STM795T中文资料

合集下载

7951调试手册

7951调试手册

configure → additional features → communications →
(通道3与通道2设置一直)
南京天梯系统工程控制有限公 司
A.(波特率)
Function Baud rate Character format Handshake
Port 2 baud rate 9600
南京天梯系统工程控制有限公 司
D.通讯地址
Rs232/485 select Modbus parameters Port 2 Rs232/485 sel Rs 485
Rs232/485 select Mobus parameters
Port 2 salve address 1
Rs 232/485 select → port 2 rs232/485 sel(Rs 485) → mobus parameter → salve address(通讯地址) ↓
configure → Temperature → Base Temperature(我
国主要设置为20摄氏度)
南京天梯系统工程控制有限公 司
压力设置组态
Custom equations password configure Health check Specific gravity Temperature pressure Custom equations
value Output 1 selection Eng unit @ 20mA Eng unit @ O/4mA
Analog outputs 1 0.000 % set
configure → analog outputs → analog outputs 2 → v (设置)为live

PIC32MX795F512L代码示例及说明

PIC32MX795F512L代码示例及说明

基于PIC32MX795F512L的Ethernet Starter Kit简单应用手册一、单片机基本概念1.1 单片机学习三要素单片机学习包括三部分,其一单片机开发板,其二,PC机上的开发环境,即MPLAB,其三,两者的连接器,即USB连接的DEBUG调试器。

三者关系如图1-1所示。

图1-1 单片机开发三要素单片机这里所用的单片机型号为PIC32MX795F512L型号单片机,此单片机所拥有的主要资源有:1、80MHz的主频,1.56DMIPS/MHz,总线32位;2、USB 2.0 接口;3、2个带1024缓存的CAN 2.0接口;4、8通道DMA通道;5、5级流水线,哈佛架构;6、1个以太网接口;7、512K的Flash,外加12k的启动Flash;8、128K的RAM;9、可编程中断向量控制器;10、16个10位AD转换器;11、UART/SPI/IIC等串行通信方式;12、带JTAG调试口,具有休眠功能,节省能耗。

更具体资源可以参考PIC32MX795F512L.pdf。

MPLAB的介绍详见第二章。

USB连接器,本质上是从单片机内部的JTAG线通过一块芯片把JTAG转为USB通信方式,然后直接连到PC机上,与MPLAB间接通信。

更多情况,一般都会独立做一个仿真器,功能如上所述。

更为详细的单片机知识可以参考:1、《PIC单片机实用教程——基础篇》;2、《PIC单片机实用教程——提高篇》;3、上相应目录下的资料;4、PIC论坛或MPLAB开发工具下的help等。

1.2 单片机最小系统所谓单片机最小系统,通俗的说法就是能让单片机工作的最小电路,其中包括提供单片机主频的时钟,提供电压的电源电路,复位电路,外加验证系统完整性的指示灯电路。

参看图1-2。

图1-2 单片机最小系统组成二、MPLAB的学习开发环境的选择,跟所使用的单片机型号有关系,这里必须使用8.43版本以上。

详细说明可以参看MPLAB实用说明。

MT795X - AC-DC隔离LED恒流驱动电源-设计指南-Rev2.1-2012-6-4

MT795X - AC-DC隔离LED恒流驱动电源-设计指南-Rev2.1-2012-6-4
MT795X 应用设计指南
MT795X – AC/DC 隔离 LED 恒流驱动电源 应用设计指南
一 MT795X 芯片功能介绍………………………………………1 二 原理图和工作波形……………………………………………2 三 变压器设计……………………………………………………3 四 关键外围器件的选择…………………………………………5 五 设计实例………………………………………………………5 六 PCB 设计…………………………………………………...…6 备注 ……………………………………………………………...…6
MT7955
Байду номын сангаас3V 5Ω 12W 以上 外置 DIP8
Confidential
Copyright © 2012 Maxic Technology Corporation
Rev2.1 Page 1
MT795X 应用设计指南
2. 性能特点 采用 MT795X 芯片的 LED 恒流驱动电源,工作在 DCM 模式;MT795X 内部采用美芯晟 科技的专利恒流控制技术,可以做到±1%的线性调整率和负载调整率,输出电流 Io 与变 压器的初级电感量 Lp 无关, 大批量生产的一致性好; MT795X 内置了过流、 过压、 短路、 开路等保护功能,电源产品安全可靠;采用原边反馈(PSR)技术,系统方案简洁,外围元 件少,有效降低了产品成本,缩小了产品体积。 3.工作原理 ●芯片逐周期检测变压器原边的峰值电流 Ip_pk,CS 端连接到内部的峰值电压比较器 的输入端,当 CS 脚电压达到 500mV 时,关断主功率管,即 Ton 由 CS 脚电压决定; ●芯片 AUX (DSN)脚检测变压器的退磁时间,通过美芯晟专利技术的算法,得到开关 周期 T,即周期 T 是由变压器的退磁时间决定的; 当交流输入电压变化时,Ton 会发生变化,从而保证输出电流恒定; 当输出电压变化时, 变压器退磁时间发生变化, 开关周期随之变化, 保证输出电流恒定; 当变压器的 Lp 变化时,Ton、退磁时间、开关周期均发生变化,保证输出电流恒定; 因此,无论输入电压、输出电压、变压器的 Lp 如何变化,都可以保证输出电流恒定。

MAX793T中文资料

MAX793T中文资料
o Guaranteed Reset Assertion to VCC = 1V o Backup-Battery Power Switching—Battery
Voltage Can Exceed VCC o On-Board Gating of Chip-Enable Signals—7ns
Max Propagation Delay
元器件交易网
19-0366; Rev 1; 1/96
MAX793/MAX794/MAX795
3.0V/3.3V Adjustable Microprocessor Supervisory Circuits
_______________General Description
MAX793
WDO
CE IN
MR
WDI
PFO
LOWLINE
ADDRESS DECODER
VCC
VCC A0-A15
I/O NMI
µP
PFI
RESET
BATT OK
GND
RESET
________________________________________________________________ Maxim Integrated Products 1
Output Current VOUT................................................................................200mA All Other Outputs ..............................................................20mA
Pin Configurations appear at end of data sheet.

ADS7952中文资料

ADS7952中文资料

MODEL ADS7953 SB ADS7952 SB ADS7951 SB ADS7950 SB ADS7953 S ADS7952 S ADS7951S ADS7950 S
ORDERING INFORMATION - 12-BIT
MAXIMUM INTEGRAL LINEARITY
(LSB)
MAXIMUM DIFFERENTIAL
The input signal is sampled with the falling edge of CS. It uses SCLK for conversion, serial data output, and reading serial data in. The devices allow auto sequencing of preselected channels or manual selection of a channel for the next conversion cycle.
+VBD = 3V) at 1 MSPS • Power-Down Current (1 µA) • Input Bandwidth (47 at 3dB) • 30-Pin and 38-Pin TSSOP Packages
APPLICATIONS
• PLC / IPC • Battery Powered Systems • Medical Instrumentation • Digital Power Supplies • Touch Screen Controllers • High-Speed Data Acquisition Systems • High-Speed Closed-Loop Systems
8 BIT ADS7961 ADS7960 ADS7959 ADS7958

TI产品中文版说明书

TI产品中文版说明书

Load (A)E f f i c i e n c y (%)0.00.51.0 1.52.06065707580859095100D008V INV OUTL1TLV62569AProduct Folder Order Now Technical Documents Tools &SoftwareSupport &CommunityTLV62568A ,TLV62569AZHCSI23B –APRIL 2018–REVISED MARCH 2020采用SOT563封装并具有强制PWM 的TLV6256xA 1A 、2A 降压转换器1特性•强制PWM 模式可减少输出电压纹波•效率高达95%•低R DS(ON)开关:100m Ω/60m Ω•输入电压范围为2.5V 至5.5V •可调输出电压范围为0.6V 至V IN •100%占空比,可实现超低压降• 1.5MHz 典型开关频率•电源正常输出•过流保护•内部软启动•热关断保护•采用SOT563封装•与TLV62568、TLV62569引脚对引脚兼容•借助WEBENCH ®电源设计器创建定制设计方案2应用•通用负载点(POL)电源•STB 和DVR •IP 网络摄像头•无线路由器•固态硬盘(SSD)–企业级3说明TLV62568A 、TLV62569A 器件是经过优化而具有高效率和紧凑型解决方案尺寸的同步降压型直流/直流转换器。

该器件集成了输出电流高达2A 的开关。

在整个负载范围内,该器件将以1.5MHz 开关频率在脉宽调制(PWM)模式下运行。

关断时,流耗减少至2μA 以下。

内部软启动电路可限制启动期间的浪涌电流。

此外,还内置了诸如输出过流保护、热关断保护和电源正常输出等其他特性。

该器件采用SOT563封装。

器件信息(1)器件型号封装封装尺寸(标称值)TLV62568ADRL SOT563(6)1.60mm x 1.60mmTLV62568APDRL TLV62569ADRL TLV62569APDRL(1)如需了解所有可用封装,请参阅产品说明书末尾的可订购产品附录。

SSC-MBT795中文资料

SSC-MBT795中文资料

SSC-QP-7-03-08(REV.00)
SEOUL SEMICONDUCTOR CO., LTD. 148-29 Kasan-Dong, Keumchun-Gu, Seoul, 153-023, Korea Phone : 82-2-2106-7305~6
SSC-MBT722
- 4/9 -
元器件交易网
*2
(Ta=25ºC)
Value 360 90 100 5 -30 ~ +85 -40 ~ +100
Unit mW mA mA V ºC ºC
*1 Care is to be taken that power dissipation does not exceed the absolute maximum rating of the product. *2 IFM was measured at TW ≤ 1msec of pulse width and D ≤ 1/10 of duty ratio.
CUSTOMER Checked by Approved by
SUPPLIER Drawn by Checked by Approved by
SSC-QP-7-03-08(REV.00)
SEOUL SEMICONDUCTOR CO., LTD. 148-29 Kasan-Dong, Keumchun-Gu, Seoul, 153-023, Korea Phone : 82-2-2106-7305~6
260 240 220 200
180 150 ~
Pre-heating
Rising 5 °C/sec
Cooling -5 °C/sec
0 Time [Hr]
(2) Hand Soldering conditions

单片机应用技术1 单片机硬件基础

单片机应用技术1 单片机硬件基础

复位电路
AT89S51最小系统之ROM选择
51单片机内部集成有4K字节的 程序存储器(标准型),可以外 接存储器芯片扩展容量。 EA=0时:不使用内部ROM, 外部地址从0开始。 EA=1时:内+外。超过内部 地址后自动使用外部ROM地址, 内外的地址连续。 根据程序编译后的代码长度考 虑选择不同内部ROM容量的单片 机型号。故EA固定为高电平。
AT:(美)ATMEL公司 P:(荷)Philips公司 STC:(大陆)宏晶科技 W:(台)华邦公司
0343:2003年43周制 造
AT89S51封装形式
PLCC44
TQFP44式封装。 PLCC44:特殊引脚芯片塑料封装,贴片封 装的一种,引脚在芯片底部向内弯曲,焊接 采用回流焊工艺,在调试时有插座可用。 TQFP44:薄四方扁平封装,低成本,低高 度引线框封装,适合用SMT表面安装技术。
PDIP40封装
端口的几个操作注意点
1.驱动能力不同,P0每引脚可以驱动8个TTL负载, 其余端口每引脚只能带4个。
2.P0口内部无上拉电阻,其余口有弱上拉,电路设计 时需要注意P0口漏极开路,做IO输出时,需外加上 拉电阻才会有高电平输出。
3.P0在做数据线时才是真正的双向口 P0-P3在做输入接口时,需要先置1再读入(打 开内部锁存器)
AT89S51
PDIP40 封装
AT89S51
PLCC44封装
注:NC表示该脚无用
AT89S51
TQFP44封装
注:NC表示该脚无用
AT89S51引脚功能
P0/P1/P2/P3:
4个并行端口,每口8脚,可做IO接口, 也可做第二功能;
IO功能:
输入输出引脚,用户灵活DIY

