正激式变压器开关电源
正激反激式双端开关电源高频变压器设计详解
正激反激式双端开关电源高频变压器设计详解高频变压器作为电源电子设备中的重要组成部分,起到了将输入电压进行变换的作用。
根据不同的使用环境和要求,电源电路中的电感元件可分为正激式、反激式和双端开关电源。
下面就分别对这三种电源的高频变压器设计进行详解。
1.正激式电源变压器设计正激式电源变压器是将输入电压通过矩形波进行激励的一种变压器。
其基本结构包括主磁线圈和副磁线圈两部分,主磁线圈用来耦合能量,副磁线圈用来提供输出电压。
正激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。
(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。
(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。
(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。
(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。
(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。
2.反激式电源变压器设计反激式电源变压器是通过反馈控制来实现变压的一种变压器。
其基本结构包括主磁线圈、副磁线圈和反馈元件等。
反激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。
(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。
(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。
(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。
(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。
(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。
(7)选择合适的反馈元件:根据反馈控制的需要来选择合适的反馈元件,并设计合适的反馈回路。
开关电源:单管自激,反激,推挽,半桥,全桥
图 2.4 单端正激式开关电源
单端反激式开关电源 反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励 时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的 激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式 开关电源。反激式开关电源是在反极性(Buck—Boost)变换器的基础上演 变而来的,它具有以下优点: 比正激式开关电源少用一个大储能滤波电感及一个续流二极管,因此,体积 比正激式开关电源的要小,且成本也要低。
C18 Q5 C1815 22u50V
+
D17 R21 1N4148 12k
R27 1.5k
HW.79 94V-0
S-100N-R5
2000-11-21
+
C17 1u50V
MW
S-100-24 IN 110VAC 1.9A IN 220VAC 0.8A OUT 24VDC 4.5A
TL494 管脚功能及参数
+
R3 100R 2W 102 1kV FMX 1
C2
+V +V
1k 2W
C1 +
SCK054
TF-096
C3
D3S B-60 -0.5
N C10 4.7u50V T2 D7 R6 T028 15R
3A250V R13 580k 1/2W RT C6 220u 200V 470u 35V x5
开关电源:单管自激,反激,推挽,半桥,全桥
单端正激式开关电源 正激式变压器开关电源,是指当变压器的初级线圈正被直流电压激励 时,变压器的次级线圈正好有功率输出。它是在 BUCK 电路的开关管 Q 与续 流二极管 D 之间加入单端变压隔离器而得到的。它具有以下优点: 1) 正激变换器利用高频变压器的一次侧、二次侧绕组隔离的特点,可以方 便的实现交流电网和直流输出之间的隔离。 2) 正激变换器电路简单,成本很低,能方便的实现多路输出。 3) 正激变换器只有一个开关管,只需一组驱动脉冲;其对控制电路的要求 比双端变换器低。
开关电源之正激式开关电源变压器参数的计算
开关电源之正激式开关电源变压器参数的计算
正激式开关电源变压器参数的计算
正激式开关电源变压器参数的计算主要从这几个方面来考虑。
一个是变压器初级线圈的匝数和伏秒容量,伏秒容量越大变压器的励磁电流就越小;另一个是变压器初、次级线圈的匝数比,以及变压器各个绕组的额定输入或输出电流或功率。
关于开关电源变压器的工作原理以及参数设计后面还要更详细分析,这里只做比较简单的介绍。
正激式开关电源变压器初级线圈匝数的计算
图1中,当输入电压Ui加于开关电源变压器初级线圈的两端,且变压器的所有次级线圈均开路时,流过变压器的电流只有励磁电流,变压器铁心中的磁通量全部都是由励磁电流产生的。
