风力发电机工作原理图解析

合集下载

风力发电机原理图

风力发电机原理图

风力发电机原理图
风力发电机是一种利用风能转换成电能的装置。

其原理图主要由风轮、发电机、塔架和控制系统组成。

风轮是风力发电机的核心部件,它通常由数片叶片组成,叶片的设计和布局对发电效率有着重要影响。

当风力作用于叶片时,叶片转动带动风轮旋转,将风能转化为机械能。

风轮与发电机通过轴连接在一起,当风轮旋转时,轴带动发电机内部的转子旋转。

发电机内部的转子通过磁场感应原理产生感应电动势,将机械能转化为电能。

塔架是风力发电机的支撑结构,它能够将风轮和发电机置于较高的位置,以便捕捉到更大的风能。

同时,塔架还能够确保风力发电机的稳定性和安全性。

控制系统是风力发电机的智能核心,它能够监测风速、转速、温度等参数,并根据实时数据对风力发电机进行调节和控制,以保证其安全高效运行。

总的来说,风力发电机的原理图包括风轮、发电机、塔架和控制系统,通过风轮转动带动发电机内部的转子旋转,最终将风能转化为电能。

风力发电机以其清洁、可再生的特点,成为了当今世界上最重要的可再生能源之一,对于减少碳排放、保护环境具有重要意义。

希望随着技术的不断进步,风力发电技术能够得到更广泛的应用,为人类可持续发展做出更大的贡献。

风力发电机工作原理图

风力发电机工作原理图

风力发电机工作原理图
风力发电机是一种利用风能转换为电能的装置,其工作原理图如下:
1. 风能转换。

当风吹过风力发电机的叶片时,风的动能被转换为叶片的动能。

风力发电机通
常由多个叶片组成,这些叶片被设计成可以捕捉更多的风能,并将其转换为机械能。

2. 机械能转换。

叶片的运动会带动风力发电机的转子转动。

转子连接着发电机的发电部件,当
转子转动时,机械能被转换为电能。

3. 发电部件工作原理。

发电部件通常由磁场和线圈组成。

当转子转动时,磁场和线圈之间会产生相对
运动,从而产生感应电动势。

这个电动势随着转子的转动而改变,最终被转换为交流电能。

4. 输电。

发电部件产生的电能会被输送到变压器中,经过变压器升压后,再输送到电网中。

风力发电机的工作原理图清晰地展示了风能如何被转换为电能的过程。

这种清
洁能源的利用方式对环境友好,能够有效减少对化石燃料的依赖,是未来发展的重要方向之一。

风力发电原理图

风力发电原理图

风力发电原理图风力发电原理图风力发电是利用风能将其转化为电能的一种清洁能源发电方式。

风力发电原理图展示了风力发电机组的基本组成部分和工作原理。

一、风轮和主轴风轮是风力发电机组的核心部件,也是风能转化为机械能的关键组件。

风轮通常由几个叶片组成,通过设计与空气相互作用,将空气中的动能转化为旋转运动。

风轮固定在主轴上,主轴承受叶片产生的旋转力矩,并将旋转动能传递给发电机。

二、发电机发电机是风力发电系统中的关键设备,负责将机械能转化为电能。

通常使用的是同步发电机,其工作原理是利用电磁感应产生电流。

主轴高速旋转时,通过磁场与线圈的相互作用,感应出交流电流。

这个交流电流进一步通过变压器和电力系统进行升压和输送。

三、塔架和朝向系统风力发电机组安装在高塔架上,以在更高的位置捕捉更多的风能。

塔架通常由钢构件构成,以保持结构的稳定性和强度。

此外,风力发电机组还配备了朝向系统,用于通过自动或手动调整朝向控制风轮叶片的角度,以最大限度地利用风能。

四、控制系统和传感器风力发电机组还配备了控制系统和各种传感器,用于监测和控制发电机组的运行状态。

控制系统负责对整个系统进行监测和管理,确保发电机组的安全运行。

传感器可用于测量风速、风向、温度等参数,并将这些数据反馈给控制系统,以实现精确的控制。

五、电力系统风力发电机组产生的电能需要通过电力系统进行输送和利用。

电力系统可将发电机产生的低电压交流电转换为高电压交流电,并将其输送到电网中进行分配和供应。

六、可再生能源电力设备可再生能源电力设备包括变电站、配电设备和能量存储设备等。

变电站用于将风力发电机输送的高电压电能转换为可供用户使用的低电压电能。

