y=12x.(2)圆心C(2t,t)到直线y=x+1的距离为d=√2=√2,根据弦心距、弦长、半径之间的关系,可得(√2)2+(√2)2=4,∴t=1,或t=-3 (舍去),∴t=1.【解析】(1)把圆C的方程化为标准形式,可得C的坐标,从而求得直线OC的方程.(2)求出弦心距,再根据弦心距、弦长、半径之间的关系,求得t的值.本题主要考查圆的一般方程和标准方程,点到直线的距离公式,弦长公式的应用,属于中档题.20.【答案】解:(1)∵PA⊥平面ABCD,∴∠PDA为PD与平面ABCD所成角,且PA⊥AD,∵AD=2AB=√3PA=2,∴tan∠PDA=PAAD =√3 3,∴PD与平面ABCD所成角的大小为π6.(2)∵PA⊥平面ABCD,∴PA⊥AB,∵底面ABCD为矩形,∴AD⊥AB,∵PA∩AD=A,∴AB⊥平面PAD,∵AE⊥PD,∴S△PAE=12×PE×AE=√36,∴三棱锥P-ABE的体积为:V P-ABE=13×S△PAE×AB=√318.【解析】(1)由PA⊥平面ABCD,得∠PDA为PD与平面ABCD所成角,由此能求出PD 与平面ABCD所成角的大小.(2)推导出PA ⊥AB ,AD ⊥AB ,从而AB ⊥平面PAD ,由此能求出三棱锥P-ABE 的体积.本题考查线面角的求法,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 21.【答案】证明:(1)∵AB =BC ,AD =DC ,∴AC ⊥BD ,∵PA ⊥平面ABCD ,∴PA ⊥BD , ∵PA ∩AC =A ,∴BD ⊥平面PAC ,∵BD ⊂平面BED ,∴平面BED ⊥平面PAC . 解:(2)设AC 与BD 交于点F ,连结EF , 由(1)知EF ⊥BD ,FC ⊥BD , ∴∠EFC =45°,由(1)知F 为AC 中点, ∴PA =AC =2,∵PA ⊥AC ,∴∠PCF =45°,∴EF =√22,PE =3√22,且EF ⊥PC ,又PC ⊥BD ,∴PC ⊥平面BED , ∴三棱锥P -BED 的体积: V P -BDE =13×S △BDE ×PE=13×12×BD ×EF ×PE =16×4√33×√22×3√22=√33.【解析】(1)推导出AC ⊥BD ,PA ⊥BD ,从而BD ⊥平面PAC ,由此能证明平面BED ⊥平面PAC .(2)设AC 与BD 交于点F ,连结EF ,三棱锥P-BED 的体积V P-BDE =,由此能求出结果.本题考查面面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.22.【答案】解:(1)证明:由已知得C 1:(1,-5),r 1=5√2,C 2(-1,-1),r 2=√10,所以r 1+r 2=5√2+√10,|r 1-r 2|=5√2-√10,|C 1C 2|=2√5, 因为|r 1-r 2|<|C 1C 2|<r 1+r 2,所以两圆相交;(2)解:设圆C 3:(x -1)2+(y +5)2-50+λ[(x +1)2+(y +1)2-10]=0 因为过原点,所以12+52-50+λ(12+12-10)=0,解得λ=-3,代入C 3:(x -1)2+(y +3)2-50+(-3)[(x +1)2+(y +1)2-10]=0, 化简得x 2+y 2+4x -2y =0,所以圆C 3:x 2+y 2+4x -2y =0. 【解析】(1)用圆心距与两圆半径的关系证明;(2)设出经过两圆交点的圆系方程,然后代入原点. 本题考查了圆与圆的位置关系及其判定.属中档题.23.【答案】解(1)由已知得C 1(-1,2),r 1=2,C 2(2,0),r 2=3,所以r 1+r 2=5,|r 1-r 2|=1,|C 1C 2|=√13,因为|r 1-r 2|<|C 1C 2|<r 1+r 2,所以圆C 1与圆C 2相交,将两个圆方程相减,得(x +1)2+(y -2)2-(x -2)2-y 2=-5, 化简得两圆公共弦所在直线方程为:3x -2y +3=0 (2)由{y =kx +1(x+1)2+(y−2)2=4,得(x +1)2+(kx -1)2=4,化简得(1+k 2)x 2+(2-2k )x -2=0且△=(2-2k )2+8(1+k 2)>0, 设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=-2−2k1+k 2,x 1x 2=−21+k 2, 因为OA ⊥OB ,所以x 1x 2+y 1y 2=0,即x 1x 2+(kx 1+1)(kx 2+1)=0, 化简得:(1+k 2)x 1x 2+k (x 1+x 2)+1= 所以-2-k(2−2k)1+k 2+1=0,化简得k 2-2k -1=0,解得k =1+√2或k =1-√2. 【解析】(1)用圆心距与两圆半径的关系判断两圆位置关系;用两圆方程相减消去二次项得相交弦所在直线方程;(2)联立直线与圆的方程,根据韦达定理以及两线垂直的向量关系列式可解得k .本题考查了圆与圆的位置关系及其判定.属中档题.。