当控制开关接通以后,励磁电流就会随时间增加而增加,变压器铁心中的磁通量也随时间增加而增加。
根据电磁感应定理:
e1 = L1di/dt = N1dф/dt = Ui —— K接通期间(1-92)
式中E1为变压器初级线圈产生的电动势,L1为变压器初级线圈的电感量,ф为变压器铁心中的磁通量,Ui为变压器初级线圈的输入电压。
其中磁通
量ф还可以表示为:
ф= S×B (1-93)
上式中,S为变压器铁心的导磁面积(单位:平方厘米),B为磁感应强度,也称磁感应密度(单位:高斯),即:单位面积的磁通量。
把(1-93)式代入(1-92)式并进行积分:。
正激式开关电源变压器参数的计算
正激式开关电源变压器参数的计算
正激式开关电源变压器参数的计算线路板(PCB)级的电磁兼容设计内置片内电阻的双路差动放大器实现精密ADC驱动器基于TPS759XX多片信号处理系统的电源设计深度解读:城市景观照明存在问题及设计要求LED 电视市场规模扩大企业呼唤统一标准LED与OLED齐头并进潜力同样巨大LED照明优势显而易见名副其实的“未来之光”
1-6-3-2.正激式开关电源变压器参数的计算
正激式开关电源变压器参数的计算主要从这几个方面来考虑。
一个是变压器初级线圈的匝数和伏秒容量,伏秒容量越大变压器的励磁电流就越小;另一个是变压器初、次级线圈的匝数比,以及变压器各个绕组的额定输入或输出电流或功率。
关于开关电源变压器的工作原理以及参数设计后面还要更详细分析,这里只做比较简单的介绍。
1-6-3-2-1.正激式开关电源变压器初级线圈匝数的计算
图1-17中,当输入电压Ui加于开关电源变压器初级线圈的两端,且变压器的所有次级线圈均开路时,流过变压器的电流只有励磁电流,变压器铁心中的磁通量全部都是由励磁电流产生的。
当控制开关接通以后,励磁电流就会随时间增加而增加,变压器铁心中的磁通量也随时间增加而增加。
根据电磁感应定理:
e1 = L1di/dt = N1dф/dt = Ui —— K接通期间(1-92)
式中E1为变压器初级线圈产生的电动势,L1为变压器初级线圈的电感量,ф为变压器铁心中的磁通量,Ui为变压器初级线圈的输入电压。
其中磁通量ф还可以表示为:。
正激式变压器开关电源电路参数的计算
1-6-3.正激式变压器开关电源电路参数的计算
正激式变压器开关电源电路参数计算主要对储能滤波电感、储能滤波电容,以及开关电源变压器的参数进行计算。
正激式变压器开关电源储能滤波电感和储能滤波电容参数的计算
图1-17中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法基本相同,因此,我们可以直接引用(1-14)式和(1-18)式,即:
式中Io为流过负载的电流(平均电流),当D = 0.5时,其大小正好等于流过储能电感L最大电流iLm的二分之一;T为开关电源的工作周期,T正好等于2倍控制开关的接通时间Ton ;ΔUP-P为输出电压的波纹电压,波纹电压ΔUP-P 一般取峰-峰值,所以波纹电压等于电容器充电或放电时的电压增量,即:ΔUP-P = 2ΔUc 。
同理,(1-90)式和(1-91)式的计算结果,只给出了计算正激式变压器开关电源储能滤波电感L和滤波电容C的中间值,或平均值,对于极端情况可以在平均值的计算结果上再乘以一个大于1的系数。
关于电压平均值输出滤波电路的详细工作原理与参数计算,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容,这里不再赘述。
正激式开关电源变压器参数的计算
正激式开关电源变压器参数的计算激式开关电源的变压器是系统中的重要组成部分之一,它用来将输入电压转换为适当的输出电压,并通过变压器来隔离输入和输出电路。
本文将详细介绍激式开关电源变压器参数的计算方法。
演绕比:激式开关电源变压器的演绕比是指主、副绕组之间的匝数之比。
主要由输入电压和输出电压决定。
一般情况下,演绕比为输出电压与输入电压的比值。
变比:变比是指主、副绕组的匝数之比。
变频比:变频比是指主、副绕组的频率之比。
变容比:变容比是指主、副绕组的容量之比。
变压比:变压比是指主、副绕组的电压之比。
计算转换比例时,需要考虑到输入输出电压、输入输出电流、变压器类型、功率及效率等因素。
在选择变压器时,需要根据设计需求确定转换比例。
以下是变压器参数计算的一般步骤:1.确定输入电压和输出电压:根据设计要求,确定所需的输入电压和输出电压。
2.计算变压比:根据输入电压和输出电压计算变压比。
变压比等于输出电压除以输入电压。
3.确定功率:根据设计要求,确定所需的功率。
4.选择变压器类型:根据功率、效率和空间要求,选择适当的变压器类型,例如EI型、EE型、EFD型等。
5.计算变压器匝数:根据变压比和变压器类型,计算主、副绕组的匝数。
根据变压比,副绕组的匝数等于主绕组的匝数乘以变压比。
6.计算电流:根据输入电压、输出电压、变压比和功率计算输入电流和输出电流。
输出电流等于功率除以输出电压,输入电流等于输出电流除以变压比。
7.验证:验证所计算出的参数是否满足设计要求,如功率、电流、限制条件等。
8.选择合适的变压器:根据所计算出的参数,选择合适的变压器。
考虑到输出功率大小和变压器的效率等因素。
在进行激式开关电源变压器参数计算时,需要注意以下几个问题:1.选择合适的变压器类型,根据功率、效率和空间要求进行选择。