配电设备用于将电能分配给不同的用户。

能量存储设备,如电池和超级电容器,可用于储存多余的电能,并在需要时释放给电力系统。

风力发电原理图简单描述了风力发电的基本组成部分和工作原理。

通过风轮和主轴将风能转化为机械能,再通过发电机将机械能转化为电能。

风力发电原理(共10张PPT)

风力发电原理(共10张PPT)
在内地,小的风力发电机会比大的更合适。因为它 转体能使机头灵活地转动以实现尾翼调整方向的功能;
力发电成为有一定科技含
更容易被小风量带动而发电,持续不断的小风,会 在旅游景区、边防、学校、部队乃至落后的山区,风力发电机正在成为人们的采购热点。
力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。
风力发电原理
力发电的原理,是利用风力带动 风车叶片旋转,再透过增速机将 旋转的速度提升,来促使发电机 发电。依据目前的风车技术,大 约是每秒三公尺的微风速度(微 风的程度),便可以开始发电。
风力发电正在世界上形成一股热 潮,为风力发电没有燃料问题, 也不会产生辐射或空气污染。
风力发电在芬兰、丹麦等国家很流行;我国也在西部 地区大力提倡。小型风力发电系统效率很高,但它不 是只由一个发电机头组成的,而是一个有一定科技含 量的小系统:风力发电机+充电器+数字逆变器。风 力发电机由机头、转体、尾翼、叶片组成。每一部分 都很重要,各部分功能为:叶片用来接受风力并通过 机头转为电能;尾翼使叶片始终对着来风的方向从而 获得最大的风能;转体能使机头灵活地转动以实现尾 翼调整方向的功能;机头的转子是永磁体,定子绕组 切割磁力线产生电能。
节发增校正者区与人约电加、在可城民而 机 生 部 成 用 市服且,活队为自同务是 不 情 乃 人 己 步,真但趣至们的,使正 可 。 落 的 技 也人绿 以 在 后 采 术 能们色 防 旅 的 购 在 使看电 止 游 山 热 风 自电源 停 景 区 点 力 己视。 电 区 , 。 发 劳及家 , 、 风 无 电 动照庭 而 边 力 线 方 致明用 且 防 发 电 面 富用风 还 、 电 爱 为 。电力 能 学 机 好 山 转力条然尾条的条家在于于的使的风 会使的因然条使的 尾于条于力然风城量体发件后翼件充件庭旅技技充用代力经用代为后件用代翼技件技发后力市的能 电 下 用 使 下 电 下 用 游 术 术 电 风 价 发常 风 价 它 用 下 风 价使 术 下 术 电 用 发 小 小使成代有叶代器代风景进进器力。电 损力。更有代力。 叶进代进成有电高系机为替保片替、替力区步步、发机 坏发容保替发片步替步为保正层统头有正护始正逆正发、,,逆电由 灯电易护正电始,正,有护在楼,灵一常电终常变常电边采采变机机 泡机被电常机终采常采一电世顶并活定的路对的器的机防用用器,头 。,小路的,对用的用定路界也能地科市的着市,市,、先先,就、 就风的市就着先市先科的上可在转技电逆来电风电不学进进风是转 是量逆电是来进电进技逆形用一动含。变风。。但校源体源带变。源风。含变成风定以电的可、源、 源动电源的电一力实源方以部不尾 不而源不方源股电现,向防队断翼 断发,断向,热机尾把从止乃地、 地电把地从把潮,翼电而停至把叶 把,电把而电,这调瓶获电落风片 风持瓶风获瓶为不整里得,后能组 能续里能得里风但方的最而的变成 变不的变最的力节向化大且山成。 成断化成大化发约的学的还区我我的学我的学电而功能风能,们们小能们风能没且能转能增风家家风转家能转有是;变;加力庭庭,变庭;变燃真成生发使使会成使成料正交活电用用比交用交问绿流情机的的一流的流题色趣正标标时标,电222222。在准准狂准也源000VVV成市市风市不。市市市为电电更电会电电电人,,能,产,,,们其其供其生才才才的节节给节辐能能能采约约较约射保保保购的的大的或证证证热程程的程空稳稳稳点度度能度气定定定。是是量是污使使使明明。明染用用用显显显。。。。的的的, , ,一一一个个个家家家庭庭庭一一一年年年的的的用用用电电电只只只需需需222000元元元电电电瓶瓶瓶液液液

