基因表达的调节
基因表达的调节名词解释
基因表达的调节名词解释基因表达是指基因中的信息被转录为RNA,并进一步转化为蛋白质的过程。
然而,基因表达的调节是指细胞能够对基因表达进行控制和调节的过程。
这一过程非常复杂且关键,它决定了细胞所处的状态和功能。
在细胞内,有许多机制来调节基因表达,其中包括转录调节、转录后调节和转化调节。
转录调节是指在基因转录过程中,通过不同的转录因子、启动子和转录辅因子的相互作用来控制基因表达。
转录因子是一类能够结合到特定DNA区域上的蛋白质,它们可以促进或抑制转录过程。
启动子是位于基因序列上的特定DNA区域,它可以与转录因子结合,并启动转录过程。
转录辅因子是参与调节转录的蛋白质,它们可以与转录因子相互作用,从而调控基因表达。
转录后调节是指在基因转录完成后,通过不同的机制来调控RNA分子的稳定性和功能。
其中一个重要的机制是RNA剪接,它是一种将RNA前体分子中的不同区段组合起来形成成熟RNA的过程。
RNA剪接可以产生多种不同的成熟RNA,从而调节基因功能。
此外,转录后修饰也是一种重要的转录后调节机制。
通过添加化学修饰物或其他分子到RNA分子上,可以影响它们的稳定性和功能。
转化调节是指在细胞内,以蛋白质为媒介,调控基因表达的过程。
这个过程主要通过蛋白质的结构、功能和互作来实现。
蛋白质可以通过相互作用形成蛋白质复合体,这些复合体可以影响DNA的结构,从而改变基因表达。
此外,蛋白质还可以调控转录因子的活性,进一步影响基因表达。
基因表达调节的重要性不言而喻,它直接决定了细胞功能和生物个体的特征。
例如,在多细胞生物中,基因表达的调节可以使不同细胞具备不同的功能,从而形成组织和器官。
此外,基因表达的失调也与许多疾病的发生和发展密切相关。
如果基因表达调节失调,会导致蛋白质功能异常以及细胞失衡,甚至可能引发疾病。
综上所述,基因表达的调节是细胞内一系列复杂的过程,包括转录调节、转录后调节和转化调节。
它决定了基因的转录、稳定性和转化过程,从而影响细胞的状态和功能。
普通遗传学第十四章 基因表达的调控
第一节 原核生物的基因调控
一、转录水平的调控
→原核生物基因表达的调控主要发生在 转录水平。
→当需要某一特定基因产物时,合成这 种mRNA。当不需要这种产物时, mRNA转录受到抑制。
1、乳糖操纵元模型
大肠杆菌的乳糖降解代谢途径: Monod等发现,当大肠杆菌生长在含有乳 糖的培养基上时,乳糖代谢酶浓度急剧增 加;当培养基中没有乳糖时,乳糖代谢酶 基因不表达,乳糖代谢酶合成停止。 为此,Jacob和Monod(1961)提出了乳糖 操纵元模型,用来阐述乳糖代谢中基因表 达的调控机制
转录效率更高
→在有葡萄糖存在时,不能形成cAmp, 也就没有操纵元的正调控因子cAmp-CAP 复合物,因此基因不表达。
乳糖操纵元的正调控
2、色氨酸操纵元
大肠杆菌色氨酸操纵元是合成代谢途径中 基因调控的典型例子。
◆trp操纵元由5个结构基因trpE、trpD、trpC、
trpB和trpA组成一个多顺反子的基因簇。 5′端是启动子、操纵子、前导顺序(trpL)和 衰减子(attenuator)。
❖ 负调控:存在细胞中的阻遏物阻止转录过程的 调控。
❖ 正调控:调节蛋白和DNA以及RNA聚合酶相 互作用来帮助起始。诱导物通常与另一蛋白质结 合形成一种激活子复合物,与基因启动子DNA序 列结合,激活基因起始转录。
原核生物中基因表达以负调控为主, 真核生物中 则主要是正调控机制。
图 14-1 正调控和负调控
2、反义RNA调控
反义RNA可与目的基因的5’UTR( untranslated region )互补配对,配对的区域 通常也包括启动子的SD序列,使mRNA不能与 核糖体有效结合,从而阻止蛋白质的合成。
反义RNA基因已被导入真核细胞,控制真核生 物基因表达。例如,将乙烯形成酶基因的反义 RNA导入蕃茄,大大延长了蕃茄常温贮藏期。
《生物化学》-第八章
➢ 与前述操纵子的基本组成一样,乳糖操纵子也是由结构基因和调控区组成的 ➢ 乳糖操纵子包括Z、Y和A三个结构基因 ➢ Z结构基因编码β-半乳糖苷酶,催化乳糖转变为别乳糖 ➢ Y结构基因编码半乳糖透过酶,促使半乳糖透过酶进入细菌内 ➢ A结构基因编码乙酰转移酶,催化半乳糖形成乙酰半乳糖 ➢ 调控区包括调节基因(I)、启动子(P)、操纵基因(O)及启动子上游的一个CAP结合位点,
第一节 基因表达的调控
二、基因表达调控的概念和意义
(一)基因表达调控的概念
➢ 基因表达调控是指细胞或生物体在接收内外环境信号刺激 或适应环境变化的过程中,在基因表达水平上所做出的应 答,即基因组内的基因如何被表达、表达多少等
➢ 基因表达调控大致可以在5个层次上进行,即转录前、转 录、转录后、翻译和翻译后
➢ 基因表达是指在一定的调节机制的控制下,基因组DNA经 转录、翻译等一系列过程,合成具有特异生物学功能的蛋 白质的过程
➢ 并非所有基因表达过程都产生蛋白质,rRNA、tRNA编码 基因转录生成功能型RNA的过程也属于基因表达
