FMC Wellhead and Fracturing solutions
石油专业英语单词
simulation n.模型、模拟、模型化simulate v.模拟、模仿simulator n.模拟程序、模拟器oil-in-place n.地下原油储量gas-in-place n.天然气地质储量influx n.注入、流入、注入口spatial n.空间的、立体的anisotropic adj.各向异性的、非匀质的heterogeneity n.不均匀、复杂性potentiometer n.电位计flow meter n.流量计flood front n.注水前缘displacement front n.驱替前缘mobility ratio n.流度比analytic solution n.解析解material balance equation n.物质平衡方程water influx n.水侵量potentiometric model n.电位模型、等势模型zero-dimensional model n.零维模型reservoir simulator n.油藏模拟器black-oil model n.黑油模型black-oil simulator n.黑油模拟器black-oil reservoir simulator n.黑油油藏模拟器gas reservoir simulator n.气藏模拟器compositional reservoir simulator n. 组分油藏模拟器compositional model n.组分模型source and sink n.源和汇wellbore coning 井底水锥进cone n.牙轮、牙锥v.锥进water-oil contact n.油水界面water-oil level n.油水界面gas-oil level n.气油界面miscible flooding 混相驱steam stimulation 蒸汽吞吐、蒸汽刺激huff and puff蒸汽吞吐、蒸汽刺激reservoir management n.油藏管理reservoir performance n.油藏动态well performance n.油井动态well rate n.油井产量gross thickness n.总厚度skin factor n.表皮系数petrophysical adj.油层物理的petrophysics n.油层物理学productivity indices = pl. of index n.采油指数injectivity index n.注水指数pattern type n.井网类型5-spot pattern n.五点井网miscible adj.混相的、互溶的miscibility n.混相能力reserve n.储量surfactant n.表面活性剂surfactant flooding 表面活性剂驱flooding n.驱替polymer n.聚合物polymer flooding n.聚合物驱caustic adj.碱的、苛性的caustic flooding 碱驱miscible slug process n.混相灌塞驱enriched gas process n.富气驱high pressure lean gas process n.高压贫气驱mutual solvent n.互溶驱co2process n.co2驱mobility n.流度pattern n.井网、模式residual adj.残余的、剩余的stimulate v.(油井)增产、(水井)增注silicate n.硅酸盐configuration n.构象、构型membrane-mimetic adj.渗透膜模拟的microbial adj.微生物的organism n.有机物interfacial tension n.界面张力recovery process n.采油方法、开采方法secondary recovery n.二次采油fatty acid n.脂肪酸in situ combustion 层内燃烧wet combustion n.湿式燃烧in situ temperature n.油层温度in situ recovery n.就地开采in situ porosity n.地层原始孔隙度steam injection 注蒸汽wet combustion 湿式燃烧miscible flooding n.混相驱microbial EOR 微生物提高采收率方法ultimate recovery n.最终采收率lean gas n.干气enriched gas n.湿气、富气enhanced oil recovery N.提高原油采收率chemical flooding n.化学驱thermal recovery n.热采miscible flooding n.混相驱separator n.分离器lightweight separator n.轻便分离器pipework n.管网、管道工程gathering lines n.集输管网supersaturated adj.过饱和的salinity n.盐度、盐性ppm=parts per million n.百万分之几water-free adj.不含水的、无水的fitting n.配件、油嘴、适合manifold adj.多方面的n.管汇oil/water emulsion n.油水乳化液emulsion n.乳化、乳化液unemulsified adj.非乳化的emulsion breaking 破乳baffle n.隔板baffle plate n.隔板、挡板downstream n.下游dimensionally n.量纲的、因次的disagreeable n.讨厌的、难对付的desalter n.脱盐剂descale v.除垢desalt v.脱盐degas v.脱气deaquation 脱水deaeration 脱气deformation 失真deoxidant 除氧剂debubble 除气泡respirator n.防毒面具、口罩dew-point pressure n露点压力hydrogen sulphide n.硫化氢wet gas n.湿气sweet gas n.不含硫天然气tank battery 集输罐组thermal cracking 热裂解well testing n.试井production rate n.开采速度、产量bottom-hole pressure n.井底压力pressure build-up test n.压力恢复试井、压力恢复测试flowing well efficiency n.流动系数formation transmissibility n.地层传导率shut-in n.关井drainage area n.供油面积、泄油面积multiple-well test n.多井试井、多井测试、干扰试井interference test n.井间干扰测试、干扰试井pulse test n.脉冲试井drill-stem test=DST n.中途试井、地层试验器试井penetrate v.穿透、透入、钻入workover operation n.修井作业reperforation n.补孔、再射孔acidization n.酸化(作用)hydraulic fracture n.人工裂缝、水力压裂裂缝fall-off test (注水井)压降试井oil column 含油高度oil string 油层套管oil withdrawal 采油量oil potential 潜在储量oil offtake 产油量interwell n.井间associated adj.伴生的associated natural gas n.伴生天然气non-associated natural gas n.气田气reinject v.回注slug n.段塞slug flow n.段塞流bubble flow n.泡流transition flow n.过渡流annularmist flow n.环雾流oil film n.油膜mist n.雾recycle v.再循环compressor 压缩机shut-down n.关井、停机throttle v.节制、调节n.节流、节流阀throughput n.生产量、生产率deviated well n.斜井offshore n.海上、近海intermittent adj.间歇的、中断的intermittent gas lift n.间歇式气举continuous gas lift n.连续气举piston n.活塞multistage adj.多级的centrifugal adj.离心的n.离心泵hydraulic adj.水力的rod pump n.有杆泵rodless pump n.无杆泵sucker n.吸入泵、吸管pull rod n.抽油拉杆rocking arm n.摇臂diesel n.柴油机、内燃机nodding monkey n.驴头standing valve n.固定阀traveling valve n.游动阀dynagraph card n.示功图elastic n.弹性的mover n.原动机counterbalance n.平衡(块)v.使平衡、抵消crank n.曲柄、摇把stroke n.冲程upstroke n.上冲程downstroke n.下冲程buoyancy n.浮力、弹性plunger n柱塞polished rod n.光杆leak v.滤式.leakage n.滤失、泄漏drainage n.排驱、排水walking beam n.游梁stuffing box n.盘根盒bride block n.悬绳器counterweight n.平衡块saddle bearing n.支架轴承pitman n.连杆gear reducer n.齿轮变速箱prime mover n.电动机、马达brake level n.制动杆belt cover n.皮带盒production battery 集油站production casing 生产套管production decline 产量递减production facility 开采设备production gain 增产油量production horizon/zone 生产层位production interval 生产层段production logging 生产测井production operation 采油作业production rate 产量production seismology 开发地震production watercut 产液含水率natural gas 凝析油associated gas 伴生气natural flow 自喷oil flow rate 原油的流量intermittent gas lift 间歇式气举high-volume well 高产井Samson posts 支架rod pump 有杆泵nodding donkey 驴头dynagraph card 示功图stuffing box 盘根盒prime mover 原动机、马达gravitational drainage 重力排驱walking beam 游梁completion 完井、完成、结束project方案、工程、项目productive 生产的、开采的、产油的casing 套管、下套管production 生产、开采、产量scale 刻度、温标、水垢anticipate 预测、预期downhole井下、底部井眼string 管柱、下套管串concentric 同心的、同轴的conductor pipe 导管surface casing 表层套管intermediate casing 中间套管pile driver 打桩机bulldozer 推土机production casing 生产套管、油层套管oil string 油层套管、生产套管oil patch 油田oilfield 油田cave 坍塌、塌陷cave in坍塌freshwater 淡水、清水、新鲜水gravel 砾石、砾砂troublesome 困难的pay zone 生产层liner 筛管、尾管slip 卡瓦safety slip 安全卡瓦slippage effect 滑脱效应liner hanger 尾管悬挂器production liner 生产尾管tubing 油管plug 赌塞、段塞packer 封隔器corrode 侵蚀、磨蚀annulus 环形空间borehole井眼、井筒squeeze 挤、挤水泥interval 间隔、间距、隔层、层段perforate 射孔perforation 射孔perforated completion 射孔完井open-hole 裸眼open-hole completion 裸眼完井perforated 射孔的、带孔的wire-wrapped screen 绕丝筛管tubingless 无油管的multiple 复合的multiple completion 复合完井unrestricted 自由的、无限制的pierce 穿孔、射孔charge 装药量shaped charges 聚能射孔弹gravel pack砾石充填wellhead 井口christmas tree 采油树choke 油嘴、节流阀gauge计量表workover 修井well performance 油井动态well sandup 井下堵砂well servicing 井维护well shutdown 关井well site 井场well stimulation 油井增产well testing 试井well workover修井well blowout 井喷well bore 井眼well cementation 固井well cleanout 洗井well completion 完井well cuttings 钻屑well killing 压井well logging 录井well pattern 井网originate v.起源,发源originate fromthrive.兴盛,繁荣prosperdeposit v.沉积,存款,存放deposition n.沉积withdrawsilt n.淤泥desilt v.除泥desilter n.除泥器sediment n.沉积,沉积物sedimentary adj.沉积的sedimentary rock沉积岩sedimentary basin沉积盆地hydrocarbon n.烃类,碳氢化合物fossil n.化石exploration n.勘探explor v.勘探IE=Internet Explorer互联网exploitation n.开发exploit v.开发seismic n.地震(人工地震)seismic survey n.地震勘探survey v. 纵览,检查,测量,勘测3-D Seismic三维人工地震dimension长,宽,厚,高度,面积,容积,大小drilling contractor n.钻井承包商rig n.钻机geologist n.地质学家trap n.圈闭trap v.圈闭,设陷阱stretch v.延伸,伸展extendsandstone n.砂岩limestone n.石灰岩lime n.石灰dolomite n.白云岩impermeable adj.不渗透的permeability n.渗透率shale n.页岩geophone n.地震检波器jug n.地震检波器vibration n.震动layer n.层rock layer岩层production layer生产层terrain n.地貌terrestrialpackhorse n.驮马compress v.压缩compressor n.压缩机air compressor空气压缩机CNG=Compressed Natural Gas 压缩天然气wildcat n.野猫井grind v.磨slant adj.倾斜的fracture n.裂缝fracture v.压裂hydraulic fracturing水力压裂mature n.成熟wellbore n.井眼borehole n.井筒,井眼enhance v.提高,改善EOR=Enhanced Oil Recovery 强化采油recover v.开采,采油recovery n.采油,采收率inject v.注入WIW=Water Injection Well注水井waterflooding n.水驱flood n.水灾,洪水flood.水淹,驱替,发洪水miscible adj.混相的component n.组分element n.元素,组成composition n.组成content n.内容,组成pellet n.小球,小团dropletbookletconduit n.大管道trunk line n.干线gathering line集输管线gathering system 集输系统truck n.树干,躯干,大衣箱,象鼻,男游泳裤asphalt n.沥青asphaltene n.沥青,沥青烯asphaltite沥青岩petrochemical n.石油化工,石油化学refinery n.炼油厂geophysicist n.地球物理学家geochemist n.地球化学家methane n.甲烷ethane n.乙烷butane n.丁烷condensate n.凝析油condense v.凝析,冷却,书略,缩写,使压缩,精简sulphur n.硫dynamite n.炸药reservoir n.油藏,水库versatile adj.多方面的,多样的manipulate v.操作,管理,利用viscosity n.粘度viscous adj.黏的viscosify v.使粘稠,稠化polyethylene n.聚乙烯polyester n.聚酯,涤纶polymer n.聚合物pharmaceutical n.药剂sulfa n.磺胺development well 开发井production well 生产井exploration well 勘探井horizontal well 水平井vertical well 直井slanted hole 斜井deviated well 斜井deviate v. 偏离,偏差inclined well斜井cluster wells丛式井horizontal drilling 水平井钻井primary recovery 一次采油primary school 小学secondary recovery 二次采油tertiary recovery 三次采油infill drilling 加密钻井directional well 定向井miscible flooding 混相驱nature gas liquids 天然气液体,凝析油sour gas 含硫天然气hydrogen sulphide 硫化氢hydrogen 氢OOIP=original oil in place 原始地质储量OIP=oil in placeGIP=gas in placeHIP=hydrocarbon in placeoil bank n.油墙,油带offshore drilling rig 海上钻井井架offshore 海洋钻井平台platform 平台,钻台,月台surface tension n.表面张力International System of UnitesSystem of International d’unitesAPI=America Petroleum Institute 美国石油协会recovery method 开采方法identified crude oil reserves 探明地质储量internal combustion engine 内燃机non-renewable resource 不可再生能源‘oil transport and storage 石油储运British petroleum=BP 英国石油公司OPEC=Organization of Petroleum Exporting Countries 石油输出国组织petroleum production 石油开采petroleum exploration 石油勘探well drilling 钻井surface tension 表面张力sedimentary basin 沉积盆地depressed 凹陷的,萧条的depressed area 凹陷区域depressed basin 凹陷盆地delta 三角洲shale 页岩compaction 压实作用compact 压实,压紧DVD=digital video diskVCD=video compact diskCD ROM=compact disk read only memorycoral reef 珊瑚礁debris 碎片envision 想象,展望drift away 漂移reminder 产物,遗留物crust 地壳tectonic 构造的,构造学的tectonic movement 构造运动tectonic basin 构造盆地tectonic plate 构造板块tilt 倾斜slide 滑landslidebuckle 卷曲buckle up 系上安全带twistcrumble 崩塌the crumble empirebendmerge 合并blendminglecarbohydrate 碳水化合物hydrate 水合物starch 淀粉cellulose 纤维素fossil fuel 矿物燃料derive from 衍生algae 藻类,海藻,水藻overlay 上覆overlaying rock 上覆岩层overlaying strata 盖层stratum 地层,岩层——复数stratabarrier 隔层,遮挡层permeable 渗透的wettable ——wettability 润湿的——润湿性seep 油苗,渗漏migrate 运移,迁移explorationists 勘探家intuition 直觉outcrop 露头geophysicists 地球物理学家configuration 结构palynologist 孢粉学家stretch back 追溯trace backpollen 孢粉intermingle 混合,共存mix withnormal fault 正断层reverse / thrust / upthrust fault 逆断层anticline 背斜salt dome 盐丘delta sand 三角沙洲lime 石灰basin 盆地core 岩心,核心core 取心core description 岩心描述core holder 岩心夹持器core slug 岩心塞coring bit 取心钻头cuttings 岩屑rock chips 岩屑,钻屑gas cap 气顶saturate 饱和saturation 饱和度under-saturated reservoir 未饱和油藏porous rock 多孔岩石pore 孔隙porous media 多孔介质porous material 多孔介质fault 断层structure fault trap 构造断层圈闭oil-bearing 油层,含油的production layer / zone 油层syncline 向斜crest 背部,脊部,冠,顶,浪峰fold 褶皱pinch out 歼灭prolific 富含……的,富有的stratigraphic 地层的,地层学的mineralogical 矿物学家lithology 岩石学,岩性facies 相,沉积相geophysical well log 地球物理测井porosity 孔隙度cementation 胶结作用cement 注水泥,胶结,固井,cement 水泥,胶结solution 溶解作用cementing operation 固井施工cementing engineer 固井工程kerogen 干酪根,油母岩source rock 生油岩层sedimentary layer 沉积层free gas 自由气dissolved gas 溶解气formation evaluation 地层评价bottom hole 井底recoverable reserves 可采储量undersaturated oil未饱和油drilling fluid 钻井液water cut 含水率。