风力发电机结构图

风力发电机结构图
技术创新
• 提高风力发电机的转换效率,降低成本 • 发展大型化、高效化的风力发电机 • 加强风力发电机的智能化和自适应控制技术
发展方向
• 海上风力发电:利用海上风能资源,建设大型海上风力发电场 • 分布式风力发电:在分散地区建设小型风力发电系统,为电网提供电力支持 • 风能储存技术:研究风能储存设备,实现风能的连续稳定输出
控制系统的作用
• 控制风力发电机的启动、停止和运行 • 保证风力发电机在各种风速下的安全运行 • 实现风力发电机的最大功率输出
控制系统的组成
• 主控制器:负责整个控制系统的管理和协调 • 速度控制器:控制风轮的转速,实现最佳风能转换效率 • 电压控制器:控制发电机的输出电压,保证稳定并网 • 并网控制器:负责风力发电机与电网的并网和脱网
02
风力发电机的主要组成部分
塔筒的结构设计与功能
塔筒的结构设计
• 塔筒为圆柱形或圆锥形结构,高度一般为30-80米 • 塔筒材质一般为钢结构,内壁涂有防腐层 • 塔筒底部设有基础,与地基连接
塔筒的功能
• 支撑风轮和发电机组的重量 • 保证风力发电机在各种风速下的稳定性 • 便于安装和维护
风轮的结构设计与功能
风力发电机的发展前景与挑战
发展前景
• 风力发电机作为一种可再生能源,具有广阔的发展前景 • 随着技术进步和成本降低,风力发电将在全球能源结构 中占据越来越重要的地位
挑战
• 风力发电机的并网和稳定性问题仍需解决 • 风力发电机的噪音和视觉污染问题需要关注 • 风力发电机的技术创新和市场推广仍需加强
CREATE TOGETHER
风力发电机的应用领域与市场需求
应用领域
• 风力发电:为电网提供电力支持 • 风力提水:利用风力驱动水泵,进行农田灌溉和工业生 产 • 风力热泵:利用风力驱动热泵,提供热水和供暖

