2013年四川数学文解析

合集下载

2013年高考理科数学四川卷考试试题与答案word解析版

2013年高考理科数学四川卷考试试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(2013四川,理1)设集合A ={x |x +2=0},集合B ={x |x 2-4=0},则A ∩B =( ).A .{-2}B .{2}C .{-2,2}D .∅2.(2013四川,理2)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ).A .AB .BC .CD .D3.(2013四川,理3)一个几何体的三视图如图所示,则该几何体的直观图可以是( ).4.(2013四川,理4)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( ).A .⌝p :∀x ∈A,2x ∉B B .⌝p :∀x ∉A,2x ∉BC .⌝p :∃x ∉A,2x ∈BD .⌝p :∃x ∈A,2x ∉B 5.(2013四川,理5)函数f (x )=2sin(ωx +φ)ππ0,22ωϕ⎛⎫>-<< ⎪⎝⎭的部分图象如图所示,则ω,φ的值分别是( ).A .2,π3-B .2,π6-C .4,π6-D .4,π36.(2013四川,理6)抛物线y 2=4x 的焦点到双曲线x 2-23y =1的渐近线的距离是( ).A .12 B.2 C .1 D7.(2013四川,理7)函数331x x y =-的图象大致是( ).8.(2013四川,理8)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是( ).A.9 B.10 C.18 D.209.(2013四川,理9)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ).A.14 B.12 C.34 D.7810.(2013四川,理10)设函数f(x)(a∈R,e为自然对数的底数),若曲线y=sin x上存在点(x0,y0)使得f(f(y0))=y0,则a的取值范围是( ).A.[1,e] B.[e-1-1,1]C.[1,e+1] D.[e-1-1,e+1]第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(2013四川,理11)二项式(x+y)5的展开式中,含x2y3的项的系数是__________.(用数字作答) 12.(2013四川,理12)在平行四边形ABCD中,对角线AC与BD交于点O,AB+AD=λAO,则λ=__________.13.(2013四川,理13)设sin 2α=-sin α,α∈π,π2⎛⎫⎪⎝⎭,则tan 2α的值是__________.14.(2013四川,理14)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是__________.15.(2013四川,理15)设P1,P2,…,P n为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…,P n的距离之和最小,则称点P为点P1,P2,…,P n的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:①若三个点A,B,C共线,C在线段AB上,则C是A,B,C的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A,B,C,D共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是__________.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(2013四川,理16)(本小题满分12分)在等差数列{a n}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{a n}的首项、公差及前n项和.17.(2013四川,理17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos 2A B-cos B -sin(A -B )sin B +cos(A +C )=35-,(1)求cos A 的值;(2)若a =b =5,求向量BA 在BC 方向上的投影.18.(2013四川,理18)(本小题满分12分)某算法的程序框图如图所示,其中输入的变量x 在1,2,3,…,24这24个整数中等可能随机产生.(1)分别求出按程序框图正确编程运行时输出y 的值为i 的概率P i (i =1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为i (i =1,2,3)的频数,以下是甲、乙所作频数统计表的部分数据.当n=2 100的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;(3)将按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.19.(2013四川,理19)(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC =2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(2)设(1)中的直线l交AB于点M,交AC于点N,求二面角A-A1M-N的余弦值.20.(2013四川,理20)(本小题满分13分)已知椭圆C :22221x y a b+=(a >b >0)的两个焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点P 41,33⎛⎫⎪⎝⎭.(1)求椭圆C 的离心率;(2)设过点A (0,2)的直线l 与椭圆C 交于M ,N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.21.(2013四川,理21)(本小题满分14分)已知函数f(x)=22,0,ln,0,x x a xx x⎧++<⎨>⎩其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.(1)指出函数f(x)的单调区间;(2)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2-x1的最小值;(3)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.答案:A解析:由题意可得,A={-2},B={-2,2},∴A∩B={-2}.故选A.2.答案:B解析:复数z表示的点与其共轭复数表示的点关于实轴对称.3.答案:D解析:由三视图可知该几何体为一个上部为圆台、下部为圆柱的组合体,故选D.4.答案:D5.答案:A解析:由图象可得,35ππ3π41234T⎛⎫=--=⎪⎝⎭,∴T=π,则ω=2ππ=2,再将点5π,212⎛⎫⎪⎝⎭代入f(x)=2sin(2x+φ)中得,5πsin16ϕ⎛⎫+=⎪⎝⎭,令5π6+φ=2kπ+π2,k∈Z,解得,φ=2kπ-π3,k∈Z,又∵φ∈ππ,22⎛⎫- ⎪⎝⎭,则取k=0,∴φ=π3-.故选A.6.答案:B解析:由题意可得,抛物线的焦点为(1,0),双曲线的渐近线方程为y=,即-y=0,由点到直线的距离公式可得抛物线的焦点到双曲线的渐近线的距离d==.7.答案:C解析:由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A;取x=-1,y=1113--=32>0,故再排除B;当x→+∞时,3x-1远远大于x3的值且都为正,故331xx-→0且大于0,故排除D,选C.8.答案:C解析:记基本事件为(a,b),则基本事件空间Ω={(1,3),(1,5),(1,7),(1,9),(3,1),(3,5),(3,7),(3,9),(5,1),(5,3),(5,7),(5,9),(7,1),(7,3),(7,5),(7,9),(9,1),(9,3),(9,5),(9,7)}共有20个基本事件,而lg a -lg b =lga b ,其中基本事件(1,3),(3,9)和(3,1),(9,3)使lg ab的值相等,则不同值的个数为20-2=18(个),故选C .9. 答案:C解析:设两串彩灯第一次闪亮的时刻分别为x ,y ,则由题意可得,0≤x ≤4,0≤y ≤4;而所求事件“两串彩灯同时通电后,第一次闪亮相差不超过2秒”={(x ,y )||x -y |≤2},由图示得,该事件概率1643164S P S -===阴影正方形.10. 答案:A解析:由题意可得,y 0=sin x 0∈[-1,1],而由f (x )可知y 0∈[0,1],当a =0时,f (x )∴y 0∈[0,1]时,f (y 0)∈[1.∴f (f (y 0 1.∴不存在y 0∈[0,1]使f (f (y 0))=y 0成立,故B ,D 错;当a =e +1时,f (x )y 0∈[0,1]时,只有y 0=1时f (x )才有意义,而f (1)=0, ∴f (f (1))=f (0),显然无意义,故C 错.故选A .第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效. 二、填空题:本大题共5小题,每小题5分,共25分. 11.答案:10解析:由二项式展开系数可得,x 2y 3的系数为35C =25C =10.12.答案:2解析:如图所示,在平行四边形ABCD 中,AB +AD =AC =2AO ,∴λ=2.13.解析:∵sin 2α=-sin α, ∴2sin αcos α=-sin α.又∵α∈π,π2⎛⎫⎪⎝⎭,∴cos α=12-.∴sin α2=.∴sin 2α=2-,cos 2α=2cos 2α-1=12-.∴tan 2α=sin2cos2αα14.答案:(-7,3)解析:当x ≥0时,令x 2-4x <5,解得,0≤x <5.又因为f (x )为定义域为R 的偶函数,则不等式f (x +2)<5等价于-5<x +2<5,即-7<x <3;故解集为(-7,3). 15.答案:①④解析:由“中位点”可知,若C 在线段AB 上,则线段AB 上任一点都为“中位点”,C 也不例外,故①正确;对于②假设在等腰Rt △ABC 中,∠ACB =90°,如图所示,点P 为斜边AB 中点,设腰长为2,则|PA |+|PB |+|PC |=32|AB |=C 为“中位点”,则|CB |+|CA |=4< 对于③,若B ,C 三等分AD ,若设|AB |=|BC |=|CD |=1,则|BA |+|BC |+|BD |=4=|CA |+|CB |+|CD |,故③错;对于④,在梯形ABCD 中,对角线AC 与BD 的交点为O ,在梯形ABCD 内任取不同于点O 的一点M ,则在△MAC 中,|MA |+|MC |>|AC |=|OA |+|OC |,同理在△MBD 中,|MB |+|MD |>|BD |=|OB |+|OD |, 则得,|MA |+|MB |+|MC |+|MD |>|OA |+|OB |+|OC |+|OD |, 故O 为梯形内唯一中位点是正确的.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.解:设该数列公差为d ,前n 项和为S n .由已知,可得2a 1+2d =8,(a 1+3d )2=(a 1+d )(a 1+8d ).所以,a 1+d =4,d (d -3a 1)=0,解得a 1=4,d =0,或a 1=1,d =3,即数列{a n }的首项为4,公差为0,或首项为1,公差为3.所以,数列的前n 项和S n =4n 或S n =232n n-.17.解:(1)由22cos 2A B -cos B -sin(A -B )sin B +cos(A +C )=35-,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =35-,即cos(A -B )cos B -sin(A -B )sin B =35-.则cos(A -B +B )=35-,即cos A =35-.(2)由cos A =35-,0<A <π,得sin A =45,由正弦定理,有sin a bA =,所以,sin B =sin 2b A a =由题知a >b ,则A >B ,故π4B =.根据余弦定理,有2=52+c 2-2×5c ×35⎛⎫- ⎪⎝⎭,解得c =1或c =-7(舍去).故向量BA 在BC 方向上的投影为|BA |cos B .18.解:(1)变量x 是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能. 当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=12; 当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故P 2=13; 当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=16. 所以,输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16. (2)当n =2 100(3)随机变量ξ可能的取值为0,1,2,3.P (ξ=0)=0303128C 3327⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=1)=1213124C 339⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=2)=2123122C 339⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=3)=333121C 3327⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,故ξ的分布列为所以,E ξ=0×827+1×49+2×9+3×27=1.即ξ的数学期望为1.19.解:(1)如图,在平面ABC 内,过点P 作直线l ∥BC ,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l ∥平面A 1BC . 由已知,AB =AC ,D 是BC 的中点, 所以,BC ⊥AD ,则直线l ⊥AD . 因为AA 1⊥平面ABC , 所以AA 1⊥直线l .又因为AD ,AA 1在平面ADD 1A 1内,且AD 与AA 1相交, 所以直线l ⊥平面ADD 1A 1. (2)解法一:连接A 1P ,过A 作AE ⊥A 1P 于E ,过E 作EF ⊥A 1M 于F ,连接AF . 由(1)知,MN ⊥平面AEA 1, 所以平面AEA 1⊥平面A 1MN .所以AE ⊥平面A 1MN ,则A 1M ⊥AE . 所以A 1M ⊥平面AEF ,则A 1M ⊥AF .故∠AFE 为二面角A -A 1M -N 的平面角(设为θ).设AA 1=1,则由AB =AC =2AA 1,∠BAC =120°,有∠BAD =60°,AB =2,AD =1. 又P 为AD 的中点,所以M 为AB 中点,且AP=12,AM =1, 所以,在Rt △AA 1P 中,A 1PRt △A 1AM 中,A 1M.从而11AAAP AE A P ⋅==, 11AA AM AF A M ⋅==.所以sin θ=AE AF =所以cos θ5==.解法二:设A 1A =1.如图,过A 1作A 1E 平行于B 1C 1,以A 1为坐标原点,分别以1A E ,11A D ,1A A 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Oxyz (点O 与点A 1重合).则A 1(0,0,0),A (0,0,1). 因为P 为AD 的中点,所以M ,N 分别为AB ,AC 的中点.故M 1,,122⎛⎫⎪ ⎪⎝⎭,N 1,122⎛⎫- ⎪ ⎪⎝⎭.所以1AM=1,122⎛⎫⎪ ⎪⎝⎭,1A A =(0,0,1),NM =0,0). 设平面AA 1M 的一个法向量为n 1=(x 1,y 1,z 1),则1111,,A M A A ⎧⊥⎪⎨⊥⎪⎩n n 即11110,0,A M A A ⎧⋅=⎪⎨⋅=⎪⎩n n故有1111111,,,10,22,,0,0,10,x y z x y z ⎧⎛⎫()⋅=⎪ ⎪ ⎪⎨⎝⎭⎪()⋅()=⎩从而111110,20.x y z z ++=⎪=⎩ 取x 1=1,则y 1= 所以n 1=(1,,0).设平面A 1MN 的一个法向量为n 2=(x 2,y 2,z 2),则212,,A M NM ⎧⊥⎪⎨⊥⎪⎩n n 即2120,0,A M NM ⎧⋅=⎪⎨⋅=⎪⎩n n故有2222221,,,10,2,,0,x y z x y z ⎧⎫()⋅=⎪⎪⎪⎨⎝⎭⎪()=⎩从而222210,220.x y z ++=⎪= 取y 2=2,则z 2=-1,所以n 2=(0,2,-1). 设二面角A -A 1M -N 的平面角为θ, 又θ为锐角, 则cos θ=1212||||⋅⋅n n n n5=20.解:(1)由椭圆定义知,2a =|PF 1|+|PF 2|=所以a =又由已知,c =1.所以椭圆C的离心率2c e a ===. (2)由(1)知,椭圆C 的方程为22x +y 2=1.设点Q 的坐标为(x ,y ).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于(0,1),(0,-1)两点,此时点Q的坐标为0,2⎛ ⎝⎭. (2)当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2.因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(x 1,kx 1+2),(x 2,kx 2+2),则|AM |2=(1+k 2)x 12,|AN |2=(1+k 2)x 22.又|AQ |2=x 2+(y -2)2=(1+k 2)x 2. 由222211||||||AQ AM AN =+,得22222212211111k x k x k x =+(+)(+)(+), 即212122222212122211x x x x x x x x x (+)-=+=.① 将y =kx +2代入22x +y 2=1中,得(2k 2+1)x 2+8kx +6=0.②由Δ=(8k )2-4×(2k 2+1)×6>0,得k 2>32. 由②可知,x 1+x 2=2821k k -+,x 1x 2=2621k +, 代入①中并化简,得2218103x k =-.③ 因为点Q 在直线y =kx +2上,所以2y k x-=,代入③中并化简,得10(y -2)2-3x 2=18. 由③及k 2>32,可知0<x 2<32,即x∈2⎛⎫- ⎪ ⎪⎝⎭∪0,2⎛ ⎝⎭.又0,25⎛- ⎝⎭满足10(y -2)2-3x 2=18, 故x∈,22⎛- ⎝⎭.由题意,Q (x ,y )在椭圆C 内, 所以-1≤y ≤1.又由10(y -2)2=18+3x 2有(y -2)2∈99,54⎡⎫⎪⎢⎣⎭且-1≤y ≤1, 则y∈1,22⎛⎝⎦. 所以,点Q 的轨迹方程为10(y -2)2-3x 2=18,其中x∈⎛⎝⎭,y∈1,22⎛- ⎝⎦. 21.解:(1)函数f (x )的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞). (2)由导数的几何意义可知,点A 处的切线斜率为f ′(x 1),点B 处的切线斜率为f ′(x 2), 故当点A 处的切线与点B 处的切线垂直时,有f ′(x 1)f ′(x 2)=-1. 当x <0时,对函数f (x )求导,得f ′(x )=2x +2. 因为x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1. 所以2x 1+2<0,2x 2+2>0.因此x 2-x 1=12[-(2x 1+2)+2x 2=1,当且仅当-(2x 1+2)=2x 2+2=1,即132x =-且212x =-时等号成立.所以,函数f (x )的图象在点A ,B 处的切线互相垂直时,x 2-x 1的最小值为1.(3)当x 1<x 2<0或x 2>x 1>0时,f ′(x 1)≠f ′(x 2),故x 1<0<x 2.当x 1<0时,函数f (x )的图象在点(x 1,f (x 1))处的切线方程为y -(x 12+2x 1+a )=(2x 1+2)(x -x 1),即y=(2x 1+2)x -x 12+a .当x 2>0时,函数f (x )的图象在点(x 2,f (x 2))处的切线方程为y -ln x 2=21x (x -x 2),即y =21x·x +ln x 2-1.两切线重合的充要条件是12221122,ln 1.x xx x a ⎧=+⎪⎨⎪-=-+⎩①②由①及x 1<0<x 2知,-1<x 1<0. 由①②得,a =x 12+11ln22x +-1=x 12-ln(2x 1+2)-1.设h (x 1)=x 12-ln(2x 1+2)-1(-1<x 1<0), 则h ′(x 1)=2x 1-111x +<0. 所以,h (x 1)(-1<x 1<0)是减函数. 则h (x 1)>h (0)=-ln 2-1, 所以a >-ln 2-1.又当x 1∈(-1,0)且趋近于-1时,h (x 1)无限增大, 所以a 的取值范围是(-ln 2-1,+∞).故当函数f (x )的图象在点A ,B 处的切线重合时,a 的取值范围是(-ln 2-1,+∞).。