石油工程专业英语单词
石油工程专业英语单词Aabnormal pressure 异常高压absolute open flow potential 绝对敞喷流量absolute permeability 绝对渗透率acetic acids 乙酸acid-fracturing treatment 酸化压裂处理acidize 酸化acidizing 酸化additives 添加剂Alkali/Surfactant/Polymer (ASP) tertiary combination flooding 三元复合驱anhydrite 无水石膏annular space 环形空间appraisal well 估计井,评价井aquifer 含水层areal sweep efficiency 面积波及系数artificial lift methods 人工举升方法Bbeam pumps 游梁式抽油机bitumen 沥青blast joint 耐磨钻头block and tackle 滑轮组blowout preventes 防喷器blowout 井喷bone strength 胶结强度borehole 井筒,井眼bottomhole/wellhead pressure 井底/井口压力bottorm water 底水breakthrough 突破,穿透bubble point 泡点bubble point pressure 泡点压力Ccable tool drilling 顿钻钻井capillary action 毛细管作用carbonate reservoirs 碳酸盐储层casing casing casing casing casing casing casing casinghanger 套管悬挂器head 套管头collapse 套管损坏corrosion 套管腐蚀leak 套管漏失pressure 套管压力string 套管柱套管casing-tubing configuration 套管组合casing—tubing configuration 油套管井身结构caustic flooding 碱水驱油cavings 坍塌cement additive 水泥浆添加剂cement job 固井作业cement plug 水泥塞cement slurry 水泥浆cementation 固井,胶结cementing practices 注水泥施工centralizer 扶正器chemical flooding 化学驱油chock 节流器choke 油嘴,阀门christmas tree 采油树combustion engines 内燃机compatibility compatibility 兼容性兼容性,配伍性completion interval 完井层段compressibility 压缩系数compression coefficient 压缩系数compressive strength 抗压强度cone bit 牙轮钻头connate water 共生水,原生水continuous gas lift 连续气举core sample 岩心样品cost—per—day basis 每天成本基价cost—per—foot basis 每英尺成本基价crank 曲柄crown block 天车crude oil 原油cumulative production 累计产量Ddamage well/zone 污染井/带darcy 达西darcy‘s law 达西定律dead line 死绳dehydration 脱水deposit 沉积,贮存n,矿床,蕴藏量derrick 井架derrick 钻塔,井架development well 开辟井development well 生产井dewpoint 露点diesel fuel 柴油discovery well 资料井displacement displacement displacementefficiency 驱油效率efficiency 驱替效率rate 驱替效率displacing fluid 驱替液displacing medium 驱替介质dissolved—gas drive reservoir 溶解气驱油藏downhole downhole downhole downsroke assembly 井下装置equipment 井下装置井底,井下下行冲程drainage areas/radius 泄油面积/半径drill collar 钻铤drill collars 钻铤drill 钻井driller 司钻,钻工drilling floor 钻台drilling line 大绳drilling slot 井槽drilling contract 钻井合同drilling fluid 钻井液drilling location 井位drilling rate 钻速drillpipe 钻杆drillship 钻井船drillsite 井场drillstring 钻柱dry forward combustion 干式正向燃烧Eeffective displacement 有效驱替effective permeability 有效渗透率effective wellbore vadius 有效井筒半径electric submersible centrifugal pumps 电泵embrittlement 脆裂emulsion 乳化剂encroachment 水侵enhanced oil recover(EOR)提高采收率ethane 乙烷Ffault 断层fishing tool 打捞工具flow efficiency 完善系数flow regime 流动类型/方式flowing tubing pressure 井口流压flowing well 自喷井fluid loss agent 降滤失剂fluid loss control 防液体漏失foam flooding 泡沫驱油、foam—type drilling fluid 泡沫钻井液formation volume factor 地层体积系数formic acids 甲酸fractional flow 分相流动fracture acidizing 酸化压裂fracture fluid 压裂液fracture pressure 破裂压力fracture 裂缝,断裂free gas 游离气Ggas cap 气顶gas condensate reservoir 凝析气藏gas lift 气举gas-lift valve 气举阀gas-liquid ratio 气液比gas-oil ratio 汽油比gasoline 汽油gear reducer 齿轮减速器geothermal gradient 地温梯度gravity drainage 重力泄油gravity segregation 重力分离gum bed 地蜡gusher 自喷井,喷油井Hheavy oil 重油heterogeneous reservoir 非均质储层heterogeneous 非均质的high gravity 高API 度,轻质的hole angle 井斜角horizontal well 水平井hreaded coupling 罗纹接口huff and puff 蒸汽吞吐hydraulic fracture 水力压裂hydrocarbon 碳氢化合物hydrogen sulfide 硫化氢hydrostatic head 静水压头hydrostatic pressure 静液压力Iindividual well 单井inhibitor 抑制剂initial completion 初次完井injection rate 注入速度/量interfacial intermediate intermediate tensioncasingcasing表面张力string 技术套管中间套管intermittent gas lift 间歇气举Jjackknife derrick 折叠式井架jelly 胶状物,凝胶物joints 根数junction box 接线匣Kkelly 方钻杆kerosene 煤油kick 井涌kill corrosion 压力液kill line 压井管线kill the well 关井Llanding nipple 坐放短节leading edge 前缘leakoff rate 漏失速率load-bearing capacity 承重能力logger 测试仪器logging 测井lost circulation 漏失lost circulation additive 堵漏剂lubricant 润滑油Mmaking a trip 起下钻making a connection 接单根massive hydraulic fracturing 大型水力压裂material balance calculations 物质平衡方程matrix acidizing 基质酸化mechanical efficiency 机械效率methane 甲烷microbial enhanced oil recovery 微生物强化采油microemulsion flooding 微乳液驱油mobility rate 流度比mobility 流度,流动性mud pump 泥浆泵mud thinner 降粘剂mud 泥浆mud/section pit 泥浆池multipay reservoir 多油层油田Nnatural fissure 天然裂缝nature gas 天然气net thickness 有效厚度net thickness 有效厚度nogo nipple 无非端短节nozzle 喷油嘴numerical simulation 数值摹拟Ooffset well 补偿井oil formation volume factor 原油地层体积系数 oil saturation 残存油饱和度oil seeps 油苗oil spill 油漏open-hole completion 裸眼完井organic acids 有机酸overburden 地层表土overburden pressure 上覆岩层压力overload protection 过载保护Ppacker 封隔器pad fluid 前置液paraffin 石蜡,链烷烃paraffin base 石蜡基pay zone pay sand peak load penetration penetration percussion perforating performance permeability permeability petroleum 生产层,产油层产油层,生产层最大载荷,峰值负值rate 进尺速度rate 渗入速度,机械钻速 顿钻job 射孔作业velationship 渗透率anisotropy 石油petroleum engineer 石油工程师petroleum industry 石油工业petroleum jelly 石油膏phase diagram 相态图piston stroke 活塞冲程pitman 联杆泵plate tectonics 板块构造理论plunger lift 活塞气举渗透率各向异性 动态关系polished rod 光杆polymer flooding 聚合物驱油pore volume 有限孔隙体积porosity 孔隙度porous medium 多孔介质porous rock 多孔岩石positive—displacement position 容积式驱替活塞power fluid 传动液preflush 前置液preflush fluid 前置液,冲洗液pressure build up test 压力恢复试井pressure differential 压差pressure drawdown 压降,压差pressure gradient 压力梯度primary recovery 一次开采primary cementing 固井,初次注水泥primary porosity 原生孔隙度prime mover 原动机produced fluid 产出液producing rate 开采速度producting production production production production productivity productivityformation 生产层technology 采油技术casing 生产套管platform 采油平台string 生产(油层)套管生产率index 生产指数proposed well 资料井proppant 支撑剂pseudo—steady-state flow 拟稳定流动put back on production 恢复生产Rradial area 径向面积radical flow 径向流recoverable reserve 可采储量recovery rates 回采收率,开采速度relative permeability 相对渗透率remaining oil 剩余油remedial work 修井作业reservoir drive mechanism 油藏驱油机理reservoir heterogeneous 储层非均质性reservoir 储层,储集层,油层residual oil saturation 残存油饱和度resistivity curre 电阻率曲线reverse combustion 反向燃烧rig 钻机riser 隔水管rodless pumping system 无杆泵系统roller bit 牙轮钻头rotary drilling 旋转钻井rotary hose 水龙带rotary system 旋转钻井系统rotary table 转盘rotary table 转盘rotaryS旋转钻井safety valve 安全阀salinity 矿化度salinity 矿化度sand control 含沙量控制sand production 油井出砂sandstore secondary secondary砂岩recovery 二次开采porosity 次生孔隙度seep 漏出,渗出n, (油气)苗seepage n,渗出,流出seismic interpretation 地震解释separator 分离器setting time 凝固时间shale 页岩,泥岩shear rate 剪贴速率shut—in well pressure 关井压力skin effect 表皮效应slotted liner 割裂衬管sloughing 坍塌性的slurry density slurry viscosity sonic bond log 水泥浆密度水泥浆粘度声波测井spontaneous potential (SP)自然电位stabilizer 稳定器standpipe 立管stands 立管static reservoir pressure 油层静压steam flooding 蒸汽驱油stimulation 增产措施stricking problem 卡钻stripper well 低产井stroke length 冲程长度stuffing box submersible substructure subsurfance subsurfance sucker rod填料盒rig 坐底式钻井平台井架底座unit 地下单位pump 井下泵抽油杆sulfide embrittlement 硫化氢脆裂sulfur 硫磺superficial velocity 表观粘度surface casing 表层套管surface flow line 地面流动管线surface tesion 表面张力surface unit 抽油机,地面装置surfactant flooding 表面积活性剂驱油switchboard 配电盒swivel 旋转钻头Ttensile strength 抗拉强度thickening time 稠化时间tool pusher 钻井队长torque rating 扭矩测定transformer 变压器,转换器transient flow 瞬变流动tubing string 油管柱turbulent flow 紊流Uunswept zone 未波及区upstroke 上行冲程Vvalve 阀门, 阀vertical flow 垂直流vertical sweep efficiency 纵向波及系数vertical well 垂直井vibrating screens 振动筛viscosity 粘度void space 孔隙volume factor 体积系数volumetic sweep efficiency 体积波及系数volumetric efficiency 容量效率vug 孔洞,溶洞Wwait on cement (WOC) 侯水泥凝固water flood recovery 注水采油water flooding 水驱water injection 注水量water—oil ratio 油水比water—sensitive 水敏性的wax 石蜡well bore 井眼well completion 完井well deliverability equation 油井产能方程well intake pressure 井口注入压力well—killing fluid 压裂液wet combustion 湿式燃烧wettability 润湿性wildcat well 预探井wildcatter 勘探者withdrawal 产出,采出workover 油井维修汉译英原油crude oil天然气natural gas方钻杆kelly钻杆drillpipe泥浆泵mud pump转盘rotary table封隔器packer旋转钻井rotary drilling固井cementing裸眼完井openhole completion井口well head扶正器centralizer三次采油tertiary recovery射孔perforating油管tubing油井流入动态inflow performance relationship 井底流压bottom hole flowing pressure采油指数productivity index增产增注措施stimulation近井地带near—well bore region含水率water cut最终采收率ultimate recovery剩余油remaining oil提高采收率IOR水驱water flooding原始地质储量OOPI (original oil in place)流度比mobility ratio有效渗透率effective permeability孔隙体积pore volume上冲程upstroke下冲程downstroke润湿性wettability聚合物驱polymer flooding。
KERUI常规压裂井口技术说明KERUIConventionalFracturing
一、
压裂井口技术性能和技术参数: Fracturingwellheadperformanceandtechnicalparameters
1、 技术参数及结构:
Mainboresize:5-1/8"(130mm), Sideoutletsize:2-1/16"(52mm) ② 主通径包含2个FLSR主阀(平板闸阀5-1/8″×15000PSI)、1个远程控制液动阀(5-1/8″×15000PSI, 在井口破裂或泄漏时可以紧急关断)、1个FLSR测试阀(5-1/8″×15000PSI), 上接一个 5-1/8-15000PSI5-1502转换接头; Mainpathcontains: 2xFLSRmastervalves (flatgatevalve5-1/8″×15000PSI)、1xRemote controlhydraulicactuatedvalve(5-1/8″×15000PSI,itcanshutoffimmediatelywhen wellheadrupturedorleaking) 、 1xFLSRtestvalve (5-1/8″×15000PSI) , and1uppercrossover connector5-1/8-15000PSI5-1502 ③ 压裂树为双翼单阀结构,两侧各为1个2-1/16″×15000PSI平板闸阀、各连接1个2-1/16"-15000PSI 2-1502转换接头; Fracturingtreeisdouble-wingssinglevalvestructure--Eachsidehas1gatevalve(2-1/16″× 15000PSI) andeachvalveisconnectingtoacrossoveradapter(2-1/16"-15000PSI 2-1502) 2、压裂井口特点: 科瑞为行业提供最新的压裂方案,随着行业同步发展。我们压裂井口主通径上的阀门全部采用 FLSR 结构,阀门开启与关闭的圈数要比同类型的阀门减少一半,阀座密封圈采用双向唇形密封圈,阀杆密封采用 低摩擦系数带金属弹性支架的PEEK材料的密封件,适用于高温和低温。 KERUI provides the most advanced fracturing technical solutions and realize the synchronousdevelopmentwiththewholeindustry.Thevalvesinthemainpathofourfracturing wellheadareFLSRstructure,valveopeningandclosinglapsisreducedbyhalfascomparedto thesametypeofvalve,thevalveseatsealusestheBi-directionallipsealring,thestemsealuses thePEEKmaterialsealswithalowfrictioncoefficientandresilientmetalstents. 主通径上配置液动阀,通过远程控制可以在紧急状况下迅速关闭,高效安全。 Hydraulicvalveisdisposedonthemainpathwhichcanshutoffimmediatelyandsafely
威德福一次多层完井压裂
Mill-out any balls that remain and all ball seats
下钻磨铣球座和剩余的球
Produce the well.
开井投产
8
© 2008 Weatherford. All rights reserved.
2011年1月 - 2011年5月业绩
已完成合同 • 华北大牛地 8 口井 • 中石化东北局 2 口井 • 中石油吐哈 1 口井 • 中石化胜利 2口井 到年底拟完成合同 • 中石化华北 30口井 • 中石化东北 12 口井
13
© 2008 Weatherford. All rights reserved.
ZoneSelect™ (球座)完井系统综述
© 2008 Weatherford. All rights reserved.
14
交流提纲
• Single Shot 常规投球体系 • Multi-Shift 后期选择可关体系 • MASS投球体系 • RFID体系-智能完井 • 页岩地层压裂工艺技术
© 2008 Weatherford. All rights reserved.