风力发电机工作原理及原理图

风力发电机工作原理及原理图

风力发电机工作原理及原理图风力发电机工作原理:风力发电是一种利用风能将其转换为电能的方法。

风力发电机通过将风能转化为机械能,使发电机转动,进而产生电能。

风力发电机主要由发电机、风轮、变频器、塔筒和控制系统等组成。

1. 风轮:风轮是风力发电机最关键的部分,它直接受到风的作用力。

通常,风轮是由多个叶片组成的。

风轮的设计和制造要考虑到风的作用力和叶片的结构强度,以确保风轮能够承受风力,并转化为机械能。

2. 蓄电池:在风力发电机系统中,蓄电池是必不可少的部分。

它能够将通过发电机产生的电能储存在其中,并在需要时向电网供应电能。

蓄电池的种类有很多,常见的有铅酸电池和锂离子电池等。

3. 发电机:发电机是将机械能转化为电能的装置。

当风轮受到风力推动时,通过与风轮相连的轴将机械能传递给发电机。

发电机将机械能转化为电能,并输出给电网或蓄电池。

4. 变频器:变频器主要用于调整发电机输出的电能频率和电压,使之适应电网的要求。

变频器能够将发电机输出的电能进行调节,使之与电网的频率和电压保持一致,以确保电能能够正常供应给用户。

5. 塔筒:塔筒是用于支撑风力发电机的结构,一般位于地面或海底。

塔筒的设计要考虑风力的作用力以及发电机的重量,以确保发电机能够稳定地工作。

6. 控制系统:控制系统是风力发电机的核心。

它能够监测风速和风向,控制风轮、变频器和发电机的运行,以及监测系统的状态。

控制系统能够根据风的情况调整风轮的转速和方向,以最大限度地提高发电效率。

原理图:以下是一个简单的风力发电机原理图,展示了各个部件之间的连接关系。

[风力发电机原理图]图中,风轮通过轴与发电机相连,发电机将机械能转化为电能输出给电网或蓄电池。

变频器调节输出的电能频率和电压,以适应电网的要求。

控制系统监测风速和风向,并控制风轮、变频器和发电机的运行。

塔筒用于支撑整个风力发电机。

总结:风力发电机通过将风能转化为机械能,并通过发电机将机械能转化为电能,最终将电能供应给电网或蓄电池。

风力发电的基本原理

风力发电的基本原理

1 引言风是最常见的自然现象之一,是太阳对地球表面不均衡加热而引起的“空气流动”,流动空气具有的动能称之为风能。

因此,风能是一种广义的太阳能。

据世界气象组织(WMO )和中国气象局气象科学研究院分析,地球上可利用的风能资源为200亿kW ,是地球上可利用水能的20倍。

中国陆地10m 高度层可利用的风能为2.53亿kW ,海上可利用的风能是陆地上的3倍,50m 高度层可利用的风能是10m 高度层的2倍,风能资源非常丰富。

风能是一种技术比较成熟、很有开发利用前景的可再生能源之一。

风能的利用方式不仅有风力发电、风力提水,而且还有风力致热、风帆助航等。

因此,开发利用风能对世界各国科技工作者具有极强的魅力,从而唤起了世界众多的科学家致力于风能利用方面的研究。

在本文中,将对风力发电技术的基本原理和发电机的发展方向进行论述。

1.1 温度、大气压力和空气密度通过温度计和气压计测试出实验地点的环境温度和大气压,由下式计算出空气密度。

101325)273(99.352h t +=ρ (1) 式中的ρ是空气密度,H 是当地大气压力,T 是温度(单位是摄氏度)。

从空气密度公式可以看出,空气密度的大小与大气压力、温度有关。

1.2 风能的计算公式空气运动具有动能。

风能是指风所具有的动能。

如果风力发电机叶轮的断面面积为A ,则当风速为V 的风流经叶轮时,单位时间风传递给叶轮的风能为(本论文公式中的物理量除特殊情况说明外均采用国际单位)mv p 21=2 (2) 其中:单位时间质量流量m=ρAV ρAV P 21= 3221AV V ρ= (3) 而风能发电机实际转换的有用功率是:321AV C P e m p w ρηη= (4) 式中的W P 是每秒空气流过风力发电机叶轮断面面积的风能,即风能功率,单位W ,P C 是叶轮的风能利用系数,m η是齿轮箱和传动系统的机械效率,一般为0.80—0.95,直驱式风力发电机为1.0,e η是发电机效率,一般为0.70—0.98,ρ是空气密度,A 是风力发电机叶轮旋转一周所扫过的面积,V 是风速。