2013年高考理科数学四川卷试题与答案word解析版

2013年高考理科数学四川卷试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(2013四川,理1)设集合A ={x |x +2=0},集合B ={x |x 2-4=0},则A ∩B =( ).A .{-2}B .{2}C .{-2,2}D .∅2.(2013四川,理2)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ).A .AB .BC .CD .D3.(2013四川,理3)一个几何体的三视图如图所示,则该几何体的直观图可以是( ).4.(2013四川,理4)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( ).A .⌝p :∀x ∈A,2x ∉B B .⌝p :∀x ∉A,2x ∉BC .⌝p :∃x ∉A,2x ∈BD .⌝p :∃x ∈A,2x ∉B 5.(2013四川,理5)函数f (x )=2sin(ωx +φ)ππ0,22ωϕ⎛⎫>-<< ⎪⎝⎭的部分图象如图所示,则ω,φ的值分别是( ).A .2,π3-B .2,π6-C .4,π6-D .4,π36.(2013四川,理6)抛物线y 2=4x 的焦点到双曲线x 2-23y =1的渐近线的距离是( ).A .12 B. C .1 D7.(2013四川,理7)函数331x x y =-的图象大致是( ).8.(2013四川,理8)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是( ).A.9 B.10 C.18 D.209.(2013四川,理9)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ).A.14 B.12 C.34 D.7810.(2013四川,理10)设函数f(x)(a∈R,e为自然对数的底数),若曲线y=sin x上存在点(x0,y0)使得f(f(y0))=y0,则a的取值范围是( ).A.[1,e] B.[e-1-1,1]C.[1,e+1] D.[e-1-1,e+1]第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(2013四川,理11)二项式(x+y)5的展开式中,含x2y3的项的系数是__________.(用数字作答) 12.(2013四川,理12)在平行四边形ABCD中,对角线AC与BD交于点O,AB+AD=λAO,则λ=__________.13.(2013四川,理13)设sin 2α=-sin α,α∈π,π2⎛⎫⎪⎝⎭,则tan 2α的值是__________.14.(2013四川,理14)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是__________.15.(2013四川,理15)设P1,P2,…,P n为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…,P n的距离之和最小,则称点P为点P1,P2,…,P n的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:①若三个点A,B,C共线,C在线段AB上,则C是A,B,C的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A,B,C,D共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是__________.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(2013四川,理16)(本小题满分12分)在等差数列{a n}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{a n}的首项、公差及前n项和.17.(2013四川,理17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos 2A B-cos B -sin(A -B )sin B +cos(A +C )=35-,(1)求cos A 的值;(2)若a =b =5,求向量BA 在BC 方向上的投影.18.(2013四川,理18)(本小题满分12分)某算法的程序框图如图所示,其中输入的变量x 在1,2,3,…,24这24个整数中等可能随机产生.(1)分别求出按程序框图正确编程运行时输出y 的值为i 的概率P i (i =1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为i (i =1,2,3)的频数,以下是甲、乙所作频数统计表的部分数据.当n=2 100的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;(3)将按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.19.(2013四川,理19)(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC =2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(2)设(1)中的直线l交AB于点M,交AC于点N,求二面角A-A1M-N的余弦值.20.(2013四川,理20)(本小题满分13分)已知椭圆C :22221x y a b+=(a >b >0)的两个焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点P 41,33⎛⎫⎪⎝⎭.(1)求椭圆C 的离心率;(2)设过点A (0,2)的直线l 与椭圆C 交于M ,N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.21.(2013四川,理21)(本小题满分14分)已知函数f(x)=22,0,ln,0,x x a xx x⎧++<⎨>⎩其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.(1)指出函数f(x)的单调区间;(2)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2-x1的最小值;(3)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.答案:A解析:由题意可得,A={-2},B={-2,2},∴A∩B={-2}.故选A.2.答案:B解析:复数z表示的点与其共轭复数表示的点关于实轴对称.3.答案:D解析:由三视图可知该几何体为一个上部为圆台、下部为圆柱的组合体,故选D.4.答案:D5.答案:A解析:由图象可得,35ππ3π41234T⎛⎫=--=⎪⎝⎭,∴T=π,则ω=2ππ=2,再将点5π,212⎛⎫⎪⎝⎭代入f(x)=2sin(2x+φ)中得,5πsin16ϕ⎛⎫+=⎪⎝⎭,令5π6+φ=2kπ+π2,k∈Z,解得,φ=2kπ-π3,k∈Z,又∵φ∈ππ,22⎛⎫- ⎪⎝⎭,则取k=0,∴φ=π3-.故选A.6.答案:B解析:由题意可得,抛物线的焦点为(1,0),双曲线的渐近线方程为y=,即-y=0,由点到直线的距离公式可得抛物线的焦点到双曲线的渐近线的距离d==.7.答案:C解析:由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A;取x=-1,y=1113--=32>0,故再排除B;当x→+∞时,3x-1远远大于x3的值且都为正,故331xx-→0且大于0,故排除D,选C.8.答案:C解析:记基本事件为(a,b),则基本事件空间Ω={(1,3),(1,5),(1,7),(1,9),(3,1),(3,5),(3,7),(3,9),(5,1),(5,3),(5,7),(5,9),(7,1),(7,3),(7,5),(7,9),(9,1),(9,3),(9,5),(9,7)}共有20个基本事件,而lg a -lg b =lga b ,其中基本事件(1,3),(3,9)和(3,1),(9,3)使lg ab的值相等,则不同值的个数为20-2=18(个),故选C .9. 答案:C解析:设两串彩灯第一次闪亮的时刻分别为x ,y ,则由题意可得,0≤x ≤4,0≤y ≤4;而所求事件“两串彩灯同时通电后,第一次闪亮相差不超过2秒”={(x ,y )||x -y |≤2},由图示得,该事件概率1643164S P S -===阴影正方形.10. 答案:A解析:由题意可得,y 0=sin x 0∈[-1,1],而由f (x )可知y 0∈[0,1],当a =0时,f (x )∴y 0∈[0,1]时,f (y 0)∈[1.∴f (f (y 0 1.∴不存在y 0∈[0,1]使f (f (y 0))=y 0成立,故B ,D 错;当a =e +1时,f (x )y 0∈[0,1]时,只有y 0=1时f (x )才有意义,而f (1)=0, ∴f (f (1))=f (0),显然无意义,故C 错.故选A .第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效. 二、填空题:本大题共5小题,每小题5分,共25分. 11.答案:10解析:由二项式展开系数可得,x 2y 3的系数为35C =25C =10.12.答案:2解析:如图所示,在平行四边形ABCD 中,AB +AD =AC =2AO ,∴λ=2.13.解析:∵sin 2α=-sin α, ∴2sin αcos α=-sin α.又∵α∈π,π2⎛⎫⎪⎝⎭,∴cos α=12-.∴sin α2=.∴sin 2α=2-,cos 2α=2cos 2α-1=12-.∴tan 2α=sin2cos2αα14.答案:(-7,3)解析:当x ≥0时,令x 2-4x <5,解得,0≤x <5.又因为f (x )为定义域为R 的偶函数,则不等式f (x +2)<5等价于-5<x +2<5,即-7<x <3;故解集为(-7,3). 15.答案:①④解析:由“中位点”可知,若C 在线段AB 上,则线段AB 上任一点都为“中位点”,C 也不例外,故①正确;对于②假设在等腰Rt △ABC 中,∠ACB =90°,如图所示,点P 为斜边AB 中点,设腰长为2,则|PA |+|PB |+|PC |=32|AB |=C 为“中位点”,则|CB |+|CA |=4< 对于③,若B ,C 三等分AD ,若设|AB |=|BC |=|CD |=1,则|BA |+|BC |+|BD |=4=|CA |+|CB |+|CD |,故③错;对于④,在梯形ABCD 中,对角线AC 与BD 的交点为O ,在梯形ABCD 内任取不同于点O 的一点M ,则在△MAC 中,|MA |+|MC |>|AC |=|OA |+|OC |,同理在△MBD 中,|MB |+|MD |>|BD |=|OB |+|OD |, 则得,|MA |+|MB |+|MC |+|MD |>|OA |+|OB |+|OC |+|OD |, 故O 为梯形内唯一中位点是正确的.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.解:设该数列公差为d ,前n 项和为S n .由已知,可得2a 1+2d =8,(a 1+3d )2=(a 1+d )(a 1+8d ).所以,a 1+d =4,d (d -3a 1)=0,解得a 1=4,d =0,或a 1=1,d =3,即数列{a n }的首项为4,公差为0,或首项为1,公差为3.所以,数列的前n 项和S n =4n 或S n =232n n-.17.解:(1)由22cos 2A B -cos B -sin(A -B )sin B +cos(A +C )=35-,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =35-,即cos(A -B )cos B -sin(A -B )sin B =35-.则cos(A -B +B )=35-,即cos A =35-.(2)由cos A =35-,0<A <π,得sin A =45,由正弦定理,有sin a bA =,所以,sin B =sin 2b A a =由题知a >b ,则A >B ,故π4B =.根据余弦定理,有2=52+c 2-2×5c ×35⎛⎫- ⎪⎝⎭,解得c =1或c =-7(舍去).故向量BA 在BC 方向上的投影为|BA |cos B .18.解:(1)变量x 是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能. 当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=12; 当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故P 2=13; 当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=16. 所以,输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16. (2)当n =2 100(3)随机变量ξ可能的取值为0,1,2,3.P (ξ=0)=0303128C 3327⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=1)=1213124C 339⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=2)=2123122C 339⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=3)=3033121C 3327⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,故ξ的分布列为所以,E ξ=0×827+1×49+2×9+3×27=1.即ξ的数学期望为1.19.解:(1)如图,在平面ABC 内,过点P 作直线l ∥BC ,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l ∥平面A 1BC . 由已知,AB =AC ,D 是BC 的中点, 所以,BC ⊥AD ,则直线l ⊥AD . 因为AA 1⊥平面ABC , 所以AA 1⊥直线l .又因为AD ,AA 1在平面ADD 1A 1内,且AD 与AA 1相交, 所以直线l ⊥平面ADD 1A 1. (2)解法一:连接A 1P ,过A 作AE ⊥A 1P 于E ,过E 作EF ⊥A 1M 于F ,连接AF . 由(1)知,MN ⊥平面AEA 1, 所以平面AEA 1⊥平面A 1MN .所以AE ⊥平面A 1MN ,则A 1M ⊥AE . 所以A 1M ⊥平面AEF ,则A 1M ⊥AF .故∠AFE 为二面角A -A 1M -N 的平面角(设为θ).设AA 1=1,则由AB =AC =2AA 1,∠BAC =120°,有∠BAD =60°,AB =2,AD =1. 又P 为AD 的中点,所以M 为AB 中点,且AP=12,AM =1, 所以,在Rt △AA 1P 中,A 1PRt △A 1AM 中,A 1M.从而11AAAP AE A P ⋅==, 11AA AM AF A M ⋅==.所以sin θ=AE AF =所以cos θ5==.解法二:设A 1A =1.如图,过A 1作A 1E 平行于B 1C 1,以A 1为坐标原点,分别以1A E ,11A D ,1A A 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Oxyz (点O 与点A 1重合).则A 1(0,0,0),A (0,0,1). 因为P 为AD 的中点,所以M ,N 分别为AB ,AC 的中点.故M 1,,122⎛⎫⎪ ⎪⎝⎭,N 1,122⎛⎫- ⎪ ⎪⎝⎭.所以1AM=1,122⎛⎫⎪ ⎪⎝⎭,1A A =(0,0,1),NM =0,0). 设平面AA 1M 的一个法向量为n 1=(x 1,y 1,z 1),则1111,,A M A A ⎧⊥⎪⎨⊥⎪⎩n n 即11110,0,A M A A ⎧⋅=⎪⎨⋅=⎪⎩n n故有1111111,,,10,22,,0,0,10,x y z x y z ⎧⎛⎫()⋅=⎪ ⎪ ⎪⎨⎝⎭⎪()⋅()=⎩从而111110,20.x y z z ++=⎪=⎩ 取x 1=1,则y 1= 所以n 1=(1,,0).设平面A 1MN 的一个法向量为n 2=(x 2,y 2,z 2),则212,,A M NM ⎧⊥⎪⎨⊥⎪⎩n n 即2120,0,A M NM ⎧⋅=⎪⎨⋅=⎪⎩n n故有2222221,,,10,2,,0,x y z x y z ⎧⎫()⋅=⎪⎪⎪⎨⎝⎭⎪()=⎩从而222210,220.x y z ++=⎪= 取y 2=2,则z 2=-1,所以n 2=(0,2,-1). 设二面角A -A 1M -N 的平面角为θ, 又θ为锐角, 则cos θ=1212||||⋅⋅n n n n5=20.解:(1)由椭圆定义知,2a =|PF 1|+|PF 2|=所以a =又由已知,c =1.所以椭圆C的离心率2c e a ===. (2)由(1)知,椭圆C 的方程为22x +y 2=1.设点Q 的坐标为(x ,y ).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于(0,1),(0,-1)两点,此时点Q的坐标为0,2⎛ ⎝⎭. (2)当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2.因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(x 1,kx 1+2),(x 2,kx 2+2),则|AM |2=(1+k 2)x 12,|AN |2=(1+k 2)x 22.又|AQ |2=x 2+(y -2)2=(1+k 2)x 2. 由222211||||||AQ AM AN =+,得22222212211111k x k x k x =+(+)(+)(+), 即212122222212122211x x x x x x x x x (+)-=+=.① 将y =kx +2代入22x +y 2=1中,得(2k 2+1)x 2+8kx +6=0.②由Δ=(8k )2-4×(2k 2+1)×6>0,得k 2>32. 由②可知,x 1+x 2=2821k k -+,x 1x 2=2621k +, 代入①中并化简,得2218103x k =-.③ 因为点Q 在直线y =kx +2上,所以2y k x-=,代入③中并化简,得10(y -2)2-3x 2=18. 由③及k 2>32,可知0<x 2<32,即x∈2⎛⎫- ⎪ ⎪⎝⎭∪0,2⎛ ⎝⎭.又0,25⎛- ⎝⎭满足10(y -2)2-3x 2=18, 故x∈,22⎛- ⎝⎭.由题意,Q (x ,y )在椭圆C 内, 所以-1≤y ≤1.又由10(y -2)2=18+3x 2有(y -2)2∈99,54⎡⎫⎪⎢⎣⎭且-1≤y ≤1, 则y∈1,22⎛⎝⎦. 所以,点Q 的轨迹方程为10(y -2)2-3x 2=18,其中x∈⎛⎝⎭,y∈1,22⎛- ⎝⎦. 21.解:(1)函数f (x )的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞). (2)由导数的几何意义可知,点A 处的切线斜率为f ′(x 1),点B 处的切线斜率为f ′(x 2), 故当点A 处的切线与点B 处的切线垂直时,有f ′(x 1)f ′(x 2)=-1. 当x <0时,对函数f (x )求导,得f ′(x )=2x +2. 因为x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1. 所以2x 1+2<0,2x 2+2>0.因此x 2-x 1=12[-(2x 1+2)+2x 2=1,当且仅当-(2x 1+2)=2x 2+2=1,即132x =-且212x =-时等号成立.所以,函数f (x )的图象在点A ,B 处的切线互相垂直时,x 2-x 1的最小值为1.(3)当x 1<x 2<0或x 2>x 1>0时,f ′(x 1)≠f ′(x 2),故x 1<0<x 2.当x 1<0时,函数f (x )的图象在点(x 1,f (x 1))处的切线方程为y -(x 12+2x 1+a )=(2x 1+2)(x -x 1),即y=(2x 1+2)x -x 12+a .当x 2>0时,函数f (x )的图象在点(x 2,f (x 2))处的切线方程为y -ln x 2=21x (x -x 2),即y =21x·x +ln x 2-1.两切线重合的充要条件是12221122,ln 1.x xx x a ⎧=+⎪⎨⎪-=-+⎩①②由①及x 1<0<x 2知,-1<x 1<0. 由①②得,a =x 12+11ln22x +-1=x 12-ln(2x 1+2)-1.设h (x 1)=x 12-ln(2x 1+2)-1(-1<x 1<0), 则h ′(x 1)=2x 1-111x +<0. 所以,h (x 1)(-1<x 1<0)是减函数. 则h (x 1)>h (0)=-ln 2-1, 所以a >-ln 2-1.又当x 1∈(-1,0)且趋近于-1时,h (x 1)无限增大, 所以a 的取值范围是(-ln 2-1,+∞).故当函数f (x )的图象在点A ,B 处的切线重合时,a 的取值范围是(-ln 2-1,+∞).。

2013年四川高考试题及答案

2013年四川高考试题及答案
解:设该数列公差为 d,前 n 项和为 Sn. 由已知,可得 2a1+2d=8,(a1+3d)2=(a1+d)(a1+8d). 所以,a1+d=4,d(d-3a1)=0,解得 a1=4,d=0,或 a1=1,d=3,即数列{an}的首项为 4,公差为 0,或首项为 1,公差为 3.
所以,数列的前
n
项和
同理在△MBD 中,|MB|+|MD|>|BD|=|OB|+|OD|, 则得, |MA|+|MB|+|MC|+|MD|>|OA|+|OB|+|OC|+|OD|, 故 O 为梯形内唯一中位点是正确的.
三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或演算步骤.
16.(2013 四川,理 16)(本小题满分 12 分)在等差数列{an}中,a1+a3=8,且 a4 为 a2 和 a9 的等比中项,求 数列{an}的首项、公差及前 n 项和.
故向量 BA 在 BC 方向上的投影为| BA |cos B=
2
.
2
18.(2013 四川,理 18)(本小题满分 12 分)某算法的程序框图如图所示,其中输入的变量 x 在 1,2,3,…, 24 这 24 个整数中等可能随机产生.
(1)分别求出按程序框图正确编程运行时输出 y 的值为 i 的概率 Pi(i=1,2,3); (2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行 n 次后,统计记录了输出 y 的值 为 i(i=1,2,3)的频数,以下是甲、乙所作频数统计表的部分数据.
C.[1,e+1]
D.[e-1-1,e+1]
答案:A
解析:由题意可得,y0=sin x0∈[-1,1],
而由 f(x)= ex x a 可知 y0∈[0,1],

2013年高考真题——理科数学(四川卷)_解析版

2013年高考真题——理科数学(四川卷)_解析版

启用前2013年普通高等学校招生全国统一考试(四川卷)数学(理工类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上大题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡上一并交回.第Ⅰ卷(选择题共50分)注意事项:必须使用2B铅笔在答题卡上将所选答案对应的标号涂黑.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合{|20}A x x=+=,集合2{|40}B x x=-=,则A B=I()(A){2}-(B){2}(C){2,2}-(D)∅2.如图,在复平面内,点A表示复数z,则图中表示z的共轭复数的点是()(A)A(B)B(C)C(D)D3.一个几何体的三视图如图所示,则该几何体的直观图可以是()4.设x Z∈,集合A是奇数集,集合B是偶数集.若命题:,2p x A x B∀∈∈,则()(A):,2p x A x B⌝∃∈∉(B):,2p x A x B⌝∀∉∉(C):,2p x A x B⌝∃∉∈(D):,2p x A x B⌝∃∈∈5.函数()2sin()(0,)22f x xππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是()yxDBAOC(A )2,3π-(B )2,6π-(C )4,6π-(D )4,3π6.抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是( ) (A )12(B )3 (C )1 (D )37.函数231x x y =-的图象大致是( )8.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是( )(A )9 (B )10 (C )18 (D )209.节日 家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) (A )14 (B )12 (C )34 (D )7810.设函数()x f x e x a =+-(a R ∈,e 为自然对数的底数).若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( )(A )[1,]e (B )1[,1]e - (C )[1,1]e + (D )1[,1]e e -+第二部分 (非选择题 共100分)注意事项:必须使用0.5毫米黑色签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷上无效. 二、填空题:本大题共5小题,每小题5分,共25分.11.二项式5()x y +的展开式中,含23x y 的项的系数是____________.(用数字作答)12.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=u u u r u u u r u u u r,则λ=____________.13.设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是____________.14.已知()f x 是定义域为R 的偶函数,当x ≥0时,2()4f x x x =-,那么,不等式(2)5f x +<的解集是____________.15.设12,,,n P P P L 为平面α内的n 个点,在平面α内的所有点中,若点P 到12,,,n P P P L 点的距离之和最小,则称点P 为12,,,n P P P L 点的一个“中位点”.例如,线段AB 上的任意点都是端点,A B 的中位点.则有下列命题:①若,,A B C 三个点共线,C 在线段上,则C 是,,A B C 的中位点; ②直角三角形斜边的点是该直角三角形三个顶点的中位点; ③若四个点,,,A B C D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点. 其中的真命题是____________.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分) 在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.17.(本小题满分12分) 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且232cos cos sin()sin 25A B B A B B ---=-. (Ⅰ)求cos A 的值;(Ⅱ)若a =,5b =,求向量BA u u u r 在BC uuur 方向上的投影.18.(本小题满分12分)某算法的程序框图如图所示,其中输入的变量x 在1,2,3,,24⋅⋅⋅这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y 的值为i 的概率(1,2,3)i P i =;(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为(1,2,3)i i =的频数.以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分) 乙的频数统计表(部分)当2100n =时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大; (Ⅲ)按程序框图正确编写的程序运行3次,求输出y 的值为2的次数ξ的分布列及数学期望.运行 次数n 输出y 的值 为1的频数 输出y 的值 为2的频数 输出y 的值 为3的频数3014610…………2100 1027 376 697运行次数n 输出y 的值 为1的频数 输出y 的值 为2的频数 输出y 的值为3的频数3012117…………21001051 696 35319.(本小题满分12分) 如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=o ,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 的中点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中的直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --的余弦值.20.(本小题满分13分) 已知椭圆C :22221,(0)x y a b a b +=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.21.(本小题满分14分)已知函数22,0()ln ,0x x a x f x x x ⎧++<=⎨>⎩,其中a 是实数.设11(,())A x f x ,22(,())B x f x 为该函数图象上的两点,且12x x <.(Ⅰ)指出函数()f x 的单调区间;(Ⅱ)若函数()f x 的图象在点,A B 处的切线互相垂直,且20x <,求21x x -的最小值; (Ⅲ)若函数()f x 的图象在点,A B 处的切线重合,求a 的取值范围.1C解析1.2.3.4.5.6.7.8.9.10.11.12.1314.15.16.17.18.19.20.2121.。

2013高考真题文数四川卷

2013高考真题文数四川卷

绝密 启用前2013年普通高等学校招生全国统一考试(四川卷)数 学(文史类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上大题无效。

满分150分。

考试时间120分钟。

考试结束后,将本试题卷和答题卡上一并交回。

第Ⅰ卷 (选择题 共50分)注意事项: 必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1、设集合{1,2,3}A =,集合{2,2}B =-,则AB =( )(A )∅ (B ){2} (C ){2,2}- (D ){2,1,2,3}- 2、一个几何体的三视图如图所示,则该几何体可以是( ) (A )棱柱 (B )棱台 (C )圆柱 (D )圆台3、如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ) (A )A (B )B (C )C (D )D4、设x Z ∈,集合A 是奇数集,集合B 是偶数集。

若命题:,2p x A x B ∀∈∈,则( ) (A ):,2p x A x B ⌝∃∈∈ (B ):,2p x A x B ⌝∃∉∈ (C ):,2p x A x B ⌝∃∈∉ (D ):,2p x A x B ⌝∀∉∉5、抛物线28y x =的焦点到直线30x y -=的距离是( )yxDBA OC(A )23 (B )2 (C )3 (D )1 6、函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( ) (A )2,3π-(B )2,6π-(C )4,6π-(D )4,3π7、某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示。

以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )8、若变量,x y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,则a b -的值是( )(A )48 (B )30 (C )24 (D )169、从椭圆22221(0)x y a b a b+=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是( ) (A )2 (B )12(C )2 (D )3 10、设函数()x f x e x a =+-(a R ∈,e 为自然对数的底数)。

2013年全国各地高考数学试题汇编汇总文科数学四川卷试题及参考答案

2013年全国各地高考数学试题汇编汇总文科数学四川卷试题及参考答案

2013年全国各地高考数学试题(四川卷)数 学(文史类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上大题无效。

满分150分。

考试时间120分钟。

考试结束后,将本试题卷和答题卡上一并交回。

第Ⅰ卷 (选择题 共50分)注意事项: 必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1、设集合{1,2,3}A =,集合{2,2}B =-,则AB =( )(A)∅ (B){2} (C){2,2}- (D){2,1,2,3}- 2、一个几何体的三视图如图所示,则该几何体可以是( ) (A)棱柱 (B)棱台 (C)圆柱 (D)圆台3、如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ) (A)A (B)B (C)C (D)D4、设x Z ∈,集合A 是奇数集,集合B 是偶数集。

若命题:,2p x A x B ∀∈∈,则( ) (A):,2p x A x B ⌝∃∈∈ (B):,2p x A x B ⌝∃∉∈ (C):,2p x A x B ⌝∃∈∉ (D):,2p x A x B ⌝∀∉∉5、抛物线28y x =的焦点到直线0x =的距离是( ) (A)216、函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A)2,3π-(B)2,6π-(C)4,6π-(D)4,3π7、某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示。

以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )8、若变量,x y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,则a b -的值是( )(A)48 (B)30 (C)24 (D)169、从椭圆22221(0)x y a b a b+=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是( )(A)4 (B)12(C)210、设函数()f x =a R ∈,e 为自然对数的底数)。

2013年全国普通高等学校招生统一考试理科数学(四川卷带解析)答案解析

2013年全国普通高等学校招生统一考试理科数学(四川卷带解析)答案解析

2013年全国普通高等学校招生统一考试理科(四川卷)数学答案解析1、【答案】A【解析】由A中的方程x+2=0,解得x=﹣2,即A={﹣2};由B中的方程x2﹣4=0,解得x=2或﹣2,即B={﹣2,2},则A∩B={﹣2}.2、【答案】B【解析】两个复数是共轭复数,两个复数的实部相同,下部相反,对应的点关于x轴对称.所以点A表示复数z的共轭复数的点是B.3、【答案】D【解析】由俯视图可知,原几何体的上底面应该是圆面,由此排除选项A和选项C.而俯视图内部只有一个虚圆,所以排除B.故选D.4、【答案】D【解析】因为全称命题的否定是特称命题,所以设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:?x∈A,2x∈B,则¬p:?x∈A,2x?B.【答案】A【解析】∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,∴函数的周期T满足=﹣=,由此可得T==π,解得ω=2,得函数表达式为f(x)=2sin(2x+φ)又∵当x=时取得最大值2,∴2sin(2?+φ)=2,可得+φ=+2kπ(k∈Z)∵,∴取k=0,得φ=﹣6、【答案】B【解析】∵抛物线方程为y2=4x∴2p=4,可得=1,抛物线的焦点F(1,0)又∵双曲线的方程为∴a2=1且b2=3,可得a=1且b=,双曲线的渐近线方程为y=±,即y=±x,化成一般式得:.因此,抛物线y2=4x的焦点到双曲线渐近线的距离为d==【答案】A【解析】当x<0时,x3<0,3x﹣1<0,∴,故排除B;对于C,由于函数值不可能为0,故可以排除C;∵y=3x﹣1与y=x3相比,指数函数比幂函数,随着x的增大,增长速度越大,∴x→+∞,→0,∴D不正确,A正确,8、【答案】C【解析】首先从1,3,5,7,9这五个数中任取两个不同的数排列,共有种排法,因为,,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga﹣lgb的不同值的个数是:20﹣2=18.9、【答案】C【解析】设两串彩灯第一次闪亮的时刻分别为x,y,由题意可得0≤x≤4,0≤y≤4,它们第一次闪亮的时候相差不超过2秒,则|x﹣y|≤2,由几何概型可得所求概率为上述两平面区域的面积之比,由图可知所求的概率为:=10、【答案】A【解析】曲线y=sinx上存在点(x0,y0)使得f(f(y0))=y0,则y0∈[﹣1,1]考查四个选项,B,D两个选项中参数值都可取0,C,D两个选项中参数都可取e+1,A,B,C,D四个选项参数都可取1,由此可先验证参数为0与e+1时是否符合题意,即可得出正确选项当a=0时,,此是一个增函数,且函数值恒非负,故只研究y0∈[0,1]时f(f(y0))=y0是否成立由于是一个增函数,可得出f(y0)≥f(0)=1,而f(1)=>1,故a=0不合题意,由此知B,D两个选项不正确当a=e+1时,此函数是一个增函数,=0,而f(0)没有意义,故a=e+1不合题意,故C,D两个选项不正确综上讨论知,可确定B,C,D三个选项不正确,故A选项正确11、【答案】10【解析】设二项式(x+y)5的展开式的通项公式为T r+1,则T r+1=x5﹣r?y r,令r=3,则含x2y3的项的系数是=10.12、【答案】2【解析】∵四边形ABCD为平行四边形,对角线AC与BD交于点O,∴+=,又O为AC的中点,∴=2,∴+=2,∵+=λ,∴λ=2.13、【答案】【解析】∵sin2α=2sinαcosα=﹣sinα,α∈(,π),∴cosα=﹣,sinα==,∴tanα=﹣,则tan2α===.14、【答案】(﹣7,3)【解析】因为f(x)为偶函数,所以f(|x+2|)=f(x+2),则f(x+2)<5可化为f(|x+2|)<5,即|x+2|2﹣4|x+2|<5,(|x+2|+1)(|x+2|﹣5)<0,所以|x+2|<5,解得﹣7<x<3,所以不等式f(x+2)<5的解集是(﹣7,3).15、【答案】①④【解析】①若三个点A、B、C共线,C在线段AB上,根据两点之间线段最短,则C是A,B,C的中位点,正确;②举一个反例,如边长为3,4,5的直角三角形ABC,此直角三角形的斜边的中点到三个顶点的距离之和为5+2.5=7.5,而直角顶点到三个顶点的距离之和为7,∴直角三角形斜边的中点不是该直角三角形三个顶点的中位点;故错误;③若四个点A、B、C、D共线,则它们的中位点是中间两点连线段上的任意一个点,故它们的中位点存在但不唯一;故错误;④如图,在梯形ABCD中,对角线的交点O,P是任意一点,则根据三角形两边之和大于第三边得PA+PB+PC+PD≥AC+BD=OA+OB+OC+OD,∴梯形对角线的交点是该梯形四个顶点的唯一中位点.正确.故答案为:①④.16、【答案】S n=【解析】设该数列的公差为d,前n项和为S n,则∵a1+a3=8,且a4为a2和a9的等比中项,∴2a1+2d=8,(a1+3d)2=(a1+d)(a1+8d)解得a1=4,d=0或a1=1,d=3∴前n项和为S n=4n或S n=.17、【答案】(1)(2)=ccosB=【解析】(Ⅰ)由,可得,即,即,(Ⅱ)由正弦定理,,所以=,由题意可知a>b,即A>B,所以B=,由余弦定理可知.解得c=1,c=﹣7(舍去).向量在方向上的投影:=ccosB=.18、【答案】(I)输出的y值为1的概率为,输出的y值为2的概率为,输出的y值为3的概率为(II)乙同学所编程序符合算法要求的可能性较大(III)1【解析】(I)变量x是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能,当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出的y 值为1,故P1==;当x从2,4,8,10,14,16,20,22这8个数中产生时,输出的y值为2,故P2==;当x从6,12,18,24这4个数中产生时,输出的y值为3,故P3==;故输出的y值为1的概率为,输出的y值为2的概率为,输出的y值为3的概率为;(II)当n=2100时,甲、乙所编程序各自输出的y值为i(i=1,2,3)的频率如下:输出y值为1的频率输出y值为2的频率输出y值为3的频率甲乙比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大;(III)随机变量ξ的可能取值为:0,1,2,3,P(ξ=0)==,P(ξ=1)==P(ξ=2)==,P(ξ=3)==,故ξ的分布列为:ξ 0 1 2 3P所以所求的数学期望Eξ==119、【答案】(I)见解析(II)【解析】(I)在平面ABC内,过点P作直线l∥BC∵直线l?平面A1BC,BC?平面A1BC,∴直线l∥平面A1BC,∵△ABC中,AB=AC,D是BC的中点,∴AD⊥BC,结合l∥BC得AD⊥l∵AA1⊥平面ABC,l?平面ABC,∴AA1⊥l∵AD、AA1是平面ADD1A1内的相交直线∴直线l⊥平面ADD1A1;(II)连接A1P,过点A作AE⊥A1P于E,过E点作EF⊥A1M于F,连接AF由(I)知MN⊥平面A1AE,结合MN?平面A1MN得平面A1MN⊥平面A1AE,∵平面A1MN∩平面A1AE=A1P,AE⊥A1P,∴AE⊥平面A1MN,∵EF⊥A1M,EF是AF在平面A1MN内的射影,∴AF⊥A1M,可得∠AFE就是二面角A﹣A1M﹣N的平面角设AA1=1,则由AB=AC=2AA1,∠BAC=120°,可得∠BAD=60°,AB=2且AD=1又∵P为AD的中点,∴M是AB的中点,得AP=,AM=1Rt△A1AP中,A1P==;Rt△A1AM中,A1M=∴AE==,AF==∴Rt△AEF中,sin∠AFE==,可得cos∠AFE==即二面角A﹣A1M﹣N的余弦值等于.20、【答案】(I)(II)点Q的轨迹方程为10(y﹣2)2﹣3x2=18,其中x∈(﹣,),y∈(,2﹣)【解析】(I)∵椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点.∴c=1,2a=PF1+PF2==2,即a=∴椭圆的离心率e===…4分(II)由(I)知,椭圆C的方程为,设点Q的坐标为(x,y)(1)当直线l与x轴垂直时,直线l与椭圆C交于(0,1)、(0,﹣1)两点,此时点Q 的坐标为(0,2﹣)(2)当直线l与x轴不垂直时,可设其方程为y=kx+2,因为M,N在直线l上,可设点M,N的坐标分别为(x1,kx1+2),(x2,kx2+2),则,,又|AQ|2=(1+k2)x2,∴,即=…①将y=kx+2代入中,得(2k2+1)x2+8kx+6=0…②由△=(8k)2﹣24(2k2+1)>0,得k2>由②知x1+x2=,x1x2=,代入①中化简得x2=…③因为点Q在直线y=kx+2上,所以k=,代入③中并化简得10(y﹣2)2﹣3x2=18由③及k2>可知0<x<,即x∈(﹣,0)∪(0,)由题意,Q(x,y)在椭圆C内,所以﹣1≤y≤1,又由10(y﹣2)2﹣3x2=18得(y﹣2)2∈[,)且﹣1≤y≤1,则y∈(,2﹣)所以,点Q的轨迹方程为10(y﹣2)2﹣3x2=18,其中x∈(﹣,),y∈(,2﹣)…13分21、【答案】(I)f(x)在(﹣∞,﹣1)上单调递减,在(﹣1,0)上单调递增(II)1(III)(﹣1﹣ln2,+∞)【解析】(I)当x<0时,f(x)=(x+1)2+a,∴f(x)在(﹣∞,﹣1)上单调递减,在(﹣1,0)上单调递增;当x>0时,f(x)=lnx,在(0,+∞)单调递增.(II)∵x1<x2<0,∴f(x)=x2+2x+a,∴f′(x)=2x+2,∴函数f(x)在点A,B处的切线的斜率分别为f′(x1),f′(x2),∵函数f(x)的图象在点A,B处的切线互相垂直,∴,∴(2x1+2)(2x2+2)=﹣1.∴2x1+2<0,2x2+2>0,∴=1,当且仅当﹣(2x1+2)=2x2+2=1,即,时等号成立.∴函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值为1.(III)当x1<x2<0或0<x1<x2时,∵,故不成立,∴x1<0<x2.当x1<0时,函数f(x)在点A(x1,f(x1)),处的切线方程为,即.当x2>0时,函数f(x)在点B(x2,f(x2))处的切线方程为,即.函数f(x)的图象在点A,B处的切线重合的充要条件是,由①及x1<0<x2可得﹣1<x1<0,由①②得=.∵函数,y=﹣ln(2x1+2)在区间(﹣1,0)上单调递减,∴a(x1)=在(﹣1,0)上单调递减,且x1→﹣1时,ln(2x1+2)→﹣∞,即﹣ln(2x1+2)→+∞,也即a(x1)→+∞.x1→0,a(x1)→﹣1﹣ln2.∴a的取值范围是(﹣1﹣ln2,+∞).。