15
3、一球多层滑套控制– MASS系统
• • • • • MASS – Mass Array Sliding Sleeve 一组滑套 Patent pending 专利申请中 One ball size opens up to 5 sleeves (cluster) at a time 一次一球一组 (5个滑套) All 5 in a cluster are frac‘d at the same time 同时开启、同时改造 The ports can be sized so the frac is distributed evenly across the array. 调整滑套充填孔尺寸,达到各段地层均匀改造
石油专业英语常用
石油专业英语常用The Standardization Office was revised on the afternoon of December 13, 2020石油专业英语(常用)油井(oilwell)指任何钻透地球表面(Earth'ssurface)的钻孔(boring),目的是发现(find)或生产(produce)石油(petroleum/oil/hydrocarbons)。
专门生产天然气的叫气井(gaswell)。
油井一般经历五个阶段:计划(planning)、钻井(drilling)、完井(completion)、生产(production)与报废(abandonment)。
首先用钻机(drillingrig)通过钻具(drillstring)上的钻头(drillbit)在地上钻出毫米的孔(hole),然后在钻孔(borehole)中下钢制油管(steeltubing)与套管(casing)。
套管与钻孔之间还可能需要用水泥(cement)来固定。
套管为井孔(wellbore)提供结构上的整体性(structuralintegrity),同时隔离(isolate)危险的高压区(highpressurezone)。
随着井深加大,钻头和套管尺寸会变小。
现在的油井通常都有2-5个逐渐变小的井口尺寸。
钻头通过与之连接的钻铤(drillcollar)来钻进岩层。
钻井液(drillingfluid/mud)通过钻杆(drillpipe)内部泵入钻头,作用包括冷却(cooling)钻头、提升钻屑(drillcuttings)、避免井壁(wellborewall)不稳定以及避免岩层液体由于压力进入井眼。
使用过的钻井液用振动筛(shaker)去掉钻屑后返回泥浆池(pit)循环利用。
通过在地面的顶部驱动装置(topdrive/kellydrive)增加额外的10米长的钻杆(joints)来增加钻井深度。
南川页岩气田压裂水平井井间干扰影响因素及对策研究
油气藏评价与开发PETROLEUM RESERVOIR EVALUATION AND DEVELOPMENT2023年第13卷第3期南川页岩气田压裂水平井井间干扰影响因素及对策研究卢比,胡春锋,马军(中国石化重庆页岩气有限公司,重庆408400)摘要:随着页岩气开发不断深入,水平井实施压裂过程中邻井的干扰现象日益增多,对气田的产量、套管的安全、气井的管柱造成较大影响,有待明确压裂井间干扰的影响因素及降低干扰的治理对策。
采用井下压力监测的方式证实压裂井间干扰的矿场表现,通过生产动态跟踪分析及微地震监测结果基本明确井网井距、压裂改造强度、天然裂缝是影响压裂水平井井间干扰的主要因素。
对降低压裂干扰提出了压裂设计源头优化、采气井现场管理、生产运行调整3种治理对策,在现场应用中获得了较好的效果。
关键词:页岩气;矿场试验;井间干扰;治理对策中图分类号:TE371文献标识码:AInfluencing factors and countermeasures of inter-well interference of fracturinghorizontal wells in Nanchuan shale gas fieldLU Bi,HU Chunfeng,MA Jun(Sinopec Chongqing Shale Gas Co.,Ltd.,Chongqing408400,China)Abstract:With the continuous development of shale gas,the interference of adjacent wells is increasing during the fracturing of horizontal wells,which has a great impact on the production of gas fields,the safety of casings,and the string of gas wells.The influencing factors of the interference between fracturing wells and the countermeasures to reduce the interference need to be clarified.The field performance of fracturing interwell interference is confirmed by downhole pressure monitoring.Through production dynamic tracking analysis and microseismic monitoring results,it is basically clear that well spacing,fracturing transformation intensity,and natural fractures are the main factors affecting the interference between horizontal wells during fracturing.Three governance strategies have been proposed to reduce fracturing interference,including optimization of fracturing design source,on-site management of gas production wells,and production operation adjustment.These measures have achieved good improvement effects in on-site applications.Keywords:shale gas;field test;interwell interference;governance countermeasures南川页岩气田位于渝东南盆缘复杂构造带,生产目的层位为五峰组—龙马溪组页岩,地层压力系数小于1.3,属于常压页岩气。
有关油井的英语表达
重晶石:barite
Wear bushing:防磨套
膨润土:gel
Casing tally:套管数据
Float shoe:浮鞋
Float collar:浮箍
Protector:护丝
Measure out of hole:校对井深
surface casing:表套
M/U: make up组装
LB: pound磅
PSI: pound per square inch(压力单位)
ESD: emergency shutdown紧急关停装置
ROP: rate of penetration进尺速度(机械钻速)
ESP:emergency response plan应急响应预案
PPG: pound per gallon 磅/加仑(密度单位)
SG: specific gravity相对密度
RKB: rotary kelly bushing方钻杆补心
GL: ground level地表
LCM: loss circulation materials堵漏剂
P/U: pick up上提
Gas buster / poor boy液气分离器
Slug pit 重浆罐/稠浆罐
Trip nipple喇叭口
Rotating head旋转头
Chickson 活动弯头
Trailer/container/cabin/quarter room住井房/生活区
Trash pump排污泵
Flare pit放喷池/点火池/防火墙
当油井不能生产或者生产量非常小的时候,可以报废(abandon)。油管被取出,同时在井眼中注入水泥封住不同气与水区域的通道。一般不需要对整个井眼注入水泥,只要将井口装置(wellhead)挖出(excavate),套管割断,然后焊接(weld)一个封盖(cap)即可。
四川盆地页岩气井地面安全返排测试技术
四川盆地页岩气井地面安全返排测试技术刘飞;王勃;潘登;曾小军;庞东晓【摘要】针对页岩气藏大规模加砂压裂后地面连续返排测试作业以及钻塞冲砂作业期间,返排液含大量砂粒和碎屑,地面返排测试流程易发生堵塞或刺漏,安全风险高等问题,完善地面流程布局,优化设计出专用排砂管线和测试管线,研发配套了105 MPa捕塞器、105 MPa旋流除砂器、105 MPa管柱式除砂器等系列除砂除屑装备,在此基础上开展相关的工艺技术研究,确定出不同返排测试工况条件下流程的最优走向,形成了一套集除砂除屑、流程超压保护、防冰堵和安全监控为一体的页岩气井地面安全返排测试工艺技术,解决了页岩气井地面返排测试作业面临的高回压条件下钻塞捕屑、除砂、大排量连续返排等技术难题,运用该技术安全高效地完成了四川盆地多口页岩气井的地面测试计量作业,保障了页岩气井返排测试期间地面流程设备和作业人员的安全,效果显著.%The shale gas reservoirs mainly rely on horizontal well technology and large - scale separated - layer fracturing technique to enhance productions. Formation sand producing severely after large - scale sand fracturing or during the course of milling the bridge - plug led to a high risk of the surface flow - back test of the shale gas well. Thusly, in order to solve the problems of catching plug debris, removing sand and achieving continuous high rate flow - back under high wellhead pressure, the new flow - back and well testing plans are designed. Two sand clearance lines are designed for flow - back operations, and self - developed equipment such as 105MPa plug catcher and 105MPa cyclone desander are put into use, which ensure the sand removing efficiency and the smooth flow of the surface flow lines. On that basis, the correspondingtechnologies are developed , eventually forming a set of unique surface flow - back test technology for shale gas, including ice blockage prevention, overpressure protection and security monitoring technologies.A lot of flow - back tests of shale gas wells have successfully completed in Sichuan basin by using such technology.【期刊名称】《河南理工大学学报(自然科学版)》【年(卷),期】2013(032)001【总页数】5页(P30-34)【关键词】四川盆地;页岩气;地面流程;控压;除砂;连续返排测试技术【作者】刘飞;王勃;潘登;曾小军;庞东晓【作者单位】川庆钻探工程有限公司钻采工程技术研究院,四川广汉618300【正文语种】中文【中图分类】TE358+.50 引言四川盆地页岩气资源丰富,其页岩气藏的成功勘探开发具有非常重大的意义[1-2].盆地内元坝区块下侏罗系自流井组东岳庙段黑色页岩,富顺区块下志留统龙马溪组黑色页岩以及威远区块下古生界寒武系筇竹寺组黑色页岩等成为主要勘探的目的层段[3].目前已在上述区块进行了多口页岩气井的钻探和试油测试工作.页岩气藏属于非常规天然气藏,目前主要采用水平井完井和可钻式桥塞分层大型水力加砂压裂等系列工艺技术进行开发[4-5],该方式给页岩气井后续的地面返排测试带来诸多的难题,如加砂压裂后地层常常出砂严重,返排前期井口压力高,返排液量大,返排时间长,高压特别是地层出砂时会给地面测试流程设备带来严峻的考验,地面管线设备极易被冲蚀而引起刺漏,导致返排测试作业中断,甚至导致井筒沉砂而终止测试;另一方面钻塞冲砂期间,返排碎屑对地面管线、设备,特别是节流阀的冲蚀更大,如何有效控压和除屑除砂难度大,风险高.因此进行页岩气井地面安全返排测试技术研究,有效解决高压条件下捕屑、除砂、大排量连续返排等系列难题,意义重大,有利于加快页岩气藏的勘探开发步伐.1 地面返排测试方案设计页岩气井通常采用大规模的水力加砂压裂改造增产,单井分层改造段数多,压裂改造用液量、加砂量往往超出常规气井增产改造数倍、数十倍,如在美国不同页岩气区域单井改造用水量大致相同,一般为11 000 m3,每段压裂液用量达1 000~1 500 m3,每段支撑剂用量达100~150 t[6].正是由于页岩气井这种大排量、大液量、大砂量、小粒径、低砂比分层改造方式,导致页岩气井地面测试与常规气井相比,往往需返排液量更大,返排时间更长,特别是大规模加砂压裂后带来的返排测试期间地层大量出砂的控制处理难度更大,同时页岩气井多层合排时需要进行钻塞冲砂作业,期间桥塞碎屑和砂粒被井筒高压流体快速带出,地面安全风险高.因此在进行页岩气井地面测试方案设计时,首要考虑尽量在流程前端高效去除地面返排测试液中携带的大量砂粒或桥塞碎屑,其次是有效提高地面设备如闸阀、节流阀的耐冲蚀能力,从而保证返排测试作业的连续进行.为此研发配套了105 MPa捕塞器,用于连续油管钻磨桥塞时,地面捕获桥塞碎屑;同时研发配套了105 MPa旋流除砂器和105 MPa管柱式除砂器,分别用于返排期间除去流体和气体中绝大部分固体砂粒,保护下游测试设备,目前国内外还未见用于去除大排量液体中固相颗粒的高压旋流除砂器的报导,而用于常规气井地面测试除砂作业普遍使用的滤砂器往往除砂效率不高,且更适合用于去除气体中的固相颗粒.另一方面在页岩气井地面测试方案设计中,将常规地面测试作业所用的普通闸阀改进为防砂闸阀,并设计了高抗冲蚀硬质合金油嘴,大大提高闸阀和油嘴的抗冲蚀能力和使用寿命,可更好地保证放喷排液的连续进行.页岩气井加砂压裂后地面返排测试时,井口压力往往较高,可达70 MPa以上,高压也会给地面测试带来许多难题,因此进行页岩气井地面测试方案设计时,除实现常规试气要求,即要满足放喷返排、计量求产、取样、温度压力监测与数据采集等功能外,必须考虑流程承高压、超压保护与防冰堵等功能,流程高压端采用承压105 MPa的高压管线与设备,通过ESD控制面板远程控制液动安全阀,实现紧急关断功能,主要压力容器设备上安装高低压传导阀,并与远程控制面板结合,实现设备自动超压保护等功能,此外,返排测试期间,主要采用加热保温法和泵注化学试剂法来防止水合物的形成.2 地面流程设计与装备配套页岩气地面流程装备主要由井口捕塞除屑装置、气液分离除砂装置、滤砂装置[7]、节流控压设备、紧急关断系统、分离计量装置等组成.地面流程设计了2条专用主副排砂管线与1条分离器测试管线(图1).井口至返排管汇与油嘴管汇之间采用采用105 MPa高压法兰管线连接,高压管线前端为液动安全阀,捕塞器及其旁通管线,后端为旋流除砂器和返排管汇,主要用于实现捕获钻屑、除砂与地面关井等功能.主副排砂管前端连接到返排管汇,每条管线上分别连接1个可调节流阀和1个固定节流阀形成三级节流,排砂管线后端连接旋塞阀组后再进缓冲罐,缓冲罐尾气进小火炬燃烧,排液直接进入返排罐或污水池.排砂管线主要用于前期返排液以及钻塞冲砂等作业.测试管线与2条排砂管线组成并联方式连接,直接连接在旋流除砂器后端,其上依次为管柱式除砂器、油嘴管汇、热交换器、三相分离器等设备,分离器气路出口经65~14 MPa管线连接到密闭燃烧器或燃烧池,水路出口管线连接到旋塞阀组至返排罐,油路出口连接到计量方罐.测试管线主要用于返排后期大产量时的油气水分离计量测试求产作业.3 页岩气地面测试工艺技术3.1 高回压条件下除砂除屑与大排量连续返排工艺技术页岩气井加砂压裂结束后,返排初期井口压力高,为保证高回压条件下有效的除砂除屑,在流程前端安装专用105 MPa捕塞器、105 MPa旋流除砂器和105 MPa 管柱式除砂器,用于钻塞作业期间的捕屑除屑与正常返排期间的除砂,这是与常规气井地面测试最主要的区别之一.捕塞器工作压力105 MPa,主要通过内衬的筛网来实现捕获钻屑的功能,防止桥塞碎屑进入下游,堵塞油嘴或刺坏管线设备,筛网容积大,能同时容纳8个桥塞碎屑,可满足直井或水平井单次钻塞的需要;且在现场无须将捕塞器拆卸进行冲洗和清塞作业,满足了连续钻塞、循环作业目的.旋流除砂器工作压力105 MPa,最大液处理量1 000 m3/d,气处理量150×104 m3/d ,采用旋流方式除砂,流体切向进入筒体后按筒体内部的螺旋分离元件规定的轨迹进行旋流,依靠由此产生的离心力和重力分离固相颗粒,从而有效地减少对下游地面设备的损坏.管柱式除砂器工作压力105 MPa,处理砂粒直径≥100 μm,最大气处理量100×104 m3/d,内置双滤砂筒,主要利用不同等级的加固滤网过滤固相颗粒,不同级别的滤网适用于不同尺寸的固相颗粒,根据页岩气井加砂压裂采用支撑剂粒度大小,现场通常采用滤网尺寸150~300 μm的砂筒.旋流除砂器处理量大,能有效去除液相流体中的固相颗粒,除砂效率高达95%以上,而管柱式除砂器主要用于大气量时的精细除砂作业.为保证页岩气井的连续返排液或连续测试要求,页岩气井地面返排测试设计了2条专用排砂流程,这是与常规气井地面测试另一主要区别之处,排砂流程走向如线路①所示,测试流程走向如线路②所示.①井口→捕塞器或旁通→旋流除砂器→高压数据头→返排管汇→主(副)排砂管线→旋塞阀组→缓冲罐→小火炬(气)、返排罐(液)②井口→捕塞器或旁通→旋流除砂器→高压数据头→管柱式除砂器→油嘴管汇→低压数据头→热交换器→三相分离器→大火炬(气)、旋塞阀组→返排罐(液)、计量罐(油).流程①适用于测试气产量小(≤5 000 m3/d)时的大排量连续返排与钻塞冲砂作业阶段.由于页岩气井返排液量较大,因此在返排前期流程主要走排砂管线,2条排砂管线用于返排液作业时流程倒换,确保返排液更换油嘴期间或者当1条排砂管线发生堵塞等状况时的连续返排.返排期间的压力控制主要通过返排管汇上的固定节流阀实现一级降压,再通过其后排砂管线上的可调节流阀和固定节流阀实现二、三级降压,确保下游管线设备安全.排砂管线上采用设计更为合理的笼式节流阀,耐冲蚀和节流性能较普通针阀大大提高,各级油嘴套前使用镶嵌硬质合金材料的三通堵头,抗冲蚀能力强,从而可有效保证大排量连续返排作业的进行.在连续返排期间或钻塞阶段,当气产量逐渐增大并超过5 000 m3/d的情况下,产气量已超过小火炬的气处理量,则需将流程导向分离器测试管线②.此时主要通过油嘴管汇上两翼的固定油嘴来实现井口压力控制与流程倒换,井筒流体经过分离器进行分离、计量后,气体可以导入密闭燃烧器进行燃烧,密闭燃烧器采用多燃烧头分压分流燃烧,低辐射、低噪音、占地面积小,能有效减少夜间作业时对井场周围社区居民的干扰,减少纠纷,从而保证连续放喷测试作业的顺利进行.经过缓冲罐或分离器分离后的返排液,主要使用数个返排罐进行轮流倒换与体积计量,由于页岩气井返排液量最大可达60 m3/h以上,现场处理难度大,若不能有效处理则会影响连续返排测试作业的进行.因此现场主要使用多辆污水车连续作业,运至污水处理厂处理,或是将计量过的返排液泵至污水池或现场空压裂罐,使用过滤装置处理后,再作为下一层的压裂基液使用.3.2 流程超压保护技术为保证页岩气井返排测试作业期间人员、设备的安全,主要通过配置安全阀、ESD 控制面板和高低压传感器等,实现超压保护[8].一方面流程上主要的压力容器上都装配有相应压力值的安全阀,一旦设备超压,安全阀会将高压迅速释放掉,保证容器安全,防止爆裂或爆炸发生.另一方面流程多处安装有液动截止阀,返排测试过程中,一旦管线、设备超压,刺漏等,可通过远程ESD面板,迅速关闭相应部位前端的液动截止阀,截断高压危险源.同时,流程中还配备高低压传感器如在热交换器之前、分离器上设置高压传感器,当压力突然增高,超过安全设定值,高压传感器将感应的信号迅速传达到与其相连的ESD控制面板上,控制面板及时自动关闭其控制的液动截止阀,保证压力容器等的安全,防止爆裂.通过远程手动和自动控制各液动阀门的开关,还可以减少作业人员在高压区停留的时间.3.3 流程防冰堵技术在页岩气井地面测试过程中,由于天然气在测试管线中经过节流管汇油嘴等突然缩小断面的位置,产生强烈的涡流,使压力下降,产生节流.节流时压力降低会使温度下降,则天然气中的水蒸气会凝析出并使气体与水混合物达到水合物形成的必要条件,如果温度低于天然气形成水合物的温度,则在测试管线中就会形成水合物,造成测试流程堵塞,严重时甚至堵死地面测试管线[9].在页岩气井测试过程中,防冰堵的方法和常规气井测试类似,主要使用的加热保温法和泵注化学试剂法来防止水合物的形成.一方面通过利用锅炉将水加热成水蒸汽,通过蒸汽管线和蒸汽分配阀,将蒸汽输送到热交换器内和节流管汇处,加热节流过后管线内的天然气,提高温度,使天然气节流降压膨胀后的温度高于形成水化物的临界温度,从而防止天然气形成水化物堵塞流程和管道.另一方面在节流管汇前端,通过化学注入泵(最高泵注压力达到140 MPa)注入防冻剂(如甲醇、乙二醇),进一步避免天然气在测试管线中形成水合物.3.4 地面返排测试安全监控技术为了保障返排测试的安全顺利进行,确保作业人员等的安全,作业过程中还集成应用了多种安全监控手段.通过研发配套视频监控系统,实现远程观察监视流程高危区域;应用自主设计开发的数据采集与传输系统实时监测返排测试过程中流程主要节点的压力温度变化并在压力、温度出现异常时及时报警提示;配备了专门用于探测地层出砂量大小的探砂仪和检测管线厚度的壁厚探测仪,使用壁厚探测仪检测流程冲蚀较为厉害部位的弯头、直管等的壁厚变化情况.此外,还在流程主要区域配备可燃、有毒气体检测仪和报警系统,检测大气环境中的有毒可燃有毒气体,防止出现爆炸与人员中毒事故.4 应用实例运用页岩气井地面安全返排测试技术,成功地完成了四川盆地威远、长宁、富顺、昭通等多个页岩气藏50余层次的试气作业.以四川盆地富顺区块XX水平井为例,完钻井深4 568 m,水平井段长1 165 m, 测试层位龙马溪组,富含有机质黑色页岩段厚度大于80 m,有机质成熟度高(R0大于2.0%),脆性矿物含量高[10-11].该井水平段共分9段加砂压裂,每层段加砂压裂后直接下桥塞封闭下段,然后逐层上返施工,最后一层段改造作业结束,单层进行返排测试,最后用连续油管钻掉井筒内所有桥塞进行多层合排测试.每层段改造加砂压裂液用量1 150~1 500 m3,平均1 320 m3;加砂量一般100~180 t,平均146 t;各层位压裂改造施工泵注压力高达70 MPa以上, 最高达92.4 MPa.后续控压钻塞数量多,时间长,需返排液量大,返排期间地层出砂量大,给地面测试带来巨大的挑战.最终运用高效的除砂、除屑装备和优化的地面安全返排测试工艺技术,圆满完成该井的返排测试作业,有效解决了该井大规模体积压裂后高回压条件下除砂、除屑,连续控压返排测试等系列技术难题,整个钻塞冲砂、连续返排以及测试作业期间下游设备均正常,管线、设备均未发生堵塞,无油嘴和管线被冲蚀导致作业中断情况,有效保证了返排测试作业的圆满完成,保障了流程设备和作业人员的安全(表1).表1 XX井地面返排测试作业情况Tab.1 Flow-back test result of XX well作业工序钻桥塞返排测试主要施工参数井口压力41.43~42.74 MPa,循环排量320~400 L/min,(桥塞8个)开井前井口压力43.94 MPa,初期返排速度约10 m3/h,最大返排速度≥25 m3/h,返排总液量约1 600 m36 mm油嘴,井口稳定油压为55.83~56.53 MPa,测试获得高产技术应用效果(1)上游设备除屑、除砂效率>95%;(2)下游排砂管线及设备工作正常,未发生因油嘴或管线被冲蚀刺漏而导致钻塞冲砂作业停止或中断的情况.(1)上游设备除砂效率>96%,下游只监测到极少量砂粒;(2)管线无冲蚀、刺漏发生;(3)设备、管线、油嘴未出现堵塞情况;(4)返排测试连续进行,人员、设备安全.5 结语自主研发配套了105 MPa捕塞器、105 MPa旋流除砂器等地面高压除砂、除屑专用设备,捕屑、除砂效率高达95%以上,可有效保护下游地面设备和现场作业人员的安全.运用形成的页岩气井地面安全返排测试工艺技术,安全、高效地完成了四川盆地多口页岩气井的返排测试作业,解决了页岩气井大规模体积加砂压裂后,高压除砂、高压除屑、连续控压钻塞、大排量连续返排测试等一系列难题,为加快四川盆地页岩气藏勘探开发提供了坚实的技术支撑,该技术可为其他区块页岩气井的地面测试作业提供有价值的参考.针对页岩气等非常规气藏丛式井组开发的需要,建议进一步完善该类气藏地面安全返排测试工艺技术,不断优化配套地面测试设备,降低作业成本,提高作业效率,满足页岩气等非常规天然气藏低成本勘探开发的需要.参考文献:[1] 董大忠,程克明,王世谦,等.页岩气资源评价方法及其在四川盆地的应用[J].天然气工业,2009,29(5):33-37.[2] 张金,徐波,聂海宽,等.中国页岩气资源勘探潜力[J].天然气工业,2008,28(6):136-140.[3] 叶登胜,尹丛彬,蒋海,等.四川盆地南部页岩气藏大型水力压裂作业先导性试验[J].天然气工业,2011,31(4):48-50.[4] 荣莽,罗君.页岩气藏水平井分段压裂管柱技术探讨[J].石油机械,2010,38(9):65-68.[5] 唐颖,张金川,张琴,等.页岩气井水力压裂技术及其应用分析[J].开发工程,2010,30(10):33-38.[6] 赵金洲,王松,李勇明.页岩气藏压裂改造难点与技术关键[J].天然气工业,2012,32(4):24-29.[7] 王金宏,李东阳.油田地面除砂设备的应用[J].科技资讯,2007,27(09):35.[8] 张明江,张果.川东北高温、高压、高含硫气井测试地面控制应用技术研究[J].油气井测试,2009,18(1):56-57.[9] 黄船,胡长翠,潘登,等.地面测试中天然气水合物影响分析及工艺技术对策[J].钻采工艺,2007,30(1):10-12.[10] 王玉满,董大忠,李建忠,等.川南下志留统龙马溪组页岩气储层特征[J].石油学报,2012,33(4):551-557.[11] 黄金亮,邹才能,李建忠,等.川南志留系龙马溪组页岩气形成条件与有利区分析[J].煤炭学报,2012,37(5):782-787.。
油气工程采油工程设计常用术语大全油气工程专业英语大全
油气工程采油工程设计常用术语大全油气工程专业英语大全1. 井眼(wellbore):井身或钻井井筒的内部空间。
2. 钻井(drilling):用钻头或其他工具在地下钻探井筒。
3. 井口(wellhead):位于地面上的井的顶端,包括井口装置、阀门、管道和其他设备。
4. 井底(bottom hole):井的底部,即油层或气层。
5. 钻井液(drilling fluid):一种用于冷却钻头、清除岩屑和维持钻井稳定的液体。
6. 钻井孔(borehole):在岩石或土壤中钻成的孔洞。
7. 岩屑(cuttings):通过钻井液将岩石碎屑带到地面的颗粒。
8. 地层(formation):地球内部的岩石或土壤层。
9. 注水(water flooding):将水注入油层以使油流动和采集。
10. 提馏(distillation):将原油加热至不同温度,使其各种组分分离的过程。
11. 含水饱和度(water saturation):油藏中含水的比例。
12. 采油率(oil recovery ratio):从油田中采出的原油占总储量的比例。
13. 储量(reserves):油气田或油气藏中可经济开采的可用能源量。
14. 阻力(resistance):油气流动过程中所遇到的阻碍。
15. 注入(injection):将一种液体或气体注入油田或油藏。
17. 水驱(water flooding):利用注水来推动油的采收。
18. 人工举升(artificial lifting):采用人工方法将油抽到地面。
19. 油藏工程师(reservoir engineer):专门从事油藏储量、油藏开发和生产工程等方面研究和设计的工程师。
20. 石油勘探(petroleum exploration):为了寻找潜在的油气资源而进行的调查和勘探活动。
1. Drilling engineering(钻井工程)2. Reservoir engineering(油气藏工程)3. Production engineering(生产工程)4. Formation evaluation(地层评价)5. Well testing(试井)6. Well stimulation(井况改善)7. Enhanced oil recovery(增强油田开发)8. Natural gas engineering(天然气工程)9. Pipeline engineering(管道工程)10. Reservoir simulation(油气藏模拟)11. Well control(井控)12. Well logging(测井)13. Casing design(套管设计)14. Drill bit selection(钻头选择)15. Geosteering(地质导向钻井)17. Pressure transient analysis(压力时变分析)18. Sand control(防砂措施)19. Oil and gas transportation(油气运输)20. HSE (Health, Safety, and Environment) in oil and gas industry(石油与天然气行业的健康、安全与环境)21. Well intervention(井下作业)22. Acidizing(酸化处理)23. Horizontal drilling(水平井钻探)24. Hydraulic fracturing(水力压裂)25. Offshore drilling(海上钻井)。
四川盆地威远区块典型平台页岩气水平井动态特征及开发建议
四川盆地威远区块典型平台页岩气水平井动态特征及开发建议位云生 齐亚东 贾成业 金亦秋 袁贺中国石油勘探开发研究院摘 要 位于四川盆地长宁—威远国家级页岩气示范区范围内的威远页岩气田(以下简称威远区块),同一平台上气井的生产动态特征存在着较大的差异,目前对于其页岩气井产气量的主控因素和开发工艺措施的有效性认识尚不明确。
为此,以威远区块PT2平台的6口水平井为例,针对气井生产动态存在的差异,从钻遇优质页岩段的长度、水平段轨迹倾向、压裂段长度、改造段数、加砂量及井底积液等方面进行分析,明确了影响威远区块页岩气水平井产气量的主要因素,进而提出了有针对性的开发措施建议。
研究结果表明:①优质页岩段钻遇长度是气井高产的物质地质保障,水平压裂段长度、改造段数/簇数和加砂量是主要的工程因素;②页岩气井生产早期均为带液生产且水气比较大,当产气量低于临界携液流量时,井底积液对产气量和井口压力的影响不容忽视;③建议低产井应采用小油管生产(油管内径小于等于62 mm),对于上半支低产井,应及早采取橇装式排水采气工具和措施以释放气井产能,而对于下半支低产井,则应放压生产,防止井底过早积液。