风力发电机简单发电原理及机组的结构培训课件

风力发电机简单发电原理及机组的结构培训课件
17
风力发电机简单原理及机组的结构
3.3雷击保护 在叶片尖部安装金属圆片的接闪器,通过叶片内部的金属
导体将闪电产生的强电流下引至地,防止雷闪损坏轴承等。 3.4传感器和检测仪器
各种数据通过传感器进行就地或远程监测,及时发现故障, 偏于计划维修。主要的传感器有:风速和风向、叶轮和发电 机转速、温度(环境、轴承、齿轮箱、发电机、机舱)、油 压(齿轮箱、冷却系统、变桨液压系统)、变桨和偏航角度、 电流电压和相位、振动等。
齿轮箱。
7
风力发电机简单原理及机组的结构
二、风力发电机的结构(图6)
齿轮箱 一侧连接低速轴,
另一侧连接高速轴。
高速轴 转速大约为1500
转/分,它的作用是带 动发电机。同时在高 速轴上安装有一套机 械刹车。
发电机 发电机通常为异
步发电机。
8
风力发电机简单原理及机组的结构
二、风力发电机的结构(图7)
目前用于并网型发电的大型风机均为上风风机。
叶轮上的叶片有三叶片和两叶片两种类型。
11
风力发电机简单原理及机组的结构
1.2根据控制叶轮转速和控制叶片角度的不同分为定速定桨风机 和变速变桨风机。 因为风功率随着风速以三次方增大(P=½pfv³),风机对风 功率的获取必须有所限定,避免出现过载、剧烈振动和超速 现象。
16
风力发电机简单原理及机组的结构
为避免机舱随风波动造成齿轮磨损,设有机舱刹车机构固 定机舱。偏航时,刹车放开,到位后刹车。另外还设有不松 开的附加摩擦刹车装置;偏航时,步进电机要克服附加刹车 装置的摩擦力进行偏航。 3.2冷却和供暖系统 机舱内夏季温度高,冬季温度低。在温度高时,应对齿轮箱 油温、发电机等设备进行冷却,采用强制循环水冷却效果较 好;在温度低时,齿轮箱油温过低,在机组启动时困难,需 对机舱采用电加热。另外对叶片等也采用温度过低时电阻丝 加热。

风力发电机基本结构和原理课件

风力发电机基本结构和原理课件
发电机输出的电能经过整流和滤 波后,可以供给负载使用或并入 电网。
发电机通常采用交流发电机或直 流发电机,根据实际需求选择不 同的类型。
当风车旋转带动发电机转子旋转 时,发电机内部磁场发生变化, 产生感应电动势,从而输出电能 。
04
风力发电机的维护与保养
定期检查和维护
定期检查
风力发电机需要定期进行全面检 查,包括叶片、齿轮箱、发电机
齿轮箱是风力发电机中的重要组 成部分,用于将低速旋转的风车
转换为高速旋转的机械能。
齿轮箱通常由多级齿轮组成,通 过不同级数的齿轮传动,实现增
速作用。
齿轮箱的增速比决定了风车旋转 速度和发电机输出电流的频率, 是风力发电机性能的关键参数之
一。
发电机将机械能转换为电能
发电机是风力发电机中的核心部 件,用于将机械能转换为电能。
塔筒内部还安装有电缆和控制系 统等设备,以实现电能输出和控
制功能。
其他部件
其他部件包括偏航系统、冷却系统、润滑系统等辅助设备, 它们各自承担着不同的功能,以保证风力发电机的正常运行 。
偏航系统负责驱动风轮旋转,以适应不同的风向变化;冷却 系统负责将发电机和其他部件产生的热量散发出去;润滑系 统则负责为齿轮箱和其他需要润滑的部件提供润滑油。
设备安全
在维护和检修风力发电机时,需要确保设备的安全,避免因 操作不当导致设备损坏或人员伤亡。
05
风力发电机的未来发展
技术创新与改进
高效风轮设计
通过改进风轮叶片的形状、材料和结构,提高风能转换效率。
先进控制系统
采用先进的传感器和算法,实时监测和调整风力发电机的运行状态,提高发电效率和稳定性。
复合材料应用
降低成本和环境影响