第一节 基因表达的调控
一、基因表达的概念、特点及方式
(二)基因表达的特点--时间特异性
5′-侧上游,主要控制整个结构基因群的转录
第一节 基因表达的调控
三、原核生物基因表达的调控
(一)操纵子的基本组成
➢ 3.操纵基因 ➢ 操纵基因是指能被阻遏蛋白特异性识别并结合
的一段DNA序列,常与启动子邻近或与启动子 序列重叠 ➢ 当阻遏蛋白结合在操纵基因上,阻遏蛋白会阻 碍RNA聚合酶与启动子结合或使RNA聚合酶 不能沿DNA链向前移动,从而阻遏转录的进行
(一)操纵子的基本组成
➢ 1.结构基因 ➢ 操纵子中被调控的编码蛋白质的基因称为结构基因 ➢ 一个操纵子中含有2个以上的结构基因,多的可达20个以上 ➢ 各结构基因头尾衔接、串联排列,组成结构基因群
生物化学 5-基因表达调控
个基因或一些功能相近的基因表达(生物体内基因表达)的开启、
关闭和表达强度的直接调节。
它是生物在长期进化过程中逐渐形成的精确而灵敏的生存 能力和应变能力,是生物赖以生存的根本之一。
二、基因表达的方式
(一)组成性表达(constitutive gene expression)
指不大受环境变动而变化的一类基因表达。其中某些基因表 达产物是细胞或生物体整个生命过程中都持续需要而必不可少的, 这类基因可称为管家基因(housekeeping gene),这些基因中不少
性。
• 当有葡萄糖存在时, cAMP浓度较低, cAMP与CAP 结合受阻,lac操纵子表达下降。
(4)协调调节
Lac阻遏蛋白负性调节与cAMP正性调节两种机制协调合作 • 无乳糖,无诱导物时,转录作用被I表达的阻遏蛋白所阻断。 • 有诱导物时,诱导物与阻遏蛋白结合,使其变构,从操纵基
因上解离出来。
调节基因
β -半乳糖苷酶
2、阻遏蛋白 的负性调节
没有乳糖存在时,lac操纵子处于阻
遏状态。I序列表达的lac阻遏蛋白与
O序列结合,阻碍RNA聚合酶与P序 列结合,抑制转录启动。
有乳糖存在时,lac 操纵子可被诱导。
别乳糖作为诱导剂分子结合阻遏 蛋白,使蛋白构象变化,导致阻 遏蛋白与O序列解离,发生转录
基因产物特异识别、结 合其它基因的调节序列, 调节其它基因的开启或
关闭称为反式调节
基因产物特异识别、 结合自身基因的调 节序列,调节自身 基因的开启或关闭 称为顺式调节
DNA
a
A A
反式调节
b
mRNA
蛋白质A
C
c
DNA
mRNA
顺式调节
基因表达的调控机制
基因表达的调控机制基因是生物体内控制遗传信息传递和蛋白质合成的重要单位。
基因表达的调控机制是指在不同的细胞类型、生物阶段和环境条件下,如何控制基因的转录和翻译活动,使得特定的基因在特定的时间和地点进行表达。
这种调控机制对于维持生物体内稳态、适应环境变化以及发展、生长和繁殖等生命过程至关重要。
本文将从转录、RNA加工、转运和翻译四个方面介绍基因表达的调控机制。
一、转录的调控转录是基因表达的第一步,是指将DNA转录成RNA,从而实现基因信息的转换。
转录的调控涉及到启动子、转录因子和表观遗传修饰等多种因素。
启动子是位于基因上游的DNA区域,包含特定的顺式作用元件,如TATA盒和启动子序列。
通过与转录因子相互作用,启动子能够吸引RNA聚合酶,使其在该区域上的结合和启动转录过程。
转录因子是一类能够与DNA特异性结合的蛋白质,可以促进或抑制基因的转录。
转录因子与启动子之间的结合关系是基因表达调控的关键。
其中包括激活转录因子和抑制转录因子。
激活转录因子能够与RNA聚合酶形成复合物,从而促进转录的进行,而抑制转录因子则能够阻断RNA聚合酶与DNA之间的相互作用,从而抑制转录。
此外,表观遗传修饰也是基因表达调控的重要机制。
表观遗传修饰包括DNA甲基化、组蛋白修饰和非编码RNA等。
DNA甲基化是通过在DNA的甲基化位点上结合甲基基团来调控基因的表达。
组蛋白修饰则是通过改变组蛋白的翻译后修饰状态,如酶解修饰和乙酰化修饰等,以改变染色质的结构和亲缘性。
非编码RNA则具有多种功能,能够干扰DNA的转录和翻译,从而调控基因的表达。
二、RNA加工的调控在转录完成后,RNA还需要经历一系列的加工步骤才能形成成熟的mRNA。
RNA加工包括剪接、剪切、聚合化和修饰等环节。
剪接是指将mRNA的内含子剪除,同时将外显子连接起来的过程。
剪接的方式多样,可以通过选择性剪接产生多个不同的mRNA转录本,从而增加基因的多样性和功能。
剪切是指在剪接之前,将RNA的两端以及内部进行剪切处理,从而形成可供剪接的RNA单链结构。
生物化学》ppt课件14.第十四章-基因表达调控
1.操纵子的结构与功能
一个操纵子=调节序列+启动序列+操纵序列+编码序列
⑴调节序列(inhibitor,I):编码一种阻遏蛋白(repressor) 。 ⑵启动序列(promoter,P):结合RNA聚合酶,启动转录。 ⑶操纵序列(operator,O):阻遏蛋白的结合位点。 ⑷编码序列(coding sequence):编码功能性蛋白,2~6个。
第一节 基因表达调控的 概念和原理