MAX4795EUK+T中文资料

MAX4795EUK+T中文资料

General DescriptionThe MAX4795–MAX4798 family of switches feature inter-nal current limiting to prevent damage to host devices due to faulty load conditions. These analog switches have a low 0.2Ωon-resistance and operate from a 2.0V to 4.5V input voltage range. They are available with guar-anteed 450mA and 500mA current limits, making them ideal for SDIO and other load-switching applications.When the switch is on and a load is connected to the port, a guaranteed blanking time of 14ms ensures the transient voltages settle down. If after this blanking time,the load current is greater than the current limit, the MAX4795 and MAX4797 switches are turned off and FLAG is issued to the microprocessor. The switch can be turned on again by cycling the power or the ON input. The MAX4796 and MAX4798 have an autoretry feature where the switch turns off and issues a FLAG to the microprocessor after the blanking time and then contin-uously checks to see if the overload condition is pre-sent. The switch remains on after the overload condition disappears and FLAG deasserts.The MAX4795–MAX4798 are available in tiny, space-saving, 5-pin SOT23 and 6-pin TDFN (3mm x 3mm)packages.ApplicationsSDIOPDAs and Palmtop Devices Cell Phones GPS Systems Hand-Held DevicesFeatureso Guaranteed Current Limit: 450mA and 500mA o Thermal-Shutdown Protection o Reverse-Current Protection o 0.2ΩOn-Resistanceo 14ms Guaranteed Blanking Time o FLAG Functiono Autoretry (MAX4796/MAX4798)o 80µA Supply Current o 6µA Latchoff Current (MAX4795/MAX4797)o 0.01µA Shutdown Current o +2V to +4.5V Supply Rangeo Fast Current-Limit Response Time o Tiny SOT23 and TDFN Packages oUL Certification PendingMAX4795–MAX4798450mA/500mA Current-Limit Switches________________________________________________________________Maxim Integrated Products 1Ordering InformationTypical Operating Circuit19-2944; Rev 0; 8/03For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Pin Configurations*Future product—contact factory for availability.**EP = Exposed pad.Selector Guide appears at end of data sheet.M A X 4795–M A X 4798450mA/500mA Current-Limit Switches 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Note 2:Latch-off current does not include the current flowing into FLAG .Note 3:TDFN packages are guaranteed by design.Note 4:The on-time is defined as the time taken for the current through the switch to go from 0mA to full load. The off-time is defined as the time taken for the current through the switch to go from full load to 0mA.Note 5:Retry time is typically 15 times the blanking time.IN, ON, FLAG , OUT to GND.....................................-0.3V to +6V OUT Short Circuit to GND.................................Internally Limited Continuous Power Dissipation (T A = +70°C)5-Pin SOT23 (derate 7.1mW/°C above +70°C)............571mW 6-Pin TDFN (derate 24.4mW/°C above +70°C).........1951mWOperating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX4795–MAX4798450mA/500mA Current-Limit Switches_______________________________________________________________________________________3204060801001201401602.0 2.5 3.0 3.5 4.0 4.5QUIESCENT SUPPLY CURRENTvs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (µA )5060807090100-4010-15356085SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )032145678910LATCH-OFF CURRENT vs. TEMPERATURETEMPERATURE (°C)L A T C H -O F FC U R R E N T (µA )-4010-15356085100-40-15103560851010.10.010.001SHUTDOWN SUPPLY CURRENTvs. TEMPERATUREM A X 4795 t o c 04TEMPERATURE (°C)S H U T D O W N S U P P L Y C U R R E N T (n A )SHUTDOWN LEAKAGE CURRENTvs. TEMPERATURE-40-15103560851010.10.010.001TEMPERATURE (°C)S H U T D O W N S U P P L Y C U R R E N T (n A )LATCH-OFF LEAKAGE CURRENTvs. TEMPERATUREM A X 4795 t o c 06-40-15103560851010010.10.010.0010.0001TEMPERATURE (°C)L A T C H -O F F L E A K A G E C U R R E N T (n A )10-40-151035608510.10.010.0010.0001SHUTDOWN REVERSE LEAKAGE CURRENTvs. TEMPERATURETEMPERATURE (°C)S H U T D O W N L E A K A G E C U R R E N T (n A )0.40.20.80.61.21.01.4-4010-15356085NORMALIZED ON-RESISTANCEvs. TEMPERATUREM A X 4795 t o c 08TEMPERATURE (°C)N O R M A L I Z E D R O N (Ω)200100500400300600700900800100000.60.90.3 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3OUTPUT CURRENT vs. OUTPUT VOLTAGEV IN - V OUT (V)O U T P U T C U R R E N T (m A )Typical Operating Characteristics(V IN = 3.3V, T A = +25°C, unless otherwise noted.)M A X 4795–M A X 4798450mA/500mA Current-Limit Switches 4_______________________________________________________________________________________FORWARD CURRENT LIMIT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)F O R W A R D C U R R E N T L I M I T (m A )4.03.53.02.55255505756006256505002.04.5SWITCH TURN-ON/OFF TIMESvs. TEMPERATURE-40-151035608510001001010.10.010.001TEMPERATURE (°C)T U R N -O N /O F F T I M E S (µs )20253530404550-4010-15356085FLAG-BLANKING TIMEOUT vs. TEMPERATUREM A X 4795 t o c 12TEMPERATURE (°C)F L AG -B L A N K I N G T I M E O U T (m s )0V 0V3.3V0V 3.3V V IN = 3.3V C OUT = 1µF C IN = 1µF V SEL = 3.3V 40µs/divV IN 2V/div V ON 2V/div I OUT200mA/divMAX4797/MAX4798CURRENT-LIMIT RESPONSE0V3V0VV IN = V ON C OUT = 1µF C IN = 1µF 40µs/divV IN = V ON 1V/divI OUT200mA/divMAX4797/MAX4798CURRENT-LIMIT RESPONSE0V3.3V3.3V0V0V 4µs/divV IN 2V/divV OUT 2V/divI OUT 5A/divCURRENT-LIMIT RESPONSE (OUT SHORTED TO GND)C IN = 1µF C OUT = 1µF0V0V 3V 3V 0V 200µs/divV IN 2V/div V OUT 2V/divI OUT 1A/divMAX4797/MAX4798REVERSE CURRENT LIMITMAX4795 toc16C IN = 1µF C OUT = 1µF0V3V0V20µs/divV ON 1V/divI OUT10mA/divSWITCH TURN-ON TIME RESPONSEMAX4795 toc17V IN = 3.3VTypical Operating Characteristics (continued)(V IN = 3.3V, T A = +25°C, unless otherwise noted.)MAX4795–MAX4798450mA/500mA Current-Limit Switches_______________________________________________________________________________________5Pin DescriptionFigure 1. Functional Diagram0V0V3.3V40ns/divV ON 1V/divI OUT10mA/divSWITCH TURN-OFF TIME RESPONSEMAX4795 toc18Typical Operating Characteristics (continued)(V IN = 3.3V, T A = +25°C, unless otherwise noted.)0V0V 0V0V 3.3V3.3V3.3V 10ms/divV IN 2V/divV OUT 2V/divV FLAG 2V/div I OUT500mA/divMAX4797/MAX4798FLAG-BLANKING RESPONSE (OVERLOAD CONDITION)MAX4795 toc19V IN = 3.3V C IN = 1µF C OUT = 1µFM A X 4795–M A X 4798450mA/500mA Current-Limit Switches 6_______________________________________________________________________________________Detailed DescriptionThe MAX4795–MAX4798 are forward/reverse current-limited switches that operate from a 2V to 4.5V input voltage range and guarantee a 450mA and 500mA minimum current-limit threshold for different options.The voltage drop across an internal sense resistor is compared to two reference voltages to indicate a for-ward or reverse current-limit fault. When the load cur-rent exceeds the preset current limit for greater than the fault-blanking time, the switch opens.The MAX4796 and MAX4798 have an autoretry function that turns on the switch again after an internal retry time expires. If the faulty load condition is still present after the blanking time, the switch turns off again and the cycle is repeated. If the faulty load condition is not pre-sent, the switch remains on.The MAX4795 and MAX4797 do not have the autoretry option and the switch remains in latch-off mode until the ON pin or the input power is cycled from high to low and then high again.Reverse-Current ProtectionThe MAX4795–MAX4798limit the reverse current (V OUT to V IN ) from exceeding the maximum I REV value. The switch is shut off and FLAG is asserted if the reverse current-limit condition persists for more than the blanking time. This feature prevents excessive reverse currents from flowing through the device.Switch-On/Off ControlToggle ON high to enable the current-limited switches.The switches are continuously on if there is no fault.When a forward/reverse current fault is present or the die exceeds the thermal-shutdown temperature of +150°C,OUT is internally disconnected from IN and the supply current decreases to 8µA (latch off). The switch is now operating in one of its off states. The switch-off state also occurs when driving ON low, thus reducing the supply current (shutdown) to 0.01µA. Table 1 illustrates the ON/OFF state of the MAX4795–MAX4798 current-limit switches.FLAG IndicatorThe MAX4795–MAX4798 feature a latched output (FLAG).Whenever an overcurrent condition is encountered, the MAX4795/MAX4797 latch FLAG low and turn the switch off. The MAX4796/MAX4798 latch FLAG low and keep it low until the overcurrent condition is removed.During this time, the switch cycles on and off in the autoretry mode. When the overcurrent condition is removed, FLAG deasserts and the switch turns on (Figure 2). FLAG is an open-drain output transistor and requires an external pullup resistor from FLAG to IN.During shutdown (ON is low), the pulldown on FLAG output is released to limit power dissipation. FLAG goes low when any of the following conditions occur:•The die temperature exceeds the thermal-shutdown temperature limit of +150°C.•The device is in current limit for more than the fault-blanking period.•The switch is in autoretry.Figure 2. MAX4796/MAX4798 Autoretry Fault-Blanking DiagramTable 1. MAX4795–MAX4798 Switch Truth TableMAX4795–MAX4798450mA/500mA Current-Limit Switches_______________________________________________________________________________________7Autoretry (MAX4796/MAX4798)When the forward or reverse current-limit threshold is exceeded, t BLANK timer begins counting (Figure 2).The timer resets if the overcurrent condition disappears before t BLANK has elapsed. A retry time delay, t RETRY ,is started immediately after t BLANK has elapsed and during that time, the switch is latched off and FLAG asserts. At the end of t RETRY , the switch is turned on again. If the fault still exists, the cycle is repeated. If the fault has been removed, the switch stays on and FLAG deasserts.The autoretry feature saves system power in the case of an overcurrent or short-circuit condition. During t BLANK , when the switch is on, the supply current is at the current limit. During t RETRY , when the switch is off,the current through the switch is zero. Instead of observing the full load current, the switch sees the equivalent load current times duty cycle or I SUPPLY =I LOAD ✕t BLANK /(t BLANK + t RETRY ). With a typical t BLANK = 37ms and typical t RETRY = 555ms, the duty cycle is 6%, which results in a 94% power savings over the switch being on the entire time. The duty cycle is consistent across the process and devices.Latchoff (MAX4795/MAX4797)When the forward or reverse current-limit threshold is exceeded, t BLANK timer begins counting. The timer resets if the overcurrent condition disappears before t BLANK has elapsed. The switch is shut off and FLAG asserts if the overcurrent condition continues up to the end of the blanking time. Reset the switch by either tog-gling ON (Figure 3) or cycling the input voltage.Fault BlankingThe MAX4795–MAX4798feature 14ms (min) fault blank-ing. Fault blanking allows current-limit faults, including momentary short-circuit faults that occur when hot swapping a capacitive load, and also ensures that no fault is issued during power-up. When a load transient causes the device to enter current limit, an internal counter starts. If the load-transient fault persists beyond the fault-blanking timeout, FLAG asserts low. Load-tran-sient faults less than t BLANK do not cause a FLAG out-put assertion. Only current-limit faults are blanked.A thermal fault causes FLAG to assert immediately and does not wait for the blanking time.Thermal ShutdownThe MAX4795–MAX4798 have a thermal-shutdown fea-ture to protect the devices from overheating. The switchturns off and FLAG goes low immediately (no fault blanking) when the junction temperature exceeds +150°C. The switches with autoretry turn back on when the device temperature drops approximately 15°C. The switches with latchoff require ON cycling.Applications InformationInput CapacitorTo limit the input voltage drop during momentary output short-circuit conditions, connect a capacitor from IN to GND. A 0.1µF ceramic capacitor is adequate for most applications; however, higher capacitor values further reduce the voltage drop at the input and are recom-mended for lower voltage applications.Figure 3. MAX4795/MAX4797 Latch-Off Fault BlankingM A X 4795–M A X 4798Output CapacitanceConnect a 0.1µF capacitor from OUT to GND. This capacitor helps prevent inductive parasitics from pulling OUT negative during turn off, thus preventing the MAX4795–MAX4798 from tripping erroneously. If the load capacitance is too large, then current may not have enough time to charge the capacitor and the device assumes that there is a faulty load condition.The maximum capacitive load value that can be driven from OUT is obtained by the following formula:Layout and Thermal DissipationTo optimize the switch response time to output short-circuit conditions, it is very important to keep all traces as short as possible to reduce the effect of undesirable parasitic inductance. Place input and output capacitors as close as possible to the device (no more than 5mm).IN and OUT pins must be connected with short traces to the power bus.During normal operation, the power dissipation is small and the package temperature change is minimal. If the output is continuously shorted to ground at the maxi-mum supply voltage, the operation of the switches with the autoretry option does not cause problems because the total power dissipated during the short is scaled by the duty cycle:where V IN = 4.5V, I OUT = 750mA, t BLANK = 14ms, and t RETRY = 210ms.Attention must be given to the MAX4795 and MAX4797where the latchoff condition must be manually reset by toggling ON from high to low. If the latchoff time dura-tion is not sufficiently high, it is possible for the device to reach the thermal-shutdown threshold and never beable to turn the device on until it cools down.450mA/500mA Current-Limit Switches 8_______________________________________________________________________________________Chip InformationTRANSISTOR COUNT: 2539PROCESS: BiCMOSMAX4795–MAX4798450mA/500mA Current-Limit SwitchesMa xim ca nnot a ssume responsibility for use of a ny circuitry other tha n circuitry entirely embodied in a Ma xim product. No circuit pa tent licenses a re implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____________________9©2003 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。