2018-2019学年湖北省宜昌二中(宜昌市人文艺术高中)高二上学期期中阶段性检测数学(理)试题 Word版

2018-2019学年湖北省宜昌二中(宜昌市人文艺术高中)高二上学期期中阶段性检测数学(理)试题 Word版

2018-2019学年湖北省宜昌二中(宜昌市人文艺术高中)高二上学期期中阶段性检测数学(理科)试卷考试时间:120分钟;命题人:周莉注意:本试卷包含Ⅰ、Ⅱ两卷。

第Ⅰ卷为选择题,所有答案必须用2B 铅笔涂在答题卡中相应的位置。

第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。

答案写在试卷上均无效,不予记分。

一、选择题(本大题共12小题,共60.0分) 1. 已知直线:和:互相平行,则实数A. 或3B.C.D. 或2. 已知经过两点和的直线的斜率大于1,则m 的取值范围是A.B.C.D.3. 采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号1,2,,960,分组后在第一组采用简单随机抽样的方法抽到的号码为29,则抽到的32人中,编号落入区间的人数为 A. 7 B. 9 C. 10 D. 12 4. 如图是计算的值的一个程序框图,其中判断框内应填的是 A. i >10B. i <10C. i >20D. i <20A. 5. 已知,,,的平均数为10,标准差为2,则,,,的平均数和标准差分别为 A. 19和2 B. 19和3 C. 19和4 D. 19和86. 给出下列命题:①若空间向量空间任意两个单位向量必相等若空间向量在正方体中,必有11D B BD向量1,的模为;其中错误命题的个数是A. 1B. 2C. 3D. 47. 用秦九韶算法求多项式在时,的值为A. 2B.C. 4D.8. 已知某几何体的三视图如图所示,则该几何体的表面积为A. 16B. 26C. 32D.9. 已知m 、n 为空间两条不同直线,、、为不同的平面,则下列命题正确的是 A. 若,,则 B. 若,,则C. 若,,,则 D. 若,,,则 10. 已知M 是圆C :上的动点,点,则MN 的中点P 的轨迹方程是A.B.C.D.11. 已知圆:,圆:点分别是圆、圆上的动点,P 为x 轴上的动点,则的最大值是A.B. 9C. 7D.12. 已知四面体的外接球的球心O 在AB 上,且平面ABC ,,若四面体的体积为,求球的表面积A.B.C.D.二、填空题(本大题共4小题,共20.0分) 13. 若,,三点共线,则m 的值为______ . 14. 从圆外一点向这个圆引切线,则切线的方程为______ . 15. 若两个正实数x ,y 满足,且不等式有解,则实数m 的取值范围是______ . 16. 如图所示,在四棱锥中,底面ABCD ,且底面各边都相等,M 是PC 上的一动点,请你补充一个条件______,使平面MBD ⊥平面PCD ,①DM ⊥PC ②DM ⊥BM ③BM ⊥PC ④PM=MC (填写你认为是正确的条件对应的序号.三、解答题(本大题共6小题,共70.0分) 17.已知公差不为零的等差数列满足:,且是与的等比中项.求数列的通项公式;设数列满足 , 求数列的前n 项和.11+=n n n a ab18. 中,角A ,B ,C 的对边分别为a ,b ,c ,且判断的形状;若,点D 为AB 边的中点,,求的面积.19.某单位为了了解用电量y 度与气温之间的关系,随机统计了某4天的用电量与当天气温.气温用电量度求线性回归方程;参考数据: )根据的回归方程估计当气温为时的用电量.附:回归直线的斜率和截距的最小二乘法估计公式分别为:xb y a xn xy x n yx b ni ini ii ∧∧==∧-=-⋅-=∑∑,122120.如图,在三棱柱中,已知,,,侧面.求直线与底面ABC 所成角的正弦值; 在棱不包含端点C ,上确定一点E 的位置,使得要求说明理由.在的条件下,若,求二面角的大小.∑∑====41241440,1120i i i i i x y x21.已知圆C:,直线l:,.求证:对,直线l与圆C总有两个不同的交点A、B;求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线;是否存在实数m,使得圆C上有四点到直线l的距离为?若存在,求出m的范围;若不存在,说明理由.22.已知圆C:,直线l:Ⅰ求直线l所过定点A的坐标;Ⅱ求直线l被圆C所截得的弦长最短时m的值及最短弦长;Ⅲ已知点,在直线MC上为圆心,存在定点异于点,满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.宜昌市人文艺术高中2018年秋季学期期中阶段性测试答案和解析【答案】1. A2. D3. C4. C5. C6. C7. B8. C9. D10. A11. B12. B13. 414. 或15.16. 或17. 解:设等差数列的公差为d,,且是与的等比中项,,解得,,.,.18. 解:中,,由正弦定理可得,即,即,即,或,,或,故为直角三角形或等腰三角形.若,则为等腰三角形,则,,如图所示:点D为AB边的中点,,中,由余弦定理可得,即,,的面积19. 解:,,,把代入回归方程得,解得.回归方程为;当时,,估计当气温为时的用电量为30度.20. 解:如图,以B为原点建立空间直角坐标系,则0,,2,,2,直三棱柱中,平面ABC的法向量,又,设与平面ABC所成角为,则.设y,,0,,则,,,即1,,所以E为的中点.0,,则,设平面的法向量,则,取1,,,,又平面,平面的法向量,,,二面角为.21. 证明:圆C:的圆心为,半径为,所以圆心C到直线l:的距离.所以直线l与圆C相交,即直线l与圆C总有两个不同的交点;解:设中点为,因为直线l:恒过定点,当直线l的斜率存在时,,又,,所以,化简得.当直线l的斜率不存在时,中点也满足上述方程.所以M的轨迹方程是,它是一个以为圆心,以为半径的圆.解:假设存在直线l,使得圆上有四点到直线l的距离为,由于圆心,半径为,则圆心到直线l的距离为,由于圆心,半径为,则圆心到直线l的距离为化简得,解得或.22. 解:Ⅰ依题意得,,令且,得,直线l过定点,Ⅱ当时,所截得弦长最短,由题知,,,得,由得,圆心到直线的距离为,最短弦长为.Ⅲ法一:由题知,直线MC的方程为,假设存在定点满足题意,则设,,得,且整理得,上式对任意恒成立,且解得或,舍去,与M重合综上可知,在直线MC上存在定点,使得为常数法二:设直线MC上的点取直线MC与圆C的交点,则取直线MC与圆C的交点,则令,解得或舍去,与M重合,此时若存在这样的定点N满足题意,则必为,下证:点满足题意,设圆上任意一点,则,综上可知,在直线MC上存在定点,使得为常数.。

理科高二年级数学上册期中考试卷

理科高二年级数学上册期中考试卷

理科高二年级数学上册期中考试卷想要学习好就一定不可以偷懒哦,今天小编就给大家分享一下高二数学,希望大家多多参考一下哦高二数学上期中理科联考试题第I卷共60分一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、若设,则一定有( )A. B. C. D.2、命题“对任意,都有”的否定为 ( ).对任意,都有 .不存在,使得.存在,使得 .存在,使得3、已知x1,x2∈R,则“x1>1且x2>1”是“x1+x2>2且x1x2>1”的( )A.充分且不必要条件B.必要且不充分条件C.充要条件D.既不充分也不必要条件4、等差数列的前项和为,且,,则公差等于 ( ).-2 . -1 . 1 . 25、原点和点(1,1)在直线x+y﹣a=0两侧,则a的取值范围是( )A.0≤a≤2B.026、钝角三角形的面积是,,,则 ( ). 1 . 2 . . 57、在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.若sin B•sin C=sin2A,则△ABC的形状是( )A.钝角三角形B.直角三角形C.等边三角形D.等腰直角三角形8、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为( )A. 尺B. 尺C. 尺D. 尺9、已知满足线性约束条件则的最大值为( )A、 B、 C、 D、10、若是等差数列,首项则使前n项和成立的最大自然数是( )A.2 012B.2 013C.2 014D.2 01511、已知函数f(x)=4x2﹣1,若数列前n项和为Sn,则S2015的值为( )A. B. C. D.12、若两个正实数x,y满足 + =1,且不等式x+A. B. C. D.第Ⅱ卷共90分二、填空题:本大题共4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上13、在中,角A,B,C所对边长分别为a,b,c,若1. 则c=14、中,角A,B,C成等差数列,则。