(Concept and principle: Regulation of Gene Expression)
一、基因表达调控的概念
(一)基因表达(gene expression) 是指基因经过
转录、翻译,产生具有特异生物学功能的蛋白 质分子的过程。
(二)基因表达的时间性及空间性
转录激活域
谷氨酰胺富含域 脯氨酸富含域
蛋白质-蛋白质结合域 (二聚化结构域)
1.同源结构域
2.锌指
3.碱C
H
C
Cys
H
His
其他氨基酸
(四)真核生物基因表达调控模式
1.真核生物基因表达调控较复杂,除转录起始阶段 受到调节外,在转录后水平、翻译水平及翻译后水平 等均受调控。
2.真核RNA聚合酶Ⅱ在转录因子帮助下,形成的 转录起始复合物。
白 因 子 , 决 定 三 种 RNA(mRNA 、 tRNA 及 rRNA)转录的类别。
2.特异转录因子(special transcription factors) 为个别基因转录所必需,决定该基因的时
基因表达的调控
第十三章基因表达的调控一、基因表达调控基本概念与原理:1.基因表达的概念:基因表达(gene expression)就是指在一定调节因素的作用下,DNA分子上特定的基因被激活并转录生成特定的RNA,或由此引起特异性蛋白质合成的过程。
2.基因表达的时间性及空间性:⑴时间特异性:基因表达的时间特异性(temporal specificity)是指特定基因的表达严格按照特定的时间顺序发生,以适应细胞或个体特定分化、发育阶段的需要。
故又称为阶段特异性。
⑵空间特异性:基因表达的空间特异性(spatial specificity)是指多细胞生物个体在某一特定生长发育阶段,同一基因的表达在不同的细胞或组织器官不同,从而导致特异性的蛋白质分布于不同的细胞或组织器官。
故又称为细胞特异性或组织特异性。
3.基因表达的方式:⑴组成性表达:组成性基因表达(constitutive gene expression)是指在个体发育的任一阶段都能在大多数细胞中持续进行的基因表达。
其基因表达产物通常是对生命过程必需的或必不可少的,且较少受环境因素的影响。
这类基因通常被称为管家基因(housekeeping gene)。
⑵诱导和阻遏表达:诱导表达(induction)是指在特定环境因素刺激下,基因被激活,从而使基因的表达产物增加。
这类基因称为可诱导基因。
阻遏表达(repression)是指在特定环境因素刺激下,基因被抑制,从而使基因的表达产物减少。
这类基因称为可阻遏基因。
4.基因表达的生物学意义:①适应环境、维持生长和增殖。
②维持个体发育与分化。
5.基因表达调控的基本原理:⑴基因表达的多级调控:基因表达调控可见于从基因激活到蛋白质生物合成的各个阶段,因此基因表达的调控可分为转录水平(基因激活及转录起始),转录后水平(加工及转运),翻译水平及翻译后水平,但以转录水平的基因表达调控最重要。
⑵基因转录激活调节基本要素:①顺式作用元件:顺式作用元件(cis-acting element)又称分子内作用元件,指存在于DNA分子上的一些与基因转录调控有关的特殊顺序。
基因表达的调控
基因表达的调控基因表达的调控是生物体中基因活动的一个重要过程,通过调控基因的表达水平,维持细胞的功能和稳态。
基因表达调控涉及多个层次,包括转录水平、转译水平和后转录水平等。
下面将对这些层次的基因表达调控进行详细介绍。
一、转录水平调控转录水平调控指的是通过调节基因的转录过程来控制基因表达的水平。
主要的调控方式包括转录激活和转录抑制。
转录激活因子可以与DNA结合,促进转录因子的结合,从而增强转录过程,而转录抑制因子则能够与DNA或转录因子结合,阻碍转录的进行。
此外,染色质的结构也会对基因的转录起到重要的调控作用,如DNA甲基化、组蛋白修饰等都可以改变染色质的状态,进而影响基因的表达。
二、转译水平调控转译水平调控是指调控基因的转录产物(mRNA)的转译过程。
在细胞中,mRNA需要被翻译成蛋白质才能发挥作用。
转译的调控主要包括转录后修饰和mRNA降解两个方面。
在转录后修饰中,mRNA会经历剪接、剪接调控、RNA编辑等多个步骤,来改变它的结构和功能。
而mRNA降解则通过一系列核酸酶的作用,将mRNA降解成短的片段,从而控制基因的表达。
三、后转录水平调控后转录水平调控是指基因表达的调控发生在转录和转译之后的过程。
在这个阶段,蛋白质会经历一系列的修饰和定位过程,以实现其特定的功能。
这些修饰包括糖基化、磷酸化、乙酰化等,它们可以改变蛋白质的稳定性、定位和相互作用等性质。
此外,许多蛋白质需要通过蛋白酶的作用进行裂解,形成活性的多肽或蛋白质片段。
总结起来,基因表达的调控是一个复杂而精细的过程,涉及多个层次的调控机制。
通过转录水平的调控,可以控制基因的转录过程和染色质的结构状态;通过转译水平的调控,可以调节mRNA的转译和降解过程;而后转录水平的调控,则调节了蛋白质的修饰和定位等过程。
这些调控机制相互作用,共同维持了细胞内基因表达的平衡,保证了生物体的正常功能。