79527-5001中文资料

79527-5001中文资料

FEATURES AND SPECIFICATIONSSPECIFICATIONSSFP Cage Assemblies Multi-Port Stacked withSlimStack™ Connectors 79527These SFP Multi-Port Stacked Cage Assemblies fromMolex provide a simplified one-piece solution to meet customer requirements for high-density SFP module spacing. Available products support up to 4.25Gbps data rates with power-filtering circuitry. Standard versions feature an elastomeric gasket that reduces insertion force into the I/O panel while ensuring a reliable EMI seal. These assemblies feature the Molex Board-to-Board SlimStack connector to maintain signal transmission speeds and minimize costs. Circuitcomponents have been designed into the assemblies to optimize electrical performance.The product offering consists of standard and customized assemblies, tailored to suit customers'applications:Standard Products - begin with two versions which utilize two 1-by-4 SFP cages (series 73927) installed belly-to-belly using one spacer board. The interface to the host board is achieved with a 0.635mm (.025”)SlimStack connector.Styles include an original SFP-chassis style or a version compliant with the ATCA* (Advanced Telecom Computing Architecture) standard, the difference specified by the height of the interface connector. The ATCA version uses a 7.00mm (.276”) height while the standard version uses a 10.00mm (.394”) height connector.Customized Products - include different configurations of SFP cages, along with the addition of power filtering components on the spacer board, customized mechanical outlines or the options of pre-installed LEDs and light pipes.Reference Information Packaging: BoxMates With: 73929 Copper Patch Cable,74720 HSSDC2 Copper Pluggable Module and industry-standard optical SFP modulesUsed With: 0.635mm (.025”) SlimStack Connector Plug on host PCBDesigned In: MillimetersElectrical - SFP Connector (74441)Voltage: 30V Current: 0.5AContact Resistance: 10m Ωmax.Dielectric Withstanding Voltage: 300VAC Insulation Resistance: 100M Ωmin.Electrical - 0.635mm (.025”) SlimStack Receptacle Voltage: 100V Current: 0.5AContact Resistance: 40m Ωmax.Dielectric Withstanding Voltage: 250V AC Insulation Resistance: 1000M Ω min.MechanicalSFP Connector contact retention to Housing:4.4N (1.0 lb)Mating Force: 22N (5.0 lb)Unmating Force: 8.8N (2.0 lb)Normal Force: 0.8N (80g)Durability: 200 cyclesPhysical - SFP Connector (74441)Housing: High-temperature thermoplastic Contact: Copper AlloyPlating: Contact Area - 0.38µm min. GoldSolder Tail Area - Gold flash or 2.54µm Tin/Lead Underplating - 2.54µm NickelPhysical - 0.635mm (.025”) SlimStack ReceptacleHousing: White Glass Filled LCP , UL 94V-0Contact: Copper Alloy Plating: Gold over NickelOperating Temperature: -55 to +85°CPhysical - Multi-Port Stacked SFP Cage (79527)Housing: Nickel-Silver alloyPCB Thickness: 3.00mm (.118”) min. for single-sided PCB, 3.81mm (.150”) min. for double-sided PCB Operating Temperature: -55 to +85°CFeatures and BenefitsI Single-piece board-to-board assembly provides easy installation and facilitates ordering and inventorying of components I High-speed electrical performance tested to 2.5Gbps and 4.25Gbps supports high-speed networking and data exchange equipmentI Individual electrical customization provides added board components for power filtering, enhanced electrical performance and added LEDs and lightpipes I Mechanical customization allows board size to fit customer dimensions and shape and reduces lead time for modification and design changes Customized and Standard Small Form-factor Pluggable (SFP) Multi-Port Stacked Cage Assemblies with SlimStack Connectors Provide One-Piece Convenience and Superior Electrical Performance Custom SFP Multi-Port Stacked Assembly Host PCB Side Up with SlimStack ConnectorSFP Multi-Port Stacked Assembly Standard Form Factor ChassisAmericas Headquarters Lisle, Illinois 60532 U.S.A.1-800-78MOLEX amerinfo@ Far East North Headquarters Yamato, Kanagawa, Japan 81-462-65-2324feninfo@ Far East South Headquarters Jurong, Singapore 65-6-268-6868fesinfo@ European Headquarters Munich, Germany 49-89-413092-0eurinfo@Corporate Headquarters 2222 Wellington Ct.Lisle, IL 60532 U.S.A.630-969-4550Fax:630-969-1352Visit our Web site at /product/sfp.htmlOrder No. USA-217Printed in USA 2.5K/JI/JI/2004.10©2004, MolexORDERING INFORMATION。

ADS7953SBDBT中文资料

ADS7953SBDBT中文资料

Copyright © 2008, Texas Instruments Incorporated
元器件交AD易S7网95w0,wAwD.cSe7c9b521b, .AcoDmS7952, ADS7953 ADS7954, ADS7955, ADS7956, ADS7957 ADS7958, ADS7959, ADS7960, ADS7961
12/10/8-Bit, 1 MSPS, 16/12/8/4-Channel, Single-Ended, MicroPower, Serial Interface ADCs
FEATURES
1
• 1-MHz Sample Rate Serial Devices • Product Family of 12/10/8-Bit Resolution • Zero Latency • 20-MHz Serial Interface • Analog Supply Range: 2.7 to 5.25V • I/O Supply Range: 1.7 to 5.25V • Two SW Selectable Unipolar, Input Ranges: 0
MODEL ADS7953 SB ADS7952 SB ADS7951 SB ADS7950 SB ADS7953 S ADS7952 S ADS7951S ADS7950 S
ORDERING INFORMATION - 12-BIT
MAXIMUM INTEGRAL LINEARITY
(LSB)
MAXIMUM DIFFERENTIAL
The input signal is sampled with the falling edge of CS. It uses SCLK for conversion, serial data output, and reading serial data in. The devices allow auto sequencing of preselected channels or manual selection of a channel for the next conversion cycle.

新编俄罗斯电子器件对照手册资料

新编俄罗斯电子器件对照手册资料

俄型号:К133ИЕ2十进制计数器说明相应国内外产品К133ИЕ2型单片TTL中规模半□中国型号导体集成电路,由四个主从触发器和附加推荐替换 SG5490A门电路组成,功能为具有清零和置9输入生产厂家 4435厂端的负沿触发异步十进制计数器。

其计数□国外型号 SN5490A (美国)长度可以是2、5、10分频。

К133ИЕ2主要参数 5490A主要参数 (T A=25℃)К133ИЕ2逻辑图和外引线排列 5490A功能表和外引线排列俄型号:К133ИЕ54位二进制计数器说明相应国内外产品К133ИЕ5型单片TTL中规模半□中国型号导体集成电路,由四个主从触发器和附加推荐替换 SG5493A门电路组成。

可组成二分频计数器和三级生产厂家 4435厂二进制计数器,具有清零输入端。

□国外型号 SN5493A (美国)AК133ИЕ5逻辑图和外引线排列 5493A功能表和外引线排列俄型号:К133ЛА28输入与非门说明相应国内外产品К133ЛА2型单片TTL小规模半□中国型号导体集成电路,功能为8输入端与非门。

推荐替换 JT5430生产厂家 4435厂□国外型号 SN5430 (美国)К133ЛА2逻辑图和外引线排列 5430逻辑图和外引线排列俄型号:К133ЛА3四2输入与非门说明相应国内外产品К133ЛА3型单片TTL小规模半□中国型号导体集成电路,由四个独立的而又完全相推荐替换 JT5400同的2输入端与非门组成。

生产厂家 4435厂□国外型号 SN5400 (美国)AК133ЛА3逻辑图和外引线排列 5400逻辑图和外引线排列说明相应国内外产品К133ЛА4型单片TTL小规模半□中国型号导体集成电路,由三个独立的而又完全相推荐替代 JT5410同的3输入端与非门组成。

生产厂家 4435厂□国外型号 SN5410 (美国)AК133ЛА4逻辑图和外引线排列* 5410逻辑图和外引线排列*注:俄产品输出脚顺序与5410不同,选用时应注意。