关键词 页岩气 产量主控因素 生产动态 临界携液流量 开发措施 四川盆地 长宁—威远国家级页岩气示范区 威远页岩气田DOI: 10.3787/j.issn.1000-0976.2019.01.009Production performance of and development measures fortypical platform horizontal wells in the Weiyuan Shale Gas Field, Sichuan BasinWei Yunsheng, Qi Yadong, Jia Chengye, Jin Yiqiu & Yuan He(PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China) NATUR. GAS IND. VOLUME 39, ISSUE 1, pp.81-86, 1/25/2019. (ISSN 1000-0976; In Chinese)Abstract: The Weiyuan Shale Gas Field (hereinafter, "Weiyuan Block" for short) is located in the Changning–Weiyuan National Shale Gas Demonstration Region, Sichuan Basin. In the Weiyuan Block, gas wells even on the same platform are quite different in production performance. And so far, the main factors controlling the gas production rate of shale gas wells in this block and the effectiveness of their development technologies and measures have not been understood clearly. In this paper, 6 horizontal wells on PT2 platform in the Weiyu-an Block were taken as the research objects. Aiming at the differences of production performance between these gas wells, this paper an-alyzes the high-quality shale drilling length, dip direction of horizontal section, length of fracturing interval, number of fracturing stages, sand volume and bottom-hole liquid loading to figure out the main factors affecting the gas production rate of shale-gas horizontal wells. Then, it proposes the targeted development measures and suggestions. And the following research results were obtained. First, high-qual-ity shale drilling length is the material and geological guarantee for the high yield of gas wells, and length of horizontal fracturing inter-val, number of fracturing stages/clusters and sand volume are the main engineering factors. Second, in the early production stage of shale gas wells, the produced gas contains liquid with higher water–gas ratios. When gas production rate is lower than the critical liquid-carry-ing flow rate, the effect of bottom-hole liquid loading on gas production rate and wellhead pressure cannot be ignored. Third, it is recom-mended that small tubing (ID≤62 mm) be applied to low-yield wells. When the upward inclined well has low production, skid-mounted drainage gas recovery tools and measures shall be adopted as early as possible to release gas well productivity. And when the downward inclined well has low production, the production method of decreasing tubing pressure shall be adopted to prevent the early bottom-hole liquid loading.Keywords: Shale gas; Production controlling factor; Production performance; Critical liquid carrying flow rate; Development measure; Sichuan Basin; Changning–Weiyuan National Shale Gas Demonstration Region; Weiyuan Shale Gas Field基金项目:国家科技重大专项“页岩气生产规律表征与开发技术政策优化”(编号:2017ZX05037-002)、国家科技重大专项“页岩气地质评价及开发优化技术研究与应用”(编号:2017ZX05062-002)、中国石油天然气股份有限公司重大科技专项“四川盆地页岩气建产有利区评价优选及开发技术政策优化研究与应用”(编号:2016E-0611)。
fmc_subsea_wellheadbro水下井口系统
Subsea Drilling Systems24FMC’s UWD-15 subsea wellhead systems have continuously met customer needs since their introduction in 1991. Today’s UWD-15 family advances this long tradition of excellence in a complete range of high pressure and deepwater applications.UWD-15 Subsea Wellhead SystemsModular, Stackable DesignRated for working pressures up to 15,000 psi, FMC offers UWD-15 subsea wellhead systems for a complete range of shallow and deepwater drilling and production scenarios, including standard, shallow water flow, large bore and rigidized/preloaded operations. These modular designs and multi-task running tools enablemany of the same components to be used across the UWD-15 family.Specialized Tools Reduce Trips, Installation TimeThe benefits of FMC’s modular subsea wellhead design extend to its industry leading running tools. UWD-15 systems use fewer running and test tools than any competitive subsea drilling system. These multi-function tools provide options for running and retrieving components either individually or in combination with other components, enabling fast, accurate and reliable UWD-15 system installation.18-3/4” Wellhead Running ToolStandard Rigid Lock Stack DownLarge Bore5Standard UWD-15 SystemDesigned for drilling and production applications up to 15,000 psi working pressure, the StandardUWD-15 System features a world-proven weight- s et, metal-to-metal seal design. The StandardSystem is designed for applications in water depths ranging from a few hundred feet to 6,000 feet.Systems are available with annulus monitoring capabilities and can be supplied with a drill-cutting injection system.Rigid Lock Stack Down SystemThe FMC UWD-15 Rigid Lock Stack Down (RLSD) System is ideal for drilling through formationswhere unconsolidated shallow water flow exists and an additional casing string is needed to isolate the zone. The RLSD allows for the addition of a 26” casing string without changing standard drilling procedures or components required for running subsequent casing strings. A Rigid Lock Seal Assem-bly (RLSA) installed between the 36” and 20” casing strings contains any shallow water flow that may be present. The RLSD preloaded system handles the higher bending, fatigue and torsional loads gener-ated by TLP, Spar, DP drill ship and DP semi-sub-mersible applications. The RLSD system, with or without a 26” conductor, is recommended for water depths up to 10,000 feet.Large Bore Wellhead SystemThe FMC Large Bore Wellhead System (LBWS) is an extension of the Rigid Lock Stack Down (RLSD) System product line, with additional provision to run two casing strings (18” and 16”) which are suspended submudline. The LBWS includes addi-tional trip-saving tools, such as single trip tools for the submudline equipment and bore protectors that are run and retrieved with the drill string, which save the operator additional trips.The FMC Large Bore 2M (LB-2M) Wellhead System is an extension of the UWD-15 Large Bore Wellhead System. The LB-2M System features casing hangers and running tools designed to carry additionalcasing load at the systems working pressure. The 16” submudline casing hanger, with a two million pounds (2M lbs.) high capacity hanger system has a 10,000 psi working pressure rating. The 2M lbs. high capacity 13-5/8” casing hanger lands inside the high pressure housing and is rated for 15,000 psi working pressure.The LB-2M high pressure wellhead housing utilizes the same internal profile as the Standard Large Bore system.This allows FMC to continue to use the same field provencasing hanger and seal technol-ogy that is used throughout the UWD-15 Subsea Wellhead family. The fully qualified UWD-15 multi-function running tools and bit run/retrieve wear bushings are fully compatible with the LB-2Msystem.Stackable Casing HangersSuper Flowby DrillAhead Tool Metal-to-Metal Seals13-5/8” Slimbore14-3/4” Slimbore16-3/4” SlimboreUWD-10 Subsea Wellhead Systems Modular, Stackable DesignThe UWD-10 Subsea Wellhead System is designedfor a complete range of drilling and productionscenarios in shallow or deepwater with subsea orsurface BOPs. Designed for drilling and productionapplications, Slimbore Systems are suitable for H2SFMC Technologies presents the UWD-10 Slimbore System, with smaller bore diam-eters for slender well designs. The UWD-10 system is based on the same world-proven technology as the UWD-15 systems. The Slimbore wellhead allows the use of reduced diameter riser systems for drilling and production applications. This makes it possible for early generation drilling vessels to drill in deeper water and floating production facilities can increase the quantity of production risers tied back to the host platform.service and are available with 16-3/4”, 14-3/4” and13-5/8” nominal bore diameters. Each system has arigidizing mechanism to provide enhanced fatigueresistance. The modular design enable use of manyof the same open water tools that are used acrossboth the UWD-20 and UWD-15 product families.6714-3/4” Slimbore SystemThe 14-3/4” Slimbore System is designed to use standard UWD-15 RLSD System components whenever possible. This decreases the operator’s cost while increasing system reliability and equip-ment availability. The RLSA is installed between the 36” and 20” casing to contain shallow water flow and create preload for improved fatigue life of the system. The high pressure wellheadhousing has two active landing shoulders for casing hangers inside the housing, as well as a 13-3/8” submudline casing hang-er and receptacle.13-5/8” Slimbore SystemThe 13-5/8” UWD–10 Slimbore System is uniquely designed to accommodate slender well designs and production with vertical subsea trees, allowing the slimbore tubing hanger to be installed in the well-head, and alleviating the require-ment for a tubing head. The high pressure wellhead housing can be configured with either two casing hangers landing in the wellhead or one casing hanger with one tubinghanger inside the housing.Specialized Tools Save Trips, Time and MoneyBased on the design of the industry-leading UWD-15 running tools, UWD-10 Slimbore Systems continue the tradition of providing multi-function running and test tools, plus bit installable/retrievable wear bushings and bore protectors. The UWD-10 tools provide the option of running and retrieving components either individually or in combination, resulting in less required tools than any competitive slimbore subsea drilling system.16-3/4” Slimbore SystemThe 16-3/4” Slimbore System features a passive load shoulder in the high pressure wellhead for landing and stacking the casing hangers. This system builds on the field-proven designs ofFMC’s weight-set metal-to-metal seal assembly and integral rigid lock mechanism. The integral rigid lock mechanism creates preload between the low pressure and high pressurewellhead housings. This preload provides improved fatigue life,allowing for higher bending and torsional loads generated by TLP, Spar, DP drill ship and DP semi-submersibleapplications.14” Single Trip ToolIntegral Rigid Lock High Pressure Housing11-3/4” Casing Hanger for the 14-3/4”Slimbore systemActive LoadShoulder and Seal with the 11-3/4”HangerIntegral Rigid Lock and Stackable HangerTubing HangerProfile8UWD-HC Subsea Wellhead SystemsFMC’s High Capacity Subsea Wellhead Systems are engineered to meet the increas-ing capacities and pressures in the subsea drilling environment. The FMC UWD-HC family is based on the field proven UWD-15 wellhead systems including the use of fewer running and test tools. FMC’s high capacity tools are designed to handle higher capacities while performing multi-functions.HC-20 System• 4M lbs. Wellhead String Capacity • 20K Rated Wellhead• Rated for 350o F Temperature Rating • 30” or 27” H4 Mandrel • Super Heavy Duty Rigid Lock Seal Assembly (SHD RLSA)9HC-15Incorporating the same features as the HC-20 system, the HC-15 Systems including the Super Heavy Duty Rigid Lock Mechanism, low pressure housing designed for 42” or 38” conductor pipe, intermediate open watercasing strings of 32” or 30” and 28” or 26”, and the samemetal-to-metal seal assemblies and submudline equipment.However, the high pressure wellhead housing incorporates the more commonly found connection profile, the H4, instead of the Super Heavy Duty H4 connection. The wellhead is rated to a 4M lbs. string capacity with a 15,000 psi operating pressure.HC-20The FMC 20,000 psi High Capacity Wellhead System (HC-20) has advanced the traditions of excellence by integrating performance features of the field proven UWD-15 wellhead family such as the modular design and weight-set, metal-to-metal seal design. The HC-20 system has an improved wellhead housing design providing for additional casing strings and increased capabilities in high-pressure and deepwater applications.FMC’s HC-20 wellhead has an increased casing string capacity of 4M lbs. with each active shoulder capable of handling 2M lbs. plus the maximum BOP pressure test load. This extensive capacity permits our customers to drill deeper wells with longer and heavier casing strings. This innovative HC wellhead sys-tem, with a 20,000 psi working pressure, allows the 42” x 22”annulus to be completely cemented back to the mudline providing a stronger structural foundation. The design of the HC-20 system also allows the 16” casing hanger to be landed submudline or in the 1st hanger position in the wellhead.The HC-20 System includes the Super Heavy Duty Rigid Lock Seal Assembly which rigidizes the low pressure housing to the high pres-sure housing to create a 2.5M lbs. preloaded system. This capacity grants a higher fatigue and torsional resistance to handle the loads generated by TLP, SPAR, DP drill ships and DP semi-submersiblevessels in deepwater applications.High Capacity Wellhead Interface with Open Water Casing StringsHigh Capacity First Hanger Position Active Load ShoulderSHD Rigid Lock Seal Assembly Interface with Low and HighPressure HousingSHD RLSASpecialty ToolsRotary Table Adapter Bushing (RTAB)• The Rotary Table AdapterBushing (RTAB) isdesigned to hang-off aRigid Lock or Large BoreWellhead and 22”/20”casing string in theRotary Table to make-upthe Cam Tool and RLSARunning Tool afterrunning the inner string.• Top of wellhead is lowenough to promote a safeworking environmentthat allows the innerstring to be made up withthe iron roughneck.• Sets in 49-1/2” RotaryTable Master Bushing18” & 16” Hang Off Plate• 18” & 16” Casing Hanger Hang Off Plate(CHHOP) is designed to hang-off LBSubmudline hangers in the rotary so theSingle Trip Tool can beremoved to run innerstring.• The recessed 18”/16”hanger promotes ansafe working environ-ment to run the innerstring.• CHHOP is rated to 1Mlbs.; the CHHOP usedin conjuction with theLB-2M 16” hanger israted to 2M lbs.Nested Wear Bushing• Three part bit retrievable 13” WearBushing runs on 10-1/2” stabilizer.• Centralize drill string duringdrilling operation to promote wearon replaceable upper body.• Outer bushing can be either left inor removed from the wellheadduring each trip out of wellhead.• Inner bushing is pulled each tripout of wellhead.• Spring loaded tool can be used assecondary means of running andretrieving the nested wellhead. Open Water Casing Hanger Measurement Tool, Lockdown Bushing (LDB) and LDB Running and Retrieval Tool• Designed for running in openwater from a work boat to reduceinstallation cost.• Increases accuracy of measuringthe hanger position within thewellhead.• Utilizes a ROV to install, themeasurement tool and read digitaloutputs from sensors.• ROV locks the LDB to the wellheadby stroking an energizing mandrelto engage the load ring to the highpressure housing.• Tests metal-to-metal seal on LDB.For Increased Installation Efficiencyapter BushingRotary TableAdapter Bushing 18” & 16” Hang Off PlateNested WearBushing15K LDB Runningand Retrieval Tool10UWD-10 System ComparisonUWD-15 & UWD-HC System ComparisonUWD-15 Standard UWD-15 Rigid Lock UWD-15 Large Bore HC-2011FMC Technologies1777 Gears RoadHouston, TX 77067281 591 4000www.fmct /subseadrilling©Copyright 2008, FMC Technologies, Inc.。
