CDMA-功率控制部分

合集下载

cdma扩频通讯工作原理

cdma扩频通讯工作原理

cdma扩频通讯工作原理CDMA(Code Division Multiple Access)是一种扩频通信技术,它的工作原理如下:1. 物理层码分多址:CDMA通过将每一个用户的信息进行编码,使其在物理层上以不同的码片序列来传输。

码片序列是一种短且快速变化的比特序列,不同用户的码片序列之间使用不同的编码方式。

这样,在同一时间、频率和空间上,多个用户可以同时传输和接收数据,各用户的信号通过码片序列进行区分。

在接收端,利用相关法则可以将自己的码片序列与接收到的信号进行匹配解码,得到用户的信息。

2. 扩频:CDMA通信中的扩频技术是指将用户的宽带信息信号转换为具有较大带宽的扩频信号,然后与码片序列进行乘积运算,实现用户信号的扩展。

扩频可以提高信号在频域上的带宽,从而增强信号的抗干扰能力。

同时,通过乘积运算可以将用户信号与其他用户信号进行隔离,实现多用户同时传输和接收的能力。

3. 功率控制:CDMA系统需要对每个用户的传输功率进行控制,以保证系统中所有用户的信号在接收端能够以相同的强度到达。

功率控制是为了解决多用户之间的干扰问题,使得不同用户在干扰环境下的接收性能得到保证。

4. 应用层调度和碰撞避免:CDMA系统中的应用层调度算法和碰撞避免机制用于确定哪个用户在特定时间和频率上进行传输。

调度算法根据用户的需求和系统资源等因素,合理地分配时间和频率资源,以优化系统性能。

碰撞避免机制用于避免不同用户在相同时间和频率上进行传输时的碰撞问题,从而避免数据丢失和信号质量下降。

总之,CDMA通过物理层码分多址、扩频、功率控制和应用层调度等技术,实现了多用户同时传输和接收的能力,提供了更高的频谱利用效率和抗干扰能力,是一种高效可靠的通信技术。

GSM、CDMA、WCDMA手机发射功率

GSM、CDMA、WCDMA手机发射功率

GSM、CDMA、WCDMA手机发射功率!~一、GSM手机发射功率GSM协议规定,手机发射功率是可以被基站控制的。

基站通过下行SACCH信道,发出命令控制手机的发射功率级别,每个功率级别差2dB,GSM900 手机最大发射功率级别是5(33dBm),最小发射功率级别是19(5dBm),DCS1800手机最大发射功率级别是0(30dBm),最小发射功率级别是15(0dBm)。

当手机远离基站,或者处于无线阴影区时,基站可以命令手机发出较大功率,直至33dBm(GSM900),以克服远距离传输或建筑物遮挡所造成的信号损耗。

如果手机离基站很近,且无任何遮挡物时,基站可以命令手机发出较小功率,直至5dBm(GSM900),以减少手机对同信道、相邻信道的其它GSM用户的干扰和其它无线设备的干扰,而且这样还可以有效延长手机待机时间、通话时间。

GSM手机发出的最低功率仅为5dBm(GSM900),约为3.2mW,这比PHS的平均功率10mW要小,同时GSM手机发出的最大功率33dBm(GSM900),约为2W,这个信号相对来说是巨大的,对这种大信号不加以严格规定,其干扰也是巨大的。

因此GSM就手机发射信号除了发射功率的规定以外,在其它方面也作了适当的规定。

(注意:这里是适当的规定,如果规定偏严无疑会加大手机制造成本,如果偏松,无疑会加大干扰。

)具体有如下几个方面:1、Power versus Time由于GSM是TDMA系统,因此GSM协议通过一个功率对时间的模板来严格限制发射功率在时间域的变化情况,以减少干扰,尤其是对同信道其他时隙的用户的干扰。

2、Output RF Spectrum Due to Modulation3、Output RF Spectrum Due to RampingGSM通过对手机发射信号的调制谱和切换谱的规定,来限制手机发射信号时的频谱带宽和形状,以减少干扰,尤其是邻信道用户的干扰。