2.变压器参数的计算必须满足设计要求,如功率、电流、效率等。
3.对于高功率和高效率要求的激式开关电源,需要根据具体设计要求选择专业的变压器供应商。
各种开关电源的优点和缺点
各种开关电源的优点和缺点【反激式、正激式、推挽式、半桥式、全桥式】为了表征各种电压或电流波形的好坏,一般都是拿电压或电流的幅值、平均值、有效值、一次谐波等参量互相进行比较。
在开关电源之中,电压或电流的幅值和平均值最直观,因此,我们用电压或电流的幅值与其平均值之比,称为脉动系数S;也有人用电压或电流的有效值与其平均值之比,称为波形系数K。
因此,电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki分别表示为:Sv = Up/Ua ——电压脉动系数 (1-84)Si = Im/Ia ——电流脉动系数 (1-85)Kv =Ud/Ua ——电压波形系数 (1-86)Ki = Id/Ia ——电流波形系数 (1-87)上面4式中,Sv、Si、Kv、Ki分别表示:电压和电流的脉动系数S,和电压和电流的波形系数K,在一般可以分清楚的情况下一般都只写字母大写S或 K。
脉动系数S和波形系数K都是表征电压或者电流好坏的指标,S和K的值,显然是越小越好。
S和K的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。
反激式开关电源的优点和缺点1 反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。
即电压脉动系数等于2,电流脉动系数等于4。
反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。
由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
特别是,反激式开关电源使用的时候,为了防止电源开关管过压击,起占空比一般都小于0.5,此时,流过变压器次级线圈的电流会出现断续,电压和电流的脉动系数都会增加,其电压和电流的输出特性将会变得更差。
反激式正激式推挽式半桥式全桥式开关电源优缺点
反激式、正激式、推挽式、半桥式、全桥式开关电源优缺点反激式、正激式、推挽式、半桥式、全桥式开关电源的优点和缺点最近查了很多关于开关电源的资料,现在总结如下,以便日后的查阅,呵呵。
由于博文有字数的限制故分两部分发表,本文为第一部分为了表征各种电压或电流波形的好坏,一般都是拿电压或电流的幅值、平均值、有效值、一次谐波等参量互相进行比较。
在开关电源之中,电压或电流的幅值和平均值最直观,因此,我们用电压或电流的幅值与其平均值之比,称为脉动系数S ;也有人用电压或电流的有效值与其平均值之比,称为波形系数K 。
因此,电压和电流的脉动系数Sv 、Si 以及波形系数Kv 、Ki 分别表示为:Sv = Up/Ua ——电压脉动系数(1-84 )Si = Im/Ia ——电流脉动系数(1-85 )Kv =Ud/Ua ——电压波形系数(1-86 )Ki = Id/Ia ——电流波形系数(1-87 )上面 4 式中,Sv 、Si 、Kv 、Ki 分别表示:电压和电流的脉动系数S ,和电压和电流的波形系数K ,在一般可以分清楚的情况下一般都只写字母大写S 或K 。
脉动系数S 和波形系数K 都是表征电压或者电流好坏的指标,S 和K 的值,显然是越小越好。
S 和K 的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。
反激式开关电源的优点和缺点1 反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5 时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。
即电压脉动系数等于2 ,电流脉动系数等于 4 。
反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。
深度解析开关电源“正激”与“反激”的工作原理与区别
深度解析开关电源“正激”与“反激”的工作原理与区别
反激式:反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源。
“反激”指的是在开关管接通的情况下,当输入为高电平时输出线路中串联的电感为放电状态;相反,在开关管断开的情况下,当输入为高电平时输出线路中的串联的电感为充电状态。
工作原理:变压器的一次和二次绕组的极性相反,这大概也是Flyback名字的由来: a.当开关管导通时,变压器原边电感电流开始上升,此时由于次级同名端的关系,输出二极管截止,变压器储存能量,负载由输出电容提供能量。
b.当开关管截止时,变压器原边电感感应电压反向,此时输出二极管导通,变压器中的能量经由输出二极管向负载供电,同时对电容充电,补充刚刚损失的能量。
反激电路的演变:可以看作是隔离的Buck/Boost 电路:
在反激电路中,输出变压器T除了实现电隔离和电压匹配之外,还有储存能量的作用,前者是变压器的属性,后者是电感的属性,因此有人称其为电感变压器,有时我也叫他异步电感。
正激电源
正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。