基因表达的调控不仅对细胞发育和生理功能具有重要的影响,还与疾病的发生和进展密切相关。
基因表达与调控
基因表达与调控基因是生物体内蛋白质合成的基本单位,而基因表达与调控则是指基因在不同细胞类型和生理状态下的活性水平调节。
通过基因表达与调控,细胞能够在不同环境中正确地产生所需的蛋白质,从而维持生命的正常功能。
本文将从基因表达、基因调控以及相关机制等方面进行论述。
一、基因表达基因表达是指基因通过转录和翻译过程转化为蛋白质的过程。
基因表达分为几个步骤,包括转录和翻译。
转录是指DNA分子通过酶的作用,在细胞核内转录成RNA分子的过程。
翻译是指RNA通过核糖体和tRNA的配合作用,在细胞质中合成蛋白质的过程。
基因表达的过程中,遵循了中心法则,即DNA→RNA→蛋白质。
二、基因调控基因调控是指通过调节基因的表达水平来控制细胞功能和生物体发育的过程。
基因调控的作用机制很多,包括转录水平的调控、RNA后转录调控以及转译后调控等。
转录调控是指通过控制转录过程中的启动子、转录因子和蛋白质复合体等因素的结合,来调节基因表达。
RNA后转录调控是指通过不同的RNA分子、非编码RNA以及miRNA 等调控因子,对RNA分子进行修饰和降解的过程。
转译后调控是指通过对已合成的蛋白质进行修饰、分解和定位等方式调节基因表达。
三、基因表达与调控的相关机制1. DNA甲基化DNA甲基化是指DNA分子中的一些Cytosine碱基通过甲基化酶的作用而被甲基基团修饰的过程。
DNA甲基化可以影响基因的表达,通常甲基化的基因会出现表达静默的现象,从而达到对基因的调控效果。
2. 转录因子转录因子是指能够与DNA特定区域结合,调控基因表达的蛋白质。
转录因子可以通过结合启动子区域,影响RNA聚合酶与DNA结合的能力,从而调控基因的转录过程。
转录因子的表达量和活性水平可以受到其他调控因素的影响,从而进一步调节基因的表达。
3. miRNAmiRNA(microRNA)是一种短链非编码RNA分子,具有调节基因表达的功能。
miRNA可以与靶基因的mRNA结合,通过抑制其翻译或降解来影响基因的表达水平。
第7章原核生物基因表达的调控
Z编码β-半乳糖苷酶:将乳糖水解成葡萄糖和半乳糖。
Y编码β-半乳糖苷透过酶:使外界的β-半乳糖苷(如乳糖)能透过大肠杆
菌细胞壁和原生质膜进入细胞内。
A编码β-半乳糖苷乙酰基转移酶:乙酰辅酶A上的乙酰基转到β-半乳糖苷
上,形成乙酰半乳糖。
gene
正调控
调控蛋白
负调控
结构基因表达
▪ 负调控:抑制基因表达的调控方式 ▪ 正调控:促进基因表达的调控方式
B、特殊代谢物的调控
诱导(induction)
阻遏(repression)
inducer
gene
repressor
gene
特殊代谢物
诱导 阻遏
结构基因表达
诱导物、可诱导基因 阻遏物、可阻遏基因
无葡萄糖、 有乳糖-----cAMP水平高 (2)cAMP与CRP结合形成有活性的
CRP- cAMP 复合物 (3)CRP-cAMP 与Plac结合 (4)增强了RNA聚合酶与启动子的结合
(5)lacZ, lacY 、 lacA高表达
105
40
105
41
乳糖、G存在与否及与操纵子正、负控因素、 基因开放与关闭情况如下:
CRP
Binding
RNA
Promoter
Operator
CRP
Pol. Repressor
cAMP
LacZ
LacY
LacA
Repressor mRNA
STOP
Right there
CRP
Polymerase
cAMP
Repressor
cAMP
CRP
基因表达的调控
基因表达调控(gene regulation或gene control):对 基因表达调控 或 : 基因表达过程的调节。 基因表达过程的调节。 基因表达的组织特异性(tissue specificity): 基因表达的组织特异性(tissue specificity):不同组 织细胞中不仅表达的基因数量不相同,而且基因 织细胞中不仅表达的基因数量不相同, 表达的强度和种类也各不相同。 表达的强度和种类也各不相同。 基因表达的阶段特异性(stage specificity): 基因表达的阶段特异性(stage specificity):细胞分 化发育的不同时期,基因表达的情况是不相同的。 化发育的不同时期,基因表达的情况是不相同的。