CDMA通信的基本原理功率控制

CDMA通信的基本原理功率控制

CDMA通信的基本原理功率控制CDMA通信与传统的通信系统像比较,发端多了扩频调制,收端多了扩频解调CDMA通信在发端将待传入的话音,通过A/D转换将模拟语音转变成了二进制数据信息,通过高速率的伪随机扩频调制,从原理上讲,两者相乘,扩展到一个很宽的频带,因而在信道中传输信号的带宽远大于信息带宽。

在接受端,接受机不仅接受到有用的信号,同时还接受到各种干扰信号和噪声。

利用本地产生的伪随机序列进行相关解扩。

本地伪码与接受到的扩频信号中伪码一致,通过相关运算可还原成原始窄带信号,顺利通过窄道滤波器,恢复原始数据,再通过数/模(D/A)转换,恢复原始语音。

接收机接收到的干扰和噪声,由于和本地伪随机序列不相关,经过接收扩解,将干扰和噪声频谱大大扩展,频谱功率密度大大下降,落入窄带滤波器的干扰和噪声分量大大下降,因此在窄带滤波器输出端的信噪比或信干比得到极大改善,其改善程度就是扩频的处理增益。

CDMA蜂窝网的关键技术--功率控制CDMA蜂窝移动通信系统中,所以的用户使用相同的频带发送信息,如果各移动台以相同的功率发射信号,则信号到达基站时,因为传输路程不同,基站接受到到的靠近基站的用户发送的信号比在小区边缘用户发射的信号强度大,因此远端的用户信号被近端的用户信号湮没,这时间所谓的"远近效应"。

通常,路径损耗的总动态范围在80dB的范围内。

为了获得高质量和高的容量,所有的信号不管离基站的远近,到达基站的信号功率都应该相同,这就是功率控制的目的:使每个用户到达基站的功率相同。

从不同的角度考虑有不同的功率控制方法。

比如若从通信的正向、反向链路角度来考虑,一般可以分为反向功率控制和正向功率控制;若从实现功控的方式则可划分为集中式功率控制和分布式控制;还可以从功率控制环路的类型来划分,有可分为开环功控、闭环功控(外环功控和内环功控)。

1.反向功控CDMA系统的通信质量和容量主要受限于收到干扰功率的大小。

WCDMA中的功率控制

WCDMA中的功率控制

第5章功率控制5.1 概述功率控制技术是WCDMA系统中一项非常重要的技术。

WCDMA 系统的频率复用系数为1,是一个自干扰系统,远近效应的影响很突出,如果没有功率控制,那么整个系统的容量将大大降低。

引入功率控制后,通过调整发射功率,保持上下行链路的通信质量,克服阴影衰落和快衰落,有助于降低网络干扰,提高系统质量和容量。

按移动台和基站是否同时参与又分为开环功率控制和闭环功率控制两大类。

闭环功控是指发射端根据接收端送来的反馈信息对发射功率进行控制的过程。

而开环功控不需要接收端的反馈,发射端根据自身测量得到的信息对发射功率进行控制。

开环功率控制又可以分为上行开环功率控制和下行开环功率控制。

闭环功率控制则是通过内环功率控制和外环功率控制一起来实现的。

5.2 开环功控与闭环功控本节介绍功率控制的大致流程,包括闭环功控和开环功控的区别,以及内环功控和外环功控如何协调工作的问题。

开环功控提供初始发射功率的粗略估计。

它是根据测量结果对路径损耗和干扰水平进行估计,从而计算初始发射功率的过程。

同时,由于开环功控是采用下行链路的路径损耗来估计上行链路损耗,但实际上WCDMA系统中上下行链路的频段相隔190M,快衰落特性不相关,因此这种估算的准确度有限,只能起到粗略控制的作用。

适用场合包括:●决定接入初期发射功率的时候●切换时,决定切换后初期发射功率的时候闭环功率控制是通过内环功率控制和外环功率控制一起来实现的。

内环功控通过测量信道的实际SIR值SIRest,并将测量值SIRest与目标值SIRtar比较,根据比较结果发出功率调整的指令。

内环功控算法包括上行内环功控算法和下行内环功控算法。

上行内环功控算法在基站内实现,基站比较上行信道SIR测量值SIRest和目标值SIRtar,根据比较结果设置相应的功控指令(TPC,Transmit Power Control)通知手机调整上行发射功率。

下行内环功控算法在手机内实现,手机比较下行信道SIR测量值SIRest和目标值SIRtar,根据比较结果设置相应的功控指令(TPC,Transmit Power Control)通知基站调整下行发射功率。

移动通信系统中的功率控制技术研究3-25.