所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。
单端正激式:。
反激式、正激式、推挽式、半桥式、全桥式开关电源的优点和缺点
反激式、正激式、推挽式、半桥式、全桥式开关电源的优点和缺点反激式开关电源的优点和缺点反激变换器01反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。
即电压脉动系数等于2,电流脉动系数等于4。
反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。
由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
特别是,反激式开关电源使用的时候,为了防止电源开关管过压击,起占空比一般都小于0.5,此时,流过变压器次级线圈的电流会出现断续,电压和电流的脉动系数都会增加,其电压和电流的输出特性将会变得更差。
02反激式开关电源的瞬态控制特性相对来说比较差。
由于反激式开关电源仅在开关关断期间才向负载提供能量输出,当负载电流出现变化时,开关电源不能立即对输出电压或电流产生反应,而需要等到下一个周期事,通过输出电压取样和调宽控制电路的作用,开关电源才开始对已经过去了的事情进行反应,即改变占空比,因此,反激式开关电源的瞬态控制特性相对来说比较差。
有时,当负载电流变化的频率和相位与取样、调宽控制电路输出的电压的延时特性在相位保持一致的时候,反激式开关电源输出电压可能会产生抖动,这种情况在电视机的开关电源中最容易出现。
03反激式开关电源变压器初级和次级线圈的漏感都比较大,开关电源变压器的工作效率低。
反激式开关电源变压器的铁芯一般需要留一定的气隙,一方面是为了防止变压器的铁芯因流过变压器的初级线圈的电流过大,容易产生磁饱和。
另一方面是因为变压器的输出功率小,需要通过调整电压器的气隙和初级线圈的匝数,来调整变压器初级线圈的电感量的大小。
反激式正激式推挽式半桥式全桥式开关电源优缺点
反激式、正激式、推挽式、半桥式、全桥式开关电源优缺点反激式、正激式、推挽式、半桥式、全桥式开关电源的优点和缺点最近查了很多关于开关电源的资料,现在总结如下,以便日后的查阅,呵呵。
由于博文有字数的限制故分两部分发表,本文为第一部分为了表征各种电压或电流波形的好坏,一般都是拿电压或电流的幅值、平均值、有效值、一次谐波等参量互相进行比较。
在开关电源之中,电压或电流的幅值和平均值最直观,因此,我们用电压或电流的幅值与其平均值之比,称为脉动系数S ;也有人用电压或电流的有效值与其平均值之比,称为波形系数K。
因此,电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki分别表示为:Sv = Up/Ua ——电压脉动系数(1-84)Si = Im/Ia —电流脉动系数(1-85)—Kv =Ud/Ua ——电压波形系数(1-86)Ki = Id/Ia —电流波形系数(1-87)上面4式中,Sv、Si、Kv、Ki分别表示:电压和电流的脉动系数S,和电压和电流的波形系数K,在一般可以分清楚的情况下一般都只写字母大写S或K。
脉动系数S和波形系数K都是表征电压或者电流好坏的指标,S和K的值,显然是越小越好。
S和K的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。
反激式开关电源的优点和缺点1反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。
即电压脉动系数等于2,电流脉动系数等于4。
反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。
由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。
全桥,半桥,推挽,正激,反激的优缺点比较及应用场合分析
全桥,半桥,推挽,正激,反激的优缺点比较及应用场合分析优缺点比较一、全桥式开关电源的优点和缺点1、全桥式变压器开关电源输出功率很大,工作效率很高全桥式变压器开关电源与推挽式变压器开关电源一样,由于两组开关器件轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。
因此,全桥式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,其输出电压的电压脉动系数Sv和电流脉动系数Si都很小,仅需要一个很小值的储能滤波电容或储能滤波电感,就可以得到一个电压纹波和电流纹波都很小的输出电压。
2、全桥式开关电源的优点是开关管的耐压值特别的低全桥式变压器开关电源最大的优点是,对4个开关器件的耐压要求比推挽式变压器开关电源对两个开关器件的耐压要求可以降低一半。
因为,全桥式变压器开关电源4个开关器件分成两组,工作时2个开关器件互相串联,关断时,每个开关器件所承受的电压,只有单个开关器件所承受电压的一半。
其最高耐压等于工作电压与反电动势之和的一半,这个结果正好是推挽式变压器开关电源两个开关器件耐压的一半。
3、全桥式变压器开关电源主要用于输入电压比较高的场合在输入电压很高的情况下,采用全桥式变压器开关电源,其输出功率要比推挽式变压器开关电源的输出功率大很多。