2013年四川省高考文科数学试卷及参考答案与试题解析

2013年四川省高考文科数学试卷及参考答案与试题解析

2013年四川省高考文科数学试卷及参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设集合A={1,2,3},集合B={-2,2},则A∩B=( )A.∅B.{2}C.{-2,2}D.{-2,1,2,3}2.(5分)一个几何体的三视图如图所示,则该几何体可以是( )A.棱柱B.棱台C.圆柱D.圆台3.(5分)如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是( )A.AB.BC.CD.D4.(5分)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则( )A.¬p:∃x∈A,2x∈BB.¬p:∃x∉A,2x∈BC.¬p:∃x∈A,2x∉BD.¬p:∀x∉A,2x∉B5.(5分)抛物线y2=8x的焦点到直线的距离是( )A. B.2 C. D.16.(5分)函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分图象如图所示,则ω,φ的值分别是( )A. B. C. D.7.(5分)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )A. B.C. D.8.(5分)若变量x,y满足约束条件且z=5y-x的最大值为a,最小值为b,则a-b的值是( )A.48B.30C.24D.16,A是椭圆与x 9.(5分)从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是( )A. B. C. D.10.(5分)设函数f(x)=(a∈R,e为自然对数的底数).若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是( )A.[1,e]B.[1,1+e]C.[e,1+e]D.[0,1]二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)lg+lg的值是.12.(5分)在平行四边形ABCD中,对角线AC与BD交于点O,+=λ,则λ=.13.(5分)已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,则a=.14.(5分)设sin2α=-sinα,α∈(,π),则tan2α的值是.15.(5分)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(12分)在等比数列{an }中,a2-a1=2,且2a2为3a1和a3的等差中项,求数列{an}的首项、公比及前n项和.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且cos(A-B)cosB-sin(A-B)sin(A+C)=-.(Ⅰ)求sinA的值;(Ⅱ)若a=4,b=5,求向量在方向上的投影.18.(12分)某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.19.(12分)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.(Ⅰ)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,求三棱锥A1-QC1D的体积.(锥体体积公式:,其中S为底面面积,h为高)20.(13分)已知圆C的方程为x2+(y-4)2=4,点O是坐标原点.直线l:y=kx与圆C交于M,N 两点.(Ⅰ)求k的取值范围;(Ⅱ)设Q(m,n)是线段MN上的点,且.请将n表示为m的函数.21.(14分)已知函数,其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.(Ⅰ)指出函数f(x)的单调区间;(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,证明:x2-x1≥1;(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.2013年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设集合A={1,2,3},集合B={-2,2},则A∩B=( )A.∅B.{2}C.{-2,2}D.{-2,1,2,3}【分析】找出A与B的公共元素即可求出交集.【解答】解:∵集合A={1,2,3},集合B={-2,2},∴A∩B={2}.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)一个几何体的三视图如图所示,则该几何体可以是( )A.棱柱B.棱台C.圆柱D.圆台【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由三视图知,从正面和侧面看都是梯形,从上面看为圆形,下面看是圆形,并且可以想象到该几何体是圆台,则该几何体可以是圆台.故选:D.【点评】考查学生对圆锥三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.3.(5分)如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是( )A.AB.BC.CD.D【分析】直接利用共轭复数的定义,找出点A表示复数z的共轭复数的点即可.【解答】解:两个复数是共轭复数,两个复数的实部相同,虚部相反,对应的点关于x轴对称. 所以点A表示复数z的共轭复数的点是B.故选:B.【点评】本题考查复数与共轭复数的关系,复数的几何意义,基本知识的考查.4.(5分)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则( )A.¬p:∃x∈A,2x∈BB.¬p:∃x∉A,2x∈BC.¬p:∃x∈A,2x∉BD.¬p:∀x∉A,2x∉B【分析】“全称命题”的否定一定是“存在性命题”据此可解决问题.【解答】解:∵“全称命题”的否定一定是“存在性命题”,∴命题p:∀x∈A,2x∈B 的否定是:¬p:∃x∈A,2x∉B.故选:C.【点评】本小题主要考查命题的否定、命题的否定的应用等基础知识.属于基础题.命题的否定即命题的对立面.“全称量词”与“存在量词”正好构成了意义相反的表述.如“对所有的…都成立”与“至少有一个…不成立”;“都是”与“不都是”等,所以“全称命题”的否定一定是“存在性命题”,“存在性命题”的否定一定是“全称命题”.5.(5分)抛物线y2=8x的焦点到直线的距离是( )A. B.2 C. D.1【分析】由抛物线y2=8x得焦点F(2,0),再利用点到直线的距离公式可得点F(2,0)到直线的距离.【解答】解:由抛物线y2=8x得焦点F(2,0),∴点F(2,0)到直线的距离d==1.故选:D.【点评】熟练掌握抛物线的性质和点到直线的距离公式是解题的关键.6.(5分)函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分图象如图所示,则ω,φ的值分别是( )A. B. C. D.【分析】根据函数在同一周期内的最大值、最小值对应的x值,求出函数的周期T==π,解得ω=2.由函数当x=时取得最大值2,得到+φ=+kπ(k∈Z),取k=0得到φ=-.由此即可得到本题的答案.【解答】解:∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,∴函数的周期T满足=-=,由此可得T==π,解得ω=2,得函数表达式为f(x)=2sin(2x+φ)又∵当x=时取得最大值2,∴2sin(2•+φ)=2,可得+φ=+2kπ(k∈Z)∵,∴取k=0,得φ=-故选:A.【点评】本题给出y=Asin(ωx+φ)的部分图象,求函数的表达式.着重考查了三角函数的图象与性质、函数y=Asin(ωx+φ)的图象变换等知识,属于基础题.7.(5分)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )A. B.C. D.【分析】根据题意,由频率与频数的关系,计算可得各组的频率,进而可以做出频率分布表,结合分布表,进而可以做出频率分布直方图.故选:A.【点评】本题考查频率分布直方图的作法与运用,关键是正确理解频率分布表、频率分步直方图的意义并运用.8.(5分)若变量x,y满足约束条件且z=5y-x的最大值为a,最小值为b,则a-b的值是( )A.48B.30C.24D.16【分析】先根据条件画出可行域,设z=5y-x,再利用几何意义求最值,将最小值转化为y轴上的截距最大,只需求出直线,过可行域内的点B(8,0)时的最小值,过点A(4,4)时,5y-x最大,从而得到a-b的值.【解答】解:满足约束条件的可行域如图所示在坐标系中画出可行域,平移直线5y-x=0,经过点B(8,0)时,5y-x最小,最小值为:-8,则目标函数z=5y-x的最小值为-8.经过点A(4,4)时,5y-x最大,最大值为:16,则目标函数z=5y-x的最大值为16.z=5y-x的最大值为a,最小值为b,则a-b的值是:24.故选:C.【点评】借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.9.(5分)从椭圆上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP(O 是坐标原点),则该椭圆的离心率是( )A.B.C.D.【分析】依题意,可求得点P 的坐标P(-c,),由AB ∥OP ⇒k AB =k OP ⇒b =c,从而可得答案.【解答】解:依题意,设P(-c,y 0)(y 0>0),则+=1,∴y 0=,∴P(-c,),又A(a,0),B(0,b),AB ∥OP,∴k AB =k OP ,即==,∴b =c.设该椭圆的离心率为e,则e 2====,∴椭圆的离心率e =.故选:C.【点评】本题考查椭圆的简单性质,求得点P的坐标(-c,)是关键,考查分析与运算能力,属于中档题.10.(5分)设函数f(x)=(a∈R,e为自然对数的底数).若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是( )A.[1,e]B.[1,1+e]C.[e,1+e]D.[0,1]【分析】根据题意,问题转化为“存在b∈[0,1],使f(b)=f-1(b)”,即y=f(x)的图象与函数y=f-1(x)的图象有交点,且交点的横坐标b∈[0,1].由y=f(x)的图象与y=f-1(x)的图象关于直线y=x对称,得到函数y=f(x)的图象与y=x有交点,且交点横坐标b∈[0,1].因此,将方程化简整理得e x=x2-x+a,记F(x)=e x,G(x)=x2-x+a,由零点存在性定理建立关于a的不等式组,解之即可得到实数a的取值范围.【解答】解:由f(f(b))=b,可得f(b)=f-1(b)其中f-1(x)是函数f(x)的反函数因此命题“存在b∈[0,1]使f(f(b))=b成立”,转化为“存在b∈[0,1],使f(b)=f-1(b)”,即y=f(x)的图象与函数y=f-1(x)的图象有交点,且交点的横坐标b∈[0,1],∵y=f(x)的图象与y=f-1(x)的图象关于直线y=x对称,∴y=f(x)的图象与函数y=f-1(x)的图象的交点必定在直线y=x上,由此可得,y=f(x)的图象与直线y=x有交点,且交点横坐标b∈[0,1],根据,化简整理得e x=x2-x+a记F(x)=e x,G(x)=x2-x+a,在同一坐标系内作出它们的图象,可得,即,解之得1≤a≤e即实数a的取值范围为[1,e]故选:A.【点评】本题给出含有根号与指数式的基本初等函数,在存在b∈[0,1]使f(f(b))=b成立的情况下,求参数a的取值范围.着重考查了基本初等函数的图象与性质、函数的零点存在性定理和互为反函数的两个函数的图象特征等知识,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)lg+lg的值是 1 .【分析】直接利用对数的运算性质求解即可.【解答】解:==1.故答案为:1.【点评】本题考查对数的运算性质,基本知识的考查.12.(5分)在平行四边形ABCD中,对角线AC与BD交于点O,+=λ,则λ=. 【分析】依题意,+=,而=2,从而可得答案.【解答】解:∵四边形ABCD为平行四边形,对角线AC与BD交于点O,∴+=,又O为AC的中点,∴=2,∴+=2,∵+=λ,∴λ=2.故答案为:2.【点评】本题考查平面向量的基本定理及其意义,属于基础题.13.(5分)已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,则a=36 .【分析】由题设函数在x=3时取得最小值,可得f′(3)=0,解此方程即可得出a的值.【解答】解:由题设函数在x=3时取得最小值,∵x∈(0,+∞),∴得x=3必定是函数的极值点,∴f′(3)=0,f′(x)=4-,即4-=0,解得a=36.故答案为:36.【点评】本题考查利用导数求函数的最值及利用导数求函数的极值,解题的关键是理解“函数在x=3时取得最小值”,将其转化为x=3处的导数为0等量关系.14.(5分)设sin2α=-sinα,α∈(,π),则tan2α的值是.【分析】已知等式左边利用二倍角的正弦函数公式化简,根据sinα不为0求出cosα的值,由α的范围,利用同角三角函数间的基本关系求出sinα的值,进而求出tanα的值,所求式子利用二倍角的正切函数公式化简后,将tanα的值代入计算即可求出值.【解答】解:∵sin2α=2sinαcosα=-sinα,α∈(,π),∴cosα=-,sinα==,∴tanα=-,则tan2α===.故答案为:【点评】此题考查了二倍角的正弦、正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.15.(5分)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是(2,4) .【分析】如图,设平面直角坐标系中任一点P,利用三角形中两边之和大于第三边得PA+PB+PC+PD=PB+PD+PA+PC≥BD+AC=QA+QB+QC+QD,从而得到四边形ABCD对角线的交点Q 即为所求距离之和最小的点.再利用两点式方程求解对角线所在的直线方程,联立方程组求交点坐标即可.【解答】解:如图,设平面直角坐标系中任一点P,P到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和为:PA+PB+PC+PD=PB+PD+PA+PC ≥BD+AC=QA+QB+QC+QD,故四边形ABCD对角线的交点Q即为所求距离之和最小的点.∵A(1,2),B(1,5),C(3,6),D(7,-1),∴AC,BD的方程分别为:,,即2x-y=0,x+y-6=0.解方程组得Q(2,4).故答案为:(2,4).【点评】本小题主要考查直线方程的应用、三角形的性质等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(12分)在等比数列{an }中,a2-a1=2,且2a2为3a1和a3的等差中项,求数列{an}的首项、公比及前n项和.【分析】等比数列的公比为q,由已知可得,a1q-a1=2,4,解方程可求q,a1,然后代入等比数列的求和公式可求【解答】解:设等比数列的公比为q,由已知可得,a1q-a1=2,4联立可得,a1(q-1)=2,q2-4q+3=0∴或q=1(舍去)∴=【点评】本题主要考查了等比数列的通项公式及等差中项等基础知识,考查运算求解的能力17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且cos(A-B)cosB-sin(A-B)sin(A+C)=-.(Ⅰ)求sinA的值;(Ⅱ)若a=4,b=5,求向量在方向上的投影.【分析】(Ⅰ)由已知条件利用三角形的内角和以及两角差的余弦函数,求出A的余弦值,然后求sinA的值;(Ⅱ)利用,b=5,结合正弦定理,求出B的正弦函数,求出B的值,利用余弦定理求出c的大小,然后求解向量在方向上的投影.【解答】解:(Ⅰ)由,可得,即,即,因为0<A<π,所以.(Ⅱ)由正弦定理,,所以=,由题意可知a>b,即A>B,所以B=,由余弦定理可知.解得c=1,c=-7(舍去).向量在方向上的投影:=ccosB=.【点评】本题考查两角和的余弦函数,正弦定理以及余弦定理同角三角函数的基本关系式等基本知识,考查计算能力转化思想.18.(12分)某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.(i=1,2,3);(Ⅰ)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.【分析】(I)由题意可知,当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y的值为1,当x从2,4,8,10,14,16,20,22这8个数中产生时,输出y的值为2,当x从6,12,18,24这4个数中产生时,输出y的值为3,从而得出输出y的值为1的概率为;输出y的值为2的概率为;输出y的值为3的概率为;(II)当n=2100时,列出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率的表格,再比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性大.【解答】解:(I)当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y的值为1,故P1=;当x从2,4,8,10,14,16,20,22这8个数中产生时,输出y的值为2,故P2=;当x从6,12,18,24这4个数中产生时,输出y的值为3,故P3=;∴输出y的值为1的概率为;输出y的值为2的概率为;输出y的值为3的概率为;【点评】本题综合考查程序框图、古典概型及其概率计算公式等基础知识,考查运算求解能力,属于基础题.19.(12分)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.(Ⅰ)在平面ABC 内,试作出过点P 与平面A 1BC 平行的直线l,说明理由,并证明直线l ⊥平面ADD 1A 1;(Ⅱ)设(Ⅰ)中的直线l 交AC 于点Q,求三棱锥A 1-QC 1D 的体积.(锥体体积公式:,其中S 为底面面积,h 为高)【分析】(Ⅰ)在平面ABC 内,过点P 作直线l 和BC 平行,根据直线和平面平行的判定定理可得直线l 与平面A 1BC 平行.等腰三角形ABC 中,根据等腰三角形中线的性质可得AD ⊥BC,故l ⊥AD.再由AA 1⊥底面ABC,可得 AA 1⊥l.再利用直线和平面垂直的判定定理可得直线l ⊥平面ADD 1A 1 .(Ⅱ)过点D 作DE ⊥AC,证明DE ⊥平面AA 1C 1C.直角三角形ACD 中,求出AD 的值,可得 DE 的值,从而求得 =的值,再根据三棱锥A 1-QC 1D 的体积==••DE,运算求得结果.【解答】解:(Ⅰ)在平面ABC 内,过点P 作直线l 和BC 平行,由于直线l 不在平面A 1BC 内,而BC 在平面A 1BC 内,故直线l 与平面A 1BC 平行.三角形ABC 中,∵AB =AC =2AA 1=2,∠BAC =120°,D,D 1分别是线段BC,B 1C 1的中点,∴AD ⊥BC,∴l ⊥AD.再由AA 1⊥底面ABC,可得 AA 1⊥l. 而AA 1∩AD =A,∴直线l ⊥平面ADD 1A 1 .(Ⅱ)设(Ⅰ)中的直线l 交AC 于点Q,过点D 作DE ⊥AC, ∵侧棱AA 1⊥底面ABC,故三棱柱ABC -A 1B 1C 为直三棱柱, 故DE ⊥平面AA 1C 1C.直角三角形ACD 中,∵AC =2,∠CAD =60°,∴AD =AC •cos60°=1,∴DE =AD •sin60°=.∵===1,∴三棱锥A 1-QC 1D 的体积==••DE =×1×=.【点评】本题主要考查直线和平面平行、垂直的判定定理的应用,用等体积法求三棱锥的体积,属于中档题.20.(13分)已知圆C 的方程为x 2+(y -4)2=4,点O 是坐标原点.直线l :y =kx 与圆C 交于M,N 两点.(Ⅰ)求k 的取值范围;(Ⅱ)设Q(m,n)是线段MN上的点,且.请将n表示为m的函数.【分析】(Ⅰ)将直线l方程与圆C方程联立消去y得到关于x的一元二次方程,根据两函数图象有两个交点,得到根的判别式的值大于0,列出关于k的不等式,求出不等式的解集即可得到k的取值范围;(Ⅱ)由M、N在直线l上,设点M、N坐标分别为(x1,kx1),(x2,kx2),利用两点间的距离公式表示出|OM|2与|ON|2,以及|OQ|2,代入已知等式中变形,再利用根与系数的关系求出x1+x2与x1x2,用k表示出m,由Q在直线y=kx上,将Q坐标代入直线y=kx中表示出k,代入得出的关系式中,用m表示出n即可得出n关于m的函数解析式,并求出m的范围即可.【解答】解:(Ⅰ)将y=kx代入x2+(y-4)2=4中,得:(1+k2)x2-8kx+12=0(*),根据题意得:△=(-8k)2-4(1+k2)×12>0,即k2>3,则k的取值范围为(-∞,-)∪(,+∞);(Ⅱ)由M、N、Q在直线l上,可设M、N坐标分别为(x1,kx1),(x2,kx2),∴|OM|2=(1+k2)x12,|ON|2=(1+k2)x22,|OQ|2=m2+n2=(1+k2)m2,代入=+得:=+,即=+=,由(*)得到x1+x2=,x1x2=,代入得:=,即m2=,∵点Q在直线y=kx上,∴n=km,即k=,代入m2=,化简得5n2-3m2=36,由m2=及k2>3,得到0<m2<3,即m∈(-,0)∪(0,),根据题意得点Q在圆内,即n>0,∴n==,则n与m的函数关系式为n=(m∈(-,0)∪(0,)).【点评】此题考查了直线与圆的位置关系,涉及的知识有:根的判别式,根与系数的关系,两点间的距离公式,以及函数与方程的综合运用,本题计算量较大,是一道综合性较强的中档题.21.(14分)已知函数,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图象上的两点,且x 1<x 2.(Ⅰ)指出函数f(x)的单调区间;(Ⅱ)若函数f(x)的图象在点A,B 处的切线互相垂直,且x 2<0,证明:x 2-x 1≥1; (Ⅲ)若函数f(x)的图象在点A,B 处的切线重合,求a 的取值范围. 【分析】(I)根据分段函数中两段解析式,结合二次函数及对数函数的性质,即可得出函数f(x)的单调区间;(II)由导数的几何意义知,点A 处的切线的斜率为f′(x 1),点B 处的切线的斜率为f′(x 2),再利用f(x)的图象在点A,B 处的切线互相垂直时,斜率之积等于-1,得出(2x 1+2)(2x 2+2)=-1,最后利用基本不等式即可证得x 2-x 1≥1;(III)先根据导数的几何意义写出函数f(x)在点A 、B 处的切线方程,再利用两直线重合的充要条件列出关系式,从而得出a =lnx 2+()2-1,最后利用导数研究它的单调性和最值,即可得出a 的取值范围.【解答】解:(I)函数f(x)的单调减区间(-∞,-1),函数f(x)的单调增区间[-1,0),(0,+∞);(II)由导数的几何意义知,点A 处的切线的斜率为f′(x 1),点B 处的切线的斜率为f′(x 2), 函数f(x)的图象在点A,B 处的切线互相垂直时,有f′(x 1)f′(x 2)=-1, 当x <0时,(2x 1+2)(2x 2+2)=-1,∵x 1<x 2<0,∴2x 1+2<0,2x 2+2>0, ∴x 2-x 1=[-(2x 1+2)+(2x 2+2)]≥=1, ∴若函数f(x)的图象在点A,B 处的切线互相垂直,有x 2-x 1≥1; (III)当x 1<x 2<0,或0<x 1<x 2时,f′(x 1)≠f′(x 2),故x 1<0<x 2, 当x 1<0时,函数f(x)在点A(x 1,f(x 1))处的切线方程为y -(x +2x 1+a)=(2x 1+2)(x -x 1);当x 2>0时,函数f(x)在点B(x 2,f(x 2))处的切线方程为y -lnx 2=(x -x 2);两直线重合的充要条件是,由①及x 1<0<x 2得0<<2,由①②得a =lnx 2+()2-1=-ln+()2-1,令t =,则0<t <2,且a =t 2-t -lnt,设h(t)=t 2-t -lnt,(0<t <2)则h′(t)=t -1-=,∴h(t)在(0,2)为减函数,则h(t)>h(2)=-ln2-1,∴a >-ln2-1,∴若函数f(x)的图象在点A,B处的切线重合,a的取值范围(-ln2-1,+∞).【点评】本题以函数为载体,考查分段函数的解析式,考查函数的单调性,考查直线的位置关系的处理,注意利用导数求函数的最值.。