移动通信系统中的功率控制技术研究3-25.

移动通信系统中的功率控制技术研究摘要;在阐述功率控制在移动通信系统中的发展过程的基础上,着重研究了3G通信系统的功率控制技术,最后对功率控制未来的研究方向做了简要说明关键词;语音激活技术反向功率控制闭环功率控制I 外环功率控制引言在移动通信系统中,功率控制技术对保证系统的QOS提高系统容量有着至关重要的作用。

功率控制技术随着移动通信系统的发展也在不断的演进,在第二代移动通信系统中采用的语音激活技术是基于用户发射机发射功率随用户语音的大小,强弱,有无来对发射机进行的输出功率调整,从而大大增加了系统容量,为了补偿路径损耗和阴影衰弱在GSM系统中采用了频率大约为2HZ的慢速功率控制。

随着CDMA系统的发展更多的转向克服“远近效应”的研究。

移动通信系统的特点移动通信系统是在复杂的干扰环境中运行的采用多信道共用技术,在一个无线小区内,同时通信者会有成百上千,基站会有多部收发信机同时在同一地点工作,会产生许多干扰信号,还有各种工业干扰和认为干扰。

归纳起来有通道干扰、互调干扰、邻道干扰、多址干扰等,以及近基站强信号会压制远基站弱信号,这种现象称为“远近效应”。

功率控制 power control功率控制分为前向功率控制和反向功率控制,反向功率控制又分为开环功率控制和闭环功率控制,闭环功率控制再细分为外环功率控制和内环功率控制。

移动通信系统中的功率控制技术无线城域网(IEEE802.16)标准是一种高带宽、低投入、且覆盖范围广的无线通信技术,在宽带无线接入市场具有重要的应用前景。

功率控制是一种无线资源管理技术,在无线城域网系统中,采用功率控制技术可以降低无线系统的同频道干扰并节约终端能量,从而增加系统容量,在无线通信系统中起着非常重要的作用。

如何将功率控制技术应用于无线城域网,同时在一定复杂度的情况下使功率控制技术发挥最大的作用,是无线城域网中的重要研究课题。

针对上述情况,论文主要有以下工作:在理解无线通信系统中功率控制技术各种算法与准则的基础上,分析了每种算法的特点和对系统性能的影响,指出了影响功率控制性能的因素。

第八章CDMA移动通信系统 一

第八章CDMA移动通信系统 一

第八章CDMA移动通信系统一在当今通信技术飞速发展的时代,CDMA 移动通信系统作为其中的重要一员,具有独特的优势和特点。

CDMA,即码分多址(Code Division Multiple Access),是一种扩频通信技术。

与传统的频分多址(FDMA)和时分多址(TDMA)技术不同,CDMA 允许所有用户在同一时间、同一频段上进行通信,通过为每个用户分配特定的编码序列来区分不同的用户信号。