因此,一般电网电压为交流220伏供电的大功率开关电源大部分都是使用全桥式变压器开关电源。
而在输入电压较低的情况下,推挽式变压器开关电源的输出功率又要比全桥式变压器开关电源的输出功率大很多。
4、全桥式变压器开关电源的电源利用率比推挽式变压器开关电源的电源利用率低一些因为2组开关器件互相串联,两个开关器件接通时总的电压降要比单个开关器件接通时的电压降大一倍;但比半桥式变压器开关电源的电源利用率高很多。
因此,全桥式变压器开关电源也可以用于工作电源电压比较低的场合。
5、与半桥式开关电源一样,全桥式变压器开关电源的变压器初级线圈只需要一个绕组,这也是它的优点,这对小功率开关电源变压器的线圈绕制多少带来一些方便。
开关电源设计技巧连载九:正激式变压器开关电源
开关电源设计技巧连载九:正激式变压器开关电源正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。
1-6-1.正激式变压器开关电源工作原理所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流脉冲电压激励时,变压器的次级线圈正好有功率输出。
图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R是负载电阻。
在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。
如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。
我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua ,而输出电压的幅值Up不变。
因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。
图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。
其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。
关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。
正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。
因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。
反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对电源进行充电;另一方面,流过反馈线圈N3绕组中的电流产生的磁场可以使变压器的铁心退磁,使变压器铁心中的磁场强度恢复到初始状态。
开关电源设计技巧连载十正激式变压器开关电源电路参数的计算
开关电源设计技巧连载十正激式变压器开关电源电路参数的计算正激式变压器开关电源是一种常见的电源设计方案,广泛应用于各种电子设备中。
在设计正激式变压器开关电源时,我们需要计算一些电路参数来保证电源的正常工作。
以下是正激式变压器开关电源电路参数的计算方法。
1.输入电压计算:首先,需要确定正激式变压器开关电源的输入电压范围。
一般情况下,输入电压范围是根据电源的应用场所和要求来确定的。
例如,对于工业设备,输入电压范围一般为220VAC;对于电子设备,输入电压范围一般为110VAC。
因此,需要根据输入电压范围来选择合适的变压器。
2.输出电压计算:根据电源的应用场景和要求,确定所需的输出电压。
一般情况下,正激式变压器开关电源的输出电压范围是根据设备的工作电压要求来确定的。
例如,对于一些低功率的电子设备,输出电压一般为5VDC;对于一些高功率的电子设备,输出电压一般为12VDC或者24VDC。
因此,需要根据输出电压范围来选择合适的变压器和输出电路参数。
3.开关频率计算:开关频率是指开关管的开关频率,它决定了电源的工作频率。
一般情况下,开关频率是根据设备的工作要求来确定的。
例如,对于一些需要高效节能的设备,开关频率一般选择在20kHz以上;对于一些功率较低的设备,开关频率一般选择在50kHz以上。
因此,需要根据设备的工作要求来确定开关频率。
4.输出电流计算:输出电流是指电源输出给负载的电流,它决定了电源的输出功率。
一般情况下,输出电流是根据设备的功率要求和负载电阻来确定的。
例如,对于一些低功率的电子设备,输出电流一般在1A以下;对于一些高功率的电子设备,输出电流一般在10A以上。
因此,需要根据设备的功率要求和负载电阻来确定输出电流。
5.开关管参数计算:正激式变压器开关电源中的开关管是承担开关功能的主要器件。
在选择开关管时,需要根据前面计算的电路参数来确定合适的开关管。
例如,需要根据输入电压、输出电压、开关频率和输出电流来确定开关管的导通压降、导通电阻、关断速度和功耗等参数。
正激式变压器开关电源电路参数的计算
正激式变压器开关电源电路参数的计算正激式变压器开关电源电路是一种常见的开关电源拓扑结构,其工作原理是通过对输入电压进行开关变换来实现输出电压的调整。
在计算该电路的参数时,需要考虑输入电压、输出电压、工作频率、变压器参数以及开关管参数等因素。