魔斑的主要作用: 魔斑的主要作用: (1) ppGpp—四磷酸鸟苷(魔斑I magic spot I) ppGpp—四磷酸鸟苷(魔斑I 调控一些反应的效应物,主要功能是: 调控一些反应的效应物,主要功能是: 抑制rRNA基因的启动子与RNA聚合酶与结合的专一性 基因的启动子与RNA聚合酶与结合的专一性; ① 抑制rRNA基因的启动子与RNA聚合酶与结合的专一性; 抑制多数或大多数基因转录的延伸。 ② 抑制多数或大多数基因转录的延伸。 (2) pppGpp—五磷酸鸟苷(魔斑II magic spot II) pppGpp—五磷酸鸟苷(魔斑II 当细胞缺乏氨基酸时产生ppGpp, 当细胞缺乏氨基酸时产生ppGpp,可在很大范围内做出应急 反应,如抑制核糖体和其他大分子的合成, 反应,如抑制核糖体和其他大分子的合成,活化某些氨基酸操 纵子的转录表达,抑制与氨基酸运转无关的转运系统, 纵子的转录表达,抑制与氨基酸运转无关的转运系统,活化蛋 白水解酶等。 白水解酶等。 空转反应( reaction) 空载tRNA 空转反应(idling reaction)-空载tRNA 松驰型突变(relaxed(rel)mutants) 松驰型突变(relaxed(rel)mutants) 应急因子( factor) 应急因子(stringent factor):RelA
基因表达的调控机制
基因表达的调控机制基因表达是指基因信息转录成RNA,再翻译成蛋白质的过程。
在细胞内,基因表达需要受到严格的调控,以确保细胞在不同环境下能够适应并正常运作。
基因表达的调控机制涉及到多个层面,包括转录水平、转录后调控、翻译水平和蛋白后修饰等。
本文将从这些方面介绍基因表达的调控机制。
1. 转录水平的调控转录是基因表达的第一步,也是调控基因表达的关键环节。
在转录水平,基因的表达可以通过启动子区域的甲基化、转录因子的结合、染色质重塑等方式进行调控。
启动子区域的甲基化可以影响转录因子的结合,从而影响基因的转录活性。
转录因子是一类能够结合到DNA上特定序列的蛋白质,它们可以促进或抑制基因的转录。
染色质重塑是指通过改变染色质的结构来影响基因的可及性,从而调控基因的表达水平。
2. 转录后调控转录后调控是指转录后RNA的修饰和稳定性调控。
在细胞核内,RNA经过剪接、剪切、聚腺苷酸化等修饰过程,形成成熟的mRNA。
这些修饰过程可以影响mRNA的稳定性和翻译效率。
另外,miRNA和siRNA等小RNA也可以通过靶向特定mRNA分解或抑制翻译来调控基因表达。
3. 翻译水平的调控翻译是指mRNA上的密码子被翻译成氨基酸序列的过程。
在翻译水平,基因的表达可以通过启动子区域的结构、mRNA的稳定性、翻译因子的结合等方式进行调控。
启动子区域的结构可以影响翻译因子的结合,从而影响翻译的进行。
翻译因子是一类能够结合到mRNA上特定序列的蛋白质,它们可以促进或抑制翻译的进行。
4. 蛋白后修饰蛋白后修饰是指蛋白质合成后,蛋白质经过翻译后修饰的过程。
在细胞内,蛋白质可以通过磷酸化、甲基化、乙酰化等方式进行修饰,从而影响蛋白质的功能和稳定性。
这些修饰过程可以调控蛋白质的活性、亚细胞定位和相互作用等。
综上所述,基因表达的调控机制涉及到转录水平、转录后调控、翻译水平和蛋白后修饰等多个层面。
这些调控机制相互作用,共同调节基因的表达水平,以适应细胞在不同环境下的需要。
分子生物学第七章原核生物基因表达调控
(三)、阻遏物 lac I 基因产物及功能
Lac 操纵子阻遏物 mRNA 是由弱启动子控制下组 成型合成的,该阻遏蛋白具有4个相同的亚基,每个亚 基均含347个氨基酸残基。
lacI 基因为组成型,通过启动子的上升突变体可获 得较多的阻遏蛋白;
阻遏物 2022/10/18
β-半乳糖苷酶 透过酶 转乙酰3酶2
2022/10/18
16
调节机理:
细胞中某一氨基酸或嘧啶的浓度发生改变
氨酰 – tRNA的浓度变化
核糖体在转录产物RNA上的结合位置不 同,使得RNA形成特定的二级结构 由RNA的二级结构判断基因能否继续转录
2022/10/18
17
3、降解物对基因活性的调节P252
葡萄糖效应或降解物抑制作用:细菌培养基中在 葡萄糖存在的情况下,即使加入乳糖、半乳糖等 诱导物,与其对应的操纵子也不会启动,这种现 象称为葡萄糖效应或降解物抑制作用。
这是通过阻止乳糖操纵子表达来完成的,这种 效应称为降解物抑制(catabolite repression)。
2022/10/18
35
(五)、cAMP与代谢物激活蛋白
葡萄糖
葡萄糖-6-磷酸
甘油 某些代谢产物抑制活性
腺苷酸环化酶
ATP
cAMP
编码
cAMP-CAP
Crp基因
代谢物激活蛋白 CAP
葡萄糖对其它糖的代谢抑制,是通过对 cAMP的抑制完成的。
2022/10/18
22
一、酶的诱导 ——
lac 体系受调控的证据
两种含硫的乳糖类似物:
异丙基巯基半乳糖苷
(IPTG)
巯甲基半乳糖苷(TMG)
E. coli 在不含乳糖的培养基生 长时,β-半乳糖苷酶含量极低;
基因表达调控名词解释
基因表达调控名词解释基因表达调控名词解释,又称为基因调控,是一种过程,它通过影响基因表达水平而调节生物体的特性。
调节这一过程包括对基因在何时,何处,以及如何表达的调节,以及影响基因表达水平的遗传因子的调节。
它是由外部刺激(环境信号)和内部机制(遗传因素)共同作用产生的。
基因表达调控包括以下几个方面:1.转录调控:转录调控是指控制基因转录成mRNA(信使核酸)的过程,也就是控制DNA上的信息被转换成mRNA 的过程。
转录调控可以通过调节转录因子(TF)的活性或改变DNA序列来实现。