IBM System x3755 M3产品指南说明书

IBM System x3755 M3产品指南说明书

System x3755 M3Product Guide (withdrawn product)The System x3755 M3 is a four-socket AMD Opteron processor-based server that is optimized for outstanding density and cost. It provides flexibility and scalability while offering multiple levels of price/performance. With features such as high performance AMD Opteron 6300 series processors, up to 32 available DIMM sockets with up to 512 GB of memory , and robust I/O, the System x3755 M3 provides four-socket performance at an entry-level price.The x3755 M3 is an ideal server for business workloads including database, virtualization, Java, and enterprise applications such as ERP. The increased processor density helps reduce networking complexity and cost for high-performance computing environments, and the available 32 TB of internal storage facilitates data-intensive applications like business intelligence.Figure 1 shows the System x3755 M3.Figure 1. The System x3755 M3Did you know?The System x3755 M3 fits into 2U of standard rack space, and it can be used as a very affordable dual-socket 2U rack platform with the ability to grow to four sockets in the same space, or as a very dense space-optimized and price/performance-optimized four-socket enterprise-class server for business critical corporate applications. High availability, manageability, and performance features include Chipkill memory, Memory Sparing, Light Path Diagnostics, Predictive Failure Analysis, TCP Offload Engine (TOE), and integrated baseboard management controller (iBMC) with activated built-in remote presence feature.Click here to check for updatesLocations of key components and connectors Figure 2 shows the front of the server.Figure 2. Front view of the System x3755 M3Figure 3 shows the rear of the server.Figure 3. Rear view of the System x3755 M3Figure 4 shows the locations of key components inside the server.Figure 4. Inside view of the System x3755 M3 (shown with the power-supply cage and air baffle removed) Standard specificationsThe following table lists the standard specifications.Table 1. Standard specificationsComponent SpecificationForm factor2U rack.Processor Up to four AMD Opteron processors.Models with AMD Opteron 6300 processors: Either 16 cores (up to 2.8 GHz) or 12 cores (up to 2.8GHz) or 8 cores (up to 3.2 GHz) or 4 cores (3.5 GHz), HyperTransport 3 technology up to 6.4 GT/s, andup to 1600 MHz memory speed.Models with AMD Opteron 6200 processors: Either 16 cores (up to 2.5 GHz) or 12 cores (up to 2.6GHz) or 8 cores (up to 3.0 GHz), HyperTransport 3 technology up to 6.4 GT/s, and up to 1333 MHzmemory speed.MemorycacheUp to 16 MB L3.Chipset Models with AMD Opteron 6300 processors: AMD SB5790 and SP5100Models with AMD Opteron 6200 processors: AMD SR5690 and SP5100.Memory sockets Up to 32 DIMM sockets (eight DIMMs per processor). Four memory channels per processor, up to 2 DIMMs per channelProcessor optionsThe server supports the processor options listed in the following table. The server supports up to four processors. The following table shows which server models have each processor standard. If there is no corresponding where-used model for a particular processor, then this processor is only available through CTO.Table 3. Processor optionsPart number Featurecodes*Description†Maximummem speedModelswhere usedAMD Opteron 6300 series processors00AM131A4MW / A4N6AMD Opteron 6308 4C 3.5 GHz 16MB 115W1600 MHz-00AM130A4MV / A4N5AMD Opteron 6320 8C 2.8 GHz 16MB 115W1600 MHz-00AM129A4MU / A4N4AMD Opteron 6328 8C 3.2 GHz 16MB 115W1600 MHz-00AM128A4MT / A4N3AMD Opteron 6344 12C 2.6 GHz 16MB 115W1600 MHz-00AM127A4MS / A4N2AMD Opteron 6348 12C 2.8 GHz 16MB 115W1600 MHz-00AM132A4MX / A4N7AMD Opteron 6366HE 16C 1.8 GHz 16MB 85W1600 MHz-00AM126A4MR / A4N1AMD Opteron 6376 16C 2.3 GHz 16MB 115W1600 MHz-00AM125A4MQ / A4N0AMD Opteron 6378 16C 2.4 GHz 16MB 115W1600 MHz-00AM123A4MN / A4MY AMD Opteron 6380 16C 2.5 GHz 16MB 115W1600 MHz F3x00AM124A4MP / A4MZ AMD Opteron 6386SE 16C 2.8 GHz 16MB 140W1600 MHz-AMD Opteron 6200 series processors90Y5355A1T8 / A1TZ AMD Opteron 6212 8C 2.6 GHz 16MB 115W1333 MHz-90Y5358A1TB / A1U2AMD Opteron 6220 8C 3.0 GHz 16MB 115W1333 MHz J2x90Y5357A1TA / A1U1AMD Opteron 6234 12C 2.4 GHz 16MB 115W1333 MHz G2x90Y5356A1T9 / A1U0AMD Opteron 6238 12C 2.6 GHz 16MB 115W1333 MHz-90Y5359A1TC / A1U3AMD Opteron 6262HE 16C 1.6 GHz 16MB 85W1333 MHz L2x90Y5354A1T7 / A1TY AMD Opteron 6272 16C 2.1 GHz 16MB 115W1333 MHz D2x90Y5353A1T6 / A1TX AMD Opteron 6274 16C 2.2 GHz 16MB 115W1333 MHz-90Y5352A1T5 / A1TW AMD Opteron 6276 16C 2.3 GHz 16MB 115W1333 MHz B2x90Y5351A1T4 / A1TV AMD Opteron 6282SE 16C 2.6 GHz 16MB 140W1333 MHz A2x* The first feature code is for the first two processors; the second feature code is for the third and fourth processors† Processor detail: Processor model, number of cores, core speed, L3 cache, and power consumption. Memory optionsLenovo DDR3 memory is compatibility tested and tuned for optimal System x performance and throughput. DDR3 memory specifications are integrated into the light path diagnostics for immediate system performance feedback and optimum system uptime. From a service and support standpoint, Lenovo memory automatically assumes the system warranty, and provides service and support worldwide.The following tables lists memory options available for the x3755 M3 server.Internal drive optionsThe following table lists hard drive options for internal disk storage of the x3755 M3 server. Table 8. Disk drive options for internal disk storagePart number Featurecode Description MaximumsupportedHot-swap SAS drives44W22445313600GB 15K 6Gbps SAS 3.5" Hot-Swap HDD844W22395312450GB 15K 6Gbps SAS 3.5" Hot-Swap HDD844W22345311300GB 15K 6Gbps SAS 3.5" Hot-Swap HDD8Hot-swap NL SAS drives49Y6205A4AG4TB 7.2K 6Gbps NL SAS 3.5'' HS HDD881Y9758A2813TB 7.2K 6Gbps NL SAS 3.5" HS HDD842D076754172TB 7.2K 6Gbps NL SAS 3.5" HS HDD842D077754181TB 7.2K 6Gbps NL SAS 3.5" HS HDD8Hot-swap NL SATA drives49Y6185A3WB4TB 7.2K 6Gbps NL SATA 3.5" HS HDD881Y9774A27Z3TB 7.2K 6Gbps NL SATA 3.5" HS HDD842D078254152TB 7200 NL SATA 3.5" HS HDD8Hot-swap SATA drives43W762655601TB 7200 SATA 3.5'' HS HDD839M45305196500GB 7200 RPM 3.5" Hot-Swap SATA II8Simple swap drives81Y9778A2803TB 7.2K 6Gbps NL SATA 3.5" SS HDD642D078754162TB 7200 NL SATA 3.5" SS HDD643W762255591TB 7.2K SATA 3.5" Simple-Swap HDD639M45145288500GB 7200 RPM 3.5" Simple-Swap SATA II6Internal backup unitsThe x3755 M3 server with simple-swap drives can physically house an internal tape drive. However, the supported tape drive has been withdrawn from marketing. As a result the x3755 M3 cannot be configured with an internal tape drive.Optical drivesFigure 5. Adapter slots in the x3755 M3External backup unitsThe following table lists the external backup options that are offered by Lenovo. Table 15. External backup optionsPart number DescriptionExternal RDX USB drives4T27A10725ThinkSystem RDX External USB 3.0 DockExternal SAS tape backup drives6160S7E IBM TS2270 Tape Drive Model H7S6160S8E IBM TS2280 Tape Drive Model H8S6160S9E IBM TS2290 Tape Drive Model H9SExternal SAS tape backup autoloaders6171S7R IBM TS2900 Tape Autoloader w/LTO7 HH SAS6171S8R IBM TS2900 Tape Autoloader w/LTO8 HH SAS6171S9R IBM TS2900 Tape Autoloader w/LTO9 HH SASExternal tape backup libraries6741A1F IBM TS4300 3U Tape Library-Base Unit6741A3F IBM TS4300 3U Tape Library-Expansion UnitFull High 8 Gb Fibre Channel for TS430001KP938LTO 7 FH Fibre Channel Drive01KP954LTO 8 FH Fibre Channel Drive02JH837LTO 9 FH Fibre Channel DriveHalf High 8 Gb Fibre Channel for TS430001KP936LTO 7 HH Fibre Channel Drive01KP952LTO 8 HH Fibre Channel Drive02JH835LTO 9 HH Fibre Channel DriveHalf High 6 Gb SAS for TS430001KP937LTO 7 HH SAS Drive01KP953LTO 8 HH SAS Drive02JH836LTO 9 HH SAS DriveFor more information, see the list of Product Guides in the Backup units category: https:///servers/options/backupTop-of-rack Ethernet switchesUninterruptible power supply unitsThe following table lists the uninterruptible power supply (UPS) units that are offered by Lenovo.Table 17. Uninterruptible power supply unitsPart number Description55941AX RT1.5kVA 2U Rack or Tower UPS (100-125VAC)55941KX RT1.5kVA 2U Rack or Tower UPS (200-240VAC)55942AX RT2.2kVA 2U Rack or Tower UPS (100-125VAC)55942KX RT2.2kVA 2U Rack or Tower UPS (200-240VAC)55943AX RT3kVA 2U Rack or Tower UPS (100-125VAC)55943KX RT3kVA 2U Rack or Tower UPS (200-240VAC)55945KX RT5kVA 3U Rack or Tower UPS (200-240VAC)55946KX RT6kVA 3U Rack or Tower UPS (200-240VAC)55948KX RT8kVA 6U Rack or Tower UPS (200-240VAC)55949KX RT11kVA 6U Rack or Tower UPS (200-240VAC)55948PX RT8kVA 6U 3:1 Phase Rack or Tower UPS (380-415VAC)55949PX RT11kVA 6U 3:1 Phase Rack or Tower UPS (380-415VAC)55943KT†ThinkSystem RT3kVA 2U Standard UPS (200-230VAC) (2x C13 10A, 2x GB 10A, 1x C19 16A outlets) 55943LT†ThinkSystem RT3kVA 2U Long Backup UPS (200-230VAC) (2x C13 10A, 2x GB 10A, 1x C19 16A outlets)55946KT†ThinkSystem RT6kVA 5U UPS (200-230VAC) (2x C13 10A outlets, 1x Terminal Block output)5594XKT†ThinkSystem RT10kVA 5U UPS (200-230VAC) (2x C13 10A outlets, 1x Terminal Block output)† Only available in China and the Asia Pacific market.For more information, see the list of Product Guides in the UPS category:https:///servers/options/upsPower distribution unitsThe following table lists the power distribution units (PDUs) that are offered by Lenovo.Table 18. Power distribution unitsPart number Featurecode Description0U Basic PDUs00YJ776ATZY0U 36 C13/6 C19 24A 1 Phase PDU N Y Y N N N N N N Y Y Y N 00YJ779ATZX0U 21 C13/12 C19 48A 3 Phase PDU N N Y N N N Y N N Y Y Y N 00YJ777ATZZ0U 36 C13/6 C19 32A 1 Phase PDU Y Y N Y Y Y Y Y Y N N Y Y 00YJ778AU000U 21 C13/12 C19 32A 3 Phase PDU Y Y N Y Y Y Y Y Y N N Y Y 0U Switched and Monitored PDUs00YJ783AU040U 12 C13/12 C19 Switched and Monitored 48A 3Phase PDUN N Y N N N Y N N Y Y Y N00YJ781AU030U 20 C13/4 C19 Switched and Monitored 24A 1Phase PDUN N Y N Y N Y N N Y Y Y N00YJ782AU020U 18 C13/6 C19 Switched and Monitored 32A 3Phase PDUY Y Y Y Y Y Y Y Y N Y N Y ANZASEANBrazilEETMEARUCISWEHTKINDIAJAPANLANAPRC00YJ780AU010U 20 C13/4 C19 Switched and Monitored 32A 1Phase PDUY Y Y Y Y Y Y Y Y N Y N Y1U Switched and Monitored PDUs4PU7A81117BNDV1U 18 C19/C13 switched and monitored 48A 3PWYE PDU - ETLN N N N N N N N N N N Y N4PU7A77467BLC41U 18 C19/C13 Switched and Monitored 80A 3PDelta PDUN N N N N N N N N Y N Y N4PU7A77469BLC61U 12 C19/C13 switched and monitored 60A 3PDelta PDUN N N N N N N N N N N Y N4PU7A77468BLC51U 12 C19/C13 switched and monitored 32A 3PWYE PDUY Y Y Y Y Y Y Y Y N Y Y Y4PU7A81118BNDW1U 18 C19/C13 switched and monitored 48A 3PWYE PDU - CEY Y Y Y Y Y Y Y Y N Y N Y 46M400258961U 9 C19/3 C13 Switched and Monitored DPI PDU Y Y Y Y Y Y Y Y Y Y Y Y Y 46M400458941U 12 C13 Switched and Monitored DPI PDU Y Y Y Y Y Y Y Y Y Y Y Y Y 46M400358971U 9 C19/3 C13 Switched and Monitored 60A 3Phase PDUY Y Y Y Y Y Y Y Y Y Y Y Y46M400558951U 12 C13 Switched and Monitored 60A 3 PhasePDUY Y Y Y Y Y Y Y Y Y Y Y Y 1U Ultra Density Enterprise PDUs (9x IEC 320 C13 + 3x IEC 320 C19 outlets)71763NU6051Ultra Density Enterprise C19/C13 PDU60A/208V/3PHN N Y N N N N N N Y Y Y N 71762NX6091Ultra Density Enterprise C19/C13 PDU Module Y Y Y Y Y Y Y Y Y Y Y Y Y 1U C13 Enterprise PDUs (12x IEC 320 C13 outlets)39M28166030DPI C13 Enterprise PDU Plus Module (WW)Y Y Y Y Y Y Y Y Y Y Y Y Y 39Y89416010DPI C13 Enterprise PDU Module (WW)Y Y Y Y Y Y Y Y Y Y Y Y Y 1U C19 Enterprise PDUs (6x IEC 320 C19 outlets)39Y89486060DPI C19 Enterprise PDU Module (WW)Y Y Y Y Y Y Y Y Y Y Y Y Y 39Y89236061DPI Three-phase 60A/208V C19 Enterprise PDU(US)N N Y N N N Y N N N Y Y N 1U Front-end PDUs (3x IEC 320 C19 outlets)39Y89386002DPI Single-phase 30A/120V Front-end PDU (US)Y Y Y Y Y Y Y Y Y Y Y Y Y 39Y89396003DPI Single-phase 30A/208V Front-end PDU (US)Y Y Y Y Y Y Y Y Y Y Y Y Y 39Y89346005DPI Single-phase 32A/230V Front-end PDU(International)Y Y Y Y Y Y Y Y Y Y Y Y Y 39Y89406004DPI Single-phase 60A/208V Front-end PDU (US)Y N Y Y Y Y Y N N Y Y Y N 39Y89356006DPI Single-phase 63A/230V Front-end PDU(International)Y Y Y Y Y Y Y Y Y Y Y Y Y 1U NEMA PDUs (6x NEMA 5-15R outlets)39Y89055900DPI 100-127V NEMA PDU Y Y Y Y Y Y Y Y Y Y Y Y Y Line cords for 1U PDUs that ship without a line cord40K96116504 4.3m, 32A/380-415V, EPDU/IEC 309 3P+N+G 3phwye (non-US) Line CordY Y Y Y Y Y Y Y Y Y Y Y Y40K96126502 4.3m, 32A/230V, EPDU to IEC 309 P+N+G (non-US) Line Cord Y Y Y Y Y Y Y Y Y Y Y Y YPart number Featurecode Description ANZASEABraziEETMEARUCIWEHTKINDIAJAPALANAPRC40K96136503 4.3m, 63A/230V, EPDU to IEC 309 P+N+G (non-US) Line CordY Y Y Y Y Y Y Y Y Y Y Y Y40K96146500 4.3m, 30A/208V, EPDU to NEMA L6-30P (US) Line CordY Y Y Y Y Y Y Y Y Y Y Y Y 40K96156501 4.3m, 60A/208V, EPDU to IEC 309 2P+G (US) Line CordN N Y N N N Y N N Y Y Y N 40K96176505 4.3m, 32A/230V, Souriau UTG Female to AS/NZ 3112 (Aus/NZ) Line CordY Y Y Y Y Y Y Y Y Y Y Y Y 40K961865064.3m, 32A/250V, Souriau UTG Female to KSC 8305 (S. Korea) Line CordY Y Y Y Y Y Y Y Y Y Y Y YPart number Feature code Description For more information, see the Lenovo Press documents in the PDU category:https:///servers/options/pduRack cabinetsThe server supports the rack cabinets listed in the following table.Table 19. Rack cabinetsPart number Description201886X 11U Office Enablement Kit 93084EX 42U Enterprise Expansion Rack 93084PX 42U Enterprise Rack93604EX 42U 1200 mm Deep Dynamic Expansion Rack 93604PX 42U 1200 mm Deep Dynamic Rack 93614EX 42U 1200 mm Deep Static Expansion Rack 93614PX 42U 1200 mm Deep Static Rack93624EX 47U 1200 mm Deep Static Expansion Rack 93624PX 47U 1200 mm Deep Static Rack 14104RXLinux Cluster RackFor more information, see the list of Product Guides in the Rack cabinets and options category:https:///servers/options/racksKVM console optionsThe following table lists the supported KVM consoles, keyboards, and KVM switches.Table 20. Console keyboardsPart number DescriptionConsoles 17238BX1U 18.5" Standard Console (without keyboard)Console keyboards 00MW310Lenovo UltraNav Keyboard USB - US Eng46W6713Keyboard w/ Int. Pointing Device USB - Arabic 253 RoHS v246W6714Keyboard w/ Int. Pointing Device USB - Belg/UK 120 RoHS v2A N ZA S E AB r a z i E E TM E A R U C I W EH T K I N D I AJ A P A L AN AP R CPart number Description46W6715Keyboard w/ Int. Pointing Device USB - Chinese/US 467 RoHS v246W6716Keyboard w/ Int. Pointing Device USB - Czech 489 RoHS v246W6717Keyboard w/ Int. Pointing Device USB - Danish 159 RoHS v246W6718Keyboard w/ Int. Pointing Device USB - Dutch 143 RoHS v246W6719Keyboard w/ Int. Pointing Device USB - French 189 RoHS v246W6720Keyboard w/ Int. Pointing Device USB - Fr/Canada 445 RoHS v246W6721Keyboard w/ Int. Pointing Device USB - German 129 RoHS v246W6722Keyboard w/ Int. Pointing Device USB - Greek 219 RoHS v246W6723Keyboard w/ Int. Pointing Device USB - Hebrew 212 RoHS v246W6724Keyboard w/ Int. Pointing Device USB - Hungarian 208 RoHS v246W6725Keyboard w/ Int. Pointing Device USB - Italian 141 RoHS v246W6726Keyboard w/ Int. Pointing Device USB - Japanese 194 RoHS v246W6727Keyboard w/ Int. Pointing Device USB - Korean 413 RoHS v246W6728Keyboard w/ Int. Pointing Device USB - LA Span 171 RoHS v246W6729Keyboard w/ Int. Pointing Device USB - Norwegian 155 RoHS v246W6730Keyboard w/ Int. Pointing Device USB - Polish 214 RoHS v246W6731Keyboard w/ Int. Pointing Device USB - Portuguese 163 RoHS v246W6732Keyboard w/ Int. Pointing Device USB - Russian 441 RoHS v246W6733Keyboard w/ Int. Pointing Device USB - Slovak 245 RoHS v246W6734Keyboard w/ Int. Pointing Device USB - Spanish 172 RoHS v246W6735Keyboard w/ Int. Pointing Device USB - Swed/Finn 153 RoHS v246W6736Keyboard w/ Int. Pointing Device USB - Swiss F/G 150 RoHS v246W6737Keyboard w/ Int. Pointing Device USB - Thai 191 RoHS v246W6738Keyboard w/ Int. Pointing Device USB - Turkish 179 RoHS v246W6739Keyboard w/ Int. Pointing Device USB - UK Eng 166 RoHS v246W6740Keyboard w/ Int. Pointing Device USB - US Euro 103P RoHS v246W6741Keyboard w/ Int. Pointing Device USB - Slovenian 234 RoHS v2Console switches1754D2X Global 4x2x32 Console Manager (GCM32)1754D1X Global 2x2x16 Console Manager (GCM16)1754A2X Local 2x16 Console Manager (LCM16)1754A1X Local 1x8 Console Manager (LCM8)Console switch cables43V6147Single Cable USB Conversion Option (UCO)39M2895USB Conversion Option (4 Pack UCO)46M5383Virtual Media Conversion Option Gen2 (VCO2)46M5382Serial Conversion Option (SCO)For more information, see the list of Product Guides in the KVM Switches and Consoles category: /servers/options/kvmLenovo Financial ServicesTrademarksLenovo and the Lenovo logo are trademarks or registered trademarks of Lenovo in the United States, other countries, or both. A current list of Lenovo trademarks is available on the Web athttps:///us/en/legal/copytrade/.The following terms are trademarks of Lenovo in the United States, other countries, or both:Lenovo®Lenovo ServicesRackSwitchServeRAIDServerGuideServerProven®System x®ThinkSystem®UltraNav®The following terms are trademarks of other companies:Intel® is a trademark of Intel Corporation or its subsidiaries.Linux® is the trademark of Linus Torvalds in the U.S. and other countries.Microsoft®, Windows Server®, and Windows® are trademarks of Microsoft Corporation in the United States, other countries, or both.Other company, product, or service names may be trademarks or service marks of others.。