CDMA 移动通信系统的核心原理在于扩频技术。

扩频通信将待传输的信息信号扩展到一个很宽的频带上,使得信号的功率谱密度降低,从而提高了通信的保密性和抗干扰能力。

在接收端,通过与发送端相同的编码序列进行相关解调,恢复出原始信号。

CDMA 系统具有诸多优点。

首先是抗干扰能力强。

由于采用了扩频技术,CDMA 信号在传输过程中能够有效地抵抗各种干扰,包括自然干扰和人为干扰。

即使在信号较弱的情况下,也能保持较好的通信质量。

其次,CDMA 系统具有较高的频谱利用率。

多个用户可以共享同一频段,大大提高了频谱资源的利用效率。

再者,CDMA 系统的保密性好。

每个用户的编码序列都是唯一的,且具有随机性,使得窃听者难以获取有用信息。

CDMA 移动通信系统的网络结构主要包括移动台(MS)、基站子系统(BSS)和网络子系统(NSS)。

移动台是用户终端设备,如手机等。

基站子系统负责与移动台进行无线通信,包括基站收发信机(BTS)和基站控制器(BSC)。

网络子系统则负责整个网络的管理和控制,包括移动交换中心(MSC)、归属位置寄存器(HLR)、拜访位置寄存器(VLR)等。

在 CDMA 系统中,功率控制是一项关键技术。

由于所有用户共享同一频段,如果某个用户的发射功率过大,会对其他用户造成干扰;反之,如果发射功率过小,又会影响自身的通信质量。

因此,需要进行精确的功率控制,使得每个用户的发射功率既能满足通信需求,又不会对其他用户造成过多干扰。

功率控制分为前向功率控制和反向功率控制。

一种新的CDMA系统功率控制研究方法

一种新的CDMA系统功率控制研究方法
决 策 以及 这种决策 的均衡 问题 的理论 。比如 说移 动用 户的功 益 函数或 代价函数 的 ,本文通过 构造一种 新的净收益 函数来 率选 择受 到其它移动 用户所选择功 率的影 响 ,而 且反过 来影 取 得新 的功 率控制策 略 。
响到 其它移 动用户功率 选择的决策 问题和均衡 问题 。 其 中, 均

学术抡坛


种新 的 C D MA系统功率控 制研究方法
武 警石 家 庄 士 官 学校( 0 5 0 0 6 1 )丁 旖 庞 静 超 李 婷 婷
要 ]在 C D M A移动通信 系统 中, 一个很 重要的 问题就 是无 线资源 的有 效利用。 功率控制 则是无线资源 管理 中非 常重要
1 功率 控制模型
据 需要 灵活 选择 阈值 , 例 语音 用 户可选 择较 高 , 而 数 据用
从而 增加 系统 总吞吐 量 ; b k a 表 示第 个 本文考虑一个典型的多小区无线蜂窝移动通信系统。假 户则可降低 值 , 用 户 的信干 比和 功率 的 影响 系数 ; O <1 且 a = 2 k , k 取 正整 设系统 中存 在 个移 动用 户 ,不考虑 小 区间存在 的干扰 , 用 本 文提 出的非合作 功率控制 的博弈算法 , 就是通过 调节用 G表 示扩 频系 统 的扩频 增益 , h 表 示用 户 k到基 站 i 的链 路 数 。 户发射 功率 P 最 大化上式 中各个 用户的效 用函数 。 增益 , 假 定信道 为高斯信 道 , 叮 : 为接 收端的 信道 噪声 功率 , 用
C D MA功 率控制 的仿真 户 的发射功 率表示为 , 用 户发 送的最大 功率为 P ~。 且满 3 采用 MAT L A B语言 对本 文 提 出功 率控 制算 法 进行 仿 真 足0 ≤P k ≤尸 , 则任 一用户 k接收 的信 干比可 以表 示为 :