2.加工调控:加工调控是指在mRNA被转录之后,mRNA 被进一步加工,以减少它的长度或改变它的结构的过程。
加工调控包括剪切、编码和标记等加工过程。
3.翻译调控:翻译调控是指调节翻译过程的过程,这一过程是将mRNA转换成蛋白质的过程。
翻译调控可以通过调节转录因子的活性或改变mRNA序列来实现。
4.蛋白质表达调控:蛋白质表达调控是指在蛋白质被合成之后,它们的表达水平进一步调节的过程。
蛋白质表达调控可以通过调节转录因子的活性或改变蛋白质序列来实现。
5.基因组学调控:基因组学调控是指改变基因组结构和功能的过程,包括基因组编辑、基因重新排列和基因组组装等过程。
基因组学调控可以通过调节转录因子的活性或改变基因序列来实现。
6.转录因子调控:转录因子调控是指调节转录因子在基因表达过程中所起的作用。
转录因子可以激活或抑制基因表达,调节基因启动子,从而调节基因表达水平。
7.基因突变调控:基因突变调控是指改变基因序列的过程,该过程可以改变基因的结构和功能,从而影响基因表达水平。
基因突变可以在遗传过程中发生,也可以由外界刺激引起。
基因表达调控是生物体发育和遗传的基本原理,它可以帮助我们了解基因如何调节和控制特定的生物过程,从而更好地为人类提供服务。
分子生物学第八章 基因表达调控
4、阻遏蛋白与操作子的相互作用
阻遏蛋白与操作子是否发生相互作用? 硝酸纤维素膜可以和蛋白质结合而不与DNA结合 阻遏蛋白四聚体结合与膜上,可以与野生型DNA片段形 成复合物。并可被IPTG抑制。 而用lacOc 突变体的DNA片段,则不能与阻遏蛋白结合
Luxury gene
顺、反因子间互作方式的基因表达调控
♫ 顺式作用元件(cis-acting element):能够影响 同一条或相连DNA序列活性的特定DNA片段。例如,启 动子 ♫ 反式作用因子(trans-acting factor):一种基 因的蛋白质产物,能够影响位于基因组另一条染色体上的 (或基因组别处的)另一个基因的表达活性。例如,RNA polymerase
经典锌指的三维结构:一个β发卡和一个α-螺旋
锌指上的α-螺旋 负责与DNA作用
b、Cys-Cys(C2/C2)锌指
Zn++与4个Cys残基 形成配位键
酵母的转录激活 因子GAL4、哺 乳类的固醇类激 素受体为典型代 表。
糖皮质激素受体
• ZYJ272 •
The DNA-binding domain of Cys2-Cys2 zinc finger proteins (Figure 1. Glucocorticoid receptor) is composed of two irregular antiparallel beta-sheets and an alpha-helix, followed by an extended loop.
♫ 操纵元中各结构基因按一定比例协调翻译 ♫ 聚有极性突变效应:
操纵元中一个近基因的无义突变能够影响远基因表, 且根据距离远近呈极性梯度效应
第十三章基因表达调控
第十三章基因表达调控第十三章基因表达调控第一节基因表达调控基本概念与原理一、基因表达的概念(掌握)1、基因:负载特定遗传信息的DNA片段,包括由编码序列、非编码序列和内含子组成的DNA区域。
2、基因组:指来自一个遗传体系的一整套遗传信息。
在真核生物体,基因组是指一套完整的单倍体的染色体DNA和线粒体DNA的全部序列。
3、基因表达:基因所携带的遗传信息,经过转录、翻译等,产生具有特异生物学功能的蛋白质分子的过程。
但对于rRNA、tRNA编码基因,表达仅是转录成RNA的过程。
4、基因表达调控:基因表达是在一定调节机制控制下进行的,生物体随时调整不同基因的表达状态,以适应环境、维持生长和发育的需要。
人类基因组含3~4万个基因。
在某一特定时期,基因组中只有一部分基因处于表达状态。
在一定调节机制控制下,大多数基因经历基因激活、转录及翻译等过程,产生具有特定生物学功能的蛋白质分子,赋予细胞或个体一定的功能或形态表型。
但并非所有基因表达过程都产生蛋白质。
rRNA、tRNA编码基因转录合成RNA的过程也属于基因表达。
二、基因表达的特异性(了解)无论是病毒、细菌,还是多细胞生物,乃至高等哺乳类动物及人,基因表达表现为严格的规律性,即时间、空间特异性。
生物物种愈高级,基因表达规律愈复杂、愈精细,这是生物进化的需要及适应。
基因表达的时间、空间特异性由特异基因的启动子(序列)和(或)增强子与调节蛋白相互作用决定。
(一)时间特异性概念:指按功能需要,某一特定基因的表达严格按特定的时间顺序发生。
又称阶段特异性。
在多细胞生物从受精卵到组织、器官形成的各个不同发育阶段,相应基因严格按一定时间顺序开启或关闭,表现为与分化、发育阶段一致的时间性。
(二)空间特异性概念:在个体生长全过程,某种基因产物在个体按不同组织空间或顺序出现。
基因表达伴随时间或阶段顺序所表现出的这种空间分布差异,实际上是由细胞在器官的分布决定的,又称细胞特异性或组织特异性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b. 调节蛋白识别结构模序中常含Asn,Gln, Lys或Arg,可与碱基形成氢键;