压裂裂缝监测技术
500
1000
1500
2000
2500
累积时间(h)
间接方法
系统试井
产能试井
等时试井 修正等时试井 一点法试井
试井
压力降落试井
不稳定试井
单井不稳定试井 多井不稳定试井
压力恢复试井 中途测试
干扰试井 脉冲试井
间接方法
不稳定试井分析
试井操作按照“中华人民共和国石油天然气行业标准 SY/T 5440-2009”----《天然气井试井技术规范》执行。
远场地带监测技术
地面倾斜监测技术
地面倾斜监测系统一般由12~18个倾斜仪组成,围绕压裂 井井筒按圆形排列,放置在浅孔眼里并埋在干层中,布置的半 径大约是压裂井深度的40%,这是目前国际上较公认的裂缝监 测技术。
远场地带监测技术
周围井井下微地震监测技术
通过加固地面倾斜仪并把
其放在压裂井邻近井中就可以
远场地带监测技术
微地震监测技术
远场地带监测技术
微地震监测技术
➢ 无源微地震 ➢ 摩尔-库伦理论 ➢ 断裂力学准则 ➢ 微震波识别技术 ➢ 微地震震源定位
远场地带监测技术
微地震监测技术
由于水力压裂诱生微震能量比较微弱,因此在现场监测应该 要注意以下几点:①地面观测站点越多越好,为了准确确定震源 位置以准确确定裂缝空间形态,微震观测点要足够多;②降低和 识别消除地面噪音,现场观测尽可能的远离或停止一切地面活动, 把检波器安装在相对安静的地区,以免产生干扰,也可以在引起 噪音的地区安置一个检波器,以帮助识别并进而消除地表噪音; ③地面布设站点的位置要合理选取,尽可能在监测井的各个方向 上都有检波器监测。
√
远场地带监测技术
石油专业词汇
机组等。
车装:truck-mounted结构分为履带式和轮胎式两种形式。
拖挂钻机:trailer-mounted drilling rig成套压裂机组:complete set of fracturing unit压裂就是利用水力作用,使油气层形成裂缝的一种方法,又称水力压裂。
井口:wellhead动力钳:power tongs修井过程中操作工人最大、最繁重的工作量是上、卸油管具和钻具的丝扣,过去一直用管钳或链钳,不仅劳动强度大,而且有危险性。
液压动力钳是利用修井机动力操作的机械上、卸丝扣工具,可以极大地减轻修井工人的劳动强度,避免或减少伤害事故的发生。
同时,液压动力钳增强管具、钻具丝扣的扭力,减少管具、钻具脱扣事故的发生。
液压动力钳的工作原理是把修井机的动力传递给液压动力钳的液压马达经行程减速器,然后经两级或一级减速,使钳头开口齿轮转动,产生高低两种转速,从而带动管具(钻具)旋转。
开口齿轮转动时,其中板架在制动锤的制动作用下先不转动,使开口齿轮与腭板架之间有个相对运动。
这样,腭板的两个滚子就会在坡板上爬坡,并迫使胯板上的钳牙向管具(钻具)中心移动,直至咬紧管具(钻具),然后与开口齿轮一起带动管具(钻具)转动。
钻井工程中,吊卡是一种用来吊起钻杆、油管和套管等管材的工具。
它悬挂在提是在井口悬持钻具的专用工具,内壁有许多钢牙。
工作时,钻机回转器带动卡瓦转动,钻杆在卡瓦的加持作用下随之转动。
游车大钩:traveling block转盘:rotary table利用动力旋转完成三大功能:1)转动井下钻具,传递足够大的扭矩和必要的转速;2)在下套管或者起下钻过程中,承托井下全部套管柱或者钻杆得住重量;3)完成卸钻头、卸扣,处理事故时进行倒扣、进扣等辅助工作。
水龙头:swivel防喷器:blow-out preventer (BOP)防喷器是用于试油、修井、完井等作业过程中关闭井口,防止井喷事故发生,将全封和半封两种功能合为一体,具有结构简单,易操作,耐高压等特点,是油田常用的防止井喷的安全密封井口装置。
Wellhead Conversion System and Method
专利名称:Wellhead Conversion System and Method发明人:Gregory Williams,James Bower申请号:US12399050申请日:20090306公开号:US20100224373A1公开日:20100909专利内容由知识产权出版社提供专利附图:摘要:Methods and systems relating to subsea wellhead orientation are disclosed. In one embodiment, a method comprises providing a wellhead with an orientation key on an outer surface and an opening on an inner surface; providing the Christmas tree attached to a guide tube having an orientation profile configured to engage the orientation key;providing a lockdown sleeve with a mating profile on an inner surface, and a protuberance on an outer surface configured to engage the opening on the inner surface of the wellhead; providing the tubing hanger with a mating profile on an outer surface configured to engage the mating profile of the lockdown sleeve; moving the lockdown sleeve into engagement with the wellhead; moving the tubing hanger into engagement with the lockdown sleeve; and moving the Christmas tree into engagement with the wellhead and the tubing hanger.申请人:Gregory Williams,James Bower地址:Houston TX US,Deer Park TX US国籍:US,US更多信息请下载全文后查看。
天府气田致密气支撑剂回流防治技术研究及应用
Journal of Oil and Gas Technology 石油天然气学报, 2023, 45(3), 287-292 Published Online September 2023 in Hans. https:///journal/jogt https:///10.12677/jogt.2023.453035天府气田致密气支撑剂回流防治技术 研究及应用李 静1,21中国石油大学(北京),石油工程学院,北京2中国石油西南油气田公司川中油气矿,四川 遂宁收稿日期:2023年7月26日;录用日期:2023年9月4日;发布日期:2023年9月15日摘要目前,天府气田致密气的主要有效开发形式为加砂体积压裂,但在压后试油和生产阶段存在支撑剂回流现象,高速流体携带碎屑颗粒对阀门、管道等形成严重的冲蚀,造成本体穿孔失效,严重影响生产正常运行。
形成一套有效的支撑剂回流防治技术,对于保障天府气田致密气的高效开发和人员设备安全,具有重要意义。
研究及生产实际表明,压裂控砂、生产防砂、井口除砂相结合的技术路线是支撑剂回流防治的有效技术,能减少支撑剂回流及砂粒冲蚀对设备的破坏作用,有力夯实了致密气高效平稳运行基础。
关键词致密气,加砂体积压裂,冲蚀,防治技术Study on Proppant Reflux Prevention and Control Technology of Tight Gas in Tianfu Gas FieldJing Li 1,21College of Petroleum Engineering, China University of Petroleum, Beijing2Petrochina Southwest Oil and Gas Field Company Chuanzhong Oil and Gas Mine, Suining SichuanReceived: Jul. 26th , 2023; accepted: Sep. 4th , 2023; published: Sep. 15th , 2023AbstractAt present, the main effective development form of tight gasin Tianfu gas field is volumetric frac-李静turing with sand. However, proppant reflux phenomenon exists in the post-pressure oil testing and production stage, and the debris particles carried by high-speed fluid seriously erodes valves and pipelines, resulting in body perforation failure and seriously affects the normal operation of production. The formation of an effective proppant reflux control technology is of great signific-ance to ensure the efficient development of tight gas in Tianfu gas field and the safety of personnel and equipment. Research and production practice show that the combination of sand control in fracturing, sand control in production and sand removal at wellhead is an effective technology for proppant reflux prevention and control, which can reduce the damage of proppant reflux and sand erosion on equipment, and effectively consolidate the foundation for efficient and stable operation of tight gas.KeywordsTight Gas, Volumetric Fracturing with Sand, Erosion, Scour Corrosion, Prevention and ControlTechnologyCopyright © 2023 by author(s) and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License (CC BY 4.0)./licenses/by/4.0/1. 引言致密气的开采途径是通过加砂压裂工艺在地层中形成具有一定几何尺寸的高导流人工裂缝,为油气生产提供通道,支撑剂的作用主要是使人工裂缝在泵注停止和返排后保持张开状态[1],对于提高产量具有重要作用。
挖井过程介绍英文作文
挖井过程介绍英文作文示例1:Title: Introduction to the Process of Well DiggingIntroduction:Well digging is a crucial activity in the field of civil engineering and construction. It involves the excavation of a hole in the ground to access groundwater resources. This process is essential for various purposes such as water supply, irrigation, and even geothermal energy extraction. In this article, we will provide a comprehensive overview of the well digging process.1. Site Selection:The first step in well digging is to carefully select the site. Factors such as the water table depth, geological conditions, and proximity to potential sources of contamination must be considered.A thorough geological survey and consultation with experts are crucial at this stage.2. Preparatory Work:Once the site is selected, the preparatory work begins. This includes obtaining necessary permits and approvals from localauthorities, marking the drilling spot, and ensuring the availability of required equipment and resources.3. Drilling Equipment:Various types of drilling equipment are used for well digging, depending on the specific requirements and geological conditions. Commonly used equipment includes rotary rigs, cable tool rigs, and augers. These machines are designed to penetrate the ground and create a hole of the desired diameter.4. Drilling Process:The drilling process involves the continuous rotation or hammering of the drilling equipment to break the ground and create a borehole. As the drilling progresses, the well is lined with steel or PVC casing to prevent the walls from collapsing and to ensure stability.5. Well Development:After reaching the desired depth, the well is developed to improve its efficiency and water production. This process includes cleaning the well by removing drilling mud, sediment, and any other debris. It may also involve techniques such as hydrofracturing toenhance water flow.6. Pump Installation:Once the well is developed, a pump is installed to extract water from the underground source. The type and capacity of the pump depend on the intended use of the well. It is essential to ensure proper installation and regular maintenance to maximize the well's lifespan and performance.7. Testing and Monitoring:After installation, the well undergoes testing and monitoring to evaluate its performance and water quality. This involves measuring water flow rates, conducting water quality tests, and monitoring the well's response to pumping. Regular monitoring ensures the sustainability and reliability of the water supply.Conclusion:The process of well digging is a complex and meticulous undertaking that requires careful planning, expertise, and adherence to safety regulations. By following the steps mentioned above, a well can be successfully dug to access valuable groundwater resources. Proper site selection, equipment usage, and maintenanceare essential for ensuring the longevity and efficiency of the well.示例2:Introduction to the Process of Digging a WellDigging a well is a crucial process that involves excavating the ground to access underground water sources. This process has been practiced for centuries and continues to be a vital method of obtaining water for various purposes, such as agriculture, drinking, and industrial use. In this article, we will explore thestep-by-step process of digging a well.The first step in digging a well is to locate a suitable site. Geologists and hydrologists conduct surveys and assessments to identify areas with potential underground water sources. Factors such as the depth and quality of the water table, geological formations, and proximity to existing wells are considered during this site selection process.Once a suitable site is identified, the actual digging process begins. The first step is to clear the area and remove any obstructions like trees, rocks, or debris. This ensures that thedigging equipment can access the ground easily.Next, a drilling rig or an excavator is used to create a borehole. The drilling rig is equipped with a drill bit, which is lowered into the ground. As the drill rotates, it breaks through the soil and rock layers, creating a hole. The excavated soil and rock particles are removed from the hole using a pump or other methods.As the drilling continues, the depth of the well gradually increases. Depending on the intended use of the well, it may be necessary to drill deeper to access a sufficient water supply. The depth of the well is determined by factors such as the water table level and the estimated water demand.During the drilling process, it is important to ensure the stability and integrity of the well. This is achieved by installing casing pipes or well screens. These pipes are inserted into the borehole to prevent it from collapsing and to filter out any sediment or debris that may enter the well.Once the desired depth is reached, the well is completed by installing a wellhead. The wellhead consists of a cap, which coversthe opening of the well, and a pump, which is used to extract water from the underground source. The wellhead also includes a system for monitoring the water level and quality.After the well is completed, it undergoes testing to assess its performance. This involves measuring the flow rate, water quality, and other parameters to ensure that the well meets the required standards. If any issues are identified, they are addressed before the well is put into use.In conclusion, the process of digging a well involves several steps, including site selection, excavation, drilling, installation of casing pipes, and testing. This process requires careful planning, expertise, and adherence to safety standards. By following these steps, a well can be successfully constructed to provide a reliable and sustainable source of water.示例3:The Process of Digging a WellDigging a well is a crucial process that involves creating a source of water supply. It requires careful planning, hard work,and the use of specialized tools and machinery. In this article, we will explore the step-by-step process of digging a well.The first step in digging a well is to locate a suitable site. This involves assessing the geological conditions of the area, such as the presence of underground water sources and the type of soil. It is essential to choose a location where the water table is high enough to ensure a sufficient water supply.Once the site is selected, the actual digging process begins. The first tool used is a drilling rig, which is a machine equipped with a rotating drill bit. The drill bit is lowered into the ground, and the drilling rig rotates it to create a hole. As the drilling progresses, the well is lined with steel or PVC casing to prevent the sides from collapsing.During the drilling process, it is important to continuously remove the cuttings or debris from the well. This is done using a drilling fluid, commonly known as drilling mud. The drilling mud is pumped into the well, and it carries the cuttings to the surface, where they are separated and disposed of.As the drilling continues, the depth of the well increases. The drilling rig is adjusted accordingly to reach the desired depth. The depth of the well depends on various factors, such as the water table level and the specific requirements of the project.Once the desired depth is reached, the drilling rig is removed, and the well is ready for completion. The completion process involves installing a well screen at the bottom of the well to prevent sand and other particles from entering the well. A pump is also installed to extract the water from the well.After completion, the well undergoes testing to ensure its functionality and water quality. This involves measuring the water yield, conducting water quality tests, and monitoring the well's performance over a period of time.In conclusion, the process of digging a well involves several important steps. It starts with site selection, followed by drilling, casing, and removal of cuttings. The well is then completed by installing a well screen and a pump. Testing is conducted to ensure the well's functionality and water quality. With proper planningand execution, digging a well can provide a reliable source of water for various purposes.。