2013年四川高考数学文科试卷带详解

2013年四川高考数学文科试卷带详解

2013年普通高等学校招生全国统一考试(四川卷)数 学(文史类)第Ⅰ卷(选择题 共50分)一、选择题: 本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,3}A =,集合{2,2}B =-,则A B = ( ) A .∅ B.{2} C.{2,2}- D.{2,1,2,3}- 【测量目标】集合的交集.【考查方式】直接给出集合,用列举法求两集合交集. 【参考答案】B【试题解析】直接根据交集的概念求解,故选B.2.一个几何体的三视图如图所示,则该几何体可以是 ( ) A.棱柱 B.棱台 C.圆柱 D.圆台第2题图【测量目标】平面图形的直观图与三视图. 【考查方式】利用三视图判断几何体. 【参考答案】D【试题解析】先观察俯视图,再结合正视图和侧视图还原空间几何体.由俯视图是圆环可排除A,B,由正视图和侧视图都是等腰梯形可排除C ,故选D.3.如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是 ( )A.AB.BC.CD.D 【测量目标】复数的基本概念及复平面.【考查方式】直接给出复数象限,判断共轭复数的象限. 【参考答案】B【试题解析】根据复数的几何表示可求得.表示复数z 的点A 在第二象限,由共轭复数的定义,设i(,),z a b a b =+∈R 且0,0,a b <>则z 的共轭复数为i,a b -其中0,0,a b <-<故应为B 点.4.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则 ( ) A.:,2p x A x B ⌝∃∈∈ B.:,2p x A x B ⌝∃∉∈ C.:,2p x A x B ⌝∃∈∉ D.:,2p x A x B ⌝∀∉∉ 【测量目标】含有一个量词的命题的否定. 【考查方式】直接给出全称命题,求其否命题. 【参考答案】C【试题解析】由命题的否定的定义及全称命题的否定为特称命题可得.命题p 是全称命题:(),,x M p x ∀∈则p ⌝是特称命题:(),,x M p x ∃∈⌝故选C. 5.抛物线28y x =的焦点到直线30x y -=的距离是 ( ) A.23 B.2 C.3 D.1 【测量目标】点到直线的距离公式、抛物线的标准方程及其简单几何性质. 【考查方式】已知抛物线的标准方程与直线方程,运用点到直线距离公式求距离. 【参考答案】D【试题解析】由抛物线方程得焦点坐标,再由点到直线的距离公式求解. 抛物线28y x =的焦点坐标为()2,0,F 则()22230 1.13d -⨯==+-故选D.6.函数ππ()2sin()(0,)22f x x ωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A.π2,3-B.π2,6-C.π4,6-D.π4,3【测量目标】正弦三角函数的图象与性质.【考查方式】给出正弦函数的部分图象,运用正弦函数性质、数形结合思想求正弦函数中的未知量. 【参考答案】A【试题解析】借助三角形的图象和性质求解. 115ππ,π.21212T T =-∴=(步骤1) 又()2π2π0,π, 2.T ωωωω=>∴=∴=(步骤2)由五点作图法可知当5π12x =时,π,2x ωϕ+=即5ππ2π,.1223ϕϕ⨯+=∴=-故选A.(步骤3)7.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是 ( )A B C D 【测量目标】茎叶图、频率分布直方图的有关知识及应用. 【考查方式】由茎叶图列表(据茎叶图性质)求直方图. 【参考答案】A【试题解析】借助已知茎叶图得出各小组的频数,再有频率=频数样本容量求出各小组的频率,进一步求出频率组距并得出答案. 方法一:由题意知样本容量为20,组距为5.(步骤1) 列表如下:分组 频数 频率频率组距[)0,51 120 0.01 [)5,101 120 0.01 [)1015, 4 15 0.04 [)15,20 2 1100.02 [)20,254 15 0.04 [)25,303 320 0.03 [)30,353 320 0.03 []35,402 1100.02合计201观察各选项的频数分布直方图知选A.(步骤2)方法二:由茎叶图知落在区间[)0,5与[)5,10上的频数相等,故频率、频率组距也分别相等.比较四个选项知A 正确,故选A.8.若变量,x y 满足约束条件8,24,0,0,x y y x x y +⎧⎪-⎪⎨⎪⎪⎩…………且5z y x =-的最大值为a ,最小值为b ,则a b-的值是 ( ) A .48 B.30 C.24 D.16 【测量目标】二元线性规划求目标函数的最值.【考查方式】给出变量约束条件,画图求目标函数的最优解. 【参考答案】C【试题解析】先将不等式24y x -…转化为24,x y --…画出不等式组表示的平面区域,并找出目标函数55x zy =+的最优解,进而求得,a b 的值.8,24,0,0,x y y x x y +⎧⎪-⎪⎨⎪⎪⎩ …………8,24,0,0,x y y x x y +⎧⎪--⎪∴⎨⎪⎪⎩…………由线性约束条件得可行域为如图所示的阴影部分,由5,z y x =-得.55x zy =+(步骤1)由图知目标函数55x zy =+,过点()8,0A 时,m i n5=508=8z y x =-⨯--,即8.b =-(步骤2) 目标函数55x zy =+过点B (4,4)时,m a x 554416,z y x =-=⨯-=即16.a =()16824,a b ∴-=--=故选C.(步骤3)9.从椭圆22221(0)x y a b a b+=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是 ( ) A .24 B.12 C.22 D.32【测量目标】椭圆的标准方程、几何性质,椭圆与直线的位置关系.【考查方式】已知椭圆的标准方程形式,椭圆中特殊线段间的关系,根据椭圆的性质、离心率公式求解. 【参考答案】C【试题解析】设()0,,P c y -代入椭圆方程求得0,y 从而求得,op k 由OP AB k k =及ce a=可得离心率e .由题意设()0,,P c y -将()0,P c y -代入22221,x y a b+=得220221,y c a b +=则222422202221.c a c b y b b a a a ⎛⎫-=-=⋅= ⎪⎝⎭(步骤1) 20b y a ∴=或()2b y a =-舍去,222,,.OP b b P c k a ac ⎛⎫∴-∴=- ⎪⎝⎭(步骤2) ()()0,0,0,,.0AB b bA aB b k a a-∴==-- (步骤3)又2//,,.b b AB OP b c a ac∴-=-∴= 2222.22c c c e a b c c∴====+故选C.(步骤4)10.设函数()e x f x x a =+-(a ∈R ,e 为自然对数的底数).若存在[0,1]b ∈使(())f f b b =成立,则a 的取值范围是 ( ) A.[1,e] B.[1,1e]+ C.[e,1e]+ D.[0,1] 【测量目标】函数的概念及其性质、导数的应用.【考查方式】已知含未知数a 的函数()f x ,结合导数的相关性质求未知数的取值范围. 【参考答案】A 【试题解析】由()()f f b b =得()()()(),,,A b f b A f b b '都在()y f x =的图象上为突破口解决.若存在[0,1]b ∈使()()f f b b =成立,则()()()(),,,A b f b A f b b '都在()y f x =的图象上.又()e x f x x a =+-在[0,1]上单调递增,()()0,A AAAx x y y ''∴--…即()()()()0,f b b b f b --…()()()20,.f b b f b b ∴-∴=…(步骤1)()[]0,1f x x x ∴=∈在上有解, 即e [0,1]x x a x +-=在上有解,2e ,[0,1].x a x x x ∴=+-∈(步骤2)令()x ϕ2e ,[0,1]x x x x =+-∈,则()e 120,xx x ϕ'=+-…[0,1]x ∈,()x ϕ∴在[]0,1上单调递增,又()0ϕ=1, ()1e ϕ=, ()[]1,e ,x ϕ∴∈即[]1,e ,a ∈故选A.(步骤3)第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共25分. 11.lg 5lg 20+的值是____ _. 【测量目标】对数的化简与求值.【考查方式】直接给出两对数,借助对数运算性质求解. 【参考答案】1【试题解析】借助对数运算法则:()lg lg lg ,0M N MN M N +=>及()log 101a a a a =>≠且求解.12.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ=___ __ _.第12题图【测量目标】向量的线性运算.【考查方式】直接根据平行四边形法则和向量数乘的性质求未知数λ. 【参考答案】2【试题解析】根据向量加法的平行四边形法则及向量数乘的几何意义求解.由向量加法的平行四边形法则,得.AB AD AC +=(步骤1)又O 是AC 的中点,∴2,AC AO =+2.AB AD AO ∴=又+.AB AD AO λ==2.λ∴(步骤2)13.已知函数()4(0,0)af x x x a x=+>>在3x =时取得最小值,则a =___ ___. 【测量目标】基本不等式的应用.【考查方式】给出函数形式与函数取得最值的条件,运用基本不等式求解. 【参考答案】36【试题解析】借助基本不等式求最值的条件求解.()()42440,0,a a f x x x a x a x x=+=>> …当且仅当4,a x x =即2ax =时等号成立,此时()f x 取得最小值4a .(步骤1)又由已知3x =时,()min 4,f x a =3,2a∴=即36a =.(步骤2) 14.设sin 2sin αα=-,π(,π)2α∈,则tan 2α的值是________. 【测量目标】二倍角公式、诱导公式及特殊角的三角函数值.【考查方式】给出正弦函数的二倍角与单倍角关系、角的取值范围,利用三角函数计算的相关公式和性质求正切函数的二倍角. 【参考答案】3【试题解析】由sin 22sin cos ααα=及πsin 2sin ,,π2ααα⎛⎫=-∈⎪⎝⎭解出α,进而求得tan 2α的值.sin 2sin ,2sin cos sin .ααααα=-∴=- π(,π)2α∈,1sin 0,cos .2αα≠∴=-(步骤1)又 π(,π)2α∈,2π,3α∴=(步骤2) 4ππtan 2tan πtan πtan 3.333α⎛⎫∴==+== ⎪⎝⎭(步骤3)15.在平面直角坐标系内,到点(1,2)A ,(1,5)B ,(3,6)C ,(7,1)D -的距离之和最小的点的坐标是【测量目标】直线方程及两相交直线的综合应用.【考查方式】已知坐标系中四点,运用等价转化思想和直线方程性质求坐标. 【参考答案】()2,4【试题解析】设平面上任意一点M ,因为,MA MC AC +…当且仅当,,A M C 共线时取等号,同理,MA MC BD +…当且仅当,,B M D 共线时取等号, 连接,AC BD 交于一点M ,若MA MC MB MD +++最小,则点M 为所求.(步骤1) 又622,31AC k -==-∴直线AC 的方程为()221,y x -=-即20.x y -=○1(步骤2) 又()511,17BDk --==--()51,BD y x ∴-=--直线的方程为即60.x y +-=○2(步骤3) 由○1○2得()20,2,2,4.60,4,x y x M x y y -==⎧⎧∴∴⎨⎨+-==⎩⎩(步骤4)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分) 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和. 【测量目标】等比数列的通项公式与前n 项和公式.【考查方式】给出等比数列各项之间的关系,运用等比数列通项公式、前n 项和公式、等差中项公式求解.【试题解析】由已知列出两个含1a 和q 的方程并求解,再借助等比数列求和公式得n S 解:设{}n a 的公比为q .由已知可得211=-a q a ,211134q a a q a +=,所以2)1(1=-q a ,0342=+-q q ,解得 3q = 或1q =, 由于2)1(1=-q a .因此1=q 不合题意,应舍去,(步骤1) 故公比3=q ,首项11=a .(步骤2)所以,数列的前n 项和213-=n n S .(步骤3)17.(本小题满分12分) 在ABC △中,角,,A B C 的对边分别为,,a b c ,且3cos()cos sin()sin()5A B B A B A C ---+=-.(Ⅰ)求sin A 的值;(Ⅱ)若42a =,5b =,求向量BA 在BC方向上的投影.【测量目标】三角恒等变换,正、余弦定理,三角函数及其诱导公式等.【考查方式】已知三角形的内角正余弦关系(1)根据三角和内角定理、两角和的余弦公式求解.(2)借助向量投影公式求解.【试题解析】(1)由三角形内角和定理得π,A C B +=-即()sin sin ,A C B +=然后利用两角和的余弦公式求得cos .A (2)借助正、余弦定理求角后再利用向量投影公式求解.解:(Ⅰ)由3cos()cos sin()sin()5A B B A B A C ---+=-得 53sin )sin(cos )cos(-=---B B A B B A ,(步骤1) 则 53)cos(-=+-B B A ,即 53cos -=A (步骤2)又0πA <<,则 54sin =A (步骤3). (Ⅱ)由正弦定理,有BbA a sin sin =,所以22sin sin ==a A b B ,(步骤4) 由题知b a >,则 B A >,故π4B =.(步骤5) 根据余弦定理,有 )53(525)24(222-⨯⨯-+=c c , 解得 1=c 或 7-=c (负值舍去),(步骤6)向量BA 在BC方向上的投影为=B BA cos 22.(步骤7) 18.(本小题满分12分)某算法的程序框图如图所示,其中输入的变量x 在24,,3,2,1 这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y 的值为i 的概率(1,2,3)i P i =; (Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为(1,2,3)i i =的频数.以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分) 运行次数n输出y 的值为1的频数输出y 的值为2的频数输出y 的值为3的频数301461021001027376697乙的频数统计表(部分) 运行次数n输出y 的值为1的频数输出y 的值为2的频数输出y 的值为3的频数301211721001051696353当2100n =时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.【测量目标】算法与程序框图,古典概型的计算.【考查方式】(1)直接利用程序框图和古典概性求概率.(2)运用古典概型频率的运算,再比较可能性.【试题解析】(1)借助程序框图及古典概型概率公式求解.(2)利用已知条件中概率统计表得出各小组频数,利用频率的计算公式得频率,再与(1)的结论比较得出结论.解:(Ⅰ)变量x 是在24,,3,2,1 这24个整数中等可能随机产生的一个数,共有24种可能.当x 从23,21,19,17,15,13,11,9,7,5,3,1这12个数中产生时,输出y 的值为1,故211=P ;(步骤1)当x 从22,20,16,14,10,8,4,2这8个数中产生时,输出y 的值为2,故312=P ;(步骤2) 当x 从24,18,12,6这4个数中产生时,输出y 的值为3,故613=P .(步骤3) 所以输出y 的值为1的概率为21,输出y 的值为2的概率为31,输出y 的值为3的概率为61.(步骤4) (Ⅱ)当2100n =时,甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率如下,比较频率趋势与概率,可得乙同学所编写程序符合算法要求的可能性较大.(步骤5) 19.(本小题满分12分)如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,122AB AC AA ===,120BAC ∠= ,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 上异于端点的点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中的直线l 交AC 于点Q ,求三棱锥11A QC D -的体积.(锥体体积公式:13V Sh =,其中S 为底面面积,h 为高)第19题图【测量目标】线面平行与垂直、棱锥的体积等.【考查方式】已知三棱柱和三棱柱中线段的关系.(1)由线面、线线平行,线面、线线垂直证明.(2)利用三棱柱的等价转化方法求体积.【试题解析】(1)只需在平面ABC 内过点P 作//,l BC 由线面平行、垂直的相关知识得证.(2)借助等面积转换法求解.(Ⅰ)如图,在平面ABC 内,过点P 作直线BC l //,因为l 在平面BC A 1外,BC 在平面BC A 1 内,由直线与平面平行的判定定理可知,//l 平面1A BC .(步骤1) 由已知,AC AB =,D 是BC 中点,所以BC AD ⊥,则直线AD l ⊥,(步骤2) 又因为1AA ⊥底面ABC ,所以l AA ⊥1,(步骤3) 又因为AD ,1AA 在平面11A ADD 内,且AD 与1AA 相交, 所以直线⊥l 平面11A ADD (步骤4).(Ⅱ)过D 作AC DE ⊥于E ,因为1AA ⊥平面ABC ,所以DE AA ⊥1,(步骤5)输出y 的值为1的频率 输出y 的值为2的频率 输出y 的值为3的频率甲 2100102721003762100697乙2100105121006962100353因为AC ,1AA 在平面C C AA 11内,且AC 与1AA 相交,所以⊥DE 平面C C AA 11,(步骤6) 由2==AC AB ,∠BAC ︒=120,有1=AD ,∠DAC ︒=60, 所以在△ACD 中,2323==AD DE ,(步骤7) 又1111112AQC S AC AA == △,所以111111113313326A QC D D A QC A QC V V DE S --==== 因此三棱锥11A QC D -的体积为63.(步骤8) 20.(本小题满分13分)已知圆C 的方程为22(4)4x y +-=,点O 是坐标原点.直线:l y kx =与圆C 交于,M N 两点.(Ⅰ)求k 的取值范围;(Ⅱ)设(,)Q m n 是线段MN 上的点,且222211||||||OQ OM ON =+.请将n 表示为m 的函数.【测量目标】直线与圆的位置关系、一元二次不等式、函数的概念.【考查方式】已知圆的标准方程、含未知数的直线方程(1)运用数形结合思想,图形相交等价于0∆>求根.求k 的范围.(2)利用方程根与系数的关系、点与直线的位置关系求解. 【试题解析】(1)利用直线与圆相交等价于直线方程与圆方程联立所得一元二次方程的0∆>求解.(2)利用点,M N 在直线y kx =上,设点,M N 的已知条件,再利用一元二次方程根与系数的关系及点Q 坐标适合直线方程y kx =求解.解:(Ⅰ)将x k y =代入22(4)4x y +-=得0128)1(22=+-+x k x k ,(*)(步骤1) 由012)1(4)8(22>⨯+--=∆k k 得 32>k .所以k 的取值范围是),3()3,(+∞--∞ .(步骤2)(Ⅱ)因为,M N 在直线l 上,可设点,M N 的坐标分别为),(11kx x ,),(22kx x ,则2122)1(x k OM +=,2222)1(x k ON +=,(步骤3)又22222)1(m k n m OQ +=+=, 由222112ONOMOQ+=得,22221222)1(1)1(1)1(2x k x k m k +++=+,所以222121221222122)(112x x x x x x x x m -+=+=(步骤4) 由(*)知 22118k k x x +=+,221112k x x +=, 所以 353622-=k m ,(步骤5)因为点Q 在直线l 上,所以mnk =,代入353622-=k m 可得363522=-m n ,(步骤6)由353622-=k m 及32>k 得 302<<m ,即 )3,0()0,3( -∈m .(步骤7)依题意,点Q 在圆C 内,则0>n ,所以 518015533622+=+=m m n , 于是,n 与m 的函数关系为 5180152+=m n ()3,0()0,3( -∈m ).(步骤8)21.(本小题满分14分)已知函数22,0()ln ,0x x a x f x x x ⎧++<=⎨>⎩,其中a 是实数.设11(,())A x f x ,22(,())B x f x 为该函数图象上的两点,且12x x <. (Ⅰ)指出函数()f x 的单调区间;(Ⅱ)若函数()f x 的图象在点,A B 处的切线互相垂直,且20x <,证明:211x x -…; (Ⅲ)若函数()f x 的图象在点,A B 处的切线重合,求a 的取值范围.【测量目标】基本函数的性质、导数的应用、基本不等式、直线的位置关系等相关知识. 【考查方式】(1)运用数形结合思想直接求函数的单调区间.(2)利用基本不等式和导数的几何意义求解.(3)由两直线的位置关系,导数和单调性的关系、分类讨论思想求解. 【试题解析】(1)直接由二次函数、对数函数的图象求解.(2)由导数的几何意义知()()121,f x f x ''=- 并借助基本不等式得证.(3)两直线重合的充要条件是两直线方程系数成比例,求a 时需先分离出a ,再进一步利用导数求函数值域.解:(Ⅰ)函数()f x 的单调减区间为)1,(--∞,单调增区间为[)1,0-,),0(+∞.(步骤1) (Ⅱ)由导数的几何意义知,点A 处的切线斜率为)(1x f ',点B 处的切线斜率为)(2x f ', 故当点,A B 处的切线互相垂直时,有)(1x f '2()1f x '=-,(步骤2) 因为2120,,x x x <<所以120.x x << 当0x <时,22)(+=x x f因为021<<x x ,所以 12(22)(22)1x x ++=-,所以0221<+x ,0222>+x ,(步骤3) 因此2112121[(22)(22)](22)(22)12x x x x x x -=-+++-++=…,(步骤4) (当且仅当122)22(21=+=+-x x ,即231-=x 且212-=x 时等号成立) 所以函数()f x 的图象在点,A B 处的切线互相垂直时有211x x -….(步骤5) (Ⅲ)当021<<x x 或012>>x x 时,)(1x f ')(2x f '≠,故210x x <<.(步骤6) 当01<x 时,()f x 的图象在点))(,(11x f x 处的切线方程为21111(2)(22)()y x x a x x x -++=+- 即 a x x x y +-+=211)22(.(步骤7) 当02>x 时,()f x 的图象在点))(,(22x f x 处的切线方程为2221ln ()y x x x x -=- 即 221ln 1y x x x =+- .(步骤8) 两切线重合的充要条件是⎪⎩⎪⎨⎧+-=-+=②①a x x x x 212121ln 221,由①及210x x <<知,2102<<x ,(步骤9) 由①、②得 1)21(411ln 1)121(ln 222222--+-=--+=x x x x a ,(步骤10) 令21x t =,则20<<t ,且t t t a ln 412--= 设)20(ln 41)(2<<--=t t t t t h ,则023)1(1121)(2<--=--='t t t t t h (步骤11)所以)20()(<<t t h 为减函数,则2ln 1)2()(--=>h t h , 所以2ln 1-->a ,(步骤12)而当)2,0(∈t 且t 趋向于0时,)(t h 无限增大, 所以a 的取值范围是),2ln 1(+∞--.故当函数()f x 的图象在点,A B 处的切线重合时,a 的取值范围是),2ln 1(+∞--.(步骤13)。