2. 调节蛋白与DNA结合motif的结构类型 a. 螺旋-转角-螺旋(Helix-Turn-Helix) 这种结构含两个α -螺旋(7-9个氨基酸) 由β -转角(20个氨基酸)连系,其中一 个螺旋为识别螺旋,通常含有许多与 DNA接触的氨基酸残基,位于大沟之中; b. 锌指(Zinc Finger) 真核生物调节蛋白常含有许多由30个氨
λ 的调节因子及功能 调节因子 功能 cI λ 阻遏子,在PR和PL的阻遏子, PRM的激活子,也是PRM的阻遏子 cII PRE和Pint的激活子 Cro 反阻遏子PRM的阻遏子,高浓度 时也阻遏PR,PL N 作用于tL1,tR1,tR2的反终止子 Q 后期基因转录的反终止子
b. 当细胞中araC蛋白浓度超过40 copies/cell, 它结合O1,阻止自身基因的转录了; c. araC既是阿拉伯糖操纵子的正调节因子, 又是负调控因子。 (1)当glucose丰富而ara不存在时araC结合 于araO1,O2和I ,结合在O2和I上的araC 蛋白相结合使DNA形成一个环,阻止 araBAD基因的转录; (2)当葡萄糖不存在(或低水平)而ara 糖存在时,此时CAP-cAMP结合于araI附
RNA的转录; mRNA的转录后修饰和加工; mRNA的降解; 蛋白质合成(翻译); 翻译后修饰; 蛋白质降解; 所有以上过程,转录水平的调节了解的 最多也是最主要的。
二. 转录水平调节的方式 基因产物的功能不同,调节方式也不同 1. Housekeeping genes(看家基因,持家基 因)或称组成型表达基因(constitute expression gene) 这些基因的产物是所有细胞,所有时候 都需要的,基因的表达水平相对稳定; 2. 因为某种信号分子的出现引起表达增加 的基因称为可诱导(inducible)的基因, 由于信号分子的出现导致基因表达增加 的过程称诱导作用(induction);
当色氨酸丰富时,终止子结构形成; 当色氨酸处于饥饿状态时,终止子顺序 不形成有效的转录终止结构,使mRNA 的转录得以继续;
弱化作用:用与翻译偶联的转录终止作 用来调节一个细菌操纵子的表达的过程。 3. 弱化子调节的普遍性 多价阻遏(multivalent repression):前导 肽中有两种或两种以上用于弱化调节作 用的氨基酸残基的现象。
a. 当E.coli生长在含葡萄糖的介质中时,许 多其它糖类分解代谢酶基因的表达受到 抑制,在有葡萄糖存在时,细菌优先利 用葡萄糖; b. 葡萄糖降低细胞中c-AMP的浓度,抑制 了其它糖代谢基因的表达; c. CAP蛋白(Catabolite gene Activation Protein,CAP,分解代谢基因激活蛋白) 与c-AMP结合形成活性结构,结合在启 动子上游DNA顺序,促进RNA多聚酶对 启动子的结合和Lac mRNA的转
三个结构基因ara A,B,D编码着阿拉伯 糖异构酶,核酮糖激酶,5-磷酸核酮糖 差向异构酶,通过三步反应把ara变Xyl- 5-P (5-磷酸-木糖),一个五碳糖代 谢的中间体); ara操纵子的调节蛋白araC基因在ara操纵 子的上游。在ara operon有三个araC的结 合顺序araO1,O2,I,还有CAP结合位点, 结构基因ara BAD转录方重控制 1. 色氨酸操纵子是可以阻遏的 终产物色氨酸为辅阻遏子(co-repressor) promoter -40到+18 oprerator -10(-23到-3) RNA polymerase与repressor对promoter的 结合互相排斥; 基线水平表达(basal或repressed level) 2. 色氨酸操纵子还被转录弱化作用控制
弱化子(或衰减子,Attenuator):能使 弱化作用发生的DNA顺序(转录产物 RNA两种不同的二级结构控制后续的转 录)。 色氨酸操纵子mRNA的前导顺序(leader sequence)有不同的碱基配对结构。 转录衰减机制:由于转录和翻译偶联, 前导顺序中富含色氨酸密码,可作为细 胞中色氨酸浓度的传感器,前导肽合成 的速度影响核糖体的位置,进而影响前 导顺序的二级结构。
2. 乳糖操纵子的负调控 组成型(constitute)突变确定阻遏子的负 调控作用 a. Lac I 基因的突变或缺失造成LacZ,Y, A的组成型表达; 部份二倍体lac I-/lac I+ 恢复正常的调控, 说明lac I是反式作用因子(trans acting factor,有游离转录产物,因而功能可以 互补于另一同源染色体的等位基因位点。
7个氨基酸出现一个Leu。
七. 阿拉伯糖操纵子:一种既进行正调节也 能起负调节作用的调节蛋白。 ara operon调节方法:几种特殊的调节机 制。 1. araC蛋白既能进行正调控也能进行负调 控,信号分子的结合使它由阻遏子变构 成激活子;