STM795SDS6E中文资料

STM795SDS6E中文资料

1/31September 2004STM690, STM704, STM795STM802, STM804, STM805, STM8063V Supervisor with Battery Switchover* Contact local ST sales office for availability.FEATURES SUMMARY■■NVRAM SUPERVISOR FOR EXTERNAL LPSRAM■CHIP-ENABLE GATING (STM795 only) FOR EXTERNAL LPSRAM (7ns max PROP DELAY)■MANUAL (PUSH-BUTTON) RESET INPUT ■200ms (TYP) t rec■WATCHDOG TIMER - 1.6sec (TYP)■AUTOMATIC BATTERY SWITCHOVER■LOW BATTERY SUPPLY CURRENT - 0.4µA (TYP)■POWER-FAIL COMPARATOR (PFI/PFO)■LOW SUPPLY CURRENT - 40µA (TYP)■GUARANTEED RST (RST) ASSERTION DOWN TO V CC = 1.0V■OPERATING TEMPERATURE:–40°C to 85°C (Industrial Grade)Table 1. Device OptionsNote: 1.2.Open drain output.Watchdog InputActive- Low RST (1)Active- High RSTManual Reset Input Battery Switch-overPower-fail Compar-atorChip-Enable GatingSTM690T/S/R ✔✔✔✔STM704T/S/R ✔✔✔✔STM795T/S/R ✔(2)✔✔STM802T/S/R ✔✔✔✔STM804T/S/R ✔✔(2)✔✔STM805T/S/R ✔✔(2)✔✔STM806T/S/R✔✔✔✔STM690/704/795/802/804/805/806TABLE OF CONTENTSFEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Figure 1.Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Table 1.Device Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4Figure 2.Logic Diagram (STM690/802/804/805) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Figure 3.Logic Diagram (STM704/806) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Figure 4.Logic Diagram (STM795). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Table 2.Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Figure 5.STM690/802/804/805 Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Figure 6.STM704/806 Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Figure 7.STM795 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Table 3.Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Figure 8.Block Diagram (STM690/802/804/805). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Figure 9.Block Diagram (STM704/806). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Figure 10.Block Diagram (STM795) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Figure 11.Hardware Hookup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9Reset Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Push-button Reset Input (STM704/806). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Watchdog Input (NOT available on STM704/795/806) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Back-up Battery Switchover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Table 4.I/O Status in Battery Back-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..9 Chip-Enable Gating (STM795 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Chip Enable Input (STM795 only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Chip Enable Output (STM795 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Figure 12.Chip-Enable Gating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Figure 13.Chip Enable Waveform (STM795) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Power-fail Input/Output (NOT available on STM795) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Figure 14.Power-fail Comparator Waveform (STM690/704/802/804/805/806). . . . . . . . . . . . . . . .11 Using a SuperCap™ as a Backup Power Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Figure ing a SuperCap™. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Negative-Going V CC Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12TYPICAL OPERATING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13Figure 16.V BAT-to-V OUT On-Resistance vs. Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Figure 17.Supply Current vs. Temperature (no load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Figure 18.V PFI Threshold vs. Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Figure 19.Reset Comparator Propagation Delay vs. Temperature. . . . . . . . . . . . . . . . . . . . . . . . .14 Figure 20.Power-up t rec vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142/31STM690/704/795/802/804/805/806Figure 21.Normalized Reset Threshold vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Figure 22.Watchdog Time-out Period vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 CON On-Resistance vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Figure 24.PFI to PFO Propagation Delay vs. Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Figure 25.RST Output Voltage vs. Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Figure 26.RST Output Voltage vs. Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Figure 27.RST Response Time (Assertion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Figure 28.RESET Response Time (Assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Figure 29.Power-fail Comparator Response Time (Assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Figure 30.Power-fail Comparator Response Time (De-Assertion) . . . . . . . . . . . . . . . . . . . . . . . . .19 Figure 31.V CC to Reset Propagation Delay vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Figure 32.Maximum Transient Duration vs. Reset Threshold Overdrive. . . . . . . . . . . . . . . . . . . . .20CON Propagation Delay vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Table 5.Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21Table 6.Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Figure 34.E to ECON Propagation Delay Test Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Figure 35.AC Testing Input/Output Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Figure 36.MR Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Figure 37.Watchdog Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Table 7.DC and AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Figure 38.SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mech. Drawing. . . .26 Table 8.SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mechanical Data . .26 Figure 39.TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Outline . . . . . . . . . . .27 Table 9.TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Mechanical Data. . . .27PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Table 10.Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Table 11.Marking Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Table 12.Document Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303/31STM690/704/795/802/804/805/8064/31SUMMARY DESCRIPTIONThe STM690/704/795/802/804/805/806 Supervi-sors are self-contained devices which provide mi-croprocessor supervisory functions with the ability to non-volatize and write-protect external LPSRAM. A precision voltage reference and com-parator monitors the V CC input for an out-of-toler-ance condition. When an invalid V CC condition high in the case of RST). These devices also offer a watchdog timer (except for STM704/795/806) as well as a power-fail comparator (except for STM795) to provide the system with an early warning of impending power failure.These devices are available in a standard 8-pin SOIC package or a space-saving 8-pin TSSOP package.Note: 1.For STM804/805, reset output is active-high and opendrain.Table 2. Signal NamesNote: 1.Open drain for STM804/805 only.2.STM795MR Push-button Reset Input WDIWatchdog InputRST Active-Low Reset Output RST (1)Active-High Reset Output E (2)Chip Enable InputE CON (2)Conditioned Chip Enable Output Vccsw (2)V CC Switch Output V OUTSupply Voltage Output V CC Supply Voltage V BAT Back-up Supply Voltage PFI Power-fail Input PFO Power-fail Output V SSGroundSTM690/704/795/802/804/805/806drain.5/31STM690/704/795/802/804/805/8066/31Pin DescriptionsA logic low on /MR asserts the reset output.Reset remains asserted as long as MR is low and for t rec after MR returns high. This active-low inputhas an internal pull-up. It can be driven from a TTL or CMOS logic line, or shorted to ground with a switch. Leave open if unused.WDI.If WDI remains high or low for 1.6sec, the in-ternal watchdog timer runs out and reset is trig-gered. The internal watchdog timer clears while reset is asserted or when WDI sees a rising or fall-ing edge.The watchdog function cannot be disabled by al-lowing the WDI pin to float.Pulses low for t rec when triggered, and stayslow whenever V CC is below the reset threshold or when MR is a logic low. It remains low for t rec after either V CC rises above the reset threshold, the watchdog triggers a reset, or MR goes from low tohigh.RST (Open Drain).Pulses high for t rec when trig-gered, and stays high whenever V CC is above the reset threshold or when MR is a logic high. It re-mains high for t rec after either V CC falls below thereset threshold, the watchdog triggers a reset, orMR goes from high to low.PFI.When PFI is less than V PFI or when V CC falls below V SW remains high. Connect to ground if unused.When PFI is less than V PFI , or V CC falls be-low V SW high. Leave open if unused.V OUT .When V CC is above the switchover voltage(V SO ), V OUT is connected to V CC through a P-channel MOSFET switch. When V CC falls belowV SO , V BAT connects to V OUT . Connect to V CC if no battery is used.When V OUT switches to battery, Vccsw ishigh. When V OUT switches back to V CC low. It can be used to drive gate of external PMOS transistor for I OUT requirements exceeding 75mA.The input to the chip-enable gating circuit. Con-nect to ground if unused.CON .CON goes low only when E is low and re-set is not asserted. If E CON is low when reset is as-CON goes high, whichever occurs first. In the disabled CON is pulled up to V OUT .V BAT .When V CC falls below V SO , V OUT switchesfrom V CC to V BAT . When V CC rises above V SO +hysteresis, V OUT reconnects to V CC . V BAT may ex-ceed V CC . Connect to V CC if no battery is used.Table 3. Pin DescriptionPinNameFunctionSTM795STM690STM802STM704STM806STM804STM805––6–MR Push-button Reset Input –6–6WDI Watchdog Input777–RST Active-Low Reset Output –––7RST Active-High Reset Output –444PFI PFI Power-fail Input –555PFO PFO Power-fail Output1111V OUT Supply Output for External LPSRAM 2222V CC Supply Voltage 3–––Vccsw V CC Switch Output 4333V SS Ground5–––E Chip Enable Input6–––E CON Conditioned Chip Enable Output 8888V BATBackup-Battery InputSTM690/704/795/802/804/805/806Note: 1.For STM804/805, reset output is active-high and open drain.7/31STM690/704/795/802/804/805/806Note: 1.For STM690/802/804/805.2.For STM795 only.3.Not available on STM795.4.For STM704/806.8/31STM690/704/795/802/804/805/806 OPERATIONReset OutputThe STM690/704/795/802/804/805/806 Supervi-sor asserts a reset signal to the MCU whenever V CC goes below the reset threshold (V RST), a watchdog time-out occurs, or when the Push-but-ton Reset Input (MR) is taken low. RST is guaran-teed to be a logic low (logic high for STM804/805) for 0V < V CC < V RST if V BAT is greater than 1V. Without a back-up battery, RST is guaranteed val-id down to V CC =1V.During power-up, once V CC exceeds the reset threshold an internal timer keeps RST low for the reset time-out period, t rec. After this interval RST returns high.If V CC drops below the reset threshold, RST goes low. Each time RST is asserted, it stays low for at least the reset time-out period (t rec). Any time V CC goes below the reset threshold the internal timer clears. The reset timer starts when V CC returns above the reset threshold.Push-button Reset Input (STM704/806)A logic low on MR asserts reset. Reset remains asserted while MR is low, and for t rec (see Figure 36.,page22) after it returns high. The MR input has an internal 40kΩ pull-up resistor, allowing it to be left open if not used. This input can be driven with TTL/CMOS-logic levels or with open-drain/ collector outputs. Connect a normally open mo-ual reset function; external debounce circuitry is the device is used in a noisy environment, connect a 0.1µF capacitor from MR to GND to provide ad-V CC when not used.Watchdog Input (NOT available on STM704/ 795/806)The watchdog timer can be used to detect an out-of-control MCU. If the MCU does not toggle the Watchdog Input (WDI) within t WD (1.6sec typ), the reset is asserted. The internal watchdog timer is cleared by either:1. a reset pulse, or2.by toggling WDI (high-to-low or low-to-high),which can detect pulses as short as 50ns. If WDI is tied high or low, a reset pulse istriggered every 1.8sec (t WD + t rec).The timer remains cleared and does not count for as long as reset is asserted. As soon as reset is re-leased, the timer starts counting (see Figure 37.,page23).Note: Input frequency greater than 20ns (50MHz) will be filtered.Back-up Battery SwitchoverIn the event of a power failure, it may be necessary to preserve the contents of external SRAM through V OUT. With a backup battery installed with voltage V BAT, the devices automatically switch the SRAM to the back-up supply when V CC falls. Note: If back-up battery is not used, connect both V BAT and V OUT to V CC.This family of Supervisors does not always con-nect V BAT to V OUT when V BAT is greater than V CC. V BAT connects to V OUT (through a 100Ω switch) when V CC is below V SW (2.4V) or V BAT (whichever is lower). This is done to allow the back-up battery (e.g., a 3.6V lithium cell) to have a higher voltage than V CC.Assuming that V BAT > 2.0V, switchover at V SO en-sures that battery back-up mode is entered before V OUT gets too close to the 2.0V minimum required to reliably retain data in most external SRAMs. When V CC recovers, hysteresis is used to avoid oscillation around the V SO point. V OUT is connect-ed to V CC through a 3Ω PMOS power switch. Note: The back-up battery may be removed while V CC is valid, assuming V BAT is adequately decou-pled (0.1µF typ), without danger of triggering a re-set.Table 4. I/O Status in Battery Back-up Pin StatusV OUT Connected to V BAT through internal switchV CC Disconnected from V OUTPFI DisabledPFO Logic LowE High impedanceE CON Logic HighWDI Watchdog timer is disabledMR DisabledRST Logic LowRST Logic HighV BAT Connected to V OUTVccsw Logic High (STM795)9/31STM690/704/795/802/804/805/80610/31Chip-Enable Gating (STM795 only)vents erroneous data from corrupting the external CMOS RAM in the event of an undervoltage con-dition. The STM795 uses a series transmission gate from E to E CON (see Figure 12). During nor-mal operation (reset not asserted), the E transmis-sion gate is enabled and passes all E transitions.When reset is asserted, this path becomes dis-abled, preventing erroneous data from corrupting the CMOS RAM. The short E propagation delay from E to E CON enables the STM795 to be used with most µPs. If E is low when reset asserts,CON remains low for typically 10µs to permit the current WRITE cycle to complete.Chip Enable Input (STM795 only)The chip-enable transmission gate is disabled and E is high impedance (disabled mode) while reset is asserted. During a power-down sequence when V CC passes the reset threshold, the chip-enable transmission gate disables and E immediately be-comes high impedance if the voltage at E is high.transmission gate will disable 10µs after reset as-serts (see Figure 13). This permits the current WRITE cycle to complete during power-down.Any time a reset is generated, the chip-enable transmission gate remains disabled and E remains high impedance (regardless of E activity) for the first half of the reset time-out period (t rec /2). When the chip enable transmission gate is enabled, the impedance of E appears as a 40Ω resistor in se-ries with the load at E CON . The propagation delay through the chip-enable transmission gate de-pends on V CC , the source impedance of the drive connected to E, and the loading on E CON . The chip enable propagation delay is production tested from the 50% point on E to the 50% point on E CON using a 50Ω driver and a 50pF load capacitance (see Figure 35.,page 22). For minimum propaga-CON and use a low-output impedance driver.Chip Enable Output (STM795 only)When the chip-enable transmission gate is en-CON is equivalent to a 40Ω resistor in series with the source driving E. In the disabled mode, the transmission gate is off CON to V OUT (see Figure 12). This pull-up turns off when the trans-mission gate is enabled.Power-fail Input/Output (NOT available on STM795)The Power-fail Input (PFI) is compared to an inter-nal reference voltage (independent from the V RST comparator). If PFI is less than the power-fail threshold (V PFI), the Power-Fail Output (PFO) will go low. This function is intended for use as an un-dervoltage detector to signal a failing power sup-ply. Typically PFI is connected through an external voltage divider (see Figure 11.,page8) to either the unregulated DC input (if it is available) or the regulated output of the V CC regulator. The voltage divider can be set up such that the voltage at PFI falls below V PFI several milliseconds before the regulated V CC input to the STM690/704/795/802/ 804/805/806 or the microprocessor drops below the minimum operating voltage.During battery back-up, the power-fail comparator Figure 14.,page11). This occurs after V CC drops below V SW (2.4V). When power returns, the pow-er-fail comparator is enabled and PFO follows PFI. If the comparator is unused, PFI should be con-nected to V SS and PFO left unconnected. PFO may be connected to MR on the STM704/806 so that a low voltage on PFI will generate a reset out-put.Applications InformationThese Supervisor circuits are not short-circuit pro-tected. Shorting V OUT to ground - excluding pow-er-up transients such as charging a decoupling capacitor - destroys the device. Decouple both V CC and V BAT pins to ground by placing 0.1µF ca-pacitors as close to the device as possible.11/31Using a SuperCap™ as a Backup Power SourceSuperCaps™ are capacitors with extremely high capacitance values (e.g., order of 0.47F) for their size. Figure 15 shows how to use a SuperCap as a back-up power source. The SuperCap may be connected through a diode to the V CC supply. Since V BAT can exceed V CC while V CC is above the reset threshold, there are no special precau-tions when using these supervisors with a Super-Cap.Negative-Going V CC TransientsThe STM690/704/795/802/804/805/806 Supervi-sors are relatively immune to negative-going V CC transients (glitches). Figure 32.,page20 was gen-erated using a negative pulse applied to V CC, starting at V RST + 0.3V and ending below the reset threshold by the magnitude indicated (comparator overdrive). The graph indicates the maximum pulse width a negative V CC transient can have without causing a reset pulse. As the magnitude of the transient increases (further below the thresh-old), the maximum allowable pulse width decreas-es. Any combination of duration and overdrive which lies under the curve will NOT generate a re-set signal. Typically, a V CC transient that goes 100mV below the reset threshold and lasts 40µs or less will not cause a reset pulse. A 0.1µF bypass capacitor mounted as close as possible to the V CC pin provides additional transient immunity.12/31TYPICAL OPERATING CHARACTERISTICSNote: Typical values are at T A = 25°C.13/3114/3115/31Figure 24. PFI to PFO Propagation Delay vs. TemperatureFigure 25. RST Output Voltage vs. Supply Voltage16/31Figure 27. RST Response Time (Assertion)17/3118/3119/31Figure 33. E to E20/3121/31MAXIMUM RATINGStressing the device above the rating listed in the Absolute Maximum Ratings” table may cause per-manent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not im-plied. Exposure to Absolute Maximum Rating con-ditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality docu-ments.Table 5. Absolute Maximum RatingsNote: 1.Reflow at peak temperature of 255°C to 260°C for < 30 seconds (total thermal budget not to exceed 180°C for between 90 to 150seconds).DC AND AC PARAMETERSThis section summarizes the operating measure-ment conditions, and the DC and AC characteris-tics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the MeasurementConditions summarized in Table 6, Operating and AC Measurement Conditions. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters.Table 6. Operating and AC Measurement ConditionsSymbol ParameterValue Unit T STG Storage Temperature (V CC Off)–55 to 150°C T SLD (1)Lead Solder Temperature for 10 seconds 260°C V IO Input or Output Voltage –0.3 to V CC +0.3V V CC /V BATSupply Voltage –0.3 to 6.0V I O Output Current 20mA P DPower Dissipation320mWParameterSTM690/704/795/802/804/805/806Unit V CC /V BAT Supply Voltage1.0 to 5.5V Ambient Operating Temperature (T A )–40 to 85°C Input Rise and Fall Times ≤5ns Input Pulse Voltages0.2 to 0.8V CC V Input and Output Timing Ref. Voltages0.3 to 0.7V CCVFigure 34. E to ENote: 1.C L includes load capacitance and scope probe capacitance.Figure 36. MR Timing WaveformNote: 1.RST for STM805.22/31Table 7. DC and AC CharacteristicsSym Alter-nativeDescription Test Condition(1)Min Typ Max UnitV CC,V BAT(2)Operating Voltage T A = –40 to +85°C 1.1(3) 5.5VI CC V CC Supply CurrentExcluding I OUT (V CC < 5.5V)4060µAExcluding I OUT (V CC < 3.6V)3550µAV CC Supply Current inBattery Back-up ModeExcluding I OUT(V BAT = 2.3V,V CC = 2.0V, MR = V CC)2535µAI BAT(4)V BAT Supply Current inBattery Back-up ModeExcluding I OUT(V BAT = 3.6V)0.4 1.0µAV OUT1V OUT Voltage (Active)I OUT1 = 5mA(5)V CC –0.03V CC –0.015V I OUT1 = 75mAV CC –0.3V CC –0.15V I OUT1 = 250µA,V CC > 2.5V(5)V CC –0.0015V CC –0.0006VV OUT2V OUT Voltage (BatteryBack-up)I OUT2 = 250µA, V BAT = 2.3VV BAT –0.1V BAT –0.034VI OUT2 = 1mA, V BAT = 2.3VV BAT –0.14V V CC to V OUT On-resistance34ΩV BAT to V OUT On-resistance100ΩI LI Input Leakage Current (MR)STM704/806 only;MR = 0V; V CC = 3V2075350µA Input Leakage Current (PFI)0V = V IN = V CC–252+25nA Input Leakage Current (WDI)0V = V IN = V CC–1+1µAI LO Output Leakage Current STM804/805/795;0V = V IN = V CC(6)–1+1µAV IH Input High Voltage (MR, WDI)V RST (max) < V CC < 5.5V0.7V CC VV IL Input Low Voltage (MR, WDI)V RST (max) < V CC < 5.5V0.3V CC V23/31V OL Output Low Voltage (PFO,RST, RST, Vccsw)V CC = V RST (max),I SINK = 3.2mA0.3V Output Low Voltage (E CON)V CC = V RST (max),I OUT = 1.6mA, E = 0V0.2V CC VV OL Output Low Voltage (RST)I OL = 40µA; V CC = 1.0V;V BAT = V CC;T A = 0°C to 85°C0.3VI OL = 200µA;V CC = 1.2V; V BAT = V CC0.3VV OH Output High Voltage (RST,RST)(7)I SOURCE = 1mA,V CC = V RST (max)2.4V Output High Voltage (E CON)V CC = V RST (max),I OUT = 1.6mA, E = V CC0.8V CC V Output High Voltage (PFO)I SOURCE = 75µA,V CC = V RST (max)0.8V CC VV OHB V OH Battery Back-up (E CON,Vccsw, RST)I SOURCE = 100µA,0.8V BA T VPower-fail Comparator (NOT available on STM795)V PFI PFI Input ThresholdPFI Falling(V CC < 3.6V)STM802/804/8061.212 1.237 1.262VSTM690/704/8051.187 1.237 1.287VPFI Hysteresis PFI Rising (V CC < 3.6V)1020mVt PFD PFI to PFO PropagationDelay2µsI SC PFO Output Short toGND CurrentV CC = 3.6V, PFO = 0V0.10.75 2.0mABattery SwitchoverV SOBattery Back-upSwitchover Voltage (8,9)Power-downV BA T > V SW V SW VV BA T < V SW V BA T VPower-upV BA T > V SW V SW VV BA T < V SW V BA T V V SW 2.4V Hysteresis40mVSym Alter-nativeDescription Test Condition(1)Min Typ Max Unit24/31。