2013年高考文科数学四川卷(含详细答案)

2013年高考文科数学四川卷(含详细答案)

数学试卷 第1页(共28页)数学试卷 第2页(共28页)绝密★启用前2013年普通高等学校招生全国统一考试(四川卷)数学(文史类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡上一并交回.第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={1,2,3},集合B ={-2,2},则A ∩B = ( ) A .∅ B .{2} C .{-2,2} D .{-2,1,2,3}2.一个几何体的三视图如图所示,则该几何体可以是 ( ) A .棱柱 B .棱台 C .圆柱 D .圆台3.如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭 复数的点是 ( ) A .A B .B C .C D .D4.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( ) A .:,2p x A x B ⌝∃∈∈ B .:,2p x A x B ⌝∃∉∈ C .:,2p x A x B ⌝∃∈∉ D .:,2p x A x B ⌝∀∉∉ 5.抛物线28y x =的焦点到直线30x y -=的距离是 ( ) A .23 B .2 C .3 D .16.函数ππ()2sin()(0,)22f x x ωϕωϕ=+>-<<的部分图象如图所示,则ω,ϕ的值分别是 ( ) A .π2,3-B .π2,6-C .π4,6-D .π4,37.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )ABCD8.若变量x ,y 满足约束条件8,24,0,0,x y y x x y +⎧⎪-⎪⎨⎪⎪⎩≤≤≥≥且5z y x =-的最大值为a ,最小值为b ,则a b -的值是( )A .48B .30C .24D .169.从椭圆22221x y a b +=(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( ) A .24B .12C .22D .3210.设函数f (x )=e x x a +-(a ∈R ,e 为自然对数的底数).若存在b ∈[0,1]使f (f (b ))=b-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第3页(共28页)数学试卷 第4页(共28页)成立,则a 的取值范围是( ) A .[1,e]B .[1,1e]+C .[e,1e]+D .[0,1]第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷上无效. 二、填空题:本大题共5小题,每小题5分,共25分. 11.lg5lg 20+的值是.12.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点 O ,AB +AD =AO λ.则λ= .13.已知函数()4+00af x x x a x=>>(,)在=3x 时取得最小值,则a = .14.设sin 2sin αα=-,π(,π)2α∈,则tan 2α的值是 .15.在平面直角坐标系内,到点(1,2)A ,(1,5)B ,(3,6)C ,(7,1)D -的距离之和最小的点 的坐标是 .三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤.16.(本小题满分12分)在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和.17.(本小题满分12分)在ABC △中,角的对边分别为,,a b c ,且3cos()cos sin()sin()5A B B A B A C --=--+.(Ⅰ)求sin A 的值;(Ⅱ)若42a =,b 5=,求向量BA 在BC 方向上的投影.18.(本小题满分12分)某算法的程序框图如图所示,其中输入的变量 x 在1,2,3,…,24这24个整数中等可能随机 产生.(Ⅰ)分别求出按程序框图正确编程运行时输 出y 的值为i 的概率(1,2,3)i P i =; (Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了 输出y 的值为(1,2,3)i i =的频数.以下是甲、乙 所作频数统计表的部分数据.甲的频数统计表(部分) 运行 次数n输出y 的值 为1的频数 输出y 的值 为2的频数输出y 的值为3的频数 30 14 6 10 … … … … 2 100 1 027 376 697 乙的频数统计表(部分) 运行 次数n输出y 的值 为1的频数 输出y 的值 为2的频数输出y 的值为3的频数30 12 11 7 … … … … 2 1001 051 696353当2100n =时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大.19.(本小题满分12分)如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12=2AB AC AA ==,120BAC ∠=,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 上异于端点的点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中的直线l 交AC 于点Q ,求三棱锥11A QC D -的体积.(锥体体积公式:13V Sh =,其中S 为底面面积,h 为高)20.(本小题满分13分)已知圆C 的方程为22+(4)=4x y -,点O 是坐标原点.直线l :y kx =与圆C 交于M ,N 两点.(Ⅰ)求k 的取值范围;(Ⅱ)设(,)Q m n 是线段MN 上的点,且222211||||||OQ OM ON =+.请将n 表示为m 的函数.21.(本小题满分14分)已知函数22,0()ln ,,,0x x a x f x x x ⎧++<=⎨>⎩其中a 是实数.设11(,())A x f x ,22(,())B x f x 为该函数图象上的两点,且12x x <. (Ⅰ)指出函数()f x 的单调区间;,,A B C(Ⅱ)若函数()f x的图象在点,A B处的切线互相垂直,且20x ,证明:211x x-≥;(Ⅲ)若函数()f x的图象在点,A B处的切线重合,求a的取值范围.数学试卷第5页(共28页)数学试卷第6页(共28页)数学试卷 第7页(共28页)2013年普通高等学校招生全国统一考试(四川卷)数学(文史类)答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】{1,2,3}{2,2}{2}-=,故选B. 【提示】找出A 与B 的公共元素即可求出交集. 【考点】集合的交集. 2.【答案】D【解析】先观察俯视图,再结合正视图和侧视图还原空间几何体.由俯视图是圆环可排除A ,B ,由正视图和侧视图都是等腰梯形可排除C ,故选D.【提示】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 【考点】三视图. 3.【答案】B【解析】设i(,)z a b a b =+∈R ,且0a <,0b >,则z 的共轭复数为i a b -,其中0a <,0b -<故应为B 点. 【提示】直接利用共轭复数的定义,找出点A 表示复数z 的共轭复数的点即可. 【考点】复数,复数的代数表示法. 4.【答案】C【解析】命题p 是全称命题:x M ∀∈,()p x ,则p ⌝是特称命题:x M ∃∈,()p x ⌝,故选C. 【提示】“全称命题”的否定一定是“存在性命题”据此可解决问题. 【考点】命题的否定,特称命题. 5.【答案】D【解析】抛物线28y x =的焦点坐标为(2,0)F ,则()22230113d -⨯==+-.故选D.【提示】已知抛物线的标准方程与直线方程,运用点到直线距离公式求距离. 【考点】点到直线的距离公式,抛物线的标准方程及其简单几何性质. 6.【答案】A 【解析】115ππ21212T =-,πT ∴=(步骤1)又2π(0)T ωω=>,∴2ππω=,2ω∴=(步骤2)由五点作图法可知当5π12x=时,π2xωϕ+=,即5π2π122ϕ⨯+=,∴π3ϕ=-.故选A.(步骤3)【提示】根据函数在同一周期内的最大值、最小值对应的x值,求出函数的周期2ππTω==,解得2ω=.由函数当5π12x=时取得最大值2,得到5πππ()62k kϕ+=+∈Z,取0k=得到π3ϕ=-.由此即可得到本题的答案.【考点】正弦三角函数的图象与性质.7.【答案】A【解析】借助已知茎叶图得出各小组的频数,再有=频数频率样本容量求出各小组的频率,进一步求出频率组距并得出答案.由茎叶图知落在区间[)0,5与[)5,10上的频数相等,故频率、频率组距也分别相等.比较四个选项知A 正确,故选A.【提示】根据题意,由频率与频数的关系,计算可得各组的频率,进而可以做出频率分布表,结合分布表,进而可以做出频率分布直方图.【考点】茎叶图,频率分布直方图的有关知识.8.【答案】C【解析】先将不等式24y x-≤转化为24x y-≥-,画出不等式组表示的平面区域,并找出目标函数55x zy=+的最优解,进而求得a b,的值.824x yy xxy+≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩,824x yy xxy+≥⎧⎪-≥-⎪∴⎨≥⎪⎪≥⎩,由线性约束条件得可行域为如图所示的阴影部分,由5z y x=-,得55x zy=+.(步骤1)由图知目标函数55x zy=+,过点(8,0)A时,min55088z y x=-=⨯-=-,即8b=-.(步骤2)目标函数55x zy=+过点4(4)B,时,max554416z y x=-=⨯-=,即16a=.16(8)24a b∴-=--=,故选C.(步骤3)【提示】先根据条件画出可行域,设5z y x=-,再利用几何意义求最值,将最小值转化为y轴上的截距最大,只需求出直线,过可行域内的(8,0)时的最小值,过(4,4)时,5y x-最大,从而得到a b-的值.5 / 14数学试卷 第11页(共28页)【考点】二元线性规划. 9.【答案】C【解析】设0(,)P c y -,代入椭圆方程求得0y ,从而求得op k ,由OP AB k k =及ce a=可得离心率e . 由题意设0(,)P c y -,将0(,)P c y -代入22221x y a b +=,得220221y c a b+=,则2222021c y b b a ⎛⎫=-= ⎪⎝⎭.22422a c b a a -=(步骤1) 20b y a ∴=或()2b y a =-舍去,22,b P c a ⎛⎫∴- ⎪⎝⎭,2OP b k ac ∴=-.(步骤2)()(),0,0,A a B b ,∴00AB b bk a a-==--(步骤3) 又AB OP ∥,2b b a ac∴-=-,b c ∴=,∴222222c c c e a b c c====+故选C.(步骤4) 【提示】依题意,可求得坐标22,b P c a ⎛⎫- ⎪⎝⎭,由AB OP AB OP k k b c ⇒=⇒=∥,从而可得答案.【考点】椭圆的简单性质. 10.【答案】A【解析】由(())f f b b =得(,())A b f b ,((),)A f b b '都在()y f x =的图象上为突破口解决. 若存在[0,1]b ∈使(())f f b b =成立,则(,())A b f b ,((),)A f b b '都在()y f x =的图象上. 又()e x f x x a =+-在[0,1]上单调递增,()()0A A A A x x y y ''∴--≥,即(())(())0f b b b f b --≥,∴2(())0f b b -≤,()f b b ∴=.(步骤1)()f x x ∴=在[]0,1x ∈上有解,即e x x a x +-=在[0,1]上有解,∴2e ,[0,1]x a x x x =+-∈.(步骤2)令2()e x x x x ϕ=+-,[0,1]x ∈,则()e 120xx x ϕ'=+-≥,[0,1]x ∈,7 / 14()x ϕ∴在[]0,1上单调递增,又(0)1ϕ=,(1)e ϕ=,[]()1,e x ϕ∴∈,即[]1,e a ∈,故选A.(步骤3)【提示】根据题意,问题转化为“存在[]0,1b ∈,使1()()f b f b -=”,即()y f x =的图象与函数1()y f x -=的图象有交点,且交点的横坐标[]0,1b ∈.由()y f x =的图象与1()y f x -=的图象关于直线y x =对称,得到函数()y f x =的图象与y x =有交点,且交点横坐标[]0,1b ∈.因此,将方程e x x a x +-=化简整理得2e x x x a =-+,记()e x F x =,2()G x x x a =-+,由零点存在性定理建立关于a 的不等式组,解之即可得到实数a 的取值范围.【考点】函数的零点与方程根的关系.第Ⅱ卷二、填空题 11.【答案】1【解析】lg 5lg 20lg 1001+==. 【提示】利用对数的运算性质求解. 【考点】对数的运算性质. 12.【答案】2【解析】由向量加法的平行四边形法则,得AB AD AC +=.(步骤1) 又O 是AC 的中点,∴2AC AO =,+2AB AD AO ∴=. 又+AB AD AO λ=.=2.λ∴(步骤2)【提示】依题意,AB AD AC +=,而2AC AO =,从而可得答案. 【考点】平面向量. 13.【答案】36 【解析】()4244(0,0)a a f x x x a x a x x =+≥=>>,当且仅当4a x x =,即2ax =时等号成立, 此时()f x 取得最小值4a .(步骤1)又由已知3x =时,min ()4f x a =,32a∴=,即36a =.(步骤2)数学试卷 第15页(共28页)【提示】由题设函数()4(0,0)a f x x x a x=+>>在3x =时取得最小值,可得(3)0f '=,解此方程即可得出a 的值.【考点】函数在某点取得极值的条件. 14.【答案】3【解析】由sin 22sin cos ααα=及πsin 2sin ,,π2ααα⎛⎫=-∈ ⎪⎝⎭解出α,进而求得tan 2α的值.sin 2sin αα=-,2sin cos sin ααα∴=-.π(,π)2α∈,sin 0α≠,∴1cos 2α=-.(步骤1)又π(,π)2α∈,∴2π3α=.(步骤2) 4ππtan 2tan πtan πtan 3333α⎛⎫∴==+== ⎪⎝⎭(步骤3)【提示】已知等式左边利用二倍角的正弦函数公式化简,根据sin α不为0求出cos α的值,由α的范围,利用同角三角函数间的基本关系求出sin α的值,进而求出tan α的值,所求式子利用二倍角的正切函数公式化简后,将tan α的值代入计算即可求出值. 【考点】二倍角公式,同角三角函数间的基本关系. 15.【答案】(2,4)【解析】设平面上任意一点M ,因为MA MC AC +≥,当且仅当A M C ,,共线时取等号, 同理MA MC BD +≥,当且仅当B M D ,,共线时取等号, 连接AC BD ,交于一点M ,若MA MC MB MD +++最小,则点M 为所求.(步骤1) 又62231AC k -==-,∴直线AC 的方程为22(1)y x -=-,即20x y -=①.(步骤2) 又5(1)117BDk --==--,∴直线BD 的方程为5(1)y x -=--,即60x y +-=②.(步骤3) 由①②得2060x y x y -=⎧⎨+-=⎩,∴24x y =⎧⎨=⎩,(2,4)M ∴(步骤4)【提示】如图,设平面直角坐标系中任一点P ,利用三角形中两边之和大于第三边得:PA PB PC PD PB PD PA PC BD AC QA QB QC QD +++=+++≥+=+++,从而得到四边形ABCD 对角线的交点Q 即为所求距离之和最小的点.再利用两点式方程求解对角线所在的直线方程,联立方程组求交点坐9 / 14标即可.【考点】一般形式的柯西不等式. 三、解答题 16.【答案】11a =3q = 312n n S -= 【解析】设{}n a 的公比为q .由已知可得112a q a -=,211143a q a a q =+,所以1(1)2a q -=,2430q q -+=,解得3q =或1q =,由于1(1)2a q -=.因此1q =不合题意,应舍去,(步骤1) 故公比3q =,首项11a =.(步骤2)所以,数列的前n 项和312nn S -=.(步骤3) 【提示】等比数列的公比为q ,由已知可得,112a q a -=,211143a q a a q =+,解方程可求q ,1a ,然后代入等比数列的求和公式可求.【考点】等比数列的前n 项和,等差数列的通项公式,等比数列的通项公式. 17.【答案】(Ⅰ)4sin 5A = (Ⅱ)2cos 2BA B =数学试卷 第19页(共28页)【解析】(Ⅰ)由3cos()cos sin()sin()5A B B A B A C ---+=-得3cos()cos sin()sin 5A B B A B B ---=-,(步骤1) 则3cos()5A B B -+=-,即3cos 5A =-(步骤2)又0πA <<,则4sin 5A =(步骤3).(Ⅱ)由正弦定理,有sin sin a b A B =,所以sin 2sin 2b A B a ==,(步骤4) 由题知a b >,则A B >,故π4B =.(步骤5)根据余弦定理,有2223(42)525()5c c =+-⨯⨯-,解得1c =或7c =-(负值舍去),(步骤6) 向量BA 在BC 方向上的投影为2cos 2BA B =.(步骤7) 【提示】(Ⅰ)由已知条件利用三角形的内角和以及两角差的余弦函数,求出A 的余弦值,然后求sin A 的值; (Ⅱ)利用42a =,5b =,结合正弦定理,求出B 的正弦函数,求出B 的值,利用余弦定理求出c 的大小,然后求解向量BA 在BC 方向上的投影.【考点】两角和与差的正弦函数,平面向量数量积的含义与物理意义,正弦定理. 18.【答案】(Ⅰ)112P =213P =316P = (Ⅱ)见解析【解析】(Ⅰ)变量x 是在12324,,,…,这24个整数中等可能随机产生的一个数,共有24种可能. 当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故112P =;(步骤1) 当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故213P =;(步骤2) 当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故316P =.(步骤3) 所以输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16.(步骤4) (Ⅱ)当2100n =时,甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率如下,输出y 的值为1的频率输出y 的值为2的频率 输出y 的值为3的频率甲1027210037621006972100乙1051210069621003532100比较频率趋势与概率,可得乙同学所编写程序符合算法要求的可能性较大.(步骤5)【提示】(Ⅰ)当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y的值为1,当x从2,4,8,10,14,16,20,22这8个数中产生时,输出y的值为2,当x从6,12,18,24这4个数中产生时,输出y的值为3,从而得出输出y的值为1的概率为12;输出y的值为2的概率为13,输出y的值为3的概率为16;(Ⅱ)当2100n=时,列出甲、乙所编程序各自输出y的值为(1,2,3)i i=的频率的表格,再比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性大.【考点】程序框图,古典概型及其概率计算公式.19.【答案】(Ⅰ)如图,在平面ABC内,过点P作直线l BC∥,因为l在平面1A BC外,BC在平面1A BC内,由直线与平面平行的判定定理可知,l∥平面1A BC.(步骤1)由已知,AB AC=,D是BC中点,所以BC AD⊥,则直线l AD⊥,(步骤2)又因为1AA⊥底面ABC,所以1AA l⊥,(步骤3)又因为AD,1AA在平面11ADD A内,且AD与1AA相交,所以直线l⊥平面11ADD A(步骤4).(Ⅱ)过D作DE AC⊥于E,因为1AA⊥平面ABC,所以1AA DE⊥,(步骤5)因为AC,1AA在平面11AA C C内,且AC与1AA相交,所以DE⊥平面11AA C C,(步骤6)由2AB AC==,∠BAC120=︒,有1AD=,∠DAC60=︒,所以在△ACD中,3322DE AD==,(步骤7)又11111112A QCS AC AA==△,所以111111113313326A QC D D A QC A QCV V DE S--====因此三棱锥11A QC D-的体积为36.(步骤8)【提示】(Ⅰ)在平面ABC内,过点P作直线l BC∥,根据直线和平面平行的判定定理可得直线l与平面11 / 141A BC 平行.等腰三角形ABC 中,根据等腰三角形中线的性质可得AD BC ⊥,故l AD ⊥.再由1AA ⊥底面ABC ,可得1AA l ⊥.再利用直线和平面垂直的判定定理可得直线l ⊥平面11ADD A .(Ⅱ)过点D 作DE AC ⊥,证明DE ⊥平面11AA C C .直角三角形ACD 中,求出AD 的值,可得DE 的值,从而求得1111112QA C S AC AA =△的值,再根据三棱锥11A QC D -的体积11111113A QC D D A QC QA C V V S DE --==,运算求得结果.【考点】直线与平面垂直的判定,棱柱、棱锥、棱台的体积. 20.【答案】(Ⅰ)(,3)(3,)-∞-+∞(Ⅱ)215180((3,0)(0,3))5m n m +=∈-【解析】(Ⅰ)将y kx =代入22(4)4x y +-=得22(1)8120k x kx +-+=,(*)(步骤1)由22(8)4(1)120k k ∆=--+⨯>得23k >.所以k 的取值范围是(,3)(3,)-∞-+∞.(步骤2)(Ⅱ)因为M N ,在直线l 上,可设点M N ,的坐标分别为11(,)x kx ,22(,)x kx ,则2221(1)OM k x=+,2222(1)ON k x =+,(步骤3)又22222(1)OQ m n k m =+=+,由222211O QO MO N=+得,22222212211(1)(1)(1)k m k x k x =++++,所以21212222221212()2211x x x x m x x x x +-=+=(步骤4) 由(*)知12281k x x k +=+,122121x x k =+,所以223653m k =-,(步骤5) 因为点Q 在直线l 上,所以n k m =,代入223653m k =-可得225336n m -=,(步骤6)由223653m k =-及23k >得203m <<,即(3,0)(0,3)m ∈-.(步骤7)依题意,点Q 在圆C 内,则0n >,所以223631518055m m n ++==,于是,n 与m 的函数关系为215180((3,0)(0,3))5m n m +=∈-.(步骤8)【提示】(Ⅰ)将直线l 方程与圆C 方程联立消去y 得到关于x 的一元二次方程,根据两函数图象有两个交13 / 14点,得到根的判别式的值大于0,列出关于k 的不等式,求出不等式的解集即可得到k 的取值范围;(Ⅱ)由M N ,在直线l 上,设点M N ,坐标分别为11(,)x kx ,22(,)x kx ,利用两点间的距离公式表示出2OM与2ON ,以及2OQ ,代入已知等式中变形,再利用根与系数的关系求出12x x +与12x x ,用k 表示出m ,由Q 在直线y kx =上,将Q 坐标代入直线y kx =中表示出k ,代入得出的关系式中,用m 表示出n 即可得出n 关于m 的函数解析式,并求出m 的范围即可. 【考点】直线与圆的位置关系,函数与方程的综合运用.21.【答案】(Ⅰ)函数()f x 的单调减区间为(,1)-∞-,单调增区间为[)1,0-,(0,)+∞.(步骤1) (Ⅱ)由导数的几何意义知,点A 处的切线斜率为1()f x ',点B 处的切线斜率为2()f x ',故当点A B ,处的切线互相垂直时,有1()f x '2()1f x '=-,(步骤2) 因为2120,,x x x <<所以120.x x << 当0x <时,()22f x x =+因为120x x <<,所以12(22)(22)1x x ++=-,所以1220x +<,2220x +>,(步骤3) 因此2112121[(22)(22)](22)(22)12x x x x x x -=-+++≥-++=,(步骤4) (当且仅当12(22)221x x -+=+=,即132x =-且212x =-时等号成立) 所以函数()f x 的图象在点A B ,处的切线互相垂直时有211x x -≥.(步骤5) (Ⅲ)当120x x <<或210x x >>时,1()f x '2()f x '≠,故120x x <<.(步骤6) 当10x <时,()f x 的图象在点11(,())x f x 处的切线方程为21111(2)(22)()y x x a x x x -++=+-即211(22)y x x x a =+-+.(步骤7)当20x >时,()f x 的图象在点22(,())x f x 处的切线方程为2221ln ()y x x x x -=-即221ln 1y x x x =+-.(步骤8) 两切线重合的充要条件是12221122ln 1x x x x a ⎧=+⎪⎨⎪-=-+⎩①②,由①及120x x <<知,2102x <<,(步骤9)由①、②得2222221111ln (1)1ln (2)124a x x x x =+--=-+--,(步骤10) 令21t x =,则02t <<,且21ln 4a t t t =-- 设21()ln (02)4h t t t t t =--<<,则211(1)3()1022t h t t t t --'=--=<(步骤11) 所以()(02)h t t <<为减函数,则()(2)1ln 2h t h >=--,所以1ln 2a >--,(步骤12) 而当(0,2)t ∈且t 趋向于0时,()h t 无限增大,所以a 的取值范围是(1ln 2,)--+∞.故当函数()f x 的图象在点A B ,处的切线重合时,a 的取值范围是(1ln 2,)--+∞.(步骤13)【提示】(Ⅰ)根据分段函数中两段解析式,结合二次函数及对数函数的性质,即可得出函数()f x 的单调区间;(Ⅱ)由导数的几何意义知,点A 处的切线的斜率为1()f x ',点B 处的切线的斜率为2()f x ',再利用()f x 的图象在点A B ,处的切线互相垂直时,斜率之积等于1-,得出12(22)(22)1x x ++=-,最后利用基本不等式即可证得211x x -≥;(Ⅲ)先根据导数的几何意义写出函数()f x 在点A B ,处的切线方程,再利用两直线重合的充要条件列出关系式,从而得出2221ln 112a x x ⎛⎫=+-- ⎪⎝⎭,最后利用导数研究它的单调性和最值,即可得出a 的取值范围. 【考点】利函数的单调性,曲线的切线方程.。