河南省天一大联考2018-2019学年上学期高二期中(理科)数学试卷含答案

河南省天一大联考2018-2019学年上学期高二期中(理科)数学试卷含答案

河南省天一大联考2018-2019学年上学期高二期中理科数学试卷一、选择题(本大题共12小题,共60.0分)1.已知集合,2,,则A. 0,1,2,B.C. 0,D.2.在中,已知,,,则A. B. C. 或 D. 或3.若数列是公比为的正项等比数列,则是A. 公比为的等比数列B. 公比为的等比数列C. 公差为的等差数列D. 公差为的等差数列4.若a,b,,且,则下列不等式一定成立的是A. B. C. D.5.在中,角A,B,C的对边分别为a,b,c,,,若有两解,则b的取值范围为A. B.C. D. 或6.若实数x,y满足不等式组,则的最小值为A. B. 2 C. D.7.设数列是等比数列,且为其前n项和,若为常数,则A. B. 1 C. D. 28.若实数x,y满足不等式组,则的取值范围是A. B. C. D.9.在中,角A,B,C的对边分别为a,b,c,若,,则的最大值为A. B. C. D.10.已知数列的通项公式为,,,依次为等比数列,的前3项,则的最大值为A. 4B. 2C. 1D. 011.在中,a,b,c分别为内角A,B,C的对边,若a,c,b成等差数列,,且的面积为3,则A. B. C. D. 512.设n为正整数,在n与之间插入n个x,构成数列1,x,2,x,x,3,x,x,x,4,,若该数列的前2018项的和为7881,则A. 3B. 4C. 5D. 6二、填空题(本大题共4小题,共20.0分)13.等比数列满足,,且与的等差中项为6,则______.14.不等式的解集为A,则A中的整数元素是______.15.某工厂一车间计划每天生产A,B,C型产品共30个,生产一个A型产品需要资金100元,生产一个B型产品需要资金120元,生产一个C型产品需要资金80元,且该车间每天可支配的生产资金为3200元,若生产一个A型产品可获利160元,生产一个B型产品可获利180元,生产一个C型产品可获利120元,则该车间每天的最大利润为______元16.数列满足,且,设为的前n项和,则______.三、解答题(本大题共6小题)17.已知,,不等式的解集为求m,n;Ⅱ正实数a,b满足,求的最大值.18.已知的内角A,B,C的对边分别为a,b,c,且满足.Ⅰ求角B;Ⅱ若,,求的面积.19.在等差数列中,,.Ⅰ求的通项公式;Ⅱ若,求数列的前n项和.20.在中,角A,B,C的对边分别为a,b,c,且满足.求角C的大小;若,求周长的取值范围.21.如图,在平面四边形ABCD中,,,Ⅰ求的值;Ⅱ若,,求的大小.22.已知数列满足,且且.Ⅰ求证:数列是等差数列;Ⅱ设,求数列的前n项和.河南省天一大联考2018-2019学年上学期高二期中理科数学试卷解析一、选择题(本大题共12小题,共60.0分)23.已知集合,2,,则A. 0,1,2,B.C. 0,D.【答案】B【解析】解:0,1,,故选:B.求解一元二次不等式化简集合A,然后直接利用交集运算得答案.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.24.在中,已知,,,则A. B. C. 或 D. 或【答案】C【解析】解:,,,由正弦定理,可得:,,,或.故选:C.由已知利用正弦定理可求,结合A的范围即可得解A的值.本题主要考查了正弦定理在解三角形中的应用,属于基础题.25.若数列是公比为的正项等比数列,则是A. 公比为的等比数列B. 公比为的等比数列C. 公差为的等差数列D. 公差为的等差数列【答案】A【解析】解:数列是公比为的正项等比数列,则,,故选:A.根据等比数列的定义即可求出.本题考查了等比数列的定义和通项公式,属于基础题.26.若a,b,,且,则下列不等式一定成立的是A. B. C. D.【答案】D【解析】解:,,,即,所以,故选:D.根据同向不等式的可加性得,再除以2即可得.本题考查了不等式的基本性质,属基础题.27.在中,角A,B,C的对边分别为a,b,c,,,若有两解,则b的取值范围为A. B.C. D. 或【答案】A【解析】解:由题意得,有两解时需要:,则,解得;故选:A.有两解时需要:,代入数据,求出b的范围.本题考查了解三角形一题多解的问题,注意理解,属于基础题.28.若实数x,y满足不等式组,则的最小值为A. B. 2 C. D.【答案】A【解析】解:实数x,y满足不等式组的可行域如下图所示:令变形为,作出直线将其平移至点A时,纵截距最大,z最小由得,则的最小值为:,故选:A.画出不等式的可行域,将目标函数变形,作出目标函数对应的直线将其平移,由图判断出当经过点C 时纵截距最大,z的值最小,联立直线的方程求出交点C的坐标,将坐标代入目标函数求出最小值.本题考查利用线性规划求函数的最值,关键是画出不等式组表示的平面区域;判断出目标函数具有的几何意义.29.设数列是等比数列,且为其前n项和,若为常数,则A. B. 1 C. D. 2【答案】C【解析】解:当时,,当时,,当时,,,,解得或,当时,,不能为等比数列,当时,,符合题意,,故选:C.根据数列的递推公式和等比中项的性质即可求出.本题考查了数列的递推公式和等比数列的性质,属于中档题.30.若实数x,y满足不等式组,则的取值范围是A. B. C. D.【答案】B【解析】解:作出实数x,y满足不等式组对应的平面区域,则则的几何意义为区域内的点到的斜率,由图象知,P与可行域A点,B点连线的斜率,取得最小值与最大值,由解得,由解得,则的最大值为:2,最小值为.则的取值范围是:.故选:B.作出不等式组对应的平面区域,利用目标函数的几何意义,即可求z的取值范围.本题主要考查线性规划和直线斜率的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.31.在中,角A,B,C的对边分别为a,b,c,若,,则的最大值为A. B. C. D.【答案】D【解析】解:中,,,,即,;又,,当且仅当时取“”,;此时取得最大值为.故选:D.利用余弦定理和基本不等式求出的最小值,从而求出的最大值.本题考查了解三角形的应用问题,考查了计算能力和转化思想,属于基础题.32.已知数列的通项公式为,,,依次为等比数列,的前3项,则的最大值为A. 4B. 2C. 1D. 0【答案】B【解析】解:由数列的通项公式为,可得,,,由,,依次为等比数列的前3项,可得,即,解得.,,,则..当时,,当时,,当时,,当时,,当时,.的最大值为2.故选:B.由已知列式求得k,进一步求出等比数列的通项公式,代入,分析n的取值可得的最大值.本题考查等差数列与等比数列的通项公式,考查数列的函数特性,是中档题.33.在中,a,b,c分别为内角A,B,C的对边,若a,c,b成等差数列,,且的面积为3,则A. B. C. D. 5【答案】C【解析】解:,,解得:,,,c,b成等差数列,,的面积为,解得:,由余弦定理可得:,可得:,解得:.故选:C.由已知利用同角三角函数基本关系式可求,,利用等差数列的性质可求,利用三角形面积公式可求,由余弦定理即可解得c的值.本题主要考查了同角三角函数基本关系式,等差数列的性质,三角形面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.34.设n为正整数,在n与之间插入n个x,构成数列1,x,2,x,x,3,x,x,x,4,,若该数列的前2018项的和为7881,则A. 3B. 4C. 5D. 6【答案】A【解析】解:在n与之间插入n个x,可得,最后一个数为63,共有个数,则数列的前2018个数的和为,解得,故选:A.由题意可得,且最后一个数为63时,共有2016项,由等差数列的求和公式,解方程可得所求值.本题考查等差数列的求和公式,考查判断能力和推理能力,以及运算能力,属于中档题.二、填空题(本大题共4小题,共20.0分)35.等比数列满足,,且与的等差中项为6,则______.【答案】【解析】解:设公比为q,由,,且与的等差中项为6,可得,即,即,解得或舍去,,故答案为:设公比为q,由,,且与的等差中项为6,可得,即,进一步求出公比,利用等比数列的通项公式求出数列的通项公式本题考查了等差数列的性质和等比数列的通项公式,属于基础题36.不等式的解集为A,则A中的整数元素是______.【答案】1和2【解析】解:不等式可化为,解得,,则A中的整数元素是1和2.故答案为:1和2.求出不等式的解集A,再写出A中的整数元素.本题考查了一元二次不等式的解法与应用问题,是基础题.37.某工厂一车间计划每天生产A,B,C型产品共30个,生产一个A型产品需要资金100元,生产一个B型产品需要资金120元,生产一个C型产品需要资金80元,且该车间每天可支配的生产资金为3200元,若生产一个A型产品可获利160元,生产一个B型产品可获利180元,生产一个C型产品可获利120元,则该车间每天的最大利润为______元【答案】5200【解析】解:设生产A型产品x个,生产B型产品y个,生产C型产品个,则满足的条件为,即,设利润为z,则,画出约束条件,如图所示:当目标函数经过点A时利润最大,由,解得,,则,,故答案为:5200.设生产A型产品x个,生产B型产品y个,生产C型产品个,利润总额为z元,根据题意抽象出x,y满足的条件,建立约束条件,作出可行域,再根据目标函数,利用截距模型,平移直线找到最优解,即可.本题主要考查用线性规划解决实际问题中的最值问题,基本思路是抽象约束条件,作出可行域,利用目标函数的类型,找到最优解属中档题.38.数列满足,且,设为的前n项和,则______.【答案】3【解析】解:根据题意,满足,变形可得,又由,则有,则有,则数列的周期为6,又由,则,则有,则;故答案为:3.根据题意,将变形可得,又由,分析可得,则有,分析可得数列的周期为6;又由,则,进而可得,则,分析可得答案.本题考查数列的递推公式,关键是分析数列的周期,属于基础题.三、解答题(本大题共6小题)39.已知,,不等式的解集为求m,n;Ⅱ正实数a,b满足,求的最大值.【答案】解:Ⅰ因为不等式的解集为和n是一元二次方程的两根,,,解得,Ⅱ由题意得:,即,当且仅当,,时取等,故的最大值为【解析】Ⅰ因为不等式的解集为和n是一元二次方程的两根,再根据韦达定理可得;ⅡⅡ由题意得:,即,然后根据基本不等式求出的最小值,最后求出的最大值.本题考查了基本不等式及其应用,属中档题.40.已知的内角A,B,C的对边分别为a,b,c,且满足.Ⅰ求角B;Ⅱ若,,求的面积.【答案】解:Ⅰ,由正弦定理可得:,可得:,可得:,,可得,,.Ⅱ,,,由余弦定理可得:,解得:,,.【解析】Ⅰ由正弦定理,两角和的正弦函数公式化简已知等式可得,由于,可得,结合范围,可求B的值.Ⅱ由余弦定理可得c的值,进而可求a的值,利用三角形面积公式即可计算得解.本题主要考查了正弦定理,两角和的正弦函数公式,余弦定理,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.41.在等差数列中,,.Ⅰ求的通项公式;Ⅱ若,求数列的前n项和.【答案】解:Ⅰ等差数列的公差设为d,,,可得,,解得,,则;Ⅱ若,,即有数列的前n项和,即有,两式相减可得,,化简可得前n项和.【解析】Ⅰ等差数列的公差设为d,运用等差数列的通项公式,解方程即可得到所求通项;Ⅱ求得,,由数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和.本题考查等差数列的通项公式,以及等比数列的求和公式的运用,考查数列的错位相减法求和,考查化简运算能力,属于中档题.42.在中,角A,B,C的对边分别为a,b,c,且满足.求角C的大小;若,求周长的取值范围.【答案】本题满分为12分解:在中,.由正弦定理可得:,即,分,由C为三角形内角,分由可知,分分,,,,周长的取值范围分【解析】利用正弦正理化简已知等式可得:,由余弦定理可得求得,结合A 的范围,即可求得A的值.由正弦定理用、表示出a、b,由内角和定理求出A与B的关系式,代入利用两角和与差的正弦公式化简,根据A的范围和正弦函数的性质得出的取值范围,即可得解.本题主要考查了正弦定理,余弦定理的综合应用,考查了两角和差的正弦函数公式,解题时注意分析角的范围,属于中档题.43.如图,在平面四边形ABCD中,,,Ⅰ求的值;Ⅱ若,,求的大小.【答案】解:Ⅰ在中,,,.由余弦定理可得:,,;Ⅱ由Ⅰ可得,,,,由正弦定理可得,即,,或,,.【解析】Ⅰ先用利用余弦定理即可解得BD的值,再用余弦定理即可求出,Ⅱ根据两角差的正弦公式,先求出,再利用正弦定理,利用特殊角的三角函数值即可得解A.本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了转化思想和数形结合思想,熟练掌握正弦定理余弦定理是解题的关键,属于中档题.44.已知数列满足,且且.Ⅰ求证:数列是等差数列;Ⅱ设,求数列的前n项和.【答案】解:Ⅰ证明:数列满足,且,可得,即有数列是首项为3,公差为1的等差数列;Ⅱ由Ⅰ可得,即,,可得前n项和.【解析】Ⅰ由已知等式变形,结合等差数列的定义即可得证;Ⅱ由Ⅰ可得,即,,再由数列的裂项相消求和即可得到所求和.。