《风力发电原理》课件

《风力发电原理》课件

风力发电机的组成部分
风轮
风轮是风力发电机最重要的 组成部分,它通过叶片的旋 转捕捉风能。
ቤተ መጻሕፍቲ ባይዱ风轮轴
风轮轴与风轮相连,将风能 转化为旋转能,提供给发电 机产生电能。
转向装置
转向装置用于调整风轮的朝 向,使其始终面向风的方向, 高效地捕捉风能。
发电机
发电机将风轮转动产生的旋转能转化为电能, 供电网络使用。
风力发电是一种可再生的、零排放的电力源。风力发电原理基于风轮叶片的旋转,将风能转化为电能。风力发 电在中国已迅速发展,成为世界最大的风电市场之一。
控制系统
控制系统用于监测和控制风力发电机的运行, 确保安全和高效的发电。
风力发电的优缺点
优点
• 可再生 • 零排放 • 易维护
缺点
• 受到天气的影响 • 稳定性差
风力发电在中国
• 截至2021年,中国风力发电已成为世界最大的风电市场。 • 2020年,中国风电装机容量已达254,000 MW。
总结
《风力发电原理》PPT课件
风力发电原理是利用风能转化为电能的过程。本课件将介绍风力发电的原理、 组成部分、优缺点以及在中国的发展情况。
什么是风力发电?
风力发电是利用风力发电机将风能转化为电能的过程。
风力发电原理是什么?
风力发电原理基于风轮叶片的旋转,将风能转化为旋转能,再通过发电机将 旋转能转化为电能。

风力发电机原理图

风力发电机原理图

风力发电机原理图
2008年9月15日
问:风力发电机的原理图
风车转动带动什么?这些动能又如何储存,又如何转化为电能?等具体过程答:带动发电机!一般防止对发电机的损坏(风势过大),前面会有个制动器!
不过实际的比较复杂,电路中还连接着交流器和变流器等!
电能储存在电容器里!或直接传送去用电器!机械能转化成电能是发电机的原理,即闭合电路的一部分导体在磁场中作切割磁感线运动!电路中就会产生电路,为了区分一般称为感应电流!这种现象称谓电磁感应现象!这种是现象,一般不需要解释!如同发明与发现的区分!
为大家送上风力发电机原理图
远世連刑・ 戏向变濒赵 功率器件 IGBT DSP (SPWM) CitM.慰发) 外围电路 凤速传感器 风向仪 地面控制台 人机交互平台 电源 中央控制室 信号放大器及滤波器 机舱的旋转 人机交互平台 风速传感 *器和风向仪 单片机控制及 数据处理中心 机舱的偏 航动力机构。

风力发电机工作原理及原理图

风力发电机工作原理及原理图

风力发电机工作原理及原理图风力发电机工作原理及原理图风力发电机工作原理及原理图现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网.如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电.最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机.最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值.为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等.齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分).同时也使得发电机易于控制,实现稳定的频率和电压输出.偏航系统可以使风轮扫掠面积总是垂直于主风向.要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度.风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距.对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距.在停机时,叶片要顺桨,以便形成阻尼刹车.早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距.就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率.然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机.现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏.理论上的12级飓风,其风速范围也仅为32.7-36.9米/秒.风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时*齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元.风力发电机是将风能转换为机械功的动力机械,又称风车。