微波电路-ZX76-15R5A-PPS+ 5位数字步进衰减器说明书

微波电路-ZX76-15R5A-PPS+ 5位数字步进衰减器说明书

PRODUCT OVERVIEWZX76-15R5A-PPS+ is a 5-bit digital step attenuator with parallel control and single positive supply voltage input. Attenuation can be set from 0 to 15.5 dB in 0.5 dB steps, with 0.1 dB typical accuracy. The attenuator is housed in a compact unibody package, with SMA RF connections and a snap-fit control input.The high speed parallel control interface supports manual control and integration with a wide range of microcontroller and custom I/O (input / output) control systems. Data is entered into the internal 5-bit register using 5V logic levels and then latched to set the attenuation.For applications requiring Ethernet / USB control and software support, please review Mini-Circuits’ R_DAT series of programmable attenuators at https:///WebStore/RF-Programmable-Step-Attenuators.htmlAPPLICATIONS y T est Setup y LabyInstrumentationTHE BIG DEALy 5-bit digital step attenuatory High speed parallel control interface y Low insertion lossy Fast attenuation transitionsy No control software or PC requiredKEY FEATURESGeneric photo used for illustration purposes onlySee our website for RoHS Compliance methodologies and qualificationsDC ELECTRICAL SPECIFICATIONSAMB DD 1. Input IP3 and 1dB compression degrade below 1 MHz. Input power not to exceed max operating specification for continuous operation.FIGURE 1: Max Input Operating Power vs FrequencyPIN DESCRIPTIONPIN CONFIGURATION2Both RF ports must be held at 0VDC or DC blocked with an external series capacitor..ABSOLUTE MAXIMUM RATINGSmum ratings for extended periods of time may result in reduced life and reliability.SIDE VIEWTOP VIEWP1P2J2J2SIMPLIFIED SCHEMATICNote: Not all 32 possible combinations of C0.5 - C8 are shown in tableThe ZX76-15R5A-PPS+ serial interface consists of 5 control bits that select the desired attenuation state, as shown in Table 1: Truth Table.FIGURE 2: PARALLEL INTERFACE TIMING DIAGRAMPOWER-UP STATEWhen the attenuator powers up and LE is logic low, the nominal attenuation is set on 0 dB. When LE is logic high, the nominal attenuation selected upon control logics ( see Table 1 ).The parallel interface timing requirements are defined by Figure 2 (Parallel I nterface Timing Diagram) and Table 2 (Parallel I nterface AC Characteristics), and the switching speed.For latched parallel programming the Latch Enable (LE) should be held LOW while changing attenuation state control values, then pulse LE HIGH to LOW (per Figure 1) to latch new attenuation state into the device.For direct parallel programming, the Latch Enable (LE) line should be pulled HI GH. Changing the attenuation state control values will immediately change the device’s state to a new attenuation value. Direct mode is ideal for manual control of the device (using hardwire, switches, or jumpers).Control cables for programming can be ordered separately. For details see page 5.t PDSUPtPDHLD LEPWZX76-WP+ CONTROL CABLERECOMMENDED ACCESSORIESTYPICAL PERFORMANCE DATA (AT 25°C)NOTESA.Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.B.Electrical specifications and performance data contained in this specification document are based on Mini-Circuit’s applicable established test performance criteria and measurement instructions.C.The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, “Standard T erms”); Purchasers of this part are entitled to the rightsand benefits contained therein. For a full statement of the standard. T erms and the exclusive rights and remedies thereunder, please visit Mini-Circuits’ website at /MCLStore/terms.jspPerformance DataData TableSwept GraphsS-Parameter (S2P Files) Data Set (.zip.file)Case Style HK1172Environmental RatingENV28T14ADDITIONAL DETAILED TECHNICAL INFORMATIONAdditional information is available on our dash board. To access this information click here。

《UM125T产品》课件

《UM125T产品》课件

市场前景分析
市场需求:随着城市化进程的加快,人们对出行的需求日益增长
竞争分析:UM125T产品面临来自其他品牌的竞争,需要不断提高产品质量和性能
发展趋势:随着环保意识的提高,电动车市场将逐渐扩大,UM125T产品需要适应这一趋 势
技术发展:随着科技的进步,电动车的技术将不断提高,UM125T产品需要不断更新 技术,提高竞争力
用户反馈和评价
用户评价:UM125T产品性能稳定, 操作简便,易于维护
用户评价:UM125T产品性价比高, 价格合理
添加标题
添加标题
添加标题
添加标题
用户反馈:UM125T产品外观设计 时尚,符合现代审美
用户反馈:UM125T产品售后服务 周到,响应迅速
Part Six
UM125T产品的市 场前景和发展趋势
UM125T产品介绍
PPT,a click to unlimited possibilities
汇报人:PPT
目录
01 添 加 目 录 项 标 题 03 U M 1 2 5 T 产 品 规 格 和 参 数
02 U M 1 2 5 T 产 品 概 述 04 U M 1 2 5 T 产 品 功 能 和 优 势
05 U M 1 2 5 T 产 品 的 用 户 体 验
07 U M 1 2 5 T 产 品 的 品 质 保 障 和 服务支持
06 U M 1 2 5 T 产 品 的 市 场 前 景和发展趋势
Part One
单击添加章节标题
Part Two
UM125T产品概述
产品名称和型号
产品名称:UM125T 型号:UM125T 生产厂家:未知
解决方案和应用案例
解决方案:UM125T产品提供了一套完整的解决方案,包括硬件、软件和服务。 优势:UM125T产品具有高性能、高可靠性、高安全性等特点,能够满足不同客户的需求。