2018-2019学年湖南省湖南师范大学附属中学高二上学期期中考试数学(理)试题 解析版

2018-2019学年湖南省湖南师范大学附属中学高二上学期期中考试数学(理)试题 解析版

绝密★启用前湖南省湖南师范大学附属中学2018-2019学年高二上学期期中考试数学(理)试题一、单选题1.不等式x2-5x+6<0的解集是A.{x|-2<x<3} B.{x|-3<x<2}C.{x|2<x<3} D.{x|-3<x<-2}【答案】C【解析】【分析】根据二次不等式的解法得到答案.【详解】不等式x2-5x+6<0等价于(x-2)(x-3)<0,根据二次函数的性质得到,解集是(2,3),故选C【点睛】与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集.(2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性.2.在等差数列{an}中,若a5,a7是方程x2-2x-6=0的两根,则{an}的前11项的和为A.22 B.-33 C.-11 D.11【答案】D【解析】【分析】a5,a7是方程x2-2x-6=0的两根,则a5+a7=2, S11==11 a6进而得到结果.【详解】等差数列{a n}中,若a5,a7是方程x2-2x-6=0的两根,则a5+a7=2,∴a6=(a5+a7)=1,∴{a n}的前11项的和为S11==11a6=11×1=11.故选D.【点睛】点睛:本题考查等差数列的通项公式,是基础的计算题,对于等差数列的小题,常用到的方法,其一是化为基本量即首项和公差,其二是观察各项间的脚码关系,即利用数列的基本性质.3.在△ABC中,c=,A=75°,B=45°,则△ABC的外接圆面积为A.B.π C.2π D.4π【答案】B【解析】【分析】根据正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.【详解】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.设△ABC的外接圆半径为R,则由正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.故选B.【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.4.设x,y满足约束条件则z=x+y的最大值为()A.0 B.1 C.2 D.3【答案】D【解析】如图,作出不等式组表示的可行域,则目标函数经过时z 取得最大值,故,故选D.点睛:本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.5.若,则下列说法正确的是()A.若,,则B.若,则C.若,则D.若,则【答案】D【解析】【分析】根据不等式的基本性质以及特殊值法判断即可.【详解】A.取a=1,b=-3,c=2,d=1,可知不成立,B.取c=0,显然不成立,C.取a=-3,b=﹣2,显然不成立,D.根据不等式的基本性质,显然成立,综上可得:只有B正确.故选:D.本题考查了不等式的基本性质、举反例否定一个命题的方法,考查了推理能力,属于基础题.6.在△ABC中,若AB=,BC=3,∠C=120°,则AC=()A.1 B.2 C.3 D.4【答案】A【解析】在△ABC中,设A、B、C所对的边分别为a,b,c,则由c2=a2+b2-2ab cos C,得13=9+b2-2×3b×,即b2+3b-4=0,解得b=1(负值舍去),即AC=1.故选A. 7.已知数列{an}满足:a1=-13,a6+a8=-2,且an-1=2an-an+1(n≥2),则数列的前13项和为A.B.-C.D.-【答案】B【解析】【分析】根据题干变形可得到数列{a n}为等差数列,再由等差数列的公式得到通项,最终裂项求和即可.【详解】a n-1=2a n-a n+1(n≥2),可得a n+1-a n=a n-a n-1,可得数列{a n}为等差数列,设公差为d,由a1=-13,a6+a8=-2,即为2a1+12d=-2,解得d=2,则a n=a1+(n-1)d=2n-15.,即有数列的前13项和为=×=-.故选B.这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。