复杂环境下水泥环全生命周期密封完整性研究进展与展望
第 51 卷 第 4 期石 油 钻 探 技 术Vol. 51 No.4 2023 年 7 月PETROLEUM DRILLING TECHNIQUES Jul., 2023doi:10.11911/syztjs.2023076引用格式:丁士东,陆沛青,郭印同,等. 复杂环境下水泥环全生命周期密封完整性研究进展与展望[J]. 石油钻探技术,2023, 51(4):104-113.DING Shidong, LU Peiqing, GUO Yintong, et al. Progress and prospect on the study of full life cycle sealing integrity of cement sheath in complex environments [J]. Petroleum Drilling Techniques,2023, 51(4):104-113.复杂环境下水泥环全生命周期密封完整性研究进展与展望丁士东1,2, 陆沛青1,2, 郭印同3, 李早元4, 卢运虎5, 周仕明1,2(1. 页岩油气富集机理与有效开发国家重点实验室, 北京 102206;2. 中石化石油工程技术研究院有限公司, 北京 102206;3. 中国科学院武汉岩土力学研究所, 湖北武汉 430071;4. 西南石油大学研究生院, 四川成都 610500;5. 中国石油大学(北京)石油工程学院, 北京 102249)摘 要: 受井下高温高压、酸性流体、固井后大规模分段压裂、油气开采等诸多因素影响,水泥环密封完整性极易遭受破坏,导致层间窜流、井口带压,甚至引发井喷。
目前,以提高水泥环胶结质量为核心的水泥环密封控制技术,已无法满足复杂油气井长效开发需求,而随着深井、超深井与非常规油气井不断增多,未来面临的环境和工况更加复杂,对水泥环密封完整性的要求更高。
为此,概述了复杂环境下水泥环全生命周期密封完整性研究进展,分析了目前水泥环密封完整性控制存在的主要问题,指出了未来应解决的基本理论和科学问题,并对未来相关技术进行了展望。
阀门 地道英文简介
C A M E R O N A P I G A T E V A L V E SCameron API 6A Gate ValvesA Family of Quality Gate Valves from the Industry Leader During the past 60 years, numerousgate valve designs have been used inthe oilfield. Slab gates, parallel gates,and expanding gates are a few of thedesigns that have been utilized invalves to control the flow of fluids inChristmas trees, flow lines, pipelinesand processing plants.Cameron engineers have carefullystudied existing valve designs, theirfeatures, benefits and applications.The result is a collection of preferredgate valve designs representing theÒbest of the bestÓ in gate valvetechnology today.The new Cameron gate valve product line offers:¥ Valves for applications from 2000 to 20,000 psi WP .¥ Large and small bore valves.¥ Valves fitting a wide range of land, offshore and subsea applications.¥ Cast and forged bodies.¥ Expanding and slab gate designs.¥ Components constructed of various alloys for severe service applications.¥ Designs suitable for actuation and compatible with a wide range of actuators.CameronÕs more than one-half century of experience designing, testing, installing and refurbishing gate valves has established a worldwide reputation for manufacturing excellence.Every valve must meet the exacting standards mandat-ed by its end use. To ensure these standards are achieved,Cameron uses state-of-the-art materials and machinery in its manufacturing process. Thus, it is not surprising that CameronÕs reputation carries over to customer service, a dedication to quality assurance, intensive service person-nel training programs, and CameronÕs highly regarded network of aftermarket facilities.It is this attention to total quality and excellence that enables Cameron to consistently deliver the worldÕs finest gate valves to fill its customerÕs needs.Comparison of Cameron Gate Valves by ApplicationCameron actuated and manual valves for North Sea platformComparison of Cameron Gate ValvesDescriptionSlab GatesExpanding Gates FLFLSFLS-RMM215Production Application Outlet ValveLower Master Valve Upper Master ValveSurface Safety Valve (SSV) Swab Valve Wing Valve Flowline ValveManifold Valve ServiceHigh Temperature (350˚F+) Low Temperature (-75˚F) H S CO InhibitorsProduced WaterHigh Chlorides Free SulphurFracturing Proppants Mercury (Trace) Acidizing SandDrillingApplicationMud Manifold Valve Choke and Kill ValveFracturing Valve ServiceHigh Temperature (350˚F+) Low Temperature (-75˚F) Salt Water Drilling Mud H SEnhanced Oil Recovery (EOR)ApplicationWater Injection Gas Lift Waterflood CO Water Alternating Gas (WAG)ServiceHigh Temperature (350˚F+) Low Temperature (-75˚F)Description FL FLS FLS-R M M215Environment SurfaceSubseaCharacteristics Slab GateExpanding GateForged Body Cast Body ManualActuatedCladFire ResistantWireline Cutting1Cameron slab-style gates are one-piece, solid gates which consistently deliver outstanding sealing perfor-mance throughout a wide range of conditions, bore sizes,and working pressures, including corrosive and abrasive fluid environments. Slab-style gates are used in theCameron FL, FLS and FLS-R Gate Valves for both manual and actuated applications. These valves meet or exceed the requirements of API Specifications 6A, 6A SSV/USV *and 17D.The slab-style gate design effects a metal-to-metal seal on the flow stream and its simple, straightforward design makes it easy to maintain and ideal for both low and high-pressure sealing situations where particulate matter could pose a sediment problem. Slab gates may also be used when wireline cutting is a requirement.Available ActuatorsCameron FL and FLS Gate Valves with slab-style gates are compatible with the following actuators from the Cameron Saf-T-Gard ªactuator line:¥MA Pneumatic Diaphragm Actuator ¥MP Pneumatic Piston Actuator ¥MH Hydraulic Actuator¥MWHP Hydraulic Wireline Cutting Actuator ¥MSV Hydraulic Actuator¥MWSV Wireline Cutting ActuatorFor more information on Cameron actuators, contact your Cameron representative.Slab-Style GatesSlab-Style Gate Valve AvailabilitySlab-Style GateNominal Working Pressure (psi)Size (in.)20003000500010,00015,00020,0001-13/16------------FLS FLS FLS 2-1/16FL/FLS FL/FLS FL/FLS FLS FLS ----2-9/16FL/FLS FL/FLS FL/FLS FLS FLS FLS 3-1/8FL/FLS FL/FLS FL/FLS ------------3-1/16------------FLS FLS FLS 4-1/16FL/FLS FL/FLS FL/FLS FLS *FLS-R/FLS ----5-1/8FLS FLS FLS FLS-R/FLS *FLS-R/FLS ----6-3/8FLS FLS FLS FLS-R/FLS *FLS-R/FLS----7-1/16--------FLS *FLS-R/FLS --------9--------*FLS-R/FLS*FLS-R/FLS--------*In these sizes use FLS-R in manual applications, FLS in actuated only.Notes: FLS-R valves are manual only, FLS and FL may be actuated or manual. This chart represents typical valves for material classes AA, BB, CC, DD, EE, FF , and HH;Temperature ratings K, L, P , R, S, T, U, V; and PSLs 1, 2, 3, 4. For other designs,contact your Cameron representative.2*API Spec 14D has been withdrawn. Cameron valves are nowavailable as API 6A SSV (Surface Safety Valve) or USV (Underwater Safety Valve) to meet applications and regulations previously sat-isfied by valves supplied to 14D.Saf-T-Gard is a registered trademark of the Cameron Division of the Cooper Cameron Corporation.Recognized worldwide as the Pow-R-Seal ªgate design,expanding-style gates are used in Cameron M and M215Gate Valves. This popular gate design is used in manual valves to produce a high seating force against both the upstream and downstream seats simultaneously as the handwheel is tightened. This force effects a tight mechan-ical seal which is unaffected by line pressure fluctuations or vibration. The expanding gate allows a positive mechanical seal across both seats both upstream and downstream, with or without line pressure.The gate assembly uses an angular gate face which is collapsed during travel. When closed, a stop causes any further downward travel to force the faces of the gate assembly outward to effect a positive line flow seal.When opened, a stop causes any further upward travel to force bottom faces to expand and seal against the seats to isolate flow from the valve body cavity.Expanding-Style Gate Valve AvailabilityExpanding gates provide a mechanical sealing method that ensures low pressure sealing. As the valve opens, upward travel of the loose gate segment is stopped by the bonnet. As the main gate segment continues upward, the two halves of the gate are forced apart by their tapered mat-ing surfaces. When the valve is closed, downward travel of the loose gate segment is stopped by the body. As the main gate segment continues downward, the two halves of the gate are again forced apart by their tapered mating surfaces.Open Position Expanding-Style GateClosed PositionExpanding Gate Sealing MethodNominal Working Pressure (psi)Size (in.)20003000500010,0001-13/16------------M2152-1/16M M M M2152-9/16M M M M2153-1/8M M M ----3-1/16------------M2154-1/16MMM----Note: This chart represents typical valves for material classes AA, BB, CC, DD,EE and FF; Temperature ratings K, L, P , R, S, T, U, V; and PSLs 1, 2. For other designs, contact your Cameron representative.Expanding-Style Gates3Pow-R-Seal is a registered trademark of the Cameron Division of the Cooper Cameron Corporation.FL Gate ValveThe Cameron FL Gate Valve has earned a reputa-tion in all types of applications. The FLis a full-bore, through-conduit valveavailable in standard double flange,threaded-end and special block bodyconfigurations. It is a forged valve which isavailable in 2000, 3000 and 5000 psi WP and in bore sizes from2-1/16Ó to 4-1/16Ó and can be fitted with a wide range ofCameron actuators.Features and Benefits¥Bi-directional design provides flow direction versatility andincreased service life.¥Positive metal-to-metal sealing (gate-to-seat and seat-to-body).¥Simple, reliable gate and seat design promotes ease of fieldservice and minimal spare parts inventory.¥Spring-loaded, pressure energized, non-elastomeric lip-sealbetween each seat and body assists in low pressure sealing.It also protects against intrusion of particlecontaminants into the body cavity and seal areas.¥Stem seal design covers full range of pressures,temperatures, and fluids encountered inwellhead and manifold service.¥Metal-to-metal bonnet seal.¥Stem can be backseated to allow stem sealreplacement with valve under pressure.¥Grease injection fitting located downstream ofstem backseat for safety. Fitting located in bonnet,eliminating body penetration.¥Bearing cap grease fitting allows positive bearinglubrication.¥Easy closing and sealing without excessive force.FL SealCameron FL Gate Valves incorporatea single spring-loaded lip seal asshown in this detail.CFL Operating and Dimensional Data(inches and pounds)FL Valve Trim ChartFL Gate Valve - Side ViewFL Operating and Dimensional Data(millimeters and kilograms)FABDE3.75”5FL Gate Valve - End ViewNominal Working Dimensions (in.)Flanged Number Size Pressure Weight of (in.)(psi)A ABCDEF (lbs)Turns(Thd)(Flgd)2-1/16200010.6211.62 6.1213.00 5.2515.3814.0016012-1/3300010.6214.62 6.7513.00 5.6215.3814.0017012-1/3500010.6214.627.0015.12 5.6217.3814.0017512-1/32-9/16200012.3813.127.1213.88 6.0016.1214.0020015-1/8300012.3816.627.6213.88 6.0516.1214.0022015-1/8500012.3816.629.2516.817.3819.0614.0023015-1/83-1/8200013.6214.127.7516.817.1219.0614.0024018-1/8300013.6217.127.5016.817.3819.0614.0026018-1/8500013.6218.627.5016.817.3819.0618.5036018-1/84-1/16200015.3817.129.7518.449.1220.6914.0035023-1/4300015.3820.1210.5018.449.1220.6918.5045023-1/4500016.5421.6210.8118.449.1220.6918.5052023-1/4Nominal Working Dimensions (mm)Flanged Number Size Pressure Weight of (in.)(psi)A ABC DEF (kg)Turns(Thd)(Flgd)2-1/162000269.75295.15155.45330.20133.35390.65355.6072.5712-1/33000269.75371.35171.45330.20142.75390.65355.6077.1112-1/35000269.75371.35177.80384.05142.75441.45355.6079.3812-1/32-9/162000314.45333.25180.85352.55152.40409.45355.6090.7215-1/83000314.45422.15193.55352.55153.67409.45355.6099.7915-1/85000314.45422.15234.95426.97187.45484.12355.60104.3315-1/83-1/82000345.95358.65196.85426.97180.85484.12355.60108.8618-1/83000345.95434.85190.50426.97187.45484.12355.60117.9318-1/85000345.95472.95190.50426.97187.45484.12469.90163.2918-1/84-1/162000390.65434.85247.65468.38231.65525.53355.60158.7623-1/43000390.65511.05266.70468.38231.65525.53469.90204.1223-1/45000420.12549.15274.57468.38231.65525.53469.90235.8723-1/4API 6ABody andStemGateSeatClassification Bonnet Material Material/Coating Material/Coating Material/Coating AA - General Service Alloy steel Alloy steel nitrided Alloy steel nitrided Alloy steel nitridedBB - General Service Alloy steel AISI 410 SS nitrided AISI 410 SS nitrided Solid cobalt alloy oror chrome-plated 410, cobalt alloy hard-faced CC - General Service 12 Cr SS AISI 410 SS nitrIted AISI 410 SS nitrided Solid cobalt alloy oror chrome-plated 410, cobalt alloy hard-faced DD - Sour Service*Alloy steel Alloy steel nickel-plated Alloy steel hard-faced or Solid cobalt alloy orduplex nickel-coated 410, cobalt alloy hard-faced EE - Sour Service*Alloy steel AISI 410 SS nitrided AISI 410 SS hard-faced Solid cobalt alloy or410, cobalt alloy hard-faced FF - Sour Service*12 Cr SSAISI 410 SS nitrided AISI 410 SS hard-faced Solid cobalt alloy or410, cobalt alloy hard-faced HH - Sour Service*Alloy steel clad with Alloy 718Alloy 718 hard-facedSolid cobalt alloy or alloy 625 or solid alloy 718alloy 718 hard-faced* as defined by NACE Standard MR 0175Note: Specifications are subject to change without notice. Special trims are available upon request.FLS Gate ValveThe Cameron FLS Gate Valve is widelyrecognized as a high quality valve forall types of applications. The FLS isa full-bore, through-conduit valveavailable in standard double flange,threaded-end and special block body configurations. It is a forged valve available in pressure ratings from 2000 to 20,000 psi and bore sizes from 1-13/16Óto 9Ó. The FLS is CameronÕs standard valve for critical requirements including clad and subsea applications. It can be fitted with a wide range of Cameron actuators.Features and Benefits¥Bi-directional design provides flow direction versatility and increased service life.¥Positive metal-to-metal sealing (gate-to-seat and seat-to-body).¥Simple, reliable gate and seat design promotes ease offield service and minimal spare parts inventory.