1. 输入电压(Vin):输入电压是指电路供电的直流电压,一般由输入端的整流电路提供。
在计算参数之前,需要先确定合适的输入电压范围。
2. 输出电压(Vout):输出电压是经过变压器变换后的直流电压,一般由输出端的滤波电路提供。
根据设计需求确定合适的输出电压。
3.工作频率(f):工作频率是指开关电源电路每秒钟切换的次数,一般在几十kHz至几MHz范围内。
根据设计需求和开关管的特性选择合适的工作频率。
4.变压器参数:变压器是正激式变压器开关电源电路的核心元件,其参数包括输入端绕组的匝数Np、输出端绕组的匝数Ns、铁芯面积A、磁通密度B等。
在计算变压器的参数之前,需要先确定变压器的输入输出电压比。
5. 开关管参数:开关管是正激式变压器开关电源电路的开关元件,其参数包括导通电阻Ron、关断电阻Roff、最大导通电流Imax等。
根据变压器参数和设计需求选择合适的开关管。
计算正激式变压器开关电源电路的参数一般分为两步:第一步是变压器的参数计算。
根据输入输出电压比和变压器的匝数关系,计算变压器的匝数比Np/Ns。
然后根据变压器的输入端电压和输出端电压,计算变压器的变比。
根据变压器的变比和输入电压,计算变压器的输入电流。
根据变压器的输入电流和输入电压,计算变压器的功率。
根据变压器的功率和铁芯面积,计算变压器的磁通密度。
第二步是开关管的参数计算。
根据变压器的输入电流、开关管的导通电阻和输出电压,计算开关管导通时的功耗。
根据开关管的导通电阻和工作频率,计算开关管导通时的热损耗。
根据变压器的输出电流、开关管的关断电阻和输入电压,计算开关管关断时的功耗。
根据开关管的关断电阻和工作频率,计算开关管关断时的热损耗。
正激开关电源变压器计算
正激开关电源变压器计算
要计算开关电源变压器,需要考虑以下几个因素:
1. 输入电压(Vin)和输出电压(Vout):确定所需的输入和输出电压是计算变压器的重要参数。
2. 输入电流(Iin)和输出电流(Iout):通过当前通过变压器的电流,可以确定变压器的额定电流和功率。
3. 变压器的变比(N):变比是指变压器的输入和输出电压之间的比例关系。
可以通过Vout/Vin计算。
4. 变压器的效率(η):效率是指变压器将输入的电能转化为输出电能的能力,通常表示为百分比。
可以通过输出功率除以输入功率计算。
5. 变压器的功率损耗:考虑变压器的铜损耗和铁损耗,它们会减少变压器的效率。
基于以上参数,可以进行以下计算:
1. 计算变压器的变比:
使用公式 N = Vout / Vin
2. 计算变压器的输入功率(Pin):
使用公式 Pin = Vin * Iin
3. 计算变压器的输出功率(Pout):
使用公式 Pout = Vout * Iout
4. 计算变压器的效率(η):
使用公式η = (Pout / Pin) * 100
5. 计算变压器的功率损耗:
使用公式功率损耗 = 输入功率 - 输出功率
请注意,这只是一个简单的计算方法,实际的变压器设计可能涉及更多的参数和考虑因素。
因此,在实际应用中,建议咨询专业工程师进行详细设计和计算。
正激式开关电源的优点和缺点
1、正激式变压器开关电源输出电 压的瞬 Nhomakorabea控制特性相对来说比较 好。
正激式变压器开关电源正好是在 变压器的初级线圈被直流电压激 励时,变压器的次级线圈向负载 提供功率输出,并且输出电压的 幅度是基本稳定的,
此时尽管输 出功率不停地变化, 但输出电压的幅度基本还是不变, 这说明正激式变压器开关电源输 出电压的瞬态控制特性相对来说 比较好;
5、正激式开关电源的体积 比较大。
正激式变压器开关电源为了减少 变压器的励磁电流,提高工作效 率,变压器的伏秒容量一般都取 得比较大(伏秒容量等于输入脉 冲电压幅度与脉冲宽度的乘积, 这里用US来表示),
并且为了防止变压器初级线圈产 生的反电动势把开关管击穿,正 激式变压器开关电源的变压器要 比反激式变压器开关电源的变压 器多一个反电 动势吸收绕组,因 此,正激式变压器开关电源的变 压器的体积要比反激式变压器开 关电源的变压器的体积大。
如果要求正激式变压器开关电源 输出电压有较大的调整率,在正 常负载的情况下,控制开关的占 空比最好 选取在0.5左右,或稍大 于0.5,此时流过储能滤波电感的电 流才是连续电流。当流过储能滤 波电感的电流为连续电流时,负 载能力相对来说比较强。
3、正激式变压器开关电源的 电压和电流输出特性要比反激式 变压器开关电源好很多。
当控制开关的占空比为0.5时,正 激式变压器开关电源输出电压uo 的幅值正好等于电压平均值Ua的 两倍,流过滤波储能电感电流的 最大值Im也正好是平 均电流Io (输出电流)的两倍,
因此,正激式变压器开关电源的 电压和电流的脉动系数S都约等于 2,而与反激式变压器开关电源的电 压和电流的脉动系数S相 比,差不 多小一倍,说明正激式变压器开 关电源的电压和电流输出特性要 比反激式变压器开关电源好很多。
开关电源正激变压器和反激变压器的区别
1.开关电源正激变压器和反激变压器的区别
反激变压器匝比等于反射电压/(输出电压--整流二极管压降)
反激变压器的实质是电感,能量存贮与气隙中
正激变压器是真正意思上的变压器,其后的拓扑就是个BUCK,所以正激就是变压器+BUCK,因此正激的输出电感,电容均按BUCK计算即可,在CCM模式下,电感前端的电压=输出电压/占空比