北京市海淀区中关村中学2018-2019学年高二上学期期中考试数学(理)试题Word版含解析

北京市海淀区中关村中学2018-2019学年高二上学期期中考试数学(理)试题Word版含解析

北京市海淀区中关村中学2018-2019学年上学期期中考试高二数学(理)试题一、选择题(本大题共8小题,每小题5分,共40分,每题只有一个正确答案,请将正确答案的序号涂在答题卡上)1.线段AB 在平面α内,则直线AB 与平面α的位置关系是( ).A .AB α⊂B .AB α⊄C .线段AB 的长短而定D .以上都不对【答案】A【解析】∵线段AB 在平面α内, ∴直线AB 上所有的点都在平面α内,∴直线AB 与平面α的位置关系是:直线AB 在平面α内, 即AB α⊂, 故选A .2.如图,1111ABCD A B C D -为正方体,下列结论错误..的是( ).DABC C 1D 1B 1A 1A .BD ∥平面11CB D B .1AC BD ⊥C .1AC ⊥平面11CB DD .异面直线AD 与1CB 角为60︒【答案】D【解析】异面直线AD 与CB 所成的角为45︒, 所以结论错误, 故选D .3.ABC △的斜二侧直观图如下图所示,则ABC △的面积为( ).A .1B .2CD .以上都不对【答案】B【解析】根据斜二测画法的原则可知:ABC △为直角三角形,底为2,高为2,所以面积是2, 故选B .4.下列说法正确的是( ).A .a b ∥,b a αα⊂⇒∥B .a b ⊥,b a αα⊂⇒⊥C .a α⊥,b a b α⊥⇒∥D .αβ⊥,a a βα⊂⇒⊥【答案】C【解析】由线面垂直的性质定理可知:a α⊥,b α⊥,则a b ∥, 故选C .5.已知三棱锥的主视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的左视图可能是( ).俯视图主视图2211A .1122 B .32 C .22D .22【答案】B【解析】根据正视图和俯视图,作出该三棱锥的几何直观图,如图所示,223O DABC则侧视图为直角三角形,且底边边长为||AD =,高为||2OC =, 故选B .6.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( ).A .90︒B .60︒C .45︒D .30︒【答案】C【解析】DACO折叠后的三棱锥如图,易知当平面ACD 垂直于平面ABC 时三棱锥的体积最大, 设AC 的中点为O ,则DBO ∠即为所求, 而DOB △是等腰直角三角形, 所以45DBO ∠=︒, 故选C .7.如下图所示,已知A ,B ,C 三点不共线,P 为平面ABC 内一定点,O 为平面ABC 外任一点,则下列能表示向量OP 的为( ).A BCOPA .22OA OB OC ++ B .32OA AB AC -- C .23OA AB AC +-D .32OA AB AC +-【答案】D【解析】以AP 为对角线,以AB ,AC 所在直线为邻边做平行四边形, 则32AP AB AC =-,∴32OP AP AO AB AC OA =-=-+, 故选D .8.如下图在直三棱柱111ABC A B C -中,π2BAC ∠=,11AB AC AA ===,已知G 与E 分别为11A B 和1CC 的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点),若GD EF ⊥,则线段DF 长度的取值范围为( ).DGABC EFC 1B 1A 1A.⎫⎪⎭B.⎣⎦C.D.【答案】A【解析】建立如图所示的空间直角坐标系,则(0,0,0)A ,10,1,2E ⎛⎫ ⎪⎝⎭,1,0,12G ⎛⎫⎪⎝⎭,(,0,0)F x ,(0,,0)D y .∵GD EF ⊥,∴210x y +-=,∴DF∵01x <<,01y <<, ∴102y <<, ∴当25y =时,线段DF,当0y =时,线段DF 长度的最大值是1,(因为不包括端点,故0y =不能取,即DF 长度不能等于1), 故线段DF的长度的取值范围是:⎫⎪⎭, 故选A .二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸中)9.已知αβ⊥,平面α与平面β的法向量分别为m ,n ,且(1,2,5)m =-,(3,6,)n z =-,则z =__________.【答案】3【解析】∵αβ⊥,且平面α与平面β的法向量分别为m ,n , ∴(1,2,5)(3,6,)31250m n z z ⋅=--=--+=, 解得:3z =.10.已知正四棱锥V ABCD -的底面面积为16,一条侧棱长为,则它的斜高..为__________. 【答案】6【解析】设VO 为正四棱锥V ABCD -的高,连接OB ,则VO OB ⊥,VD ABCO∵底面正方形ABCD 的面积为16, ∴4BC =,OB =又∵VB =∴6VO =, ∴正四棱锥V ABCD -的高为6.11.若一个圆锥的底面半径为1,侧面积是底面积的2倍,则该圆锥的体积为__________.【解析】设圆锥的母线长为l ,∵2ππS r ==底,【注意有文字】∴π2πS rl ==侧,【注意有文字】 ∴2l =,∴圆锥的高h∴圆锥的体积11π33V S h ==⨯底.【注意有文字】12.若一个底面是正三角形的三棱柱的主视图如下图所示,则其表面积等于__________.【答案】6+【解析】由题意知三棱柱的底面是一个边长为2的正三角形, 侧棱长是1,且侧棱与底面垂直,∴三棱柱的表面积是:12232162⨯⨯⨯⨯=+13.二面角的棱上有A 、B 两点,直线AC 、BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4AB =,6AC =,8BD =,CD =__________.DA BC【答案】60︒【解析】E CBA D如图,过点B 作BE AC ∥,使得BE AC =, 连接CE ,DE ,则四边形ABEC 为平行四边形, ∴6BE AC ==,BE AB ⊥,CE AB ∥,CE AB =, 而BD AB ⊥,∴DBE ∠即是二面角AB αβ--的平面角, ∵BE AC ∥,AC AB ⊥,BD AB ⊥,CE AB ∥, ∴BE CE ⊥,BD CE ⊥, ∴CE ⊥平面BDE , ∴CE DE ⊥,在Rt CDE △中,4CE AB ==,CD =∴DE ==在BDE △中,2221cos 22BE BD DE DBE BE BD +-∠==⋅,∴60DBE ∠=︒,故该二面角的大小为60︒.14.如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A ,P ,Q 的平面截该正方体所得的截面为S ,则下列命题正确的是__________(写出所有正确命题的编号).A 1①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R 满足114C R =;④当314CQ <<时,S 为五边形; ⑤当1CQ =时,S. 【答案】①②④ 【解析】①项,12CQ =时,S 为APQD , 而102CQ <<时,线段1DD 上同理,存在一点,与PQ 平行, 此时,S 为四边形,且是梯形,故命题①为真;M Q P D 1C 1A 1B 1CB AD②项,1AP D Q =,1AD PQ ∥,1APQD 是等腰梯形,故命题②为真;③项OQPD 1C 1A 1B 1C B AD当34CQ =时,如图所示,0AP DC =, ∵点P 是BC 的中点,∴CO CD AB ==, ∴1113C R C Q CO QC ==, ∴S 与11CD 的交点R 满足113C R =,故命题③为假.④项,如图所示,S 为五边形,故命题④为真;QP D 1C 1A 1B 1CB AD⑤项,如图所示,S2=, DAB C B 1A 1C 1D 1PQ故命题⑤为假.综上所述,命题正确的是:①②④.三、解答题(本大题共3小题,共30分,写出必要的解答过程) 15.已知向量(2,1,2)a =--,(1,1,4)b =-. (I )计算23a b -和23a b -. (II )求,a b . 【答案】见解析【解析】解:(I )232(2,1,2)3(1,1,4)(4,2,4)(3,3,12)(1,5,8)a b -=----=----=-.2|23|1(a b -=+=(2)cos ,||||33a b a b a b ⋅===⨯,又[],0,πa b ∈, 故π,4a b =.16.如图,四棱锥P ABCD -的底面是边长为1的正方形,侧棱PA ⊥底面ABCD ,且2PA =,E 是侧棱PA 上的动点.A BCPE(I )如果E 是PA 的中点,求证PC ∥平面BDE .(II )是否不论点E 在侧棱PA 的任何位置,都有BD CE ⊥?证明你的结论. 【答案】见解析【解析】OECBA(1)证明:连接AC 交BD 于O ,连接EO , ∵四边形ABCD 是正方形, ∴O 是AC 的中点, 又∵E 是PA 的中点, ∴PC OE ∥,∵PC ⊄平面BDE ,OE ⊂平面BDE , ∴PC ∥平面BDE .(2)不论点E 在何位置,都有BD CE ⊥,证明如下: ∵四边形ABCD 是正方形, ∴BD AC ⊥,∵PA ⊥底面ABCD ,且BP ⊂平面ABCD , ∴BD PA ⊥, 又∵ACPA A =,∴BD ⊥平面PAC ,∵不论点E 在何位置,都有CEC 平面PAC , ∴不论点E 在何位置,都有BD CE ⊥.17.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒,点E 是棱PC 的中点,平面ABE 与棱PD 交于点F .D ABC EF P(1)求证:AB EF ∥.(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD , 求①二面角E AF D --的锐二面角的余弦值.②在线段PC 上是否存在一点H ,使得直线BH 与平面AEF 所成角等于60︒,若存在,确定H 的位置,若不存在,说明理由. 【答案】见解析【解析】(1)证明:∵AB CD ∥,CD ⊂平面PCD ,AB ⊄平面PCD , ∴AB ∥平面PCD ,又∵AB ⊂平面ABEF ,且平面ABEF 平面PCD EF =,∴AB EF ∥,(2)①取AD 的中点O ,连接PO ,OB ,BD , ∵ABCD 是菱形,且120ABC ∠=︒,PA PD AD ==, ∴ABD △,PAD △是等边三角形, ∴PO AD ⊥,OB AD ⊥,又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,PO ⊂平面PAD ,∴PO ⊥平面ABCD ,以O 为原点,以OB ,OD ,OP 为坐标轴建立空间坐标系O xyz -,则:(0,1,0)A =-,(0,1,0)D,P,B,C,E ⎝⎭,10,2F ⎛ ⎝⎭.30,2AF ⎛= ⎝⎭,1,02EF ⎛⎫=-- ⎪ ⎪⎝⎭,设平面AEF 的法向量为(,,)n x y z =,则: 00n AF n EF ⎧⋅=⎪⎨⋅=⎪⎩,∴302102y y ⎧+=⎪⎪⎨⎪-=⎪⎩, 令1x =得:(1,3,3)n =-; ∵OB ⊥平面PAD ,∴(3,0,0)OB =为平面PAD 的一个法向量.∴cos ,||||13OB n OB n OB n ⋅===故二面角E AF D -- ②假设PC 上存在点H 便得直线BH 与平面AEF 所成角等于60︒, 则BH 与n 所成夹角为30︒,设(,2)(01)CH CP λλλ==-≤≤,则:(,22)BH BC CH λ=+=-,cos ,||||13BH n BH n BH n ⋅===, 化简得:2191260λλ--=,解得:λλ, ∴线段PC 上存在一点H ,使得直线BH 与平面AEF 所成的角等于60︒.。

2018-2019学年湖北省鄂东南省级示范高中教育教学改革联盟学校高二上学期期中联考数学(理)试题

2018-2019学年湖北省鄂东南省级示范高中教育教学改革联盟学校高二上学期期中联考数学(理)试题

②若 l / / , / / 则 l / / ; ④若 l / /, 则 l .
其中正确命题的个数是( )
A. 0
B.1
C. 2
D. 3
鄂东南省级示范高中教育教学改革联盟学校 2018 年秋季期中联考高二数学(理科)试卷(共 4 页)第 1页
7.设 A(1, 0), B(1, 0) ,动点 M 分别与 A 、 B 两点所连直线斜率之积为 ( 1) ,则动点 M 的
是符合题目要求的。
1.命题 p : “所有的正方形都是长方形”的否定是( )
A.所有的正方形都不是长方形
B.存在一个正方形是长方形
C.存在一个正方形不是长方形
D.所有的长方形都不是正方形
2.直线 l : y 1的倾斜角是( )

A.
4
B. 0
C.

D.
2
3.若双曲线 C
:
y2 a2

x2 b2
积是多少?”(注:1丈 10 尺),答案是( )
A. 50000 立方尺
B. 25000 立方尺
25000
C.
立方尺
3
50000
D.
立方尺
3
6.设 、 是两个不同平面, l 是一条直线, 给出下列命题:
①若 l , / / 则 l ; ③若 l , 则 l / / ;
C1
(Ⅰ)求证: EF //平面 BCC1B1 ; (Ⅱ)求三棱锥 C1 DCB 的体积.
A1
F
B1
D
C
E
A
B
20.(本小题满分 12 分)已知圆 C : x2 y2 2x 2 y t 0 .