风力发电机工作原理图解析

风力发电机工作原理图解析

风力发电,是能源业又一突破,其中风力发电机功不可没。

通过风力发电机工作原理图,我们可以清晰了解各种奥妙。

其实,风力发电机工作原理图并不是那么难懂。

下面,我们一起来对风力发电机工作原理图进行详细的剖析和解读吧!风力发电机为一由转动盘、固定盘、风轮叶片、固定轮、立竿、集电环盘、舵杆、尾舵和逆变器组成的系统。

转动盘和固定盘构成该系统的发电机,逆变器包括50赫正弦波振荡器、整形电路、低压输出电路和倒相推挽电路。

风力发电机工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。

如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。

最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。

最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。

为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。

齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。

同时也使得发电机易于控制,实现稳定的频率和电压输出。

偏航系统可以使风轮扫掠面积总是垂直于主风向。

要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。

风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。

对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。

在停机时,叶片要顺桨,以便形成阻尼刹车。

早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。

就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。

风力发电机励磁系统的原理图及说明

风力发电机励磁系统的原理图及说明

发电机系统没有错误, 才返回电网。故障导致的未被证明其正确的命令解除,不会由
开关动作、干扰电压或运行人员们所需的功率和电网电压极限值之间波动而所引起。
3.9 保护原理
变频器供应商应负责发电机定子和转子短路和浪涌保护、以及电路变频器和电缆的设
计。供应商应该通知东汽其所使用的保护原理,为的是以便用户在定货之前明确细节
所必需的保护用可解除的充裕储备量。超过这第 3 种快速连续电压下降限值,发电 机/变频器系统与电网断开。在这种情况下,封锁 15 分钟后电网可再连接。 3.14 增强需求的模式(选项 D) 增强需求的模式用于变频器电网连接端子瞬间压降为 0。此模式的空的要求与扩展 模式相等。变频器制造商应提供此模式的概念和提议。 3.15 电压支持运行 如果压降在准稳定电压值的 90%(缺省值)以下,在变频器电网连接端子提供无功电 流来支持电网电压。触发阀值可根据需要可从 0 到 100%调整。最终,在故障确定后 20ms 之内,变频器可提供因数为 2%(缺省值)系统额定电流的无功电流给每一百分 值电压降。因数可从 0 调到 10%。最大的无功电流由额定电流限定,可通过参数 0 到 100%调整。缺省值设定为 100%。在切回到运行标准模式之前的至少 10 秒钟,变 频器的可运行此功能。东汽可以 0.1 秒的增量从 0.1 调到 10 秒钟。缺省值设定为 3 秒。 只在给定的触发极限超过一次以上时,才可以再触发。 电压支持功能是指变频器减少有功电流和/或有功输出。如果瞬间补偿过程根据第 2 象限的无功输出补偿实现,在电压回复之后不用 400ms 就可以完成。这些补偿过程之 后,电压支持运行立即重新使用。 3.16 电网断开之后电压释放 电网断开后,定子转子电路立即切换到空载状态。8 分钟之内,变频器中间直流电环 节放电到低电压保护值以下。 3.17 防雷击保护 按/NO-7(内部防雷击保护)/确定的给发电机和变频器设计恰当的浪涌保护器件。与 其它防雷击保护区的界面必须装配适当的浪涌保护器件。 3.18 增加要求的防雷击保护(选项 E)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风力发电,是能源业又一突破,其中风力发电机功不可没。

通过风力发电机工作原理图,我们可以清晰了解各种奥妙。

其实,风力发电机工作原理图并不是那么难懂。

下面,我们一起来对风力发电机工作原理图进行详细的剖析和解读吧!
风力发电机为一由转动盘、固定盘、风轮叶片、固定轮、立竿、集电环盘、舵杆、尾舵和逆变器组成的系统。

转动盘和固定盘构成该系统的发电机,逆变器包括50赫正弦波振荡器、整形电路、低压输出电路和倒相推挽电路。

风力发电机工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。

如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。

最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。

最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。

为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。

齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。

同时也使得发电机易于控制,实现稳定的频率和电压输出。

偏航系统可以使风轮扫掠面积总是垂直于主风向。

要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。

风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。

对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。

在停机时,叶片要顺桨,以便形成阻尼刹车。

早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。

就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。

然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。

现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。

理论上的12级飓风,其风速范围也仅为32。

7-36。

9米/秒。

风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时*齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元。

相关文档
最新文档