2. araC蛋白调节它本身基因的表达。当它 细胞内含量多时阻遏自己基因转录,这 种现象叫自我调节(autoregulation); 3. 一些调节顺序能远距离起作用,通过蛋 白对蛋白和蛋白对DNA的互相作用把远 距离顺序靠DNA的环化(DNA looping) 引到启动子附近,这种特点使ara调节系 统成为真核生物基因远距离调控的一个 重要范例。 a. ara operon的组成
b. 操纵基因(operator)为顺式显性因子 (cis-acting,cis-dominant),它的突变 造成它下游基因的组成型表达; 顺式行为因子:只调节与它共价相连的 基因表达的DNA顺序单位,一般无转录 产物; 3. Lac operon的正调节 可诱导的分解代谢操纵子受CAP蛋白的 总调节(global control);
SOS反应
SOS反应诱导的部分基因 基因 功能 pol B DNA多聚酶II uvrA,B,C 核苷酸切割修复内切酶 umuC,D 差错倾向修复所需 recA ……
DNA损伤触发SOS反应是由一种阻遏蛋 白水解导致的; recA蛋白是一种多功能蛋白,当它和 ssDNA结合时,它有蛋白水解酶活性; LexA蛋白是recA合成的阻遏子; LexA蛋白被recA水解造成recA蛋白本身 及其他蛋白的合成;
九. 噬菌体λ 的发育调控 λ 的转录调控用级联(cascade)调控方 法,为了有序地组装噬菌体颗粒,把基 因分组分阶段表达; λ 决定溶源化或溶菌命运的调控,为了 解真核生物的发育调控提供了一种模式。
1. 溶菌(Lysis)和溶源化(Lysogeny) λ 进入细菌细胞后的两种命运: 溶菌周期(lytic cycle):新一代噬菌体 颗粒产生并导致细胞溶解; 溶源化:噬菌体DNA在寄主染色体上整 合,并随寄主DNA复制传代的过程。
肽链延长因子,细菌细胞中大量存在的蛋白 质(基因产物)之一; DNA损伤修复酶,每个细胞只有几个拷贝; 代谢途径的酶,因食物来源不同而变化数量; 一些影响细胞分化的蛋白只存在极短时间。 b. 基因表达的调节是细胞代谢平衡及维持发育 期间不同细胞的结构和功能差异的关键; c. 蛋白质(或RNA)在细胞内浓度可以在六个 水平上被调节;
录,CAP的结合使Lac操纵子的表达增强 50倍。 crp基因(cAMP receptor protein,CRP): 与腺苷酸环化酶基因突变抑制Lac opreon 的表达。 CAP的作用位点(见图): Lac -72 to-52,gal -50 to -23,ara -107 to 78,可能的作用方式模型 I. CAP-RNA多聚酶相互作用形成转录复合 物; II. CAP弯曲所结合的DNA片断,帮助RNA 多聚酶转录复合物的形成;
六. 调节蛋白与DNA的结合 1. 调节蛋白有着独特的与DNA结合的特殊 结构域(domain),结合DNA特殊顺序 的能力比普通顺序高出105-107倍。 用于与DNA结合的是调节蛋白中的几个 二级结构元件的固定组合,称为模序 (或模体,motif),motif是核酸或蛋白 质中的超二级结构。 a. 在双螺旋DNA的大沟与小沟中有着可供 识别的碱基上的氢键供体和受体及疏水 基团;
由于CAP是除葡萄糖以外的许多糖分解 代谢操纵子的正调节因子,这种受一种 调节蛋白所控制的操纵子网络总称调节 网(regulon)。 III. CAP受cAMP的激活,促进Lac mRNA 的转录; IV. 葡萄糖存在时cAMP的水平下降,结果 是葡萄糖存在时,E.coli先利用葡萄糖不 用乳糖。乳糖操纵子的三种状态表明只 有阻遏蛋白不在而cAMP-CAP存在时Lac mRNA才被大量转录。
第五章 基因表达的调节 (Gene regulation)
基因表达(gene expression):基因被转 录产生RNA,编码着蛋白质结构信息的 mRNA被翻译成蛋白质,总之,基因的 信息被转录,翻译成终产物的过程称为 基因表达。
一. 引论 a. 基因的多样性及表达的差异性 细胞在任何给定的时间内都表达的基因 只有一小部分;
四. 能与DNA结合的蛋白质因子的调节 1. 特异性因子:能促使RNA多聚酶对特定 的一些启动子的结合的蛋白质因子(σ70 普通σ因子;σ 32,for heat shock); 2. 阻遏子(repressors):能结合于启动子 阻遏RNA多聚酶与起动子结合的蛋白质 因子; 3. 激活子(activators):真核生物称反激 活子,能结合于启动子附近增加RNA多 聚酶和启动子结合的蛋白质因子。
基酸组成的“锌指”,其中4个AA残基 (4个Cys或2个Cys+2个His),配位结 合着锌粒子,形成指状结构。 3. 调节蛋白还和其他蛋白相互作用 调节蛋白的其它结构域参加与RNA多聚 酶结合或者与同一种蛋白结合成二聚体 或多聚体。 介导蛋白质-蛋白质相互作用的结构模 序具有特征性,如转录辅因子中的亮氨 酸拉链(Leucine Zipper),α-螺旋中每