上学期数学高二年级期中试题

上学期数学高二年级期中试题

上学期数学高二年级期中试题大家在学习的时候一定要结合题目来学习哦,今天小编就给大家分享一下高二数学,有喜欢的一起来参考一下吧高二数学上学期期中试卷阅读一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.过点,斜率是3的直线的方程是( )A. B. C. D.2.在正方体中,若是的中点,则直线垂直于( )A. B. C. D.3.在同一直角坐标系中,表示直线与正确的是( )A B C D4.若有直线、和平面、,下列四个命题中,正确的是( )A.若,,则B.若,,,,则C.若,,则D.若,,,则5.直线与的交点坐标为( )A. B. C. D.6.一个棱长为1的正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则该几何体的体积为( )A. B. C. D.7.两圆和的位置关系是( )A. 相交B. 内切C. 外切D. 外离8.P、Q分别为与上任一点,则的最小值为( )A. B. C. 3 D. 69.已知,若直线过点与线段有公共点,则直线的斜率的取值范围是( )A. B. C. D.10圆上的点到直线的距离的最大值是( )A. B. C. D.11.正方体的全面积为,它的顶点都在球面上,则这个球的表面积是( )A. B. C. D.12.过点引直线与曲线交于A,B两点,O为坐标原点,当△AOB 的面积取最大值时,直线的斜率等于( )A. B. C. D.二、填空题(本大题共4小题,每小题5分,共20分.)13.直线过定点,定点坐标为.14.如图,正方形O'A'B'C'的边长为1,它是水平放置的一个平面图形的直观图,则原图形的面积是.15.已知 , .16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,下面四个结论:(1)AC⊥BD;(2)△ACD是等边三角形;(3)二面角B-AC-D的余弦值为 ;(4)AB与CD所成的角为60°.则正确结论的序号为.三、解答题(本大题共6小题,共75分,解答时应写出文字说明、证明过程或解题步骤)17.(本小题满分10分)已知两直线,当为何值时,(1)直线∥ ;(2)直线 .18.(本小题满分12分)如图,直三棱柱中,,∠ACB=90°,AA1= ,D,F 分别是A1B1、BB1中点.(1)求证:C1D⊥AB1 ;(2)求证:AB1⊥平面C1DF.19.(本小题满分12分)如图1,在四棱锥中,底面,面为正方形,为侧棱上一点,为上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示.(1)证明:∥平面 ;(2)证明:平面平面 .20.(本小题满分12分)已知圆的圆心坐标,直线:被圆截得弦长为.(1)求圆的方程;(2)从圆外一点向圆引切线,求切线方程.21. (本小题满分12分)如图,在直三棱柱中,是上的一点,,且.(1)求证:平面;(2)若,求点到平面的距离.22.(本小题满分12分)已知直线:,半径为4的圆与直线相切,圆心在轴上且在直线的右上方.(1)求圆C的方程;(2)过点M (2,0)的直线与圆C交于A,B两点(A在轴上方),问在轴正半轴上是否存在定点N,使得轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.高二数学答案一、选择题1-5 DBADD 6-10 DBCCB 11-12 BA二、填空题13、(0,-3) 14、 15、 16、(1)(2)(4)三、解答题17.解、(1)若l1∥l2,则……4分解之得m=-1.……5分(2)若l1⊥l2,则1•(m-2)+3m=0,……9分∴m= .……10分18. (1)证明:如图,∵ ABC—A1B1C1是直三棱柱,∴ A1C1=B1C1=1,且∠A1C1B1=90°.又 D是A1B1的中点,∴ C1D⊥A1B1. ………3分∵ AA1⊥平面A1B1C1,C1D 平面A1B1C1,∴ AA1⊥C1D,∴ C1D⊥平面AA1B1B.∴C1D⊥AB1 ………6分(2)证明:连结A1B,∵D,F分别是A1B1,BB1的中点,∴DF∥A1B.又直角三角形A1B1C1中,A1B12= A1C12+ B1C12,∴A1B1= ,∴A1B1= AA1,即四边形AA1B1B为正方形,∴A1B⊥AB1,即AB1⊥DF ………9分又(1)已证C1D⊥平面AA1B1B,∴C1D⊥AB1 ………10分又DF C1D=D,∴AB1⊥平面C1DF. ………12分19.解(1)证明:取中点,连结,. ………1分由正(主)视图可得为的中点,所以∥ ,.……2分又因为∥ ,,所以∥ , .所以四边形为平行四边形,所以∥ . ………………4分因为平面,平面,所以直线∥平面. ………………6分(2)证明:因为平面,所以 .因为面为正方形,所以 .所以平面.……………8分因为平面,所以 .因为,为中点,所以 .所以平面.……10分因为∥,所以平面. ………………11分因为平面,所以平面平面. ………………12分20.解(1)设圆的标准方程为:圆心到直线的距离:,………2分则………4分圆的标准方程:………6分(2)①当切线斜率不存在时,设切线:,此时满足直线与圆相切.………7分②当切线斜率存在时,设切线:,即………8分则圆心到直线的距离:………9分解得:………10分则切线方程为:………11分综上,切线方程为:………12分21.解(1)如图,连接,交于点,再连接,………1分据直棱柱性质知,四边形为平行四边形,为的中点………2分,∵当时,,∴是的中点,∴,………3分又平面,平面,∴平面.………4分(2)∵是中点,∴点到平面与点到平面距离相等,∵平面,∴点到平面的距离等于点到平面的距离,即等于点到平面距离相等,设距离为d.………6分………8分………12分22.解(1)设圆心,………1分则.………3分所以圆C的方程为x2+y2=16. ………4分(2)当直线AB⊥x轴时,x轴平分∠ANB.………5分当直线AB的斜率存在时,设直线AB的方程为y=k(x-2), (6)分假设符合题意,又设A(x1,y1),B(x2,y2),由得(k2+1) x2-4k2x+4k2-16=0,………7分所以………8分若x轴平分∠ANB,则kAN=-kBN ………9分即⇒2x1x2-(t+2)(x1+x2)+4t=0………11分所以存在点N为(8,0)时,能使得∠ANM=∠BNM总成立.………12分第一学期高二数学考试试卷题一. 选择题(共12小题,60分)1.在空间直角坐标系中,已知M(﹣1,0,2),N(3,2,﹣4),则MN的中点P到坐标原点O的距离为( )A. B. C.2 D.32.已知集合A={(x,y)|y=5x},B={(x,y)|x2+y2=5},则集合A∩B中元素的个数为( )A.0B.1C.2D.33.设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( )A.a∥b,b⊂α,则a∥αB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,b∥β,则a∥βD.α∥β,a⊂α,则a∥β4.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π5.一个水平放置的三角形的斜二侧直观图是等腰直角三角形A′B′O′,若O′B′=1,那么原△ABO的面积是( )A. B.C. D.6.在下列图形中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有( )A.1个B.2个C.3个D.4个7.已知等比数列{an}中,各项都是正数,且,,成等差数列,则等于( )A.6B.7C.8D.98.下列函数在其定义域上既是奇函数又是减函数的是( )A.f(x)=﹣x|x|B.f(x)=log0.5xC.f(x)=﹣tanxD.f(x)=3x9.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的图象如图所示,则tanφ=()A. B.C. D.10.已知函数f(x)的部分图象如图所示,则该函数的解析式可能是( )A.f(x)=B.f(x)=C.f(x)=D.f(x)=11.在三棱锥P﹣ABC中,△ABC为等边三角形,PA⊥平面ABC,且PA=AB,则二面角A﹣PB﹣C的平面角的正切值为( )A. B. C. D.12.已知Rt△ABC中,∠A=90°,AB=2,BC=4,若AM是BC边上的高,垂足为M,点P在△ABC内部或边界上运动,则的取值范围是( )A.[﹣4,0]B.[﹣3,0]C.[﹣2,0]D.[﹣1,0]二. 填空题(共4小题,20分)13.已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an= .14.若x>0,y>0,且log2x+log2y=2,则的最小值为.15.如图,四边形ABCD中 .将四边形ABCD沿对角线BD折成四面体A'﹣BCD,则四面体A'﹣BCD体积的最大值为.16.如图,正方体ABCD﹣A1B1C1D1,则下列四个命题:①P在直线BC1上运动时,三棱锥A﹣D1PC的体积不变;②P在直线BC1上运动时,直线AP与平面ACD1所成角的大小不变;③P在直线BC1上运动时,二面角P﹣AD1﹣C的大小不变;④M是平面A1B1C1D1上到点D和C1距离相等的点,则M点的轨迹是过D1点的直线;其中正确的命题编号是.三. 解答题(共6小题,70分)17.(10分)已知三角形ABC的顶点坐标为A(0,3),B(﹣2,1),C(4,3),M是BC边上的中点.(1)求BC边的中线所在的直线方程;(2)求点C关于直线AB对称点C’的坐标.18.(12分)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的正切值.19.(12分)锐角△ABC中内角A,B,C的对边分别为a,b,c,向量,,且∥ .