¥Two spring-loaded, pressure energized,non-elastomeric lip-seals between each seatand body assist in low pressure sealing.They also protect against intrusion of particle contaminants into the body cavity and sealareas.¥Stem seal design covers full range of pres-sures, temperatures, and fluids encounteredin wellhead and manifold service.¥Metal-to-metal bonnet seal, (pressure energized10,000 psi WP and above).¥Stem can be backseated to allow stem sealreplacement with the valve under pressure.¥Grease injection fitting located downstream ofstem backseat for safety. Fitting located inbonnet, eliminating body penetration.¥Bearing cap grease fitting allows positivebearing lubrication.¥Easy closing and sealing without excessive torque.FLS SealCameron FLS Gate Valves incorporate dual spring-loaded lip seals as shown in this detail.67FLS Operating and Dimensional Data(inches and pounds)FLS Operating and Dimensional Data(millimeters and kilograms)FLS Valve Trim ChartTrims for the FLS valve are the same as for the FL valve. See page 5.Nominal Working Dimensions (in.)Size Pressure A B C D E F Weight Number (in)(psi)(lbs)of Turns 1-13/1610,00018.259.0615.12 5.7517.3814.0024012-1/315,00018.009.8815.12 5.8817.3814.0028012-1/32-1/16200011.62 6.1213.00 5.2515.3810.0010012-1/3300014.62 6.7513.00 5.6215.3814.0018512-1/3500014.627.0015.12 5.6217.3814.0018512-1/310,00020.509.3815.12 5.8817.3818.5027012-1/315,00019.009.8833.81 6.1217.3818.5030012-1/32-9/16200013.127.1233.81 6.0016.1210.0015015-1/8300016.627.6233.81 6.5016.1214.0023015-1/8500016.629.2516.817.3819.0614.0023015-1/810,00022.259.8115.81 6.8118.1218.5037015-1/815,00021.0011.5017.187.9419.5618.5056015-3/43-1/8200014.127.7516.817.1219.0614.0021018-1/8300017.127.5016.817.3819.0614.0028018-1/8500018.627.5016.817.3819.0618.5034018-1/83-1/1610,00024.3810.2516.888.0618.0624.0053018-1/815,00023.5613.5620.949.2522.1824.0089022-7/84-1/8200017.129.7518.449.1220.6918.5035023-1/4300020.1210.5018.449.1220.6918.5045023-1/4500021.6210.8118.449.1220.6918.5054023-1/44-1/1610,00026.3812.8119.6910.0620.9424.0087023-1/415,00029.0014.6033.8011.7035.8024.00155529-1/45-1/8300024.1221.0021.3111.3822.5624.0097527-1/2500028.6221.7521.3111.3823.5624.00110027-1/210,00029.0023.5023.8813.1225.2524.001310296-1/8200022.1212.3822.7512.8824.0018.5080033-3/4300024.1212.7522.7512.8824.0024.00100033-3/4500029.0014.1222.7512.8824.0024.00122033-3/46-3/8200022.1213.1922.7512.9024.5018.5089033-3/4300024.1214.1222.7712.9024.5024.00102033-3/4500029.0014.5022.7712.9024.5024.00123033-1/410,00035.0017.4040.1014.7042.1035.00250043-1/87-1/16300028.1217.3837.1114.6248.1943.00187546-1/25000 32.0017.3837.1114.6248.1943.00197546-1/29500041.0023.1240.6219.9551.7043.00410059-1/4Nominal Working Dimensions (mm)Size Pressure A B C D E F Weight Number (in)(psi)(kg)of Turns 1-13/1610,000463.55230.12384.05146.05441.45355.60108.8612-1/315,000457.20250.95384.05149.35441.45355.60127.0012-1/32-1/162000295.15155.45330.20133.35390.65254.0045.3612-1/33000371.35171.45330.20142.75390.65355.6083.9112-1/35000371.35177.80384.05142.75441.45355.6083.9112-1/310,000520.70238.25384.05149.35441.45469.90122.4712-1/315,000482.60250.95858.77155.45441.45469.90136.0812-1/32-9/162000333.25180.85858.77152.40409.45254.0068.0415-1/83000422.15193.55858.77165.10409.45355.60104.3315-1/85000422.15234.95426.97187.45484.12355.60104.3315-1/810,000565.15249.17401.57172.97460.25469.90167.8315-1/815,000533.40292.10436.37201.68496.82469.90254.0115-3/43-1/82000358.65196.85426.97180.85484.12355.6095.2518-1/83000434.85190.50426.97187.45484.12355.60127.0018-1/85000472.95190.50426.97187.45484.12469.90154.2218-1/83-1/1610,000619.25260.35428.75204.72458.72609.60240.4018-1/815,000598.42344.42531.88234.95563.37609.60403.7022-7/84-1/82000434.85247.65468.38231.65525.53469.90158.7523-1/43000511.05266.70468.38231.65525.53469.90204.1223-1/45000549.15274.57468.38231.65525.53469.90244.9423-1/44-1/1610,000670.05325.37500.13255.52531.88609.60394.6323-1/415,000736.60370.84858.52297.18909.32609.60705.3329-1/45-1/83000612.65533.40541.27289.05573.02609.60422.2527-1/25000726.95552.45541.27289.05598.42609.60498.9527-1/210,000736.60596.90606.55333.25641.35609.60594.21296-1/82000561.85314.45577.85327.15609.60469.90362.8733-3/43000612.65323.85577.85327.15609.60609.60453.5933-3/45000736.60358.65577.85327.15609.60609.60553.3833-3/46-3/82000561.85335.03577.85327.66622.30469.90403.7033-3/43000612.65358.65578.36327.66622.30609.60462.6633-3/45000736.60368.30578.36327.66622.30609.60557.9233-3/410,000889.00441.961018.54373.381069.34889.001133.9843-1/87-1/163000714.25441.45942.59371.351224.031092.20850.4946-1/25000812.80441.45942.59371.351224.031092.20895.8446-1/2950001041.40587.251031.75506.731313.181092.201859.7359-1/4CFL Gate Valve - Side View FABDE3.75”FL Gate Valve - End ViewFLS-R Gate ValveThe Cameron FLS-R Gate Valve wasdesigned for use as a manual valve in high-pressure, large bore applications. This valveincorporates a lower balancing stem and unique ballscrew mechanism for ease of operation in the field.The FLS-R is value-engineered for reliability, low torque, ease of operation and service. The FLS-R has many of thesamefeatures as the FLS including the gate and seat design.Features and Benefits¥Bi-directional design provides flow direction versatilityand increased service life.¥Positive metal-to-metal sealing (gate-to-seat and seat-to-body).¥Simple, reliable gate and seat design promotes ease of field serviceand minimal spare parts inventory.¥Two spring-loaded, pressure energized, non-elastomeric lip-sealsbetween each seat and body assist in low pressure sealing. Theyalso protect against intrusion of particle contaminants into thebody cavity and seal areas.¥Lower stem balances pressure thrust on upper stem to reduceoperating torque, prevents body cavity pressure build-upduring operation, and provides position indication.¥Spring-loaded, pressure energized, non-elastomericstem seal covers full range of pressures,temperatures, and fluids.¥Pressure-energized metal-to-metal bonnet seal.¥Either stem can be backseated to allow stemseal replacement with valve under pressure.¥Grease injection fittings located on thedownstream side of the stem and thebalancing stem backseat for safety.FLS-R SealCameron FLS-R Gate Valves incorporatedual spring-loaded lip seals as shownin this detail.89FLS-R Operating and Dimensional Data(inches and pounds)3.75"FLS-R Gate Valve - End ViewFLS-R Gate Valve - Side ViewFLS-R Operating and Dimensional Data(millimeters and kilograms)FADEGBCNominal Working Dimensions (in.)Number Size Pressure Weight of (in.)(psi)A B C D E F G (lbs)T urns4-1/1615,00029.0015.9039.7011.6041.7024.0024.401550195-1/810,00029.0015.9040.4012.6042.4024.0026.60156523.215,00035.0017.8040.5015.0042.5034.0024.202980246-3/810,00035.0017.4045.7014.6047.7034.0030.00250028.815,00041.0024.0058.9012.0060.9040.0034.10678015.47-1/1610,00035.0018.9047.7018.1049.7034.0029.003900319500041.0023.0053.209.7555.2024.0033.70455038.3Nominal Working Dimensions (mm)Number Size Pressure Weight of (in.)(psi)A B C D E F G (kg)T urns4-1/1615,000736.60403.861008.38294.641059.18609.60619.76703.07195-1/810,000736.60403.861026.16320.041076.96609.60675.64709.8723.215,000889.00452.121028.70381.001079.50863.60614.681351.70246-3/810,000889.00441.961160.78370.841211.58863.60762.001133.9828.815,0001041.40609.601496.06304.801546.861016.00866.143075.3515.47-1/1610,000889.00480.061211.58459.741262.38863.60736.601769.003195,0001041.40584.201351.28247.651402.08609.60855.982063.8438.3Additional sizes and working pressures are available. Contact your Cameron representative.Additional sizes and working pressures are available. Contact your Cameron representative.*T ypical V alues **Actual T est DataTorque ComparisonConventional (Non-Rising Stem)FLS-R Design*Design**T orqueDirect to 6:1 T orque Stem Multiplier 39 T urns234 T urns31 T urnsOpening T orque 1500 ft-lbf 313 ft-lbf 150 ft-lb(avg.)(10,000 psi differential)2035 Nm 425 Nm 20Nm (first 3.25 turns)(first 19.5 turns)(first 3 turns)Opening T orque 55 ft-lbf11.5 ft-lbf15 ft-lb(avg.)FLS-R Valve Trim ChartAPI 6A Classification Body andStemGateSeatBonnet Material Material/Coating Material/CoatingMaterial/Coating AA - General Service Alloy Alloy 718Alloy steel Alloy steel steel nitridednitrided BB - General Service Alloy steelAlloy 718AISI 410nitrided Solid cobalt alloyor chrome-platedor 410, cobalt alloy hard-faced CC - General Service 12 Cr SSAlloy 718AISI 410nitrided Solid cobalt alloyor chrome-platedor 410, cobalt alloy hard-faced DD - Sour Service *Alloy steel Alloy 718 Alloy steel Solid cobalt alloyhard-facedor 410, cobalt alloy hard-faced EE - Sour Service*Alloy steel Alloy 718AISI 410 SS Solid cobalt alloyhard-facedor 410, cobalt alloy hard-faced FF - Sour Service *12 Cr SS Alloy 718AISI 410 SSSolid cobalt* as defined by NACE Standard MR 0175Note: Specifications are subject to change without notice. Special trims are available upon request.M Gate ValvesThe Cameron M Gate Valve, with expandingPow-R-Seal gate design, non-rising stem, andmetal-to-metal sealing provides safe, depend-able service in applications of 2000 to 5000 psiWP. It is available in sizes from 2-1/16Óthrough 4-1/16Ó with either threaded or flanged ends. The M valve is available in trims for alltypes of oilfield service, including extreme sour gas.Features and Benefits¥Metal-to-metal sealing (gate-to-seat and seat-to-body).¥Expanding gate design creates a positive mechanical sealacross the seats, with or without line pressure.¥Full-bore, through-conduit gate-to-seat seal maximizesvalve life by virtually eliminating turbulence andpressure drop.¥Gate skirts reduce loss of body lubricants.¥Low running stress enhances life of the gate-to-seatinterface.¥Upper/lower roller thrust bearings are isolatedfrom well fluid, minimizing torque.¥Stem packing can be re-energized with valveunder pressure.¥Non-rising stem permits valve installation incloser quarters.¥Seats, gates, stem, and other working parts arefield replaceable.1011M Valve Trim ChartM Operating and Dimensional Data(inches and pounds)M Operating and Dimensional Data(millimeters and kilograms)4.25"M Gate Valve - Side ViewM Gate Valve - End ViewFADECBNominal Working Dimensions (in.)Flanged Number Size Pressure Weight of (in.)(psi)A ABCDEF (lbs)Turns(Thd)(Flgd)2-1/1620009.6511.627.2514.75 5.1215.3810.501551330009.8114.627.2514.75 5.1215.3812.751551350009.8114.627.2514.75 5.1215.3812.75155132-9/16200012.3813.128.0015.50 5.9416.3112.7521015-1/2300012.3816.628.0015.50 5.9416.3116.0021015-1/2500012.3816.628.0015.50 5.9416.3116.0021015-1/23-1/8200011.3814.129.2517.697.3118.5016.0027020300011.3817.129.2517.697.3118.5016.0027020500011.5618.629.2517.697.3118.5016.00300204-1/16200014.6217.1212.2521.319.0622.5020.0038024-1/2300014.6220.1212.2521.319.0622.5020.0038024-1/2NominalWorking Dimensions (mm)Flanged Number Size Pressure Weight of (in.)(psi)A ABCDEF (kg)Turns(Thd)(Flgd)2-1/162000245.11295.15184.15374.65130.05390.65266.7070.31133000249.17371.35184.15374.65130.05390.65323.8570.31135000249.17371.35184.15374.65130.05390.65323.8570.31132-9/162000314.45333.25203.20393.70150.88414.27323.8595.2515-1/23000314.45422.15203.20393.70150.88414.27406.4095.2515-1/25000314.45422.15203.20393.70150.88414.27406.4095.2515-1/23-1/82000289.05358.65234.95449.33185.67469.90406.40122.47203000289.05434.85234.95449.33185.67469.90406.40122.47205000293.62472.95234.95449.33185.67469.90406.40136.08204-1/162000371.35434.85311.15541.27230.12571.50508.00172.3724-1/23000371.35511.05311.15541.27230.12571.50508.00172.3724-1/2API 6ABody andStemGateSeatClassification Bonnet Material Material/Coating Material/Coating Material/Coating AA - General Service Alloy steel Alloy steel Alloy steel Alloy steel BB - General Service Alloy steel 17-4PH SS 410 SS nitrided 410 SS nitrided CC - General Service 12 Cr SS 17-4PH SS 410 SS nitrided 410 SS nitrided DD - Sour Service *Alloy steel 17-4PH SS Alloy steel nitrided Alloy steel nitrided EE - Sour Service*Alloy steel 17-4PH SS 410 SS nitrided 410 SS nitrided FF - Sour Service *12 Cr SS17-4PH SS410 SS cobalt alloy 410 SS cobalt alloy hard-facedhard-faced* as defined by NACE Standard MR 0175Note: Specifications are subject to change without notice. Special trims are available upon request.M215 Gate ValveThe Cameron M215 Gate Valve, with expand-ing Pow-R-Seal gate design, pres-sure balanced stem, andmetal-to-metalsealing provides safe,dependable service in10,000 psi WP applications. It is available in sizesfrom 1-13/16Ó through 3-1/16Ó with flanged ends. TheM215 is available in trims for all types of oilfield service,including extremesour gas.Features and Benefits¥Pressure balancing lower stem reduces load on the bear-ings and stem threads, resulting in lower operating torque.¥Metal-to-metal sealing (gate-to-seat and seat-to-body).¥Stem threads are outside the valve body, removed fromwellbore fluids.¥Expanding gates create a positive mechanical seal acrossthe seats, with or without line pressure.¥Positive mechanical seal of gatesisolates bodycavity from wellbore pressure,permitting pressure venting,whether valve is open or closed.¥Full-bore, through-conduitdesign virtually eliminatesturbulence and pressure drop.¥Seats, gates, stem and otherworking parts are fieldreplaceable.¥Injectable stem packing can bere-energized while the valve is under12。
阀门样本FMC130plusValve
design geometry
Features • Bidirectional metal-to-metal sealing floating slab
B
23.70 24.20 28.10 30.17 34.20
Operating Torque, ft-lb
Min
Max
41
71
Байду номын сангаас
48
86
79
146
100
194
159
313
Weight, Turns to Stroke, in. lbm open/close
172
11.4
2.28
210
12.8
2.56
303
Although API Spec 6A allows manufactures to qualify valves by scaling one size above and one size below the tested valve, FMC Technologies individually qualifies each Model 130plus gate valve size using nitrogen gas. In addition, FMC Technologies imposes additional perforamance requirements and endurance testing to simulate 25 years of operation in the field.