CDMA系统的功率控制技术探讨

CDMA系统的功率控制技术探讨
摘 要: 功率控制技术是 CDMA系统 中的核心技术之一 ,它有效的解决 了远 近效应。本文介 绍了 CDMA 系统反向和前 向链路 的
些功 率控制技 术 ,并分 析 了功率 控 制中存 在的 一些 问题 。 关键 词 :C DMA 功率控制 中图分类 号 :TN9 . 2 1 0 5 文献标 识码 :A
一Байду номын сангаас
1 引 言 . 近 年 来 , 动 通 信 得 到 了 很 大 的 发 展 。 目前 第 三 代 移 动 通 信 移 系统(G 已经 成为讨论和研 究热 点。在无线移动系统 中有三种基 3) 本的 多址接入方案( DMA、 F TDMA、C DMA)而 C MA因其 固 , D
有的抗 多径衰落性能 ,以及软切换 、系统容量大等优势而倍受青 睐, 所以在第三代移动通信 中几乎都 采用 了 C DMA 多址方式 。 由于在无线环境中存在快衰落和慢衰落 、阴影效应 、外部干 扰和其他因素的影响 , 并且移动 台在 小区内的位置是随机变动的 , 所以路径损耗会很大 ; 同时 , 分配给不同用户的扩频码 由于 多径传 播, 到达接收端时并不会 完全 正交 , 就会造 成严重的多径干扰 。 另外 ,如果所有用 户都 以相 同的功率发射信号 , 那么距离基 站近 的移动 台就会对较远 的移 动台造 成相当大的 影响 , 使其性 行 的 功 率 控 制 。 开环 功率控制可 用式 ( . ) 示 : 3 1表 能 下 降 , 甚 至 不 能 工 作 , 称 为 “ 近 效 应 ” 此 外 , 由 于 远 。 P (B =Ld + (B ) ( 数 ) ( . ) d m) (B) I m +C 常 d 3 1 多小区蜂窝移 动通信 系统 采 用频 分复 用 ,在下行链路 中 ,位于 小 区 边 缘 处 的 移 动 台 将 受 到 相 邻 小 区 的 较 大 的 干 扰 , 通 信 质 量 其 中 P 为移动 台发射信号功 率 ;L为移动 台测量得到的 传 . 会迅 速 下 降 ,甚至 中断 通 信 ,这 种现 象 被称 为 “ 缘效 应 ” 播 路径 损耗 ;I为干 扰信 号 功率 ,由广 播信 道 广播 。 边 。 为 了克 服 “ 近 效 应 ” 和 “ 缘 效 应 ” 以 及 多径 干 扰 , 远 边 开环功率 控制的 主要特 点是不需要 反馈信 息 ,因此 ,在 无 CDMA 系 统 采 用 了 功 率 控 制 技 术 , 通 过 控 制 发 射 端 的 发 射 功 线 信道 突然 变化 时 ,它可 以快 速 响应 信道 变 化 。但 有两 种情 它

CDMA功率控制

CDMA功率控制

CDMA系统中的功率控制技术1. 引言:在常见的多址通信技术中,CDMA(码分多址接入)通信技术采用同频率复用方式实现更大的系统容量,并且有发射功率低、保密性能强、覆盖范围大等优点,CDMA个人通信将成为今后个人通信的主流和发展方向。

功率控制技术、PN码技术、RAKE接收技术、软切换技术、话音编码技术等称为IS-95CDMA蜂窝移动通信系统中的关键技术。

由于CDMA是一个自干扰系统,所有移动用户和周围小区中的其他用户所造成的自干扰成为限制系统容量的主要因素,功率控制被认为是所有关键技术的核心。

如果不采用功率控制,所有用户就会以相同的功率发射信号,这样离基站较近的移动台就会对较远的移动台造成相当大的干扰,这种现象称为远近效应。

因此设计一种良好的功率控制方案对于CDMA系统的正常运行是非常重要的。

研究表明,不采用功率控制技术的CDMA系统容量很小,甚至会小于FDMA 系统的容量。

在CDMA系统中采用功率控制的另一个原因,尽可能利用最小的发射功率获得所需的传输质量,以延长用户终端中电池的寿命。

在功率控制中需要移动台(MS)和基站(BS)共同协调进行动态的功率控制才能够实现。

本文主要介绍CDMA系统中现有的常用的功率控制技术,并在此基础上提出了一些理论上的改进的功率控制算法,加以说明和比较。

2.CDMA系统中现有的功率控制技术:2.1 功率控制技术的分类:功率控制技术可按多种方式进行分类,如图1所示:图1 功率控制技术的分类从通信的上、下行链路考虑,功率控制可以分为前向功率控制和反向功率控制,前向和反向功率控制是独立进行的。

所谓的反向功率控制,就是对手机的发射功率进行控制,而前向功率控制,就是对基站的发射功率进行控制。

从功控的环路类型来划分,功率控制算法还可分成开环功率控制、闭环功率控制和外环功率控制。

开环功率控制仅是一种对移动台平均发射功率的调节;闭环功率控制式MS根据BS发送的功率控制指令(功率控制比特TPCbit携带的信息)来调节MS发射功率;外环功率控制是为了适应无线信道的衰耗变化,达到系统所要求的误帧率而动态调整反向闭环功控中的信噪比门限。