(1)求B的大小;(2)如果b=2,求△ABC的面积S△ABC的最大值.20.(12分)如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC= ,AA1= ,BB1= ,点E和F分别为BC和A1C的中点.(1)求证:EF∥平面A1B1BA;(2)求证:平面AEA1⊥平面BCB1;(3)求直线A1B1与平面BCB1所成角的大小.21.(12分)已知过点A(0,1)且斜率为k的直线l与圆C:交于点M、N两点.(1)求k的取值范围;(2)若,其中O为坐标原点,求|MN|.22.(12分)已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.(1)试判断函数是否为(3,+∞)上的周期为1的2级类增周期函数?并说明理由;(2)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围.参考答案1-6 ACDCCB 7-12DACCAB13. 2n 14. 15. 16. ①③④17.解:(1)x+y-3=0(2)设点C关于直线AB对称点C′的坐标为(a,b),则AB为线段CC′的垂直平分线,由直线AB的方程为:x﹣y+3=0,故,解得:a=0,b=7,即点C关于直线AB对称点C′的坐标为C’(0,7)18.解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V= == .(2)19.解:(1)∵ =(2sinB,﹣ ), =(cos2B,2cos2 ﹣1)且∥ ,∴2sinB(2cos2 ﹣1)=﹣ cos2B,∴2sinBcosB=﹣ cos2B,即sin2B=﹣ cos2B,∴tan2B=﹣,又B为锐角,∴2B∈(0,π),∴2B= ,则B= ;(2)当B= ,b=2时,由余弦定理cosB= 得:a2+c2﹣ac﹣4=0,又a2+c2≥2ac,代入上式得:ac≤4(当且仅当a=c=2时等号成立),∴S△ABC= acsinB= ac≤ (当且仅当a=c=2时等号成立),则S△ABC的最大值为 .20.(1)证明:连接A1B,在△A1BC中,∵E和F分别是BC和A1C的中点,∴EF∥A1B,又∵A1B⊂平面A1B1BA,EF⊄平面A1B1BA,∴EF∥平面A1B1BA;(2)证明:∵AB=AC,E为BC中点,∴AE⊥BC,∵AA1⊥平面ABC,BB1∥AA1,∴BB1⊥平面ABC,∴BB1⊥AE,又∵BC∩BB1=B,∴AE⊥平面BCB1,又∵AE⊂平面AEA1,∴平面AEA1⊥平面BCB1;(3)取BB1中点M和B1C中点N,连接A1M,A1N,NE,∵N和E分别为B1C和BC的中点,∴NE平行且等于 B1B,∴NE平行且等于A1A,∴四边形A1AEN是平行四边形,∴A1N平行且等于AE,又∵AE⊥平面BCB1,∴A1N⊥平面BCB1,∴∠A1B1N即为直线A1B1与平面BCB1所成角,在△ABC中,可得AE=2,∴A1N=AE=2,∵BM∥AA1,BM=AA1,∴A1M∥AB且A1M=AB,又由AB⊥BB1,∴A1M⊥BB1,在RT△A1MB1中,A1B1= =4,在RT△A1NB1中,sin∠A1B1N= = ,∴∠A1B1N=30°,即直线A1B1与平面BCB1所成角的大小为30°21.(1)由题意可得,直线l的斜率存在,设过点A(0,1)的直线方程:y=kx+1,即:kx﹣y+1=0.由已知可得圆C的圆心C的坐标(2,3),半径R=1.故由 <1,故当(2)设M(x1,y1);N(x2,y2),由题意可得,经过点M、N、A的直线方程为y=kx+1,代入圆C 的方程(x﹣2)2+(y﹣3)2=1,可得 (1+k2)x2﹣4(k+1)x+7=0,∴x1+x2= ,x1•x2= ,∴y1•y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1= •k2+k• +1= ,由• =x1•x2+y1•y2= =12,解得 k=1,故直线l的方程为 y=x+1,即 x﹣y+1=0.圆心C在直线l上,MN长即为圆的直径.所以|MN|=2.22.解:(1)∵(x+1﹣1)﹣(x﹣1)2=﹣(x2﹣3x+1)<0,即)(x+1﹣1)<(x﹣1)2,∴ > ,即 >2 ,即 f(x+1)>2f(x)对一切x∈(3,+∞)恒成立,故函数f(x)= 是(3,+∞)上的周期为1的2级类增周期函数.(2)∵x∈[0,1)时,f(x)=2x,∴当x∈[1,2)时,f(x)=mf(x﹣1)=m•2x﹣1,…当x∈[n,n+1)时,f(x)=mf(x﹣1)=m2f(x﹣2)=…=mnf(x﹣n)=mn•2x﹣n,即x∈[n,n+1)时,f(x)=mn•2x﹣n,n∈N*,∵f(x)在[0,+∞)上单调递增,∴m>0且mn•2n﹣n≥mn﹣1•2n﹣(n﹣1),即m≥2.高二上学期数学期中试题试卷第Ⅰ卷(选择题,共40分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列则是它的(A)第项 (B)第项 (C)第项 (D)第项2.已知命题,命题,则命题是命题成立的(A)充分必要条件 (B)充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件3.已知椭圆的两个焦点是,过点的直线交椭圆于两点,在中,若有两边之和是,则第三边的长度为(A)3 (B)4 (C)5 (D)64.已知是单调递增的等比数列,满足,则数列的前项和(A) (B)(C) (D)5.已知椭圆的两个焦点为,点在椭圆上,是直角三角形,则的面积为(A) (B) 或4 (C) (D) 或46.已知,且,则的最小值为(A)100 (B)10 (C)1 (D)7.已知双曲线的右焦点为,点在双曲线的渐近线上,是腰长为的等腰三角形( 为原点),,则双曲线的方程为(A) (B)(C) (D)8.设椭圆的左、右焦点分别为,点在椭圆的外部,点是椭圆上的动点,满足恒成立,则椭圆离心率的取值范围是(A) (B) (C) (D)第Ⅱ卷(非选择题,共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.设等差数列的前项和为,若,则 __________.10.已知数列满足,且,则 __________.11.设直线与双曲线相交于两点,分别过向轴作垂线,若垂足恰为双曲线的两个焦点,则实数 __________.12.已知,且,则的最小值为___________.13.已知数列满足,,,则 _______.14.已知椭圆与双曲线有公共焦点,为与的一个交点,,椭圆的离心率为,双曲线的离心率为,若,则 _______.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)解关于的不等式 .16.(本小题满分13分)已知数列满足,且 .(Ⅰ)求证:数列是等比数列,并求的通项公式;(Ⅱ)求数列的前项和.17.(本小题满分13分)设各项均为正数的数列满足 .(Ⅰ)求的通项公式;(Ⅱ)设,,求的前n项和 .18.(本小题满分13分)已知椭圆的长轴长为,点在椭圆上.(Ⅰ)求椭圆的方程.(Ⅱ)设斜率为的直线与椭圆交于两点,线段的垂直平分线与轴交于点,且点的横坐标取值范围是,求的取值范围.19.(本小题满分14分)已知椭圆的右焦点为,离心率为 .(Ⅰ)求椭圆的方程;(Ⅱ)设直线与椭圆有且只有一个交点,且与直线交于点,设,且满足恒成立,求的值.20.(本小题满分14分)已知数列的前项和为,,且,为等比数列, .(Ⅰ)求和的通项公式;(Ⅱ)设,数列的前项和为,若对均满足,求整数的最大值.2018~2019学年度第一学期期中七校联考高二数学参考答案第Ⅰ卷(选择题,共40分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.第Ⅱ卷(非选择题,共80分)二、填空题:本大题共6小题,每小题5分,共30分.9.6 10. 11. 12. 13. 4 14.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)解:(1)当时,有,即 (2)(2)当时, .①当,即时,. (4)②当,即时,且 (6)③当,即时,方程两根,,且,所以或 (9)综上,关于的不等式的解集为:当时,解集为当时,解集为且当时,解集为或当时,解集为 (13)16.(本小题满分13分)解:(Ⅰ)证明:由已知得,所以数列是等比数列, (2)公比为2,首项为所以 (4)(Ⅱ)数列的前项和即记,,则 (5)(1)(2)(1)-(2)得 (6) (8) (9) (11)所以数列的前项和 (13)17.(本小题满分13分)解:(Ⅰ)由题设知 . (1)当时,有 (3)整理可得因为数列各项均为正数, (5)所以数列是首项为1,公差为2的等差数列,所以的通项公式为 . (6)(Ⅱ)由, (9)所以 (11). (13)18.(本小题满分13分)解:(Ⅰ)椭圆的长轴长为4,则所以, (1)因为点在椭圆上,所以,所以. (3)故椭圆的标准方程为. (4)(Ⅱ)设直线的方程为,设,的中点为,由消去,得, (6)所以即 (7),故,,即 (9)所以线段的垂直平分线方程为, (10)故点的横坐标为,即所以符合式 (11)由 (12)所以 (13)19.(本小题满分14分)解:(Ⅰ)设椭圆的焦距为,由已知有 ,又由,得,故椭圆的标准方程为. (3)(Ⅱ)由消去得, (5)所以,即. (6)设,则,即. (8)因为,所以 (9)由恒成立可得,即恒成立, (11)故 (13)所以 . (14)20.(本小题满分14分)解:(Ⅰ)由题设知 .当时,有 (1)整理得 (2)故 (4)经检验时也成立,所以的通项公式为. (5)设等比数列的公比为 .由,可得,所以,故所以的通项公式为. (7)(Ⅱ)因为 (9) (11)因为所以,即单调递增 (12)故 (13)即,所以. (14)。