正激匝比等于输入端电压/(电感前端电压--二极管压降)
对相同的输入电压来说,正激可以输出较大的功率,而反激的则要小的多,因为反激的是靠磁心的励磁能量来输出功率。
拓扑差异不大,最明显的是正激的电源整流端有两个二极管,一个是用来续流的。
2.开关电源反激和正激的变压器设计是不是一样的。
由于反激电路中的变压器起的作用是储能(电感的作用)和变比的作用,而正激电路的作用就是变压器的正常的传递能量的作用,因此反激电路的变压器设计的时候要类似于电感的设计,一定注意磁饱和的问题(磁芯加气隙)。
正激变压器设计可按正常的变压器的设计方法即可。
正激式变压器开关电源工作原理
正激式变压器开关电源工作原理
在磁储能阶段,输入电压先经过整流滤波电路得到DC电压,然后进入开关管的控制电路。
通过开关管的控制,使得开关管在合适的时机打开和关闭。
当开关管闭合时,输入电源的电流通过原边绕组,产生一定的能量储存在磁场中。
同时,在开关管打开时,能量从磁场中释放出来,通过反向变压器作用在辅助绕组上。
在变压器关闭阶段,当开关管断开时,输入电源的电流停止流动,辅助绕组上的能量通过变压器作用,在次级绕组上形成输出电压。
此时,输出端的整流滤波电路将输出的交流电转换为直流电并进行滤波,在电容的作用下将波纹电流平滑。
在反馈调整阶段,输出电压经过反馈控制电路进行采样,与设定的参考电压进行比较。
如果输出电压高于参考电压,反馈控制电路将信号发送给开关管的控制电路,降低开关管的导通时间,降低输入电流,减小输出电压。
相反,如果输出电压低于参考电压,反馈控制电路会提高开关管的导通时间,增加输入电流,提高输出电压。
通过这种反馈调整机制,输出电压可以稳定在设定值附近。
正激式变压器开关电源的工作原理要点在于磁能的存储和释放。
通过合适的控制开关管的导通时间和阻断时间,可以实现能量的储存和释放,从而实现输出电压的控制和稳定。
此外,正激式变压器开关电源还具有一些特点,如输出电压隔离性好,适用于大范围的输入电压,具有过流、过载保护等功能。
总之,正激式变压器开关电源是一种常见的电源设计,其工作原理基于磁能的存储和释放,通过合适的控制和反馈机制实现输出电压的稳定和调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-6.正激式变压器开关电源
正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。
1-6-1.正激式变压器开关电源工作原理
所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。
图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R是负载电阻。
在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。
如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。
我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua ,而输出电压的幅值Up不变。
因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。
图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。
其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。
关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。
正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关电源变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。
因此,在图1-17中,为了防
止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。
反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对电源进行充电;另一方面,流过反馈线圈
N3绕组中的电流产生的磁场可以使变压器的铁心退磁,使变压器铁心中的磁场强度恢复到初始状态。
由于控制开关突然关断,流过变压器初级线圈的励磁电流突然为0,此时,流过反馈线圈N3绕组中的电流正好接替原来励磁电流的作用,使变压器铁心中的磁感应强度由最大值Bm返回到剩磁所对应的磁感应强度Br位置,即:流过反馈线圈N3绕组中电流是由最大值逐步变化到0的。
由此可知,反馈线圈N3绕组产生的感应电动势在对电源进行充电的同时,流过反馈线圈N3绕组中的电流也在对变压器铁心进行退磁。
图1-18是图1-17中正激式变压器开关电源中几个关键点的电压、电流波形图。
图1-18-a)是变压器次级线圈N2绕组整流输出电压波形,图1-18-b)是变压器次级线圈N3绕组整流输出电压波形,图1-18-c)是流过变压器初级线圈N1绕组和次级线圈N3绕组的电流波形。