固井词汇整理
Yantai Jereh Oilfield Services Co., Ltd. 固井专业词汇Yantai Jereh Oilfield Services Co., Ltd.Yantai Jereh Oilfield Services Co., Ltd.Yantai Jereh Oilfield Services Co., Ltd.Yantai Jereh Oilfield Services Co., Ltd.Yantai Jereh Oilfield Services Co., Ltd.Yantai Jereh Oilfield Services Co., Ltd.Yantai Jereh Oilfield Services Co., Ltd.Yantai Jereh Oilfield Services Co., Ltd.Yantai Jereh Oilfield Services Co., Ltd.Yantai Jereh Oilfield Services Co., Ltd.Yantai Jereh Oilfield Services Co., Ltd.Yantai Jereh Oilfield Services Co., Ltd.附录:常用石油单位换算长度1千米(km)=0.621英里(mile)1米(m)=3.281英尺(ft)=1.094码(yd)1厘米(cm)=0.394英寸(in)1埃=10-10米(m)1英里(mile)=1.609千米(km)1英寻(fm)=1.829(m) 1英尺(ft)=0.3048米(m)1英寸(in)=2.54厘米(cm)1海里(n mile)=1.852千米(km)1链=66英尺(ft)=20.1168米 1码(yd)=0.9144米(m)1密耳(mil)=0.0254毫米(mm)1英尺(ft)=12英寸(in)1码(yd)=3英尺(ft) 1杆(rad)=16.5英尺(ft)1英里(mile)=5280英尺(ft)1海里(n mile)=1.1516英里(mile)面积1平方公里(km2)=100公顷(ha)=247.1英亩(acre)=0.386平方英里(mile2)1平方米(m2)=10.764平方英尺(ft2) 1公亩(are)=100平方米(m2)1公顷(ha)=10000平方米(m2)=2.471英亩(acre)1平方英里(mile2)=2.590平方公里(km2) 1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2)1平方英尺(ft2)=0.093平方米(m2) 1平方英寸(in2)=6.452平方厘米(cm2)1平方码(yd2)=0.8361平方米(m2)体积1立方米(m3)=1000升(liter)=35.315立方英尺(ft3)=6.29桶(bbl)1立方英尺(ft3)=0.0283立方米(m3)=28.317升(liter) 1千立方英尺(mcf)=28.317立方米(m3)1百万立方英尺(MMcf)=2.8317万立方米(m3)10亿立方英尺(bcf)=2831.7万立方米(m3) 1万亿立方英尺(tcf)=283.17亿立方米(m3)1立方英寸(in3)=16.3871立方厘米(cm3)1英亩·英尺=1234立方米(m3) 1桶(bbl)=0.159立方米(m3)=42美加仑(gal)1美加仑(gal)=3.785升(1)1美夸脱(qt)=0.946升(1) 1美品脱(pt)=0.473升(1) 1美吉耳(gi)=0.118升(1) 1英加仑(gal)=4.546升(1)质量1吨(t)=1000千克(kg)=2205磅(lb)=1.102短吨(sh.ton)=0.984长吨(long ton)1千克(kg)=2.205磅(lb) 1短吨(sh.ton)=0.907吨(t)=2000磅(lb)1长吨(long ton)=1.016吨(t) 1磅(lb)=0.454千克(kg)[常衡] 1盎司(oz)=28.350克(g)密度1千克/米3(kg/m3)=0.001克/厘米3(g/cm3)=0.0624磅/英尺3(lb/ft3)1磅/英尺3(lb/ft3)=16.02千克/米3(kg/m3) 1磅/英寸3(lb/in3)=27679.9千克/米3(kg/m3)1磅/美加仑(lb/gal)=119.826千克/米3(kg/m3)1磅/英加仑(lb/gal)=99.776千克/米3(kg/m3) 1磅/(石油)桶(lb/bbl)=2.853千克/米3(kg/m3)1波美密度(B)=140/15.5℃时的比重-130 API度=141.5/15.5℃时的比重-131.5运动粘度1英尺2/秒(ft2/s)=9.29030×10-2米2/秒(m2/s)1斯(St)=10-4米2/秒(m2/s)=1厘米2/秒(cm2/s)1厘斯(cSt)=10-6米2/秒(m2/s)=1毫米2/秒(mm2/s)动力粘度1泊(P)=0.1帕·秒(Pa·s)1厘泊(cP)=10-3帕·秒(Pa·s)1千克力秒/米2(kgf·s、m2)=9.80665帕·秒(Pa·s) 1磅力秒/英尺2(lbf·s/ft2)=47.8803帕·秒(Pa·s)力1牛顿(N)=0.225磅力(lbf)=0.102千克力(kgf)1千克力(kgf)=9.81牛(N)1磅力(lbf)=4.45牛顿(N) 1达因(dyn)=10-5牛顿(N)压力1巴(bar)=105帕(Pa)1千帕(kPa)=0.145磅力/英寸2(psi)=0.0102千克力/厘米2(kgf/cm2)=0.0098大气压(atm) 1磅力/英寸2(psi)=6.895千帕(kPa)=0.0703千克力/厘米2(kg/cm2)=0.0689巴(bar)=0.068大气压(atm) 1物理大气压(atm)=101.325千帕(kPa)=14.696磅/英寸2(psi)=1.0333巴(bar)1工程大气压=98.0665千帕(kPa) 1毫米水柱(mmH2O)=9.80665帕(Pa)1毫米汞柱(mmHg)=133.322帕(Pa)1托(Torr)=133.322帕(Pa) 1达因/厘米2(dyn/cm2)=0.1帕(Pa)温度K=5/9(°F+459.67)K=℃+273.15 n°F=[(n-32)×5/9]℃ n℃=(5/9·n+32) °F 1°F=5/9℃(温度差)传热系数1千卡/(米2·时·℃)〔1kcal/(m2·h·℃)〕=1.16279瓦/(米2·开尔文)〔w/(m2·K)〕1英热单位/(英尺2·时·°F)〔Btu/(ft2·h·°F)〕 =5.67826瓦/(米2·开尔文)〔(w/m2·K)〕1米2·时·℃/千卡(m2·h·℃/kcal) =0.86000米2·开尔文/瓦(m2·K/W) 1千卡/米2·时(kcal/m2·h)=1.16279瓦/米2(w/m2)热导率1千卡(米·时·℃)〔kcal/(m·h·℃)〕=1.16279瓦/(米·开尔文)〔W/(m·K)〕1英热单位/(英尺·时·°F)〔But/(ft·h·°F)〕=1.7303瓦/(米·开尔文)〔W/(m·K)〕比容热1千卡/(千克·℃)〔kcal/(kg·℃)〕=1英热单位/(磅·°F)〔Btu/(lb·°F)〕=4186.8焦耳/(千克·开尔文)〔J/(kg·K)〕热功1焦耳=0.10204千克·米=2.778×10-7千瓦·小时=3.777×10-7公制马力小时=3.723×10-7英制马力小时=2.389×10-4千卡=9.48×10-4英热单位 1卡(cal)=4.1868焦耳(J)1英热单位(Btu)=1055.06焦耳(J)1千克力米(kgf·m)=9.80665焦耳(J)1英尺磅力(ft·lbf)=1.35582焦耳(J) 1米制马力小时(hp·h)=2.64779×106焦耳(J)1英马力小时(UKHp·h)=2.68452×106焦耳 1千瓦小时(kW·h)=3.6×106焦耳(J)1大卡=4186.75焦耳(J)功率1千克力·米/秒(kgf·m/s)=9.80665瓦(w)1米制马力(hp)=735.499瓦(W)1卡/秒(cal/s)=4.1868瓦(W) 1英热单位/时(Btu/h)=0.293071瓦(W)速度1英尺/秒(ft/s)=0.3048米/秒(m/s)1英里/时(mile/h)=0.44704米/秒(m/s)渗透率1达西=1000毫达西1平方厘米(cm2)=9.81×107达西地温梯度1°F/100英尺=1.8℃/100米(℃/m)1℃/公里=2.9°F/英里(°F/mile)=0.055°F/100英尺(°F/ft)油气产量1桶(bbl)=0.14吨(t)(原油,全球平均)1吨(t)=7.3桶(bbl)(原油,全球平均)1桶/日(bpd)=50吨/年(t/a)(原油,全球平均) 1千立方英尺/日(Mcfd)=28.32立方米/日(m3/d)=1.0336万立米/年(m3/a)1百万立方英尺/日(MMcfd)=2.832万立方米/日(m3/d)=1033.55万立方米/年(m3/a)10亿立方英尺/日(bcfd)=0.2832亿立方米/日(m3/d)=103.36亿立方米/年(m3/a)1万亿立方英尺/日(tcfd)=283.2亿立方米/日(m3/d)=10.336万亿立方米/年(m3/a)气油比1立方英尺/桶(cuft/bbl)=0.2067立方米/吨(m3/t)热值1桶原油=5.8×106英热单位(Btu)1立方米湿气=3.909×104英热单位(Btu)1立方米干气=3.577×104英热单位(Btu) 1吨煤=2.406×107英热单位(Btu)1千瓦小时水电=1.0235×104英热(Btu)热当量1桶原油=5800立方英尺天然气(按平均热值计算)1千克原油=1.4286千克标准煤1立方米天然气=1.3300千克标准煤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Real-world innovation wellhead and fracturing solutionsOffering a complete, integrated package Innovative wellhead designs | up to 20K frac trees | Full-bore API frac Isolation sleeve systems | Gate valves thatsurpass API PR2 Annex F requirements | Weco andChiksan products | Integral flowlines || Patented seal technology | Highly trainedservice technicians | Flowback manifolds |Service locations where you need them |Breakthrough innovations in time andcost savings | Devoted customer service |World-class safety recordDTO wellhead technology Even with the unprecedented changes in the oil business, saving time and money is still the bottom line. Compared to a conventional wellhead, the innovative DTO system can reduce drilling time byas much as 80% - results provenby actual customer data.DTO technology eliminatesseveral steps in the drilling andproduction processes, which not onlycuts down on time but also createsa safer work environment. Thesystem requires no torch cutting,welding, or any work beneath the BOP.Fully equipped with API PR2qualified valves and proprietaryseal technology, the DTO packageexemplifies the proven reliability you expect with FMC.Frac trees and manifolds Standard with every frac tree and manifold, FMC forged valves and proprietary seals are designed to withstand the most severe frac applications. Full-bore opening trees are designed to reduce stackup height and maximize flow rates. Utilizing FMC Fluid Control erosion technology; products like forged integral flowlines, plug valves, and Weco/ Chiksan connectors exemplify the safety, efficiency, and reliability of our overall frac system.We know that technology is important, but in the rental business you need responsive service - that’s why FMC invests in its people. You can trust us to be where you need us, no matter what time of the day or how demandingthe situation.Our promiseIsolation sleeve system* Patent pending.** Based on actual customer data obtained in 2005.Challenging ourselves to make frac operations as simple as possible, we have designed a frac isolation sleeve * that not only protects your wellhead from pressure and erosion, but also provides significant cost savings.• API full-bore drift for all 4 1/2”-5 1/2” casing • Simple installation and retrieval under full workingpressureusing the FMC ISA lubricator• Dual-barrier safety system: BPV inside sleeve during BOPandsnubbing unit installation, lower master valve shut-in • Can be used in both fracturing and flowback operations • Utilized by conventional and DTOwellhead technology• Redundancy seals rated to 15 ksi • Positively retained by lockdown screws and a load shoulder• Full-pressure monitoring of all sleeve seals during operationAdapter ISA BPV Profile Tubing hangerload shoulderBushingYou can trust us to be there. We want you to know how important your business is to us, and that we will do whatever ittakes to get the job done right the first time. Whether you need quick delivery, immediate service, or a question answered - we will push ourselves to exceed your expectations. Through our deep understanding of your business and our relentless obsession with performance, we develop innovative real-world solutions that put even the most daunting challenges within reach.Isolation SleeveSaves an average of 25% over a WIT**United States/CanadaHouston, TXP: 281 591 4000F: 281 591 4464Longview, TXP: 903 757 9125F: 903 757 2514Dallas, TXP: 214 363 8000F: 214 363 9991Odessa, TXP: 915 563 0335F: 915 366 8538Pampa, TXP: 806 669 3279F: 806 669 3270Justin, TXP: 940 242 0333F: 940 242 0330Corpus Christi, TXP: 361 289 1744F: 361 289 6629Fairfield, TXP: 903 389 4783F: 903 389 5238New Orleans, LAP: 504 525 7323F: 504 525 0275Broussard, LA Phone: 337 837 9263 Fax: 337 837 5844Denver, COP: 303 382 1010F: 303 382 1018Rock Springs, WYP: 307 362 2007F: 307 382 5123Casper, WYP: 307 472 1257F: 307 472 1299Artesia, NMP: 505 746 0484F: 505 746 0486Anchorage, AKP: 907 563 3990F: 907 563 5810Ft. Smith, ARP: 479 646 8620F: 479 646 6402Oklahoma City, OKP: 405 972 1305F: 405 972 1373Vernal, UTP: 435 789 1003F: 435 789 1009Farmington, NMP: 505 327 4714F: 505 325 9243Brooks, AlbertaPhone: 403 363 0063Fax: 403 363 0043Calgary, AlbertaPhone: 403 232 1141Fax: 403 264 3933Grand Prairie, AlbertaP: 780 538 1060F: 780 538 1560Edmonton, AlbertaP: 780 468 9231F: 780 440 1537Bedford, Nova ScotiaP: 902 835 4776F: 902 835 9442Latin AmericaRio de Janiero, BrazilP: 5521 471 6907F: 5521 471 4129Bogota, ColombiaP: 571 635 1470F: 571 691 8384Yopal Casanare, ColombiaP: 578 635 3022F: 578 635 6059Villahermosa, MexicoP: 52993 3 500123F: 52993 3 501661Caracas, VenezuelaP: 58212 952 8417F: 5812 952 5191Maturin, VenezuelaP: 58292 2 20003F: 58292 2 20178Maracaibo, VenezuelaP: 58261 7365055F: 58261 7360201AfricaHassi Messaoud, AlgeriaP: 213 29 73 43 01F: 213 29 73 43 02Kome, ChadP: 44 207 07 42 674F: 44 207 07 42 603Cairo, EgyptP: 20 2 703 0265F: 20 2 703 1668Port Gentil, GabonP: 241 56 27 90F: 241 55 58 81Lagos, NigeriaP: 234 1 262 6490F: 234 1 262 6492Port Harcourt, NigeriaP: 234 84 238 909F: 234 84 238 906Middle EastDoha, QatarP: 974 6626 395F: 974 6626 396Muscat, OmanP: 968 2460 3091F: 968 2420 3538Damman, Saudi ArabiaP: 966 3 832 4400F: 966 3 834 2904Abu Dhabi, UAEP: 97 1 2 627 1065F: 97 1 2 627 0356Dubai, UAEP: 971 4 331 3646F: 971 4 331 0950Far East/AsiaSingaporeP: 65 6869 0501F: 65 6862 0527Shekou, ChinaP: 86 755 2688 3204F: 86 755 2688 3206Jakarta, IndonesiaP: 62 21 440 4151F: 62 21 440 4050Balikpapan, IndonesiaP: 62 542 763613F: 62 542 764764Kuala Lumpur, MalaysiaP: 60 03 780 36626F: 60 03 780 30792Pasir Gudang, MalaysiaP: 60 07 251 0930F: 60 07 251 0935Kerteh, MalaysiaP: 60 09 8633400F: 60 09 8633401Perth, AustraliaP: 61 8 9226 1288F: 61 8 9226 1388Europe/CISSens, FranceP: 33 3 8695 8889F: 33 3 8695 8987Aktau, KazakhstanP: 7 3292 57 93 11F: 7 3292 57 93 12Almaty, KazakhstanP: 7 3272 622 886F: 7 3272 582849Stavanger, NorwayP: 47 5185 3700F: 47 5185 3701Bergen, NorwayP: 47 56 32 32 05F: 47 56 32 32 35Dunfermline, ScotlandP: 44 1383 731 531F: 44 1383 731 297Aberdeen, ScotlandP: 44 1224 898 555F: 44 1224 875 820。