功率控制技术

功率控制技术

功率控制技术(7人)阐述功率控制在移动通信系统中的作用,总结并阐述功率控制的类型、实现原理、以及在移动作者列表(按项目排列)指导教师签字:年月日第一章功率控制技术1概述1.1 CDMA系统功率控制技术功率控制(power control)技术用于动态地调整发射机的发射功率,它是CDMA系统的关键技术之一,精确和稳定的功率控制对于提高CDMA系统的容量和保证服务质量有着至关重要的作用。

CDMA系统是一个自干扰系统,CDMA系统中的用户在同样的频率和时间上发送信号,不同的用户采用不同的扩频码来区分。

由于扩频码之间的互相关性不为零,使得每个用户的信号都成为其他用户的干扰,即多址干扰。

同时CDMA系统是一个干扰受限系统,即干扰对系统的容量直接影响。

当干扰达到一定程度后,每个用户都无法正确解调自己的信号,此时系统的容量也达到了极限。

因此,如何克服和降低多址干扰就成为CDMA系统中的主要问题之一。

通过功率控制,使发射功率尽可能的小,从而有效地限制多址干扰。

由于用户的移动性,不同的移动台和基站之间的距离是不同的。

而在无线通信系统中,信号的强度随传输距离而成指数衰减。

因此,在反向链路上,如果所有的移动台的功率发射都相同,则离基站近的移动台的接受信号强,离基站远的移动台的接收信号弱。

这样就会产生以强压若的现象,即远处用户的信号会被近处用户的信号淹没,以至于不能正确解调,这种现象称为“远近效应”。

为了克服这种现象,对移动台的发射功率进行调整时非常有必要的,使得基站接收到的所有移动台的信号功率基本相等。

在前向链路上,同一基站所有的信道经历的无线环境是相同的,因次不存在远近效应。

前向链路中的干扰主要来自于其它基站的前向信号和服务基站内其他用户的前向信号,尽管不存在远近效应,但是当移动台位于相邻小区的交界处时,收到的服务基站的有用信号很低,同时还会收到相邻小区基站的较强干扰。

如果要保证各个移动台的通信质量,则在小区边缘的移动台比距离基站近的移动台需要更高的功率。

功率控制课件概要

功率控制课件概要

自行调整其发射功率。
若接受信号增强,则移动台降低发射 功率;接受信号减弱,则移动台增加 发射功率。 反向开环功率控制
3.反向功率控制
开环功率控制不需要在移动台和基站之间交换控制信息,因而控 制速度快,节省开销,简单易行。 但 由 于 CDMA 系 统 采 用 频 分 双 工 的 通 信 方 式 , 收 发 频 率 相 差 45MHz,已远远超过信道的相干带宽,使得这种直接依据前向信道 信号电平来调节移动台发射功率的方法不能对功率进行完善的调 节。 为了解决这个问题,可采用闭环功率控制方法。
3.反向功率控制
反向功率控制主要解决远近效应,通过
控制各移动台的发射功率的大小,保证
基站接受到的小区内所有移动台信号功 率相等,从而使各用户之间相互干扰最 小。
3.反向功率控制
反向链路功率控制包括:
反向开环功率控制 反向闭环功率控制
3.反向功率控制
(1)反向开环功率控制
它的前提条件是假设上行链路和下行 链路传输损耗相同,移动台接受并测 量基站发来的信号强度,估计下行传 输损耗,然后根据这种估计,移动台
域的移动台保持较好的通信质量 , 同时减
少对其他信号的干扰。
2.前向功率控制
在前向功率控制中,基站根据移动台提供的测量结果,调整对每 个移动台的发射功率,其目的是:
• 对路径衰落小的移动台分配较小的的正向链路功率,而对那些远离基站和
误码率高的移动台分配较大的正向链路功率。 • 通过在 各个前向业务信道上合理地分配功率可以确定各个用户的通信质量, 同时使前向链路容量达到最大。
3.反向功率控制
(2)反向闭环功率控制
闭环功率控制是指移动台根据基站发 送的功率控制命令(功率控制比特携