图1-17中,在Ton期间,控制开关K接通,输入电源Ui对变压器初级线圈N1绕组加电,初级线圈N1绕组有电流i1流过,在N1两端产生自感电动势的同时,在变压器次级线圈N2绕组的两端也同时产生感应电动势,并向负载提供输出电压。
开关变压器次级线圈输出电压大小由(1-63)、(1-69)、(1-76)、(1-77)等式给出,电压输出波形如图1-18-a)。
图1-18-c)是流过变压器初级线圈电流i1的波形。
流过正激式开关电源变压器的电流与流过电感线圈的电流不同,流过正激式开关电源变压器中的电流有突变,而流过电感线圈的电流不能突变。
因此,在控制开关K接通瞬间流过正激式开关电源变压器的电流立刻就可以达到某个稳定值,这个稳定电流值是与变压器次级线圈电流大小相关的。
如果我们把这个电流记为i10,变压器次级线圈电流为i2,那么就是:i10 = n i2 ,其中n为变压器次级电压与初级电压比。
另外,流过正激式开关电源变压器的电流i1除了i10之外还有一个励磁电流,我们把励磁电流记为∆i1。
从图1-18-c)中可以看出,∆i1就是i1中随着时间线性增长的部份,励磁电流∆i1由下式给出:
∆i1 = Ui*t/L1 —— K接通期间(1-80)
当控制开关K由接通突然转为关断瞬间,流过变压器初级线圈的电流i1突然为0,由于变压器铁心中的磁通量ф不能突变,必须要求流过变压器次级线圈回路的电流也跟着突变,以抵消变压器初级线圈电流突变的影响,要么,在变压器初级线圈回路中将出现非常高的反电动势电压,把控制开关或变压器击穿。
如果变压器铁心中的磁通产生突变,变压器的初、次级线圈就会产生无限高的反电动势,反电动势又会产生无限大的电流,而电流又会抵制磁通的变化,因此,变压器铁心中的磁通变化,最终还是要受到变压器初、次级线圈中的电流来约束的。
因此,控制开关K由接通状态突然转为关断,变压器初级线圈回路中的电流突然为0时,变压器次级线圈回路中的电流i2一定正好等于控制开关K接通期间的电流i2(Ton+),与变压器初级线圈励磁电流∆i1被折算到变压器次级线圈的电流之和。
但由于变压器初级线圈中励磁电流∆i1被折算到变压器次级线圈的电流∆i1/n的方向与原来变压器次级线圈的电流i2(Ton+)的方向是相反的,整流二极管D1对电流∆i1/n并不导通,因此,电流∆i1/n只能通过变压器次级线圈N3绕组产生的反电动势,经整流二极管D3向输入电压Ui进行反充电。
在Ton期间,由于开关电源变压器的电流的i10等于0,变压器次级线圈N2绕组回路中的电流i2自然也等于0,所以,流过变压器次级线圈N3绕组中的电流,只有变压器初级线圈中励磁电流∆i1被折算到变压器次级线圈N3绕组回路中的电流i3 (等于∆i1/n),这个电流的大小是随着时间下降的。
一般正激式开关电源变压器的初级线圈匝数与次级反电动势能量吸收反馈线圈
N3绕组的匝数是相等的,即:初、次级线圈匝数比为:1 :1 ,因此,∆i1 = i3 。
图1-18-c)中,i3用虚线表示。
图1-18-b)正激式开关电源变压器次级反电动势能量吸收反馈线圈N3绕组的电压波形。
这里取变压器初、次级线圈匝数比为:1 :1,因此,当次级线圈N3
绕组产生的反电动势电压超过输入电压Ui时,整流二极管D3就导通,反电动势电压就被输入电压Ui和整流二极管D3进行限幅,并把限幅时流过整流二极管的电流送回供电回路对电源或储能滤波电容进行充电。
精确计算电流i3的大小,可以根据(1-80)式以及下面方程式求得,当控制开关K关闭时:
e3 = -L3*di/dt = -Ui —— K接通期间(1-81)
i3 = -(Ui*Ton/nL1)- Ui*t/L3 —— K关断期间(1-82)
上式中右边的第一项就是流过变压器初级线圈N1绕组中的最大励磁电流被折算到次级线圈N3绕组中的电流,第二项是i3中随着时间变化的分量。
其中n为变压器次级线圈与初级线圈的变压比。
值得注意的是,变压器初、次级线圈的电感量不是与线圈匝数N成正比,而是与线圈匝数N2成正比。
由(1-82)式可以看出,变压器次级线圈N3绕组的匝数增多,即:L3电感量增大,变压器次级线圈N3绕组的电流i3就变小,并且容易出现断流,说明反电动势的能量容易释放完。
因此,变压器次级线圈N3绕组匝数与变压器初级线圈N1绕组匝数之比n最好大于一或等于一。
当N1等于N3时,即:L1等于L3时,上式可以变为:
i3 =Ui(Ton-t)/L3 —— K接通期间(1-83)
(1-83)式表明,当变压器初级线圈N1绕组的匝数与次级线圈N3绕组的匝数相等时,如果控制开关的占空比D小于0.5,电流i3是不连续的;如果占空比D 等于0.5,电流i3为临界连续;如果占空比D大于0.5,电流i3为连续电流。
这里顺便说明,在图1-17中,最好在整流二极管D1的两端并联一个高频电容(图中未画出)。
其好处一方面可以吸收当控制开关K关断瞬间变压器次级线圈产生的高压反电动势能量,防止整流二极管D1击穿;另一方面,电容吸收的能量在下半周整流二极管D1还没导通前,它会通过放电(与输出电压串联)的形式向负载提供能量。
这个并联电容不但可以提高电源的输出电压(相当于倍压整流的作用),还可以大大地减小整流二极管D1的损耗,提高工作效率。
同时,它还会降低反电动势的电压上升率,对降低电磁辐射有好处。
下一次我们谈谈“正激式变压器开关电源的优缺点”。