2013四川高考数学文科试题及解析

2013四川高考数学文科试题及解析

2013年普通高等学校招生全国统一考试(四川卷)数 学(文史类)乐享玲珑,为中国数学增光添彩!免费玲珑3D 画板,全开放的几何教学软件,功能强大,好用实用第Ⅰ卷(选择题 共50分)一、选择题: 本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,2,3}A =,集合{2,2}B =-,则A B = ( )(A )∅ (B ){2} (C ){2,2}- (D ){2,1,2,3}- 2.一个几何体的三视图如图所示,则该几何体可以是( )(A )棱柱 (B )棱台 (C )圆柱 (D )圆台3.如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( )(A )A (B )B (C )C (D )D4.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( ) (A ):,2p x A x B ⌝∃∈∈ (B ):,2p x A x B ⌝∃∉∈ (C ):,2p x A x B ⌝∃∈∉ (D ):,2p x A x B ⌝∀∉∉5.抛物线28y x =的焦点到直线0x -=的距离是( )(A ) (B )2 (C (D )16.函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A )2,3π-(B )2,6π-(C )4,6π-(D )4,3π7.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )(B)(A)(C)(D)8.若变量,x y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,则a b-的值是( )(A )48 (B )30 (C )24 (D )169.从椭圆22221(0)x y a b a b+=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是( ) (A )4 (B )12(C )2 (D )210.设函数()f x =(a R ∈,e 为自然对数的底数).若存在[0,1]b ∈使(())f f b b =成立,则a 的取值范围是( )(A )[1,]e (B )[1,1]e + (C )[,1]e e + (D )[0,1]第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共25分.11.的值是____ _.12.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ=___ __ _.13.已知函数()4(0,0)af x x x a x=+>>在3x =时取得最小值,则a =___ ___. 14.设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是________.15.在平面直角坐标系内,到点(1,2)A ,(1,5)B ,(3,6)C ,(7,1)D -的距离之和最小的点的坐标是三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分) 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和.17.(本小题满分12分) 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且3cos()cos sin()sin()5A B B A B A c ---+=-.(Ⅰ)求sin A 的值;(Ⅱ)若a =5b =,求向量BA 在BC方向上的投影.18.(本小题满分12分)某算法的程序框图如图所示,其中输入的变量x 在24,,3,2,1 这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y 的值为i 的概率(1,2,3)i P i =; (Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为(1,2,3)i i =的频数.以下是甲、乙所作频数统计表的部分数据.当2100n =时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.19.(本小题满分12分)如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,122AB AC AA ===,120BAC ∠= ,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 上异于端点的点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中的直线l 交AC 于点Q ,求三棱锥11A QC D -的体积.(锥体体积公式:13V Sh =,其中S 为底面面积,h 为高)20.(本小题满分13分)已知圆C 的方程为22(4)4x y +-=,点O 是坐标原点.直线:l y kx =与圆C 交于,M N 两点.(Ⅰ)求k 的取值范围;(Ⅱ)设(,)Q m n 是线段MN 上的点,且222211||||||OQ OM ON =+.请将n 表示为m 的函数.21.(本小题满分14分)已知函数22,0()ln ,0x x a x f x x x ⎧++<=⎨>⎩,其中a 是实数.设11(,())A x f x ,22(,())B x f x 为该函数图象上的两点,且12x x <. (Ⅰ)指出函数()f x 的单调区间;(Ⅱ)若函数()f x 的图象在点,A B 处的切线互相垂直,且20x <,证明:211x x -≥; (Ⅲ)若函数()f x 的图象在点,A B 处的切线重合,求a 的取值范围.参考答案一、选择题1.B 解析:考查集合的交集运算,容易题.选B .2.D 解析:考查新教材新增内容,三视图还原.容易题.选D . 3.B 解析:考查复数的几何意义,共轭复数概念.中等题.选B . 4.C 解析:考查全称量词和存在量词,属新增内容,容易题.选C .5.D 解析:考查抛物线性质,点到直线的距离公式.容易题.抛物线的焦点为(2,0),它到直线的距离122==d,所以选D . 6.A 解析:考查三角函数解析式的确定,中档题.由题知2221251211=⇒==⇒=-ωωππππT T , 又21252πϕπ=+⨯(“五点”中的第二点),所以3πϕ-=,选A . 7.A 解析:考查新增内容,茎叶图给出数据,频率分布直方图的识别.中档题.分别算出各组的频率为,202203,203,204,202,204,201,201 所以选A . 8.C 解析:考查线性规划,基础题,求出各交点坐标(4,4),(8,0),(0,0), (0,2), 代入目标函数即可得a =16, b = -8,所以 a b -=24,所以选C .9.C 解析:考查椭圆的相关概念,中档题.由ca b k abk OP AB2-==-=得b =c ,a 2=2c 2,故选C .10.A 解析:考查函数的概念,导数的运用,综合度较高.难题.因为(())f f b b =,令t b f =)(,则b t f =)(,所以点),(b t 、),(t b 均在)(x f 的图象上)10(≤≤b ,而)(x f 的图象不关于直线x y =对称,所以b t =,即f (b )=b ,所以[]1,0,22∈+-=⇒=-+b b b e a b a b e b b ,令b b e b g b +-=2)(,当10<<b 时012)(>+-='b e b g b ,所以)(b g 在[0,1]上递增,所以()()[]1,0g g a ∈,即[]e a ,1∈,故选A .11.1 解析:考查对数基本运算,简单题.原式=110lg 100lg ==12.2 解析:考查平面向量的加法法则,简单题.AB AD AO λ+=,2=λ13.36 解析:考查函数的单调性,简单题. 12244444==+=+a x xax x a x 在时取得最小值,所以a =36.答案3614.3 解析:考查三角函数二倍角公式、同角公式、中档题.由题知3tan 1tan 22tan ,3tan ,32,21cos 2=-=-==-=ααααπαα. 15.(2,4) 解析:考查平几知识、灵活运用所学知识分析解决问题的能力,中档题.根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个点的距离之和最小,就要使它在AC 与BD 的交点处。

2013年四川高考数学试题评析

2013年四川高考数学试题评析

2013年四川高考数学试题评析龙会中学孙建萍一、总体分析课改第一年,四川高考试题都始终遵从源于教材、注重基础、全面考查、突出主干、注重思想、考查本质、多考点想,少考点算、能力立意、突出思维、稳中有进,作为四川省第一届的考试,在此次的高考中,试卷在题型、题量、难度分布上保持了相对的稳定,同时也有适当的创新,2012年四川高考数学卷很大一部分试题直接源于教材或由教材上的例题、习题、复习题改变而成,这些试题注重基础知识的理解和运用。

例如第(1)、(2)、(3)、(4)等12个题目,(21)(Ⅰ)题即为高中数学第二册(上)复习参考题八的B组第3题改编。

从而也充分说明了高考对基础知识的重视,立足于教材、回归到教材、重视课本、减轻学业负担,实施素质教育的导向作用。

2013年四川高考数学解答题目注重学生对基础知识的理解和运用,在题型上面略有创新,题目的灵活性加强,不再像以往试题固定化模式解题。

解答题部分注重考察学生的思维能力,运算能力,分析问题和解决问题的能力,创新意识,考察函数,方程的转化、划归,特殊和一般等思想方法。

总的来说,2013年四川高考数学试题相对稳定,注重基础,保持了四川卷的命题风格,同时又立足于现行高中数学教材和教学实际试题。

二、试题特点——深化能力立意、突出思维考查2013年高考数学四川卷遵循《考试大纲》及《考试说明(四川版)》的要求,还保持了近几年四川卷的命题风格,在题型、题量、难度等方面保持了相对稳定,试卷覆盖了高中数学的主干内容,重视对数学思想方法的考查,着重考查数学能力。

试题体现了“多考点想,少考点算”的命题理念,有利于高校选拔新生,有利于中学实施素质教育,有利于向新课程高考过渡。

今年高考试卷主要有以下特点。

1. 源于教材,注重基础2012年高考数学四川卷超过一半的试题直接源于教材或由教材上的例题、习题、复习题改编而成,这些试题重视对基础知识和通性通法的考查。

例如,理科第(1)、(2)、(3)、(4)等12个题目,文科第(1)、(2)、(3)、(4)等11个题目,这种立足于教材编拟高考试题的理念和方法,对中学数学教学回归教材、重视课本、减轻学业负担、实施素质教育具有良好的导向作用,也充分体现了试题背景的公平性。

2013年四川省高考数学试卷(文科)答案与解析

2013年四川省高考数学试卷(文科)答案与解析

2013年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.5.(5分)(2013•四川)抛物线y2=8x的焦点到直线的距离是()到直线)到直线d=6.(5分)(2013•四川)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,T=时取得最大值,得到+=.由此即可得到本题的答案.x=时取得最小值,=﹣==时取得最大值∴2sin(2•+,可得=﹣9.(5分)(2013•四川)从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆),由+=1,),=====.,10.(5分)(2013•四川)设函数(a∈R,e为自然对数的底数).若存在b∈[0,1]使f(f(b)).因此,将方程化简整理得根据可得,即解:12.(5分)(2013•四川)在平行四边形ABCD中,对角线AC与BD交于点O,,则λ= 2 .依题意,+=,而=2+=,=2,+=2,+=,13.(5分)(2013•四川)已知函数在x=3时取得最小值,则a= 36 .由题设函数解:由题设函数﹣﹣14.(5分)(2013•四川)设sin2α=﹣sinα,α∈(,π),则tan2α的值是.(,=,,=.故答案为:的方程分别为:解方程组得16.(12分)(2013•四川)在等比数列{a n}中,a2﹣a1=2,且2a2为3a1和a3的等差中项,求数列{a n}的首项、公4=sin(A+C)=﹣.(Ⅰ)求sinA的值;(Ⅱ)若a=4,b=5,求向量在方向上的投影.(Ⅱ)利用小,然后求解向量在方向上的投影.解:(Ⅰ)由可得,,所以(Ⅱ)由正弦定理,,所以=,由余弦定理可知向量方向上的投影:=ccosB=等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y的值为i的概率P i(i=1,2,3);(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表的概率为概率为的概率为;;==的概率为;输出的概率为的概率为;1111D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.(Ⅰ)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,求三棱锥A1﹣QC1D的体积.(锥体体积公式:,其中S为底面的值,再根据三棱锥=•.==1••DE=×1×=20.(13分)(2013•四川)已知圆C的方程为x+(y﹣4)=4,点O是坐标原点.直线l:y=kx与圆C交于M,N 两点.(Ⅰ)求k的取值范围;(Ⅱ)设Q(m,n)是线段MN上的点,且.请将n表示为m的函数.的取值范围为(﹣∞,﹣)∪(,+∞);代入+得:=,=+,代入得:=,代入=(﹣,),∴n==(,)21.(14分)(2013•四川)已知函数,其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.(Ⅰ)指出函数f(x)的单调区间;(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,证明:x2﹣x1≥1;([≥x=两直线重合的充要条件是<ln+(t=a=t==,∴h(。

2013年普通高等学校招生全国统一考试数学文(四川卷,解析版)

2013年普通高等学校招生全国统一考试数学文(四川卷,解析版)

2013年普通高等学校招生全国统一考试(四川卷)数 学(文史类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上大题无效。

满分150分。

考试时间120分钟。

考试结束后,将本试题卷和答题卡上一并交回。

第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1、设集合{1,2,3}A =,集合{2,2}B =-,则A B =( )(A )∅ (B ){2}(C ){2,2}- (D ){2,1,2,3}-2、一个几何体的三视图如图所示,则该几何体可以是( )(A )棱柱 (B )棱台(C )圆柱 (D )圆台3、如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( )(A )A (B )B(C )C (D )D4、设x Z ∈,集合A 是奇数集,集合B 是偶数集。

若命题:,2p x A x B ∀∈∈,则( )(A ):,2p x A x B ⌝∃∈∈ (B ):,2p x A x B ⌝∃∉∈(C ):,2p x A x B ⌝∃∈∉ (D ):,2p x A x B ⌝∀∉∉5、抛物线28y x =的焦点到直线0x -=的距离是( ) (A )(B )2(C (D )16、函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( ) (A )2,3π- (B )2,6π-(C )4,6π- (D )4,3π7、某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示。

以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )8、若变量,x y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,则a b -的值是( ) (A )48 (B )30 (C )24 (D )169、从椭圆22221(0)x y a b a b+=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是( )(A)4 (B )12(C)2 (D10、设函数()f x =a R ∈,e 为自然对数的底数)。

2013年高考理科数学四川卷试题与答案word解析版

2013年高考理科数学四川卷试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(2013四川,理1)设集合A ={x |x +2=0},集合B ={x |x 2-4=0},则A ∩B =( ).A .{-2}B .{2}C .{-2,2}D .∅2.(2013四川,理2)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ).A .AB .BC .CD .D3.(2013四川,理3)一个几何体的三视图如图所示,则该几何体的直观图可以是( ).4.(2013四川,理4)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( ).A .⌝p :∀x ∈A,2x ∉B B .⌝p :∀x ∉A,2x ∉BC .⌝p :∃x ∉A,2x ∈BD .⌝p :∃x ∈A,2x ∉B 5.(2013四川,理5)函数f (x )=2sin(ωx +φ)ππ0,22ωϕ⎛⎫>-<< ⎪⎝⎭的部分图象如图所示,则ω,φ的值分别是( ).A .2,π3-B .2,π6-C .4,π6-D .4,π36.(2013四川,理6)抛物线y 2=4x 的焦点到双曲线x 2-23y =1的渐近线的距离是( ).A .12 B. C .1 D7.(2013四川,理7)函数331x x y =-的图象大致是( ).8.(2013四川,理8)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是( ).A.9 B.10 C.18 D.209.(2013四川,理9)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ).A.14 B.12 C.34 D.7810.(2013四川,理10)设函数f(x)(a∈R,e为自然对数的底数),若曲线y=sin x上存在点(x0,y0)使得f(f(y0))=y0,则a的取值范围是( ).A.[1,e] B.[e-1-1,1]C.[1,e+1] D.[e-1-1,e+1]第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(2013四川,理11)二项式(x+y)5的展开式中,含x2y3的项的系数是__________.(用数字作答) 12.(2013四川,理12)在平行四边形ABCD中,对角线AC与BD交于点O,AB+AD=λAO,则λ=__________.13.(2013四川,理13)设sin 2α=-sin α,α∈π,π2⎛⎫⎪⎝⎭,则tan 2α的值是__________.14.(2013四川,理14)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是__________.15.(2013四川,理15)设P1,P2,…,P n为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…,P n的距离之和最小,则称点P为点P1,P2,…,P n的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:①若三个点A,B,C共线,C在线段AB上,则C是A,B,C的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A,B,C,D共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是__________.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(2013四川,理16)(本小题满分12分)在等差数列{a n}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{a n}的首项、公差及前n项和.17.(2013四川,理17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos 2A B-cos B -sin(A -B )sin B +cos(A +C )=35-,(1)求cos A 的值;(2)若a =b =5,求向量BA 在BC 方向上的投影.18.(2013四川,理18)(本小题满分12分)某算法的程序框图如图所示,其中输入的变量x 在1,2,3,…,24这24个整数中等可能随机产生.(1)分别求出按程序框图正确编程运行时输出y 的值为i 的概率P i (i =1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为i (i =1,2,3)的频数,以下是甲、乙所作频数统计表的部分数据.当n=2 100的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;(3)将按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.19.(2013四川,理19)(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC =2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(2)设(1)中的直线l交AB于点M,交AC于点N,求二面角A-A1M-N的余弦值.20.(2013四川,理20)(本小题满分13分)已知椭圆C :22221x y a b+=(a >b >0)的两个焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点P 41,33⎛⎫⎪⎝⎭.(1)求椭圆C 的离心率;(2)设过点A (0,2)的直线l 与椭圆C 交于M ,N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.21.(2013四川,理21)(本小题满分14分)已知函数f(x)=22,0,ln,0,x x a xx x⎧++<⎨>⎩其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.(1)指出函数f(x)的单调区间;(2)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2-x1的最小值;(3)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.答案:A解析:由题意可得,A={-2},B={-2,2},∴A∩B={-2}.故选A.2.答案:B解析:复数z表示的点与其共轭复数表示的点关于实轴对称.3.答案:D解析:由三视图可知该几何体为一个上部为圆台、下部为圆柱的组合体,故选D.4.答案:D5.答案:A解析:由图象可得,35ππ3π41234T⎛⎫=--=⎪⎝⎭,∴T=π,则ω=2ππ=2,再将点5π,212⎛⎫⎪⎝⎭代入f(x)=2sin(2x+φ)中得,5πsin16ϕ⎛⎫+=⎪⎝⎭,令5π6+φ=2kπ+π2,k∈Z,解得,φ=2kπ-π3,k∈Z,又∵φ∈ππ,22⎛⎫- ⎪⎝⎭,则取k=0,∴φ=π3-.故选A.6.答案:B解析:由题意可得,抛物线的焦点为(1,0),双曲线的渐近线方程为y=,即-y=0,由点到直线的距离公式可得抛物线的焦点到双曲线的渐近线的距离d==.7.答案:C解析:由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A;取x=-1,y=1113--=32>0,故再排除B;当x→+∞时,3x-1远远大于x3的值且都为正,故331xx-→0且大于0,故排除D,选C.8.答案:C解析:记基本事件为(a,b),则基本事件空间Ω={(1,3),(1,5),(1,7),(1,9),(3,1),(3,5),(3,7),(3,9),(5,1),(5,3),(5,7),(5,9),(7,1),(7,3),(7,5),(7,9),(9,1),(9,3),(9,5),(9,7)}共有20个基本事件,而lg a -lg b =lga b ,其中基本事件(1,3),(3,9)和(3,1),(9,3)使lg ab的值相等,则不同值的个数为20-2=18(个),故选C .9. 答案:C解析:设两串彩灯第一次闪亮的时刻分别为x ,y ,则由题意可得,0≤x ≤4,0≤y ≤4;而所求事件“两串彩灯同时通电后,第一次闪亮相差不超过2秒”={(x ,y )||x -y |≤2},由图示得,该事件概率1643164S P S -===阴影正方形.10. 答案:A解析:由题意可得,y 0=sin x 0∈[-1,1],而由f (x )可知y 0∈[0,1],当a =0时,f (x )∴y 0∈[0,1]时,f (y 0)∈[1.∴f (f (y 0 1.∴不存在y 0∈[0,1]使f (f (y 0))=y 0成立,故B ,D 错;当a =e +1时,f (x )y 0∈[0,1]时,只有y 0=1时f (x )才有意义,而f (1)=0, ∴f (f (1))=f (0),显然无意义,故C 错.故选A .第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效. 二、填空题:本大题共5小题,每小题5分,共25分. 11.答案:10解析:由二项式展开系数可得,x 2y 3的系数为35C =25C =10.12.答案:2解析:如图所示,在平行四边形ABCD 中,AB +AD =AC =2AO ,∴λ=2.13.解析:∵sin 2α=-sin α, ∴2sin αcos α=-sin α.又∵α∈π,π2⎛⎫⎪⎝⎭,∴cos α=12-.∴sin α2=.∴sin 2α=2-,cos 2α=2cos 2α-1=12-.∴tan 2α=sin2cos2αα14.答案:(-7,3)解析:当x ≥0时,令x 2-4x <5,解得,0≤x <5.又因为f (x )为定义域为R 的偶函数,则不等式f (x +2)<5等价于-5<x +2<5,即-7<x <3;故解集为(-7,3). 15.答案:①④解析:由“中位点”可知,若C 在线段AB 上,则线段AB 上任一点都为“中位点”,C 也不例外,故①正确;对于②假设在等腰Rt △ABC 中,∠ACB =90°,如图所示,点P 为斜边AB 中点,设腰长为2,则|PA |+|PB |+|PC |=32|AB |=C 为“中位点”,则|CB |+|CA |=4< 对于③,若B ,C 三等分AD ,若设|AB |=|BC |=|CD |=1,则|BA |+|BC |+|BD |=4=|CA |+|CB |+|CD |,故③错;对于④,在梯形ABCD 中,对角线AC 与BD 的交点为O ,在梯形ABCD 内任取不同于点O 的一点M ,则在△MAC 中,|MA |+|MC |>|AC |=|OA |+|OC |,同理在△MBD 中,|MB |+|MD |>|BD |=|OB |+|OD |, 则得,|MA |+|MB |+|MC |+|MD |>|OA |+|OB |+|OC |+|OD |, 故O 为梯形内唯一中位点是正确的.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.解:设该数列公差为d ,前n 项和为S n .由已知,可得2a 1+2d =8,(a 1+3d )2=(a 1+d )(a 1+8d ).所以,a 1+d =4,d (d -3a 1)=0,解得a 1=4,d =0,或a 1=1,d =3,即数列{a n }的首项为4,公差为0,或首项为1,公差为3.所以,数列的前n 项和S n =4n 或S n =232n n-.17.解:(1)由22cos 2A B -cos B -sin(A -B )sin B +cos(A +C )=35-,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =35-,即cos(A -B )cos B -sin(A -B )sin B =35-.则cos(A -B +B )=35-,即cos A =35-.(2)由cos A =35-,0<A <π,得sin A =45,由正弦定理,有sin a bA =,所以,sin B =sin 2b A a =由题知a >b ,则A >B ,故π4B =.根据余弦定理,有2=52+c 2-2×5c ×35⎛⎫- ⎪⎝⎭,解得c =1或c =-7(舍去).故向量BA 在BC 方向上的投影为|BA |cos B .18.解:(1)变量x 是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能. 当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=12; 当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故P 2=13; 当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=16. 所以,输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16. (2)当n =2 100(3)随机变量ξ可能的取值为0,1,2,3.P (ξ=0)=0303128C 3327⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=1)=1213124C 339⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=2)=2123122C 339⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=3)=3033121C 3327⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,故ξ的分布列为所以,E ξ=0×827+1×49+2×9+3×27=1.即ξ的数学期望为1.19.解:(1)如图,在平面ABC 内,过点P 作直线l ∥BC ,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l ∥平面A 1BC . 由已知,AB =AC ,D 是BC 的中点, 所以,BC ⊥AD ,则直线l ⊥AD . 因为AA 1⊥平面ABC , 所以AA 1⊥直线l .又因为AD ,AA 1在平面ADD 1A 1内,且AD 与AA 1相交, 所以直线l ⊥平面ADD 1A 1. (2)解法一:连接A 1P ,过A 作AE ⊥A 1P 于E ,过E 作EF ⊥A 1M 于F ,连接AF . 由(1)知,MN ⊥平面AEA 1, 所以平面AEA 1⊥平面A 1MN .所以AE ⊥平面A 1MN ,则A 1M ⊥AE . 所以A 1M ⊥平面AEF ,则A 1M ⊥AF .故∠AFE 为二面角A -A 1M -N 的平面角(设为θ).设AA 1=1,则由AB =AC =2AA 1,∠BAC =120°,有∠BAD =60°,AB =2,AD =1. 又P 为AD 的中点,所以M 为AB 中点,且AP=12,AM =1, 所以,在Rt △AA 1P 中,A 1PRt △A 1AM 中,A 1M.从而11AAAP AE A P ⋅==, 11AA AM AF A M ⋅==.所以sin θ=AE AF =所以cos θ5==.解法二:设A 1A =1.如图,过A 1作A 1E 平行于B 1C 1,以A 1为坐标原点,分别以1A E ,11A D ,1A A 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Oxyz (点O 与点A 1重合).则A 1(0,0,0),A (0,0,1). 因为P 为AD 的中点,所以M ,N 分别为AB ,AC 的中点.故M 1,,122⎛⎫⎪ ⎪⎝⎭,N 1,122⎛⎫- ⎪ ⎪⎝⎭.所以1AM=1,122⎛⎫⎪ ⎪⎝⎭,1A A =(0,0,1),NM =0,0). 设平面AA 1M 的一个法向量为n 1=(x 1,y 1,z 1),则1111,,A M A A ⎧⊥⎪⎨⊥⎪⎩n n 即11110,0,A M A A ⎧⋅=⎪⎨⋅=⎪⎩n n故有1111111,,,10,22,,0,0,10,x y z x y z ⎧⎛⎫()⋅=⎪ ⎪ ⎪⎨⎝⎭⎪()⋅()=⎩从而111110,20.x y z z ++=⎪=⎩ 取x 1=1,则y 1= 所以n 1=(1,,0).设平面A 1MN 的一个法向量为n 2=(x 2,y 2,z 2),则212,,A M NM ⎧⊥⎪⎨⊥⎪⎩n n 即2120,0,A M NM ⎧⋅=⎪⎨⋅=⎪⎩n n故有2222221,,,10,2,,0,x y z x y z ⎧⎫()⋅=⎪⎪⎪⎨⎝⎭⎪()=⎩从而222210,220.x y z ++=⎪= 取y 2=2,则z 2=-1,所以n 2=(0,2,-1). 设二面角A -A 1M -N 的平面角为θ, 又θ为锐角, 则cos θ=1212||||⋅⋅n n n n5=20.解:(1)由椭圆定义知,2a =|PF 1|+|PF 2|=所以a =又由已知,c =1.所以椭圆C的离心率2c e a ===. (2)由(1)知,椭圆C 的方程为22x +y 2=1.设点Q 的坐标为(x ,y ).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于(0,1),(0,-1)两点,此时点Q的坐标为0,2⎛ ⎝⎭. (2)当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2.因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(x 1,kx 1+2),(x 2,kx 2+2),则|AM |2=(1+k 2)x 12,|AN |2=(1+k 2)x 22.又|AQ |2=x 2+(y -2)2=(1+k 2)x 2. 由222211||||||AQ AM AN =+,得22222212211111k x k x k x =+(+)(+)(+), 即212122222212122211x x x x x x x x x (+)-=+=.① 将y =kx +2代入22x +y 2=1中,得(2k 2+1)x 2+8kx +6=0.②由Δ=(8k )2-4×(2k 2+1)×6>0,得k 2>32. 由②可知,x 1+x 2=2821k k -+,x 1x 2=2621k +, 代入①中并化简,得2218103x k =-.③ 因为点Q 在直线y =kx +2上,所以2y k x-=,代入③中并化简,得10(y -2)2-3x 2=18. 由③及k 2>32,可知0<x 2<32,即x∈2⎛⎫- ⎪ ⎪⎝⎭∪0,2⎛ ⎝⎭.又0,25⎛- ⎝⎭满足10(y -2)2-3x 2=18, 故x∈,22⎛- ⎝⎭.由题意,Q (x ,y )在椭圆C 内, 所以-1≤y ≤1.又由10(y -2)2=18+3x 2有(y -2)2∈99,54⎡⎫⎪⎢⎣⎭且-1≤y ≤1, 则y∈1,22⎛⎝⎦. 所以,点Q 的轨迹方程为10(y -2)2-3x 2=18,其中x∈⎛⎝⎭,y∈1,22⎛- ⎝⎦. 21.解:(1)函数f (x )的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞). (2)由导数的几何意义可知,点A 处的切线斜率为f ′(x 1),点B 处的切线斜率为f ′(x 2), 故当点A 处的切线与点B 处的切线垂直时,有f ′(x 1)f ′(x 2)=-1. 当x <0时,对函数f (x )求导,得f ′(x )=2x +2. 因为x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1. 所以2x 1+2<0,2x 2+2>0.因此x 2-x 1=12[-(2x 1+2)+2x 2=1,当且仅当-(2x 1+2)=2x 2+2=1,即132x =-且212x =-时等号成立.所以,函数f (x )的图象在点A ,B 处的切线互相垂直时,x 2-x 1的最小值为1.(3)当x 1<x 2<0或x 2>x 1>0时,f ′(x 1)≠f ′(x 2),故x 1<0<x 2.当x 1<0时,函数f (x )的图象在点(x 1,f (x 1))处的切线方程为y -(x 12+2x 1+a )=(2x 1+2)(x -x 1),即y=(2x 1+2)x -x 12+a .当x 2>0时,函数f (x )的图象在点(x 2,f (x 2))处的切线方程为y -ln x 2=21x (x -x 2),即y =21x·x +ln x 2-1.两切线重合的充要条件是12221122,ln 1.x xx x a ⎧=+⎪⎨⎪-=-+⎩①②由①及x 1<0<x 2知,-1<x 1<0. 由①②得,a =x 12+11ln22x +-1=x 12-ln(2x 1+2)-1.设h (x 1)=x 12-ln(2x 1+2)-1(-1<x 1<0), 则h ′(x 1)=2x 1-111x +<0. 所以,h (x 1)(-1<x 1<0)是减函数. 则h (x 1)>h (0)=-ln 2-1, 所以a >-ln 2-1.又当x 1∈(-1,0)且趋近于-1时,h (x 1)无限增大, 所以a 的取值范围是(-ln 2-1,+∞).故当函数f (x )的图象在点A ,B 处的切线重合时,a 的取值范围是(-ln 2-1,+∞).。