CDMA系统中自动功率控制对系统容量的影响

CDMA系统中自动功率控制对系统容量的影响

C mp tr n we g n e h o g o ue o l ea d T c n l y电脑 知 识 与技术 K d o
Vo., .,a u r 1 P .4 — 4 1 No2Jn ay20 0, P4 7 4 9 6
C MA 系统 中 自动功率控制对系统容量 的影响 D
鲍一 . 慧 明孙 祯
动 功 率控 制 。功 率控 制 的 目的 就 是 既 维持 高质 量 通 信 。又 不 对 同 一频 率 的其 它 用户 产 生 不 应 有 的 多址 干扰 。功 率 控 制 的 目的 是 控 制每 个 用户 的 发射 功 率 , 而使 得 基 站 接 收 收 到 的 每 个 用 户 的 功 率接 近 , 而 克 服 远 近 效 应 。 从 关键词 : 近效应 : 远 开环 功 率 控 制 : DMA 系统 C 中 图分 类 号 : N9 9 T 2. 5 文 献标 识 码 : A 文章 编 号 :0 9 3 4 (0 0 0 — 4 — 3 1 0 — 0 4 2 1 )2 4 7 0
( 南 矿 业 集 团 信 息 分公 司 , 徽 淮 南 2 2 8 ) 淮 安 3 0 2
摘要 : D C MA 系统 的容 量 主要 受 限 于 系统 内移 动 台的 相 互 干扰 , 以如 果 每 个 移动 台 的信 号 到 达 基 站 时都 达 到 最 小 所 需 的 信 干 比 , 所 系统容 量 将 会 达 到 最 大值 在 C MA 蜂 窝 系统 中 , 了 解 决远 近 效 应 的 问题 , 时避 免 对 其 他 用 户过 大 的 干扰 , 须 采 用 严 格 的 自 D 为 同 必
T e I a to t ma i o r Co to n S se Ca a i n CDM A y t m h mp c fAu o t P we n r l y t m p ct i c o y S se

WCDMA系统中的功率控制

WCDMA系统中的功率控制

如 果 没 有 功 率 控 制 , 距 离 基 站 近 的 一 个 UE 就 能 阻 塞 整 个 小 区 , 而 距 离 No eB 远 d
的 uE 信 号 将 被 “ 没 ” 淹 。
实 际 上 , 在 上 行 链 路 中 , 如 果 小 区 内 所 有 UE 以 相 同 的 功 率 进 行 发 射 , 那 么 由
1 功 率 控 制 的 作 用
1 1远 近 效 应 . W CD M A 系 统 的 远 近 效 应 现 象 是 指 1 2 功 率 控 制 的 目 的 . W CDM A 系 统 采 用 宽 带 扩 频 技 术 , 属
w w w .t . t m com . cn 9 3
维普资讯
cD M A 一 直 没 有 得 到 大 规 模 应 用 的
主 要 原 因 之 一 就 是 无 法 克 服 远 近 效 应 问 题 。功 率 控 制 的 目 的 就 是 为 了 克 服 远 近 效
应 。 采 用 功 率 控 制 后 , 每 个 UE 到 达 基 站 的 功 率 基 本 相 当 , 这 样 , 每 个 uE 的 信 号 到 达 No e B 后 , 都 能 被 正 确 地 解 调 出 来 。 d
中 ,无法 正 常 工作 。
有 用 户 共 享 上 、 下 行 频 谱 资 源 , 每 一 个 用 户 的 有 用 信 号 的 能 量 都 被 分 配 到 整 个 频 带 内 , 但 这 种 有 用 信 号 对 其 他 用 户 将 会 产 生 干 扰 。 如 何 控 制 用 户 问 干 扰 、改 善 功
发 射功 率进 行控 制 。
下 行 采 用 2 l 0~2 l 0 M Hz l 7 ,上
2. 开 环 功 率 控 制 1 下 行 的 频 段 相 差 l 0 M HZ 由 于 9 。 上 行 和 下 行 链 路 的 信 道 衰 落 情 况 是 完 全 不 相 同 的 ,所 以 , 开 环 功 率