MT7955规格书-中文 _Rev1[1].10

MT7955规格书-中文 _Rev1[1].10
vdd12vta25c符号参数mintypmaxunit启动与电源电压start启动电流2550uvlo欠压锁定电压dd低阀值电压dd脚电压下降72start启动电压dd脚电压上升16ddclampvdd钳位电压dd10ma19电源电流工作电流fs40khz18ma电流检测csth电流检测阈值487500513mvleb1csd脚的内置前沿消隐时间500ns辅助绕组检测ovthdsen脚过压检测阈值24leb2dsen脚电压检测前沿消隐时间20us热保护otp过热保护温度阈值155过热保护释放的迟滞温度20dson功率管导通阻抗vgs10vids1abvdss功率管击穿电压vgs0vids250ua600dss功率管漏电流vgs0vvds600vuamt7955高精度原边反馈led恒流驱动开关mt7955rev
辅助绕组检测
MT7955 Rev. 1.10
版权 © 2011 美芯晟科技有限公司
第3页
MT7955
高精度原边反馈 LED 恒流驱动开关
原理框图
功能描述
MT7955是一款专用于LED照明恒流驱动的芯片, 工作于电感电流断续模式。 采用美芯晟专利的恒流 控制和补偿方法,内部集成2A / 600V功率开关, 只需要极少的外围器件就可以达到优异的恒流特 性。无需光耦及次级反馈电路,系统方案简洁、成 本低。 启动过程 启动过程中,VDD 通过一个连接到母线的启动电 阻充电。当 VDD 达到 16V 时,控制逻辑就开始工 作,内部功率管开始开关动作。如图 1 所示。 恒流控制与输出电流设置 芯片逐周期检测变压器原边的峰值电流,CS(D)端 连接到内部的峰值电流比较器的输入端,与内部 500mV 的阈值电平进行比较,当 CS(D)外部电压 达到该阈值时,功率管关断。 原边峰值电流的表达式为: 一旦辅助绕组上的电压升得足够高, 芯片的电源将 由辅助绕组提供。 如果 VDD 低于 7.2V ,则 MT7955 将自动关闭 (UVLO 阀值电压) 。

唯特利快装刀闸阀 795系列和906系列 维护快速指南说明书

唯特利快装刀闸阀 795系列和906系列 维护快速指南说明书

5.拆卸固定螺栓:从固定板上拆下四个六角头螺栓和螺母。

注:不要拆下填料螺钉。

否则 会导致阀座损坏。

6a.打开阀门:对于手轮式阀门,沿“打开”(逆时针)方向 操作手轮,从阀体中拉出阀座。

6b.对于气动或液压操作阀门,使阀门打开并从阀体中拉出阀座。

7.拆卸支架:阀座离开阀体开口后,从闸门连接器的方槽中滑出阀座套件。

注:拆卸阀座套件时,请准备好用双手支撑住它的重量。

在拆卸阀座套件前,请参阅下表中的具体重量。

更大尺寸可能还需要使用机械起重设备。

Installation-Ready™快装刀闸阀795系列和906系列I-795/906.MNT-CHI维护快速指南拆卸现有阀座套件1.给系统卸压并排干积水:在拆卸阀座套件之前,对管道系统完全卸压、 排干积水并彻底冲洗,然后使闸刀 返回到全关位置。

2.拆卸行程限制器:拆下行程限制器,以便阀杆完全升起。

使用一个7/16英寸/11毫米深孔套筒扳手,拆下T 型螺栓夹具上的螺母并将夹具拉开。

拆下T 型螺栓夹具并将行程限制器的两个半体分开拆下。

3.拆卸旋塞:使用一个1 1/4英寸/ 32毫米扳手(对于3至8英寸的 阀门)或一个1 1/2英寸/38毫米扳手 (对于10至12英寸的阀门),从阀体底部拆下旋塞。

4.拆卸和重新安装闸门连接器螺钉:从闸门连接器上拆下两个六角头螺钉。

然后将这两个螺钉重新穿过阀座每侧的卡销并插入闸刀一侧中,用手拧紧。

这是在以后步骤的拆卸期间将阀座安装到闸刀上所需的操作。

阀门尺寸固定板螺栓尺寸固定板螺栓孔尺寸 英寸/毫米3-8英寸7/16英寸5/8英寸/M16螺栓3/4英寸/M19螺母10–12英寸3/4英寸1 1/8英寸/M29螺栓1 1/8英寸/M29螺母2.插入支架:将更换阀座套件滑入闸门连接器的方槽中。