2013年高考理科数学四川卷试题与答案word解析版

2013年高考理科数学四川卷试题与答案word解析版

读一切好书,就是和许多高尚的人谈话。

——笛卡尔 2013年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(2013四川,理1)设集合A ={x |x +2=0},集合B ={x |x 2-4=0},则A ∩B =( ).A .{-2}B .{2}C .{-2,2}D .∅2.(2013四川,理2)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ).A .AB .BC .CD .D3.(2013四川,理3)一个几何体的三视图如图所示,则该几何体的直观图可以是( ).4.(2013四川,理4)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( ). A .⌝p :∀x ∈A,2x ∉B B .⌝p :∀x ∉A,2x ∉BC .⌝p :∃x ∉A,2x ∈BD .⌝p :∃x ∈A,2x ∉B5.(2013四川,理5)函数f (x )=2sin(ωx +φ)ππ0,22ωϕ⎛⎫>-<< ⎪⎝⎭的部分图象如图所示,则ω,φ的值分别是( ). A .2,π3-B .2,π6-C .4,π6-D .4,π3 6.(2013四川,理6)抛物线y 2=4x 的焦点到双曲线x 2-23y =1的渐近线的距离是( ). A .12 B. C .1 D7.(2013四川,理7)函数331x x y =-的图象大致是( ).8.(2013四川,理8)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是( ).A.9 B.10 C.18 D.209.(2013四川,理9)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ).A.14 B.12 C.34 D.7810.(2013四川,理10)设函数f(x)a∈R,e为自然对数的底数),若曲线y=sin x上存在点(x0,y0)使得f(f(y0))=y0,则a的取值范围是( ).A.[1,e] B.[e-1-1,1]C.[1,e+1] D.[e-1-1,e+1]第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(2013四川,理11)二项式(x+y)5的展开式中,含x2y3的项的系数是__________.(用数字作答) 12.(2013四川,理12)在平行四边形ABCD中,对角线AC与BD交于点O,AB+AD=λAO,则λ=__________.13.(2013四川,理13)设sin 2α=-sin α,α∈π,π2⎛⎫⎪⎝⎭,则tan 2α的值是__________.14.(2013四川,理14)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是__________.15.(2013四川,理15)设P1,P2,…,P n为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…,P n的距离之和最小,则称点P为点P1,P2,…,P n的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:①若三个点A,B,C共线,C在线段AB上,则C是A,B,C的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A,B,C,D共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是__________.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(2013四川,理16)(本小题满分12分)在等差数列{a n}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{a n}的首项、公差及前n项和.17.(2013四川,理17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos 2A B -cos B -sin(A -B )sin B +cos(A +C )=35-,(1)求cos A 的值;(2)若a =b =5,求向量BA 在BC 方向上的投影.18.(2013四川,理18)(本小题满分12分)某算法的程序框图如图所示,其中输入的变量x 在1,2,3,…,24这24个整数中等可能随机产生.(1)分别求出按程序框图正确编程运行时输出y 的值为i 的概率P i (i =1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为i (i =1,2,3)的频数,以下是甲、乙所作频数统计表的部分数据.当n=2 100的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;(3)将按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.19.(2013四川,理19)(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC =2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(2)设(1)中的直线l交AB于点M,交AC于点N,求二面角A-A1M-N的余弦值.20.(2013四川,理20)(本小题满分13分)已知椭圆C :22221x y a b+=(a >b >0)的两个焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点P 41,33⎛⎫ ⎪⎝⎭. (1)求椭圆C 的离心率;(2)设过点A (0,2)的直线l 与椭圆C 交于M ,N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.21.(2013四川,理21)(本小题满分14分)已知函数f(x)=22,0,ln,0,x x a xx x⎧++<⎨>⎩其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.(1)指出函数f(x)的单调区间;(2)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2-x1的最小值;(3)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.答案:A解析:由题意可得,A={-2},B={-2,2},∴A∩B={-2}.故选A.2.答案:B解析:复数z表示的点与其共轭复数表示的点关于实轴对称.3.答案:D解析:由三视图可知该几何体为一个上部为圆台、下部为圆柱的组合体,故选D.4.答案:D5.答案:A解析:由图象可得,35ππ3π41234T⎛⎫=--=⎪⎝⎭,∴T=π,则ω=2ππ=2,再将点5π,212⎛⎫⎪⎝⎭代入f(x)=2sin(2x+φ)中得,5πsin16ϕ⎛⎫+=⎪⎝⎭,令5π6+φ=2kπ+π2,k∈Z,解得,φ=2kπ-π3,k∈Z,又∵φ∈ππ,22⎛⎫- ⎪⎝⎭,则取k=0,∴φ=π3-.故选A.6.答案:B解析:由题意可得,抛物线的焦点为(1,0),双曲线的渐近线方程为y=,即-y=0,由点到直线的距离公式可得抛物线的焦点到双曲线的渐近线的距离d==.7.答案:C解析:由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A;取x=-1,y=1113--=32>0,故再排除B;当x→+∞时,3x-1远远大于x3的值且都为正,故331xx-→0且大于0,故排除D,选C.8.答案:C解析:记基本事件为(a,b),则基本事件空间Ω={(1,3),(1,5),(1,7),(1,9),(3,1),(3,5),(3,7),(3,9),(5,1),(5,3),(5,7),(5,9),(7,1),(7,3),(7,5),(7,9),(9,1),(9,3),(9,5),(9,7)}共有20个基本事件,而lg a -lg b =lg a b ,其中基本事件(1,3),(3,9)和(3,1),(9,3)使lg a b的值相等,则不同值的个数为20-2=18(个),故选C .9.答案:C解析:设两串彩灯第一次闪亮的时刻分别为x ,y ,则由题意可得,0≤x ≤4,0≤y ≤4;而所求事件“两串彩灯同时通电后,第一次闪亮相差不超过2秒”={(x ,y )||x -y |≤2},由图示得,该事件概率1643164S P S -===阴影正方形.10.答案:A解析:由题意可得,y 0=sin x 0∈[-1,1],而由f (x )可知y 0∈[0,1],当a =0时,f (x )为增函数,∴y 0∈[0,1]时,f (y 0)∈[1.∴f (f (y 0 1.∴不存在y 0∈[0,1]使f (f (y 0))=y 0成立,故B ,D 错;当a =e +1时,f (x )y 0∈[0,1]时,只有y 0=1时f (x )才有意义,而f (1)=0,∴f (f (1))=f (0),显然无意义,故C 错.故选A .第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效.二、填空题:本大题共5小题,每小题5分,共25分.11.答案:10解析:由二项式展开系数可得,x 2y 3的系数为35C =25C =10. 12.答案:2解析:如图所示,在平行四边形ABCD 中,AB +AD =AC =2AO ,∴λ=2.13.解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.又∵α∈π,π2⎛⎫⎪⎝⎭,∴cos α=12-.∴sin α=.∴sin 2α=cos 2α=2cos 2α-1=12-.∴tan 2α=sin2cos2αα. 14.答案:(-7,3)解析:当x ≥0时,令x 2-4x <5,解得,0≤x <5.又因为f (x )为定义域为R 的偶函数,则不等式f (x +2)<5等价于-5<x +2<5,即-7<x <3;故解集为(-7,3).15.答案:①④解析:由“中位点”可知,若C 在线段AB 上,则线段AB 上任一点都为“中位点”,C 也不例外,故①正确;对于②假设在等腰Rt △ABC 中,∠ACB =90°,如图所示,点P 为斜边AB 中点,设腰长为2,则|PA |+|PB |+|PC |=32|AB |=C 为“中位点”,则|CB |+|CA |=4< 对于③,若B ,C 三等分AD ,若设|AB |=|BC |=|CD |=1,则|BA |+|BC |+|BD |=4=|CA |+|CB |+|CD |,故③错;对于④,在梯形ABCD 中,对角线AC 与BD 的交点为O ,在梯形ABCD 内任取不同于点O 的一点M ,则在△MAC 中,|MA |+|MC |>|AC |=|OA |+|OC |,同理在△MBD 中,|MB |+|MD |>|BD |=|OB |+|OD |,则得,|MA |+|MB |+|MC |+|MD |>|OA |+|OB |+|OC |+|OD |,故O 为梯形内唯一中位点是正确的.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.解:设该数列公差为d ,前n 项和为S n .由已知,可得2a 1+2d =8,(a 1+3d )2=(a 1+d )(a 1+8d ).所以,a 1+d =4,d (d -3a 1)=0,解得a 1=4,d =0,或a 1=1,d =3,即数列{a n }的首项为4,公差为0,或首项为1,公差为3. 所以,数列的前n 项和S n =4n 或S n =232n n -. 17.解:(1)由22cos 2A B -cos B -sin(A -B )sin B +cos(A +C )=35-,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =35-, 即cos(A -B )cos B -sin(A -B )sin B =35-. 则cos(A -B +B )=35-,即cos A =35-. (2)由cos A =35-,0<A <π,得sin A =45, 由正弦定理,有sin a b A =,所以,sin B =sin 2b A a =. 由题知a >b ,则A >B ,故π4B =.根据余弦定理,有2=52+c 2-2×5c ×35⎛⎫- ⎪⎝⎭,解得c =1或c =-7(舍去).故向量BA 在BC 方向上的投影为|BA |cos B . 18. 解:(1)变量x 是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能. 当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=12; 当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故P 2=13; 当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=16. 所以,输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16. (2)当(3)随机变量ξ可能的取值为0,1,2,3.P (ξ=0)=033128C 3327⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭, P (ξ=1)=1213124C 339⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭, P (ξ=2)=2123122C 339⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=3)=3033121C 3327⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,所以,E ξ=0×27+1×9+2×9+3×127=1. 即ξ的数学期望为1.19.解:(1)如图,在平面ABC 内,过点P 作直线l ∥BC ,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l ∥平面A 1BC .由已知,AB =AC ,D 是BC 的中点,所以,BC ⊥AD ,则直线l ⊥AD .因为AA 1⊥平面ABC ,所以AA 1⊥直线l .又因为AD ,AA 1在平面ADD 1A 1内,且AD 与AA 1相交,所以直线l ⊥平面ADD 1A 1.(2)解法一:连接A 1P ,过A 作AE ⊥A 1P 于E ,过E 作EF ⊥A 1M 于F ,连接AF .由(1)知,MN ⊥平面AEA 1,所以平面AEA 1⊥平面A 1MN .所以AE ⊥平面A 1MN ,则A 1M ⊥AE .所以A 1M ⊥平面AEF ,则A 1M ⊥AF .故∠AFE 为二面角A -A 1M -N 的平面角(设为θ).设AA1=1,则由AB =AC =2AA1,∠BAC =120°,有∠BAD =60°,AB =2,AD =1.又P 为AD 的中点,所以M为AB 中点,且AP =12,AM =1, 所以,在Rt △AA 1P 中,A 1PRt △A 1AM 中,A 1M. 从而11AA AP AEA P ⋅== 11AA AM AF A M ⋅==. 所以sin θ=AE AF =所以cos θ5==.解法二:设A 1A =1.如图,过A 1作A 1E 平行于B 1C 1,以A 1为坐标原点,分别以1A E ,11A D ,1A A 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Oxyz (点O 与点A 1重合).则A 1(0,0,0),A (0,0,1).因为P 为AD 的中点,所以M ,N 分别为AB ,AC 的中点.故M 1,122⎛⎫⎪ ⎪⎝⎭,N 1,122⎛⎫- ⎪ ⎪⎝⎭. 所以1AM=1,122⎛⎫ ⎪ ⎪⎝⎭,1A A =(0,0,1),NM =,0,0). 设平面AA 1M 的一个法向量为n 1=(x 1,y 1,z 1),则1111,,A M A A ⎧⊥⎪⎨⊥⎪⎩n n 即11110,0,A M A A ⎧⋅=⎪⎨⋅=⎪⎩n n故有1111111,,,10,22,,0,0,10,x y z x y z ⎧⎛⎫()⋅=⎪ ⎪ ⎪⎨⎝⎭⎪()⋅()=⎩从而111110,20.x y z z ++=⎪=⎩ 取x 1=1,则y 1=所以n 1=(1,0).设平面A 1MN 的一个法向量为n 2=(x 2,y 2,z 2),则212,,A M NM ⎧⊥⎪⎨⊥⎪⎩n n 即2120,0,A M NM ⎧⋅=⎪⎨⋅=⎪⎩n n故有2222221,,,10,2,,0,x y z x y z ⎧⎫()⋅=⎪⎪⎪⎨⎝⎭⎪()=⎩从而222210,220.x y z ++== 取y 2=2,则z 2=-1,所以n 2=(0,2,-1).设二面角A -A 1M -N 的平面角为θ,又θ为锐角,则cos θ=1212||||⋅⋅n n n n5=.20.解:(1)由椭圆定义知, 2a =|PF 1|+|PF 2|=所以a =又由已知,c =1. 所以椭圆C的离心率2c e a ===. (2)由(1)知,椭圆C 的方程为22x +y 2=1. 设点Q 的坐标为(x ,y ).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于(0,1),(0,-1)两点,此时点Q的坐标为0,2⎛ ⎝⎭. (2)当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2.因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(x 1,kx 1+2),(x 2,kx 2+2),则|AM |2=(1+k 2)x 12,|AN |2=(1+k 2)x 22.又|AQ |2=x 2+(y -2)2=(1+k 2)x 2. 由222211||||||AQ AM AN =+,得 22222212211111k x k x k x =+(+)(+)(+), 即212122222212122211x x x x x x x x x (+)-=+=.① 将y =kx +2代入22x +y 2=1中,得 (2k 2+1)x 2+8kx +6=0.②由Δ=(8k )2-4×(2k 2+1)×6>0,得k 2>32. 由②可知,x 1+x 2=2821k k -+,x 1x 2=2621k +, 代入①中并化简,得2218103x k =-.③ 因为点Q 在直线y =kx +2上, 所以2y k x-=,代入③中并化简,得10(y -2)2-3x 2=18. 由③及k 2>32,可知0<x 2<32,即x∈2⎛⎫- ⎪ ⎪⎝⎭∪0,2⎛ ⎝⎭.又0,25⎛⎫- ⎪ ⎪⎝⎭满足10(y -2)2-3x 2=18, 故x∈22⎛⎫- ⎪ ⎪⎝⎭.由题意,Q (x ,y )在椭圆C 内,所以-1≤y ≤1.又由10(y -2)2=18+3x 2有(y -2)2∈99,54⎡⎫⎪⎢⎣⎭且-1≤y ≤1, 则y∈1,22⎛- ⎝⎦. 所以,点Q 的轨迹方程为10(y -2)2-3x 2=18,其中x∈⎛ ⎝⎭,y∈1,22⎛- ⎝⎦. 21.解:(1)函数f (x )的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞).(2)由导数的几何意义可知,点A 处的切线斜率为f ′(x 1),点B 处的切线斜率为f ′(x 2),故当点A 处的切线与点B 处的切线垂直时,有f ′(x 1)f ′(x 2)=-1.当x <0时,对函数f (x )求导,得f ′(x )=2x +2.因为x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1.所以2x 1+2<0,2x 2+2>0.因此x 2-x 1=12[-(2x 1+2)+2x 2=1,当且仅当-(2x 1+2)=2x 2+2=1,即132x =-且212x =-时等号成立. 所以,函数f (x )的图象在点A ,B 处的切线互相垂直时,x 2-x 1的最小值为1.(3)当x 1<x 2<0或x 2>x 1>0时,f ′(x 1)≠f ′(x 2),故x 1<0<x 2.当x 1<0时,函数f (x )的图象在点(x 1,f (x 1))处的切线方程为y -(x 12+2x 1+a )=(2x 1+2)(x -x 1),即y=(2x 1+2)x -x 12+a .当x 2>0时,函数f (x )的图象在点(x 2,f (x 2))处的切线方程为y -ln x 2=21x (x -x 2),即y =21x·x +ln x 2-1.两切线重合的充要条件是 12221122,ln 1.x xx x a ⎧=+⎪⎨⎪-=-+⎩①②由①及x 1<0<x 2知,-1<x 1<0.由①②得,a =x 12+11ln 22x +-1=x 12-ln(2x 1+2)-1. 设h (x 1)=x 12-ln(2x 1+2)-1(-1<x 1<0), 则h ′(x 1)=2x 1-111x +<0. 所以,h (x 1)(-1<x 1<0)是减函数.则h (x 1)>h (0)=-ln 2-1,所以a >-ln 2-1.又当x 1∈(-1,0)且趋近于-1时,h (x 1)无限增大,所以a 的取值范围是(-ln 2-1,+∞).故当函数f (x )的图象在点A ,B 处的切线重合时,a 的取值范围是(-ln 2-1,+∞).鱼我所欲也[ 先秦] 《孟子》鱼,我所欲也;熊掌,亦我所欲也。

把握问题本质洞悉解题奥秘——2013年高考数学(四川卷)“压轴题”解题思路评析

把握问题本质洞悉解题奥秘——2013年高考数学(四川卷)“压轴题”解题思路评析
递增。而g(÷)=一In2—1,lirag(茗)=+。∞,所以:
口的取值范围是(一10_2—1,+∞).
评桁:第(In)问题目设计精美,将高中数学的 主干知识:函数、不等式、直线等有机地结合起来,重 点考查了分类与整合、数形结合、等价转化、函数与 方程等重要数学思想方法.每一个过程中都能较好 地区分学生的思维水平,使得该试题具有较好的区
+∞).
已知函数以石):fX.2+2菇:口,石<o,其中。是
tlnx,X>U,
实数.设a(x。以茗。)),8(x:以石:))为该函数图像 上的两点,且Xl<戈2. (I)指出函数以X)的单调区间; (Ⅱ)(理)若函数厂(茗)的图像在点A,B处的切
线互相垂直,且茹2<0,求茗2一髫。的最小值;
思路2:利用导数工具. 解法2:①当戈<0时以茁)=茗2+2茗+8,于是 厂(戈)=2x+2,当菇∈(一∞,一1)时厂(菇)<0;当 戈E(一1,O)时厂(菇)>0.所以以茗)的单调递减区 间为(一00,一1),单调递增区间为[一l,O);
再2
值范围是(一In2—1,+∞). 思路3:利用导数工具. 解法3:因为a=lnx2+菇21—1,由条件知茗1=
2%I_L—l,且菇:>虿1,所以口=lnx:+(去一1)2一
l(茗:>丁1),构造:g(石)=lnz+(去一1)2一l(茗>
方程①有两个相等的负根,故 f(2一j-)2—4(a+1一ln茁2)=0,
最小值为1. 思路4:借助消元思想,在化简条件下,将所求 代数式转化为一元代数式(或者一元函数),利用导
=一南一1,且菇: 一1,故翟一髫・2%+南+1・令妒(菇)=髫+ 南+l(一1<茗<o),由妒’(菇)=1一 杰:业等o,知石一1当茹∈4(
数或者均值不等式进行求解. 解法4:由①知名t