江西省南昌市第二中学2018-2019学年高二数学上学期期中试题 理(含解析)

江西省南昌市第二中学2018-2019学年高二数学上学期期中试题 理(含解析)
B为双曲线上一点,则BF2﹣BF1=2a,BF2=4a,F1F2=2c,
在△F1BF2中应用余弦定理得:4c2=4a2+16a2﹣2•2a•4a•cos120°,
得c2=7a2,
在双曲线中:c2=a2+b2,b2=24
∴a2=4
∴△BF1F2的面积为 = =2 ×4=8 .
故选:C.
【点睛】本题给出经过双曲线左焦点的直线被双曲线截得弦AB与右焦点构成等边三角形,求三角形的面积,着重考查了双曲线的定义和简单几何性质等知识,属于中档题.
考点:1。直线与抛物线 位置关系;2.抛物线和双曲线的定义与性质.
【名师点睛】本题考查直线与抛物线的位置关系、抛物线和双曲线的定义与性质,属中档题;解决抛物线弦长相关问题时,要注意抛物线定义的应用,即将到焦点的距离转化为到准线的距离,通过解方程组求解相关问题即可。
9.已知圆 是圆 上任意一点,过点 向 轴作垂线,垂足为 ,点 在线段 上,且 ,则点 的轨迹方程是( )
【详解】设点M(﹣1,1)关于直线l:x﹣y﹣1=0对称的点N的坐标(x,y)
则MN中点的坐标为( , ),
利用对称的性质得:KMN= =﹣1,且 ﹣ ﹣1=0,
解得:x=2,y=﹣2,
∴点N的坐标(2,﹣2),
故答案为(2,﹣2).
【点睛】本题考查求点关于直线 对称点的坐标的方法,利用垂直关系、中点在轴上两个条件以及待定系数法求对称点的坐标.
【答案】A
【解析】
试题分析:直线 的方程为 ,与双曲线渐近线 的交点为 ,与双曲线在第一象限的交点为 ,所以 , ,由 得 ,解之得 ,所以 , ,故选A。
考点:双曲线几何性质、向量运算.
二、填空题(每小题5分,共20分。)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泉港一中2018-2019学年高二上学期数学(理)期中考试卷
一、选择题(本大题共12小题,每小题5分,共60分)
1. 椭圆22+143x y =与22
+154
y x =有相同的 A .长轴长B .离心率C .焦点D .焦距
2.从集合}5,4,3,2,1{中随机取出一个数,设事件为“取出的数为偶数”,事件为“取出的数为奇数”,则事件与
A .是互斥且对立事件
B .是互斥且不对立事件
C .不是互斥事件
D .不是对立事件
3.某校共有24个班,学校为了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方
法,抽取4个班进行调查,若抽到的编号之和为48,则抽到的最小编号为
A .2
B .3
C .4
D .5
4.若椭圆22
+143
y x =的两个焦点,,是椭圆上一点,且121MF MF -=,则12MF F ∆是 A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形
5.《周易》历来被人们视为儒家经典之首,它表现了古代中
华民族对万事万物的深刻而又朴素的认识,是中华人文文
化的基础,它反映了中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“
”当做数字“1”,把阴爻“”当做数字“0”,则八卦代表的数
表示如右表.以此类推,则六十四卦中的“屯”卦,符号
“”表示的十进制数是
A .15
B .16
C .17
D .18
6.若双曲线经过点(且渐近线方程是13
y x =±,则这条双曲线的方程是 A .221369x y -= B. 2219x y -= C. 221819x y -= D.22
1183
x y -=
7.右边程序框图的功能是求出1
6+1
6+6+6的值,则框图中①、②两处应分别填写的是
A .1,i a ≥
B .1,6i a ≥-
C .1,i a >
D .1,6i a >-
8.已知函数()31x f x -=-,给出下列两个命题:命题:若01x ≥,则()013f x <-; 命题:0x R ∀∈,()01f x >-.则下列叙述正确的是
A. 的否命题是:若01x <,则()013
f x <- B. 是假命题 C. 为:0x R ∃∈,()01f x >- D. 是假命题
9.在区间[]01,上随机取两个数,x y ,记为事件“12x y +≤”的概率,为事件“12y x ≤”的概率,则
A .1212p p <<
B .1212p p <<
C .2112p p <<
D .2112
p p << 10.双曲线22
1124
x y -=的焦点为,,点在双曲线上,且线段的中点在轴上,那么1PF 是2PF 的 A .倍B .倍C .倍D .倍
11.已知椭圆()22
22+10x y a b a b
=>>,12,F F 分别是椭圆的左、右焦点,若总存在以线段12F F 为直径的圆与椭圆相交,则椭圆的离心率的取值范围为
A
.0⎛
⎝⎭ B
.0⎛ ⎝
⎦ C
.1⎫⎪⎪⎣⎭ D
.1⎫⎪⎪⎝⎭ 12. 将一颗骰子投掷两次,第一次、第二次出现的点数分别记为a b 、,设直线1:2l ax by +=与2:22l x y +=平行的概率为,相交的概率为,则圆()()22:16122C x y -+-=上到直线12321p x p y +=
的点有 A .1个 B .2个 C .3个 D .4个
二、填空题(本大题共4小题,每小题5分,共20分.)
13.已知双曲线的离心率为,焦点是()4,0-,()4,0,则双曲线方程为.
14.右边茎叶图表示的是甲、乙两人在次综合测评中的成绩,其中一个数。

相关文档
最新文档