3a.关闭阀门:对于手轮式阀门,沿"关闭"(顺时针)方向慢慢操作 手轮,使阀座移向阀体。

确保阀座的卡销朝向阀体的方槽,如步骤1所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1/32April 2006STM690, STM704, STM795STM802, STM804, STM805, STM8063V Supervisor with Battery Switchover* Contact local ST sales office for availability.Rev 7FEATURES SUMMARY■■NVRAM SUPERVISOR FOR EXTERNAL LPSRAM■CHIP-ENABLE GATING (STM795 only) FOR EXTERNAL LPSRAM (7ns max PROP DELAY)■MANUAL (PUSH-BUTTON) RESET INPUT ■200ms (TYP) t rec■WATCHDOG TIMER - 1.6sec (TYP)■AUTOMATIC BATTERY SWITCHOVER■LOW BATTERY SUPPLY CURRENT - 0.4µA (TYP)■POWER-FAIL COMPARATOR (PFI/PFO)■LOW SUPPLY CURRENT - 40µA (TYP)■GUARANTEED RST (RST) ASSERTION DOWN TO V CC = 1.0V■OPERATING TEMPERATURE:–40°C to 85°C (Industrial Grade)Table 1. Device OptionsNote: 1.2.Open drain output.Watchdog InputActive- Low RST (1)Active- High RSTManual Reset Input Battery Switch-overPower-fail Compar-atorChip-Enable GatingSTM690T/S/R ✔✔✔✔STM704T/S/R ✔✔✔✔STM795T/S/R ✔(2)✔✔STM802T/S/R ✔✔✔✔STM804T/S/R ✔✔(2)✔✔STM805T/S/R ✔✔(2)✔✔STM806T/S/R✔✔✔✔STM690/704/795/802/804/805/806TABLE OF CONTENTSFEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Figure 1.Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Table 1.Device Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4Figure 2.Logic Diagram (STM690/802/804/805) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Figure 3.Logic Diagram (STM704/806) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Figure 4.Logic Diagram (STM795). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Table 2.Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Figure 5.STM690/802/804/805 Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Figure 6.STM704/806 Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Figure 7.STM795 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Table 3.Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Figure 8.Block Diagram (STM690/802/804/805). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Figure 9.Block Diagram (STM704/806). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Figure 10.Block Diagram (STM795) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Figure 11.Hardware Hookup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9Reset Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Push-button Reset Input (STM704/806). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Watchdog Input (NOT available on STM704/795/806) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Back-up Battery Switchover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Table 4.I/O Status in Battery Back-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..9 Chip-Enable Gating (STM795 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Chip Enable Input (STM795 only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Chip Enable Output (STM795 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Figure 12.Chip-Enable Gating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Figure 13.Chip Enable Waveform (STM795) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Power-fail Input/Output (NOT available on STM795) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Figure 14.Power-fail Comparator Waveform (STM690/704/802/804/805/806). . . . . . . . . . . . . . . .11 Using a SuperCap™ as a Backup Power Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Figure ing a SuperCap™. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Negative-Going V CC Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12TYPICAL OPERATING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13Figure 16.V CC-to-V OUT On-Resistance vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Figure 17.V BAT-to-V OUT On-Resistance vs. Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Figure 18.Supply Current vs. Temperature (no load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Figure 19.Battery Current vs. Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Figure 20.V PFI Threshold vs. Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152/32STM690/704/795/802/804/805/806Figure 21.Reset Comparator Propagation Delay vs. Temperature. . . . . . . . . . . . . . . . . . . . . . . . .15 Figure 22.Power-up t rec vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Figure 23.Normalized Reset Threshold vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Figure 24.Watchdog Time-out Period vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Figure 25.E to E CON On-Resistance vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1718 Figure 27.Output Voltage vs. Load Current (V CC = 5V; V BAT = 2.8V; T A = 25°C). . . . . . . . . . . . . .18 Figure 28.Output Voltage vs. Load Current (V CC = 0V; V BAT = 2.8V; T A = 25°C). . . . . . . . . . . . . .19 Figure 29.RST Output Voltage vs. Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Figure 30.RST Output Voltage vs. Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Figure 31.Power-fail Comparator Response Time (Assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Figure 32.Power-fail Comparator Response Time (De-Assertion) . . . . . . . . . . . . . . . . . . . . . . . . .21 Figure 33.Maximum Transient Duration vs. Reset Threshold Overdrive. . . . . . . . . . . . . . . . . . . . .21 CON Propagation Delay vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Table 5.Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23Table 6.Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2323 Figure 36.AC Testing Input/Output Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Figure 37.MR Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Figure 38.Watchdog Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Table 7.DC and AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27Figure 39.SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mech. Drawing. . . .27 Table 8.SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mechanical Data . .27 Figure 40.TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Outline . . . . . . . . . . .28 Table 9.TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Mechanical Data. . . .28PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29Table 10.Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Table 11.Marking Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Table 12.Document Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313/32STM690/704/795/802/804/805/8064/32SUMMARY DESCRIPTIONThe STM690/704/795/802/804/805/806 Supervi-sors are self-contained devices which provide mi-croprocessor supervisory functions with the ability to non-volatize and write-protect external LPSRAM. A precision voltage reference and com-parator monitors the V CC input for an out-of-toler-ance condition. When an invalid V CC condition occurs, the reset output (RST) is forced low (or high in the case of RST). These devices also offer a watchdog timer (except for STM704/795/806) as well as a power-fail comparator (except for STM795) to provide the system with an early warning of impending power failure.These devices are available in a standard 8-pin SOIC package or a space-saving 8-pin TSSOP package.Note: 1.For STM804/805, reset output is active-high and opendrain.Table 2. Signal NamesNote: 1.Open drain for STM804/805 only.2.STM795MR Push-button Reset Input WDIWatchdog InputRST Active-Low Reset Output RST (1)Active-High Reset Output E (2)Chip Enable InputE CON (2)Conditioned Chip Enable Output Vccsw (2)V CC Switch Output V OUTSupply Voltage Output V CC Supply Voltage V BAT Back-up Supply Voltage PFI Power-fail Input PFO Power-fail Output V SSGroundSTM690/704/795/802/804/805/806drain.5/32STM690/704/795/802/804/805/8066/32Pin DescriptionsMR (Manual Reset).A logic low on /MR assertsthe reset output. Reset remains asserted as long as MR is low and for t rec after MR returns high.This active-low input has an internal pull-up. It can be driven from a TTL or CMOS logic line, or short-ed to ground with a switch. Leave open if unused.WDI (Watchdog Input).If WDI remains high orlow for 1.6sec, the internal watchdog timer runsout and reset is triggered. The internal watchdogtimer clears while reset is asserted or when WDIsees a rising or falling edge.The watchdog function cannot be disabled by al-lowing the WDI pin to float.Pulses low for t recwhen triggered, and stays low whenever V CC islow. It remains low for t rec after either V CC risesabove the reset threshold, the watchdog triggers areset, or MR goes from low to high.RST (Active-high Reset - Open Drain).Pulseshigh for t rec when triggered, and stays high when-ever V CC is above the reset threshold or when MRis a logic high. It remains high for t rec after eitherV CC falls below the reset threshold, the watchdogtriggers a reset, or MR goes from high to low.PFI (Power-fail Input).When PFI is less thanV PFI or when V CC falls below V SW to ground if unused.PFO (Power-fail Output).When PFI is less than V PFI , or V CC falls below V SW , PFO goes low; oth-erwise, PFO remains high. Leave open if unused.V OUT (Supply Output Voltage).When V CC is above the switchover voltage (V SO ), V OUT is con-nected to V CC through a P-channel MOSFET switch. When V CC falls below V SO , V BAT connects to V OUT . Connect to V CC if no battery is Switch Output).When V OUT switches to battery, Vccsw is high. When V OUT switches back to V CC to drive gate of external PMOS transistor for I OUT requirements exceeding 75mA.The input to the chip-en-able gating circuit. Connect to ground if unused.E CON (Conditional Chip Enable).E CON goes low only when E is low and reset is not asserted. If E CON is low when reset is asserted, E CON will re-main low for 15µs or until E goes high, whichever occurs first. In the disabled mode, E CON is pulled up to V OUT .V BAT (Back-up Battery Input).When V CC falls below V SO , V OUT switches from V CC to V BAT .When V CC rises above V SO + hysteresis, V OUT re-connects to V CC . V BAT may exceed V CC . Connect to V CC if no battery is used.Table 3. Pin DescriptionPinNameFunctionSTM795STM690STM802STM704STM806STM804STM805––6–MR Push-button Reset Input –6–6WDI Watchdog Input777–RST Active-Low Reset Output –––7RST Active-High ResetOutput –444PFI Power-failInput –555PFO Power-fail Output1111V OUT Supply Output for External LPSRAM 2222V CC Supply Voltage 3–––Vccsw V CC Switch Output 4333V SS Ground5–––E Chip Enable Input6–––E CON Conditioned Chip Enable Output 8888V BATBackup-Battery InputSTM690/704/795/802/804/805/806Note: 1.For STM804/805, reset output is active-high and open drain.7/32STM690/704/795/802/804/805/806Note: 1.For STM690/802/804/805.2.For STM795 only.3.Not available on STM795.4.For STM704/806.8/32STM690/704/795/802/804/805/806 OPERATIONReset OutputThe STM690/704/795/802/804/805/806 Supervi-sor asserts a reset signal to the MCU whenever V CC goes below the reset threshold (V RST), a watchdog time-out occurs, or when the Push-but-teed to be a logic low (logic high for STM804/805) for 0V < V CC < V RST if V BAT is greater than 1V. id down to V CC =1V.During power-up, once V CC exceeds the reset threshold an internal timer keeps RST low for the reset time-out period, t recreturns high.If V CC drops below the reset threshold, RST goes low. Each time RST is asserted, it stays low for at least the reset time-out period (t rec). Any time V CC goes below the reset threshold the internal timer clears. The reset timer starts when V CC returns above the reset threshold.Push-button Reset Input (STM704/806)A logic low on MR asserts reset. Reset remainsrec (see Figure 37.,page24) after it returns high. The MR input has an internal 40kΩ pull-up resistor, allowing it to be left open if not used. This input can be driven with TTL/CMOS-logic levels or with open-drain/ collector outputs. Connect a normally open mo-mentary switch from MR to GND to create a man-ual reset function; external debounce circuitry is not required. If MR is driven from long cables or the device is used in a noisy environment, connect a 0.1µF capacitor from MR to GND to provide ad-ditional noise immunity. MR may float, or be tied to V CC when not used.Watchdog Input (NOT available on STM704/ 795/806)The watchdog timer can be used to detect an out-of-control MCU. If the MCU does not toggle the Watchdog Input (WDI) within t WD (1.6sec typ), the reset is asserted. The internal watchdog timer is cleared by either:1. a reset pulse, or2.by toggling WDI (high-to-low or low-to-high),which can detect pulses as short as 50ns. If WDI is tied high or low, a reset pulse istriggered every 1.8sec (t WD + t rec).The timer remains cleared and does not count for as long as reset is asserted. As soon as reset is re-leased, the timer starts counting (see Figure 38.,page24).Note: Input frequency greater than 20ns (50MHz) will be filtered.Back-up Battery SwitchoverIn the event of a power failure, it may be necessary to preserve the contents of external SRAM through V OUT. With a backup battery installed with voltage V BAT, the devices automatically switch the SRAM to the back-up supply when V CC falls. Note: If back-up battery is not used, connect both V BAT and V OUT to V CC.This family of Supervisors does not always con-nect V BAT to V OUT when V BAT is greater than V CC. V BAT connects to V OUT (through a 100Ω switch) when V CC is below V SW (2.4V) or V BAT (whichever is lower). This is done to allow the back-up battery (e.g., a 3.6V lithium cell) to have a higher voltage than V CC.Assuming that V BAT > 2.0V, switchover at V SO en-sures that battery back-up mode is entered before V OUT gets too close to the 2.0V minimum required to reliably retain data in most external SRAMs. When V CC recovers, hysteresis is used to avoid oscillation around the V SO point. V OUT is connect-ed to V CC through a 3Ω PMOS power switch. Note: The back-up battery may be removed while V CC is valid, assuming V BAT is adequately decou-pled (0.1µF typ), without danger of triggering a re-set.Table 4. I/O Status in Battery Back-up Pin StatusV OUT Connected to V BAT through internal switchV CC Disconnected from V OUTPFI DisabledPFO Logic LowE High impedanceE CON Logic HighWDI Watchdog timer is disabledMR DisabledRST Logic LowRST Logic HighV BAT Connected to V OUTVccsw Logic High (STM795)9/32STM690/704/795/802/804/805/80610/32Chip-Enable Gating (STM795 only)vents erroneous data from corrupting the external CMOS RAM in the event of an undervoltage con-dition. The STM795 uses a series transmission CON (see Figure 12). During nor-mal operation (reset not asserted), the E transmis-sion gate is enabled and passes all E transitions.When reset is asserted, this path becomes dis-abled, preventing erroneous data from corrupting the CMOS RAM. The short E propagation delay from E to E CON enables the STM795 to be used with most µPs. If E is low when reset asserts,CON remains low for typically 10µs to permit the current WRITE cycle to complete.Chip Enable Input (STM795 only)The chip-enable transmission gate is disabled and is asserted. During a power-down sequence when V CC passes the reset threshold, the chip-enable transmission gate disables and E immediately be-comes high impedance if the voltage at E is high.If E is low when reset asserts, the chip-enable transmission gate will disable 10µs after reset as-serts (see Figure 13). This permits the current WRITE cycle to complete during power-down.Any time a reset is generated, the chip-enable transmission gate remains disabled and E remains first half of the reset time-out period (t rec /2). When the chip enable transmission gate is enabled, the impedance of E appears as a 40Ω resistor in se-ries with the load at E CON . The propagation delay through the chip-enable transmission gate de-pends on V CC , the source impedance of the drive connected to E, and the loading on E CON . The chip enable propagation delay is production tested from the 50% point on E to the 50% point on E CON using a 50Ω driver and a 50pF load capacitance (see Figure 36.,page 23). For minimum propaga-CON and use a low-output impedance driver.Chip Enable Output (STM795 only)When the chip-enable transmission gate is en-CON is equivalent to a 40Ωthe disabled mode, the transmission gate is off and an active pull-up connects E CON to V OUT (see Figure 12). This pull-up turns off when the trans-mission gate is enabled.Power-fail Input/Output (NOT available on STM795)The Power-fail Input (PFI) is compared to an inter-nal reference voltage (independent from the V RST comparator). If PFI is less than the power-fail threshold (V PFI), the Power-Fail Output (PFO) will go low. This function is intended for use as an un-dervoltage detector to signal a failing power sup-ply. Typically PFI is connected through an external voltage divider (see Figure 11.,page8) to either the unregulated DC input (if it is available) or the regulated output of the V CC regulator. The voltage divider can be set up such that the voltage at PFI falls below V PFI several milliseconds before the regulated V CC input to the STM690/704/795/802/ 804/805/806 or the microprocessor drops below the minimum operating voltage.During battery back-up, the power-fail comparator Figure 14.,page11). This occurs after V CC drops below V SW (2.4V). When power returns, the pow-If the comparator is unused, PFI should be con-nected to V SS and PFO left unconnected. PFO may be connected to MR on the STM704/806 so that a low voltage on PFI will generate a reset out-put.Applications InformationThese Supervisor circuits are not short-circuit pro-tected. Shorting V OUT to ground - excluding pow-er-up transients such as charging a decoupling capacitor - destroys the device. Decouple both V CC and V BAT pins to ground by placing 0.1µF ca-pacitors as close to the device as possible.11/32Using a SuperCap™ as a Backup Power SourceSuperCaps™ are capacitors with extremely high capacitance values (e.g., order of 0.47F) for their size. Figure 15 shows how to use a SuperCap as a back-up power source. The SuperCap may be connected through a diode to the V CC supply. Since V BAT can exceed V CC while V CC is above the reset threshold, there are no special precau-tions when using these supervisors with a Super-Cap.Negative-Going V CC TransientsThe STM690/704/795/802/804/805/806 Supervi-sors are relatively immune to negative-going V CC transients (glitches). Figure 33.,page21 was gen-erated using a negative pulse applied to V CC, starting at V RST + 0.3V and ending below the reset threshold by the magnitude indicated (comparator overdrive). The graph indicates the maximum pulse width a negative V CC transient can have without causing a reset pulse. As the magnitude of the transient increases (further below the thresh-old), the maximum allowable pulse width decreas-es. Any combination of duration and overdrive which lies under the curve will NOT generate a re-set signal. Typically, a V CC transient that goes 100mV below the reset threshold and lasts 40µs or less will not cause a reset pulse. A 0.1µF bypass capacitor mounted as close as possible to the V CC pin provides additional transient immunity.12/32TYPICAL OPERATING CHARACTERISTICSNote: Typical values are at T A = 25°C.13/3214/3215/3216/32Figure 25. E to E17/32Figure 26. PFI to PFO Propagation Delay vs. Temperature18/32Figure 29. RST Output Voltage vs. Supply Voltage19/32500ns/divAI09153b20/32Figure 33. Maximum Transient Duration vs. Reset Threshold Overdrive AI09154b500ns/div21/3222/32Figure 34. E to E MAXIMUM RATINGStressing the device above the rating listed in the Absolute Maximum Ratings” table may cause per-manent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not im-plied. Exposure to Absolute Maximum Rating con-ditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality docu-ments.Table 5. Absolute Maximum RatingsNote: 1.Reflow at peak temperature of 255°C to 260°C for < 30 seconds (total thermal budget not to exceed 180°C for between 90 to 150seconds).Symbol ParameterValue Unit T STG Storage Temperature (V CC Off)–55 to 150°C T SLD (1)Lead Solder Temperature for 10 seconds 260°C V IO Input or Output Voltage –0.3 to V CC +0.3V V CC /V BATSupply Voltage –0.3 to 6.0V I O Output Current 20mA P DPower Dissipation320mW23/32DC AND AC PARAMETERSThis section summarizes the operating measure-ment conditions, and the DC and AC characteris-tics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the MeasurementConditions summarized in Table 6, Operating and AC Measurement Conditions. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters.Table 6. Operating and AC Measurement ConditionsFigure 35. E to E Note: 1.C L includes load capacitance and scope probe capacitance.ParameterSTM690/704/795/802/804/805/806Unit V CC /V BAT Supply Voltage1.0 to 5.5V Ambient Operating Temperature (T A )–40 to 85°C Input Rise and Fall Times ≤5ns Input Pulse Voltages0.2 to 0.8V CC V Input and Output Timing Ref. Voltages0.3 to 0.7V CCVFigure 37. MR Timing Waveform Note: 1.RST for STM805.Table 7. DC and AC CharacteristicsSym Alter-nativeDescription Test Condition(1)Min Typ Max UnitV CC,V BAT(2)Operating Voltage T A = –40 to +85°C 1.1(3) 5.5VI CC V CC Supply CurrentExcluding I OUT (V CC < 5.5V)4060µAExcluding I OUT (V CC < 3.6V)3550µA V CC Supply Current inBattery Back-up ModeExcluding I OUT(V BAT = 2.3V,V CC = 2.0V, MR = V CC)2535µAI BAT(4)V BAT Supply Current inBattery Back-up ModeExcluding I OUT(V BAT = 3.6V)0.4 1.0µAV OUT1V OUT Voltage (Active)I OUT1 = 5mA(5)V CC –0.03V CC –0.015V I OUT1 = 75mAV CC –0.3V CC –0.15V I OUT1 = 250µA,V CC > 2.5V(5)V CC –0.0015V CC –0.0006VV OUT2V OUT Voltage (BatteryBack-up)I OUT2 = 250µA, V BAT = 2.3VV BAT –0.1V BAT –0.034VI OUT2 = 1mA, V BAT = 2.3VV BAT –0.14V V CC to V OUT On-resistance34ΩV BAT to V OUT On-resistance100Ω24/32I LI Input Leakage Current (MR)STM704/806 only;MR = 0V, V CC = 3V2075350µA Input Leakage Current (PFI)0V = V IN = V CC–252+25nA Input Leakage Current (WDI)0V = V IN = V CC–1+1µAI LO Output Leakage Current STM804/805/795;0V = V IN = V CC(6)–1+1µAV IH Input High Voltage (MR, WDI)V RST (max) < V CC < 5.5V0.7V CC V V IL Input Low Voltage (MR, WDI)V RST (max) < V CC < 5.5V0.3V CC VV OL Output Low Voltage (PFO,RST, RST, Vccsw)V CC = V RST (max),I SINK = 3.2mA0.3V Output Low Voltage (E CON)V CC = V RST (max),I OUT = 1.6mA, E = 0V0.2V CC VV OL Output Low Voltage (RST)I OL = 40µA,V CC = 1.0V, V BAT = V CC,T A = 0°C to 85°C0.3VI OL = 200µA,V CC = 1.2V, V BAT = V CC0.3VV OH Output High Voltage (RST,RST)(7)I SOURCE = 1mA,V CC = V RST (max)2.4V Output High Voltage (E CON)V CC = V RST (max),I OUT = 1.6mA, E = V CC0.8V CC V Output High Voltage (PFO)I SOURCE = 75µA,V CC = V RST (max)0.8V CC VV OHB V OH Battery Back-up (Vccsw,RST)I SOURCE = 100µA,V CC = 0V, V BAT = 2.8V0.8V BA T V V OH Battery Back-up (E CON)I SOURCE = 75µA,V CC = 0V, V BAT = 2.8V0.8V BA T VPower-fail Comparator (NOT available on STM795)V PFI PFI Input ThresholdPFI Falling(V CC < 3.6V)STM802/804/8061.212 1.237 1.262VSTM690/704/8051.187 1.237 1.287VPFI Hysteresis PFI Rising (V CC < 3.6V)1020mV t PFD PFI to PFO PropagationDelay2µsI SC PFO Output Short toGND CurrentV CC = 3.6V, PFO = 0V0.10.75 2.0mABattery SwitchoverV SOBattery Back-upSwitchover Voltage (8,9)Power-downV BA T > V SW V SW VV BA T < V SW V BA T VPower-upV BA T > V SW V SW VV BA T < V SW V BA T V V SW 2.4V Hysteresis40mVSym Alter-nativeDescription Test Condition(1)Min Typ Max Unit25/32。

相关文档
最新文档