2013学年高考文科数学年四川卷答案

2013学年高考文科数学年四川卷答案

江苏省盐城市2013年中考数学试卷数学答案解析一、选择题1.【答案】D【解析】2-、0、1、3-四个数中,最小的数是3-【提示】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【考点】有理数大小比较2.【答案】B【解析】收入50元,记作+50元,支出30元记作30-元【提示】收入为“+”,则支出为“-”,由此可得出答案.【考点】正数和负数3.【答案】C【解析】A 为圆柱体,它的主视图应该为矩形;B 为长方体,它的主视图应该为矩形;C 为圆台,它的主视图应该为梯形;D 为三棱柱,它的主视图应该为矩形.【提示】到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【考点】简单几何体的三视图4.【答案】A【解析】根据题意得,30x -≥,解得3x ≥.【提示】根据被开方数大于等于0列式进行计算即可得解.【考点】二次根式有意义的条件5.【答案】D【解析】A .222235a a a +=,故本选项错误;B .222523a a a =-,故本选项错误;C .32522a a a ⨯=,故本选项错误;D .62433a a a ÷=,故本选项正确.【提示】根据合并同类项、单项式乘单项式、单项式除以单项式的法则,对各选项分析判断后利用排除法求解.【考点】整式的除法,合并同类项,单项式乘单项式6.【答案】A【解析】2400出现了4次,出现的次数最多,所以众数是2400;共有10个数,中位数是第5、6个数的平均数,所以中位数是2400240022400+÷=();【提示】根据中位数和众数的定义求解即可;中位数是将一组数据从小到大重新排列,找出最中间的两个数的平均数,众数是一组数据中出现次数最多的数.【考点】众数,中位数7.【答案】C【解析】如图,a b ∥,∴14120∠=∠=︒,423∠=∠+∠,而240∠=︒,∴120403︒=︒+∠,∴380∠=︒.【提示】由a b ∥,根据平行线的性质得14120∠=∠=︒,再根据三角形外角性质得423∠=∠+∠,所以34280∠=∠-∠=︒.【考点】平行线的性质8.【答案】B【解析】得到的不同图案有:【提示】根据对称轴及旋转可得.【考点】利用旋转设计图案,利用轴对称设计图案二、填空题9.【答案】4±【解析】2(4)16±=,164∴±的平方根是.【提示】根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得2x a =,则x 就是a 的平方根,由此即可解决问题.【考点】平方根10.【答案】(3)(3)a a +-【解析】29(3)(3)a a a =+--【提示】29a -可以写成223a -,符合平方差公式的特点,利用平方差公式分解即可【考点】因式分解11.【答案】61.410⨯【解析】61 400 000 1.410=⨯【提示】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值小于1时,n 是负数.【考点】科学记数法12.【答案】1-【解析】由题意,得10x +=,解得,1x =-.经检验,1x =-时,1021x x +=-. 【提示】分式的值为零时,分子等于零,且分母不等于零.【考点】分式的值为零的条件13.【答案】12【解析】观察发现,阴影部分面积为12圆的面积, ∴飞镖落在黑色区域的概率是12【提示】首先确定阴影的面积在整个轮盘中占的比例,根据这个比例即可求出飞镖落在阴影部分的概率【考点】几何概率14.【答案】9 【解析】223x x -=∴()222432232339x x x x -+=-+=⨯+=【提示】所求式子前两项提取2变形后,将已知等式代入计算即可求出值【考点】求代数式的值,整体思想的应用15.【答案】3y x =-+(答案不唯一)【解析】设此一次函数关系式是:y kx b =+.把03x y ==,代入得:3b =,又根据y 随x 的增大而减小,知:0k <.故此题只要给定k 一个负数,代入解出b 值即可.如3y x =-+.【提示】首先可以用待定系数法设此一次函数关系式是:y kx b =+(0)k ≠.根据已知条件确定k ,b 应满足的关系式,再根据条件进行分析即可【考点】一次函数的性质16.【答案】30︒【解析】过点O 作OC AB ⊥于点D ,交O 于点C ,将O 沿弦AB 折叠,使其经过圆心O ,12OD OC ∴=, 12OD OA ∴=, OC AB ⊥,30OAB ∴∠=︒.【提示】过点O 作OC AB ⊥于点D ,交O 于点C ,再由将O 沿弦AB 折叠,使折线AB 经过圆心O 可知,12OD OC =,故可得出12OD OA =,再由OC AB ⊥即可得出结论 【考点】垂径定理,等边三角形的判定与性质,翻折变换17.【答案】25π8【解析】在Rt ABC △中,BC =扇形1BCB 8的面积是29π8, 1115252CB A S =⨯⨯=△; 1CAA S 扇形=245π2π3602⨯=. 故111129ππ25π55828CB A ABC BCB CAA S S S S S -=+=---+=△△阴影部分扇形扇形 【提示】根据阴影部分的面积是:1111CB A ABC BCB CAA S S S S +--△△扇形扇形,分别求得:扇形1BCB 的面积,11CB A S △,ABC S △以及扇形1CAA 的面积,即可求解【考点】扇形面积的计算,旋转的性质18.【答案】12或1150- 【解析】在112y x =-+中,令0y =,则2x =;令0x =,得1x =, (20)(01)A B ∴,,,.在Rt AOB △中,由勾股定理得:AB =设BAO θ∠=,则sin θcos θ 当点C 为线段AB 中点时,有12OC AB =, (20)(01)A B ,,,1(1)2C ∴,. 以点O 为圆心,OC 长为半径作圆,与直线AB 的另外一个交点是C ',则点C 、点C '均符合条件.如图,过点O 作OE AB ⊥于点E ,则•cos 2AE OA θ==,EC AE AC ∴=﹣.OC OC =',EC EC ∴'==,AC AE EC ∴'=+'=+=过点C ′作CF x ⊥轴于点F ,则11•sin 10C F AC θ'='=,11•cos 5AF AC θ='==, 111255OF AF OA ∴=-=-=. 151110C ∴'-(,). ∵反比例函数k y x =的图象经过点C 或C ′,11122⨯=,1111151050-⨯=-, 111250k ∴=或-.【提示】首先求出点A 、B 的坐标,然后由“直角三角形斜边上的中线等于斜边的一半”确定点C 是线段AB 的中点,据此可以求得点C 的坐标,把点C 的坐标代入反比例函数解析式即可求得k 的值【考点】反比例函数与一次函数的交点问题三、解答题19.【答案】【解析】(1)2|3tan45231|6++=++=﹣;(2)去括号得:3322x x +﹣>,移项得:3223x x +﹣>,合并同类项得:5x >.【提示】(1)此题涉及到绝对值和特殊角的三角函数,首先根据各知识进行计算,再计算有理数的加减即可;(2)首先利用乘法分配律去括号,再移项、合并同类项即可.【考点】解一元一次不等式,实数的运算,特殊角的三角函数值20.【答案】1【解析】原式=21(1)1x x x --÷+﹣ 1(1)1x x x -=÷+﹣ 1(1)1x x x +=⨯-﹣ 1x =--.由x 为方程2320x x ++=的根,解得1x =-或2x =-.当1x =-时,原式无意义,所以1x =-舍去;当2x =-时,原式=(2)1211---=-=.【提示】先根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可【考点】分式的化简求值,解一元二次方程-因式分解法21.【答案】(1)100(2)225(3)学生的交通安全意识不强,还需要进行教育【解析】(1)调查的总人数是:553015100++=(人);(2)经常闯红灯的人数是:151500225100⨯=(人);(3)学生的交通安全意识不强,还需要进行教育.【提示】(1)每项的人数的和就是总人数;(2)1500乘以经常闯红灯的人数所占的比例即可求解;(3)根据实际情况说一下自己的认识即可,答案不唯一.【考点】频数(率)分布直方图,用样本估计总体22.【答案】5 9【解析】共有9种等可能的结果,两次摸出的球上的数字之和为偶数的有5种情况,∴两次摸出的球上的数字之和为偶数的概率为:59.【提示】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球上的数字之和为偶数的情况,再利用概率公式求解即可求得答案.【考点】列表法与树状图法23.【答案】(1)见解析(2)见解析【解析】证明:(1)在平行四边形ABCD中,AD BC∥,AEB EAD∴∠=∠,AE AB=,ABE AEB∴∠=∠ABE EAD∴∠=∠;(2)AD BC∥,ADB DBE ∴∠=∠,2ABE AEB AEB ADB ∠=∠∠=∠,,2ABE ADB ∴∠=∠,2ABD ABE DBE ADB ADB ADB ∴∠=∠-∠=∠-∠=∠,AB AD ∴=, 又四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.【提示】(1)根据平行四边形的对边互相平行可得AD BC ∥,再根据两直线平行,内错角相等可得AEB EAD ∠=∠,根据等边对等角可得ABE AEB ∠=∠,即可得证;(2)根据两直线平行,内错角相等可得ADB DBE ∠=∠,然后求出ABD ADB ∠=∠,再根据等角对等边求出AB AD =,然后利用邻边相等的平行四边形是菱形证明即可.【考点】菱形的判定,平行四边形的性24.【答案】实践操作,如图所示:综合运用:(1)AB 与O 的位置关系是相切. AO 是BAC ∠的平分线,DO CO ∴=,90ACB =︒∠,90ADO ∴∠=︒,AB ∴与O 的位置关系是相切;(2)512AC BC ==,,5AD ∴=,13AB =,1357DB ∴=-=,设半径为xcm ,则OC OD xcm ==,(12)BO x cm =-,2228(12)x x +=-, 解得:103x =. 答:O 的半径为103. 【提示】实践操作:根据题意画出图形即可;综合运用:(1)根据角平分线上的点到角两边的距离相等可得AB 与O 的位置关系是相切;(2)首先根据勾股定理计算出AB 的长,再设半径为xcm ,则OC OD xcm ==,(12)BO x cm =-再次利用勾股定理可得方程2228(12)x x +=-,再解方程即可.【考点】复杂作图,角平分线的性质,勾股定理,切线的判定25.【答案】(1)现在实际购进这种水果每千克20元(2)将这种水果的销售单价定为30元时,能获得最大利润,最大利润是1100元【解析】(1)设现在实际购进这种水果每千克x 元,则原来购进这种水果每千克(2)x +元,由题意,得 80(2)88x x +=,解得20x =.答:现在实际购进这种水果每千克20元;(2)①设y 与x 之间的函数关系式为y kx b =+,将(25165),,(3555),代入,得251653555k b k b +=⎧⎨+=⎩,解得11440k b =-⎧⎨=⎩, 故y 与x 之间的函数关系式为11440y x =-+;②设这种水果的销售单价为x 元时,所获利润为w 元,则22(20)(20)(11440)11660880011(30)1100w x y x x x x x=-=--+=-+-=-+﹣, 所以当30x =时,w 有最大值1100.答:将这种水果的销售单价定为30元时,能获得最大利润,最大利润是1100元【提示】(1)设现在实际购进这种水果每千克x 元,根据原来买这种水果80千克的钱,现在可买88千克列出关于x 的一元一次方程,解方程即可;(2)①设y 与x 之间的函数关系式为y kx b =+,将25165(,),3555(,)代入,运用待定系数法即可求出y 与x 之间的函数关系式;②设这种水果的销售单价为x 元时,所获利润为w 元,根据利润=销售收入-进货金额得到w 关于x 的函数关系式为211(30)1100w x =--+,再根据二次函数的性质即可求解.【考点】一次函数的应用26.【答案】该支架的边BE 为4m ,顶端E 到地面的距离EF 的长度为3.5m【解析】解:过B 作BH EF ⊥于点H ,∴四边形BCFH 为矩形, 1.5BC HF m ==,30HBA AC ∠=∠=︒,在Rt ABC △中,30 1.5BAC BC m ︒∠==,,3AB m ∴=,1AD m =,2BD m ∴=,在Rt EDB △中,60EBD =︒∠,906030BED ︒∴-︒∠==︒,2224EB BD m ∴==⨯=,又30HBA AC ∠=∠=︒,30EBH EBD HBD ∴∠=∠-∠=︒,122EH EB m ∴==, 2 1.5 3.5()EF EH HF m ∴=+=+=.答:该支架的边BE 为4m ,顶端E 到地面的距离EF 的长度为3.5m .【提示】过B 作BH EF ⊥于点H ,在Rt ABC △中,根据30BAC ∠=︒, 1.5BC =,可求得AB 的长度,又1AD m =,可求得BD 的长度,在Rt EBD △中解直角三角形求得EB 的长度,然后根据BH EF ⊥,求得30EBH ∠=︒,继而可求得EH 的长度,易得EF EH HF =+的值.【考点】解直角三角形的应用27.【答案】【解析】(1)猜想:BF CD =.理由如下:如图②所示,连接OC 、OD .ABC △为等腰直角三角形,点O 为斜边AB 的中点,∴90OB OC BOC ∠=︒=,. DEF △为等腰直角三角形,点O 为斜边EF 的中点,90OF OD DOF ∴=∠=︒,.9090BOF BOC COF COF COD DOF COF COF ∠=∠+∠=︒+∠∠=∠+=︒∠+∠,,BOF COD ∴∠=∠.所以,在BOF △与COD △中,OB OC BOF COD OF OD =⎧⎪∠=∠⎨⎪=⎩()BOF COD SAS ∴△≌△,BF CD ∴=.(2)答:(1)中的结论不成立.如图③所示,连接OC 、OD .ABC △为等边三角形,点O 为边AB 的中点,tan30OB OC ∴=︒=,90BOC ∠=︒. DEF △为等边三角形,点O 为边EF 的中点,tan30OF OD ∴==︒,90DOF ∠=︒.OB OF OC OD ∴==. 9090BOF BOC COF COF COD DOF COF COF ∠=∠+∠=+∠∠=∠+∠=︒+∠︒,,BOF COD ∴∠=∠.在BOF △与COD △中,OB OF OC OD ==,BOF COD ∠=∠, BOF COD ∴△∽△ 3BF CD = (3)如图④所示,连接OC 、OD .ABC △为等腰三角形,点O 为底边AB 的中点,tan 2OB OC α∴=,90BOC =︒. DEF △为等腰三角形,点O 为底边EF 的中点,tan 2OF OD α=,90DOF ∠=︒. tan 2OF OD α∴=. 9090BOF BOC COF COF COD DOF COF COF ∠=∠+∠=+∠∠=∠+∠=︒+∠︒,,BOF COD ∴∠=∠.在BOF △与COD △中,tan 2OB OF OC OD α==,BOF COD ∠=∠,BOF COD ∴△∽△,tan 2BF CD α∴=. 【提示】(1)如图②所示,连接OC 、OD ,证明BOF COD △≌△;(2)如图③所示,连接OC 、OD ,证明BOF COD △≌△; (3)如图④所示,连接OC 、OD ,证明BOF COD △∽△,相似比为tan 2α.【考点】几何变换综合题28.【答案】(1)点(20)(30)A B -,,,在抛物线2y bx c =++上,∴420930b c b c ++=++=,解得:b c ==. (2)设点F在直线y上,且(2F .如图1所示,过点F 作FH x ⊥轴于点H,则2FH OH ==,tan 60FH FOB FOB OH∴∠︒∠==∴=.60AOE FOB ∴∠=∠=︒.连接OC ,过点C 作CK x ⊥轴于点K .所以,点A 、C 关于y =对称,260OC OA COE AOE ︒∴==∠=∠=,.18060COK AOE COE ∴∠=︒-∠-∠=︒.在Rt COK △中,1sin602cos 60221CK OC OK OC ︒=⋅===⨯=︒.(1C ∴-,.抛物线的解析式为:2y ,当1x =时y =, ∴点C 在所求二次函数的图象上.(3)假设存在.如图1所示,在Rt ACK △中,由勾股定理得:AC ==如图2所示,35OB BD AB OA OB =∴==+=,.在Rt ABD △中,由勾股定理得:AD ==所以,点A 、C 关于y =对称,12CD AD DAC DCA AE CE AC ∴==∠=∠==,. 连接PQ 、PE ,QE ,则APE QPE PQE CQE ∠=∠∠=∠,.在四边形APQC 中,360DAC APQ PQC DCA ∠+∠+∠+∠=︒,(四边形内角和等于360︒)即222360DAC APE CQE ∠+∠+∠=︒,180DAC APE CQE ∴∠+∠+∠=︒.又180DAC APE AEP ∠+∠+∠=︒,(三角形内角和定理)AEP CQE ∴∠=∠.在APE CEQ △与△中,DAC DCA AEP CQE ∠=∠∠=∠,,APE CEQ ∴△∽△,CQ CE AE AP ∴==,整理得:2230t -+=,解得:t =或t =(t∴存在某一时刻,使PE 平分APQ ∠,同时QE 平分PQC ∠,此时t = 【提示】(1)利用待定系数法求出b ,c 的值;(2)如图1所示,关键是求出点C 的坐标.首先求出直线y =与x 轴所夹锐角为60︒,则可推出在Rt CEK △中,60COK ∠=︒,解此直角三角形即可求出点C 的坐标;(3)如图2所示,关键是证明APE CEQ △∽△.根据DAC DCA ∠=∠,AEP CQE ∠=∠,△∽△,根据相似线段比例关系列出方程,解方程求出时间t的值.证明APE CEQ【考点】二次函数综合题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年普通高等学校招生全国统一考试(四川卷)
数 学(文史类)
本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至
2页,第Ⅱ卷3至4页,共4页。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上大题无效。

满分150分。

考试时间120分钟。

考试结束后,将本试题卷和答题卡上一并交回。

第Ⅰ卷 (选择题 共50分)
注意事项: 必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1、设集合{1,2,3}A =,集合{2,2}B =-,则A B = ( ) (A )∅ (B ){2} (C ){2,2}- (D ){2,1,2,3}-
2、一个几何体的三视图如图所示,则该几何体可以是( ) (A )棱柱 (B )棱台 (C )圆柱 (D )圆台
3、如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ) (A )A (B )B (C )C (D )D
4、设x Z ∈,集合A 是奇数集,集合B 是偶数集。

若命题:,2p x A x B ∀∈∈,则( ) (A ):,2p x A x B ⌝∃∈∈ (B ):,2p x A x B ⌝∃∉∈ (C ):,2p x A x B ⌝∃∈∉ (D ):,2p x A x B ⌝∀∉∉
5、抛物线2
8y x =的焦点到直线0x =的距离是( ) (A ) (B )2
(C
(D )1 6、函数()2sin()(0,)2
2
f x x π
π
ωϕωϕ=+>-<<
的部分图象如图所示,
则,ωϕ的值分别是( ) (A )2,3
π
-
(B )2,6
π
-
(C )4,6
π
-
(D )4,
3
π
7、某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示。

以组距为5将数据分组成[0,5),[5,10),…,
[30,35),[35,40]时,所作的频率分布直方图是( )
8、若变量,x y 满足约束条件8,
24,0,0,
x y y x x y +≤⎧⎪-≤⎪
⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,则a b
-的值是( )
(A )48 (B )30 (C )24 (D )16
9、从椭圆22
221(0)x y a b a b
+=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A 是椭圆
与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是( ) (A

4 (B )1
2
(C
)2 (D
)2 10
、设函数()f x =
(a R ∈,e 为自然对数的底数)。

若存在[0,1]b ∈
使
(())
f f b b
=成立,则a的取值范围是()
(A)[1,]e(B)[1,1]e
+(C)[,1]
e e
+(D)[0,1]
第二部分(非选择题共100分)
注意事项:
必须使用0.5毫米黑色签字笔在答题卡上题目所指示的答题区域内作答。

作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚。

答在试题卷上无效。

二、填空题:本大题共5小题,每小题5分,共25分。

11、____________。

12、如图,在平行四边形ABCD中,对角线AC与BD交于点O,
AB AD AO
λ
+=
,则λ=____________。

13、已知函数()4(0,0)
a
f x x x a
x
=+>>在3
x=时取得最小值,则a=____________。

14、设sin2sin
αα
=-,(,)
2
π
απ
∈,则tan2α的值是____________。

15、在平面直角坐标系内,到点(1,2)
A,(1,5)
B,(3,6)
C,(7,1)
D-的距离之和最小的点的坐标是_______。

三、解答题:本大题共6小题,共75分。

解答应写出文字说明,证明过程或演算步骤。

16、(本小题满分12分)
在等比数列{}n a中,212
a a
-=,且
2
2a为
1
3a和
3
a的等差中项,求数列{}
n
a的首项、公比及前n项和。

17、(本小题满分12分)
在ABC
∆中,角,,
A B C的对边分别为,,
a b c,且
3
c o s()c o s s i n()s i n()
5
A B B A B A c
---+=-。

(Ⅰ)求sin A的值;
(Ⅱ)若a=5
b=,求向量BA
在BC
方向上的投影。

18、(本小题满分12分)
某算法的程序框图如图所示,其中输入的变量x在1,2,3,,24
⋅⋅⋅这
24个整数中等可能随机产生。

(Ⅰ)分别求出按程序框图正确编程运行时输出y的值为i的概率
(1,2,3)i P i =;
(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为(1,2,3)i i =的频数。

以下是甲、乙所作频数统计表的部分数据。

甲的频数统计表(部分) 乙的频数统计表(部分)
(1,2,3)i i =的频率(用分数表示)
,并判断两位同学中哪一位所编写程序符合算法要求的可能性较大。

19、(本小题满分12分)
如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,122AB AC AA ===,
120BAC ∠= ,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 上
异于端点的点。

(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;
(Ⅱ)设(Ⅰ)中的直线l 交AC 于点Q ,求三棱锥11A QC D -的体
积。

(锥体体积公式:1
3
V Sh =,其中S 为底面面积,h 为高)
20、(本小题满分13分)
已知圆C 的方程为22
(4)4x y +-=,点O 是坐标原点。

直线:l y kx =与圆C 交于
1
,M N 两点。

(Ⅰ)求k 的取值范围;
(Ⅱ)设(,)Q m n 是线段MN 上的点,且222
211
||||||OQ OM ON =+。

请将n 表示为m 的函数。

21、(本小题满分14分)
已知函数22,0
()ln ,0x x a x f x x x ⎧++<=⎨>⎩
,其中a 是实数。

设11(,())A x f x ,22(,())B x f x 为
该函数图象上的两点,且12x x <。

(Ⅰ)指出函数()f x 的单调区间;
(Ⅱ)若函数()f x 的图象在点,A B 处的切线互相垂直,且20x <,证明:211x x -≥; (Ⅲ)若函数()f x 的图象在点,A B 处的切线重合,求a 的取值范围。

第10 页共28 页金太阳新课标资源网
金太阳新课标资源网
金太阳新课标资源网
1.解析: 【答案】B
【解析】本题考查用列举法表示的集合的交运算. A 、B 两集合中只有一个公共元素2, ∴ A I B = {2},选B .
【易错点】看清题!求交集不是求并集! 【难易度评价】★送分题
4.
5.
金太阳新课标资源网
6.
7.
金太阳新课标资源网
8. 【答案】C
【解析】本题考查线性规划,约束
金太阳新课标资源网
9
10.
11.
金太阳新课标资源网
13.
14. 【答案】
金太阳新课标资源网
15.
16.
17
【解析】本小题主要考查两角和的余弦公式、诱导公式、正弦定理、余弦定理、同角三角 函数的关系等基础知识,考查向量投影的概念,考查运算求解能力、考查化归与转化等数 学思想.
金太阳新课标资源网
18.
金太阳新课标资源网
16
1
2
13,输出y 的值为3 的概率为16
金太阳新课标资源网
19.
金太阳新课标资源网
金太阳新课标资源网
金太阳新课标资源网
20.
金太阳新课标资源网
金太阳新课标资源网
金太阳新课标资源网
金太阳新课标资源网
金太阳新课标资源网。

相关文档
最新文档