CDMA系统的关键技术

CDMA系统的关键技术

5.3 第二代CDMA数字移动通信系统 5.3.4 CDMA系统的关键技术
反向闭环功率控制
由基站检测来自MS的信号强度,并根据测得的结果,形成功率调 整指令,通知MS增加或减小其发射功率,MS根据此调整指令来调 节其发射功率。
闭环功率控制的设计目标是使基站对MS的开环功率估计迅速做出 纠正,以使MS保持最理想的发射功率。
• 调整速率很快,可以达到800Hz
正向功率控制
正向功率控制是指基站调整向每个MS的发射功率。MS监测基站送 来的信号强度,并不断地比较信号电平和干扰电平的比值,如果小 于预定门限,则给基站发出增加功率的请求。
81
Wireless and Mobile Networks Technology
Zhenzhou Tang @ Wenzhou University
5.3 第二代CDMA数字移动通信系统 5.3.4 CDMA系统的关键技术
软切换 - 导频集合
基站在PiCH发送导频信号,供MS识别基站并引导MS入网。MS不 间断地搜索导频,根据导频的强度,将搜索到的相应导频分别归类 纳入不同的导频集合。
CDMA系统中共包含四种导频集合,即:激活集、候选集、相邻集 和剩余集。
激候相剩活选邻余集:与当该分前系不统配在中给激除MS活包的集含F里 和 在-TC, 候 激H但 选 活相是 集对已 中 、应经 但 候的有 是 选导足 有 集频够 可 和,的 能 相激强 进 邻活度 入 导集表候频中明选集的与集外小该的区导所与频有 M相集导S对合频之应。间的相已基邻经站集建包的立含F了-T的软C导H切可频换以数连被最接成多。功为IS解2-09调。5允的许导的频激集活合集。最候大选数集量最为多6可。 以包含的导频数为6。
5.3 第二代CDMA数字移动通信系统 5.3.4 CDMA系统的关键技术

CDMA系统中的联合功率控制技术

CDMA系统中的联合功率控制技术

! 引言
作为当前通信领域最具市场潜力 !发展最为迅速的移 动通信 技术 "! "#$ 正日益成为未来最重要 且最具广泛影响力的 技术之 一# 在 ! "#$ 蜂窝移动 通信系统中 " 干扰可以 大致分为三 种类 型 $ 加性噪声干扰 % 多径干扰 ! 多用户间的多址干扰 &#$% ’ # 当通信 的用户数较多时 " #$% 就成为最主要的干扰 # #$% 通常表 现为上 行链路的边缘效应和下行链路的远近效应 # !"#$ 系统是频率复用的多小区蜂窝系统 "在下行链 路中位 于小区边缘的移动台 &#&’ 将受到相近小区较大的干扰 " 通信质量 会严 重下降甚至中 断 " 这种现象称 为边缘效 应 ( 在上行链路 中如 果小区内所有的用户均以相同的功率发射 " 基站 &’& ’ 接收到的距 离 ( & 较近的 #& 的信号功率要比接收到的距离 ( & 较远的 #& 的 信号功率强 " 距离 (& 较远 的 #& 会受到较强的多 址干扰 " 使其性 能下降 " 严重时中断通信 "这种现象称为远近效应 # 多址干 扰 %远近 效应的存在 " 成为制 约 !"#$ 系统提高 性能 和容量提升的主要瓶 颈 # 为降低多址干扰 %远近效应对系 统性能 的限 制 "目 前的主要技 术手段有 功率控制技 术 % 多用户检测 技术 和智能天线技术 # 功率 控制虽然不能从根本上消除多址干扰 " 但 在采用了多用户检测技术的 ! "#$ 系统中 " 仍然需要有功率控制 技术 " 以期补 偿信道衰落 " 进 一步降低多 址干扰 " 克服远 近效应 " 保证 )*+ 要求 # 将功率控制和多用户检测结合使用的 研究,-. 已经进行 " 尽管 进展 不大,/. " 但随着我 国第三代 移动通信的 建设和发 展 "继 续研 究在 ! "#$ 系统 中结合使用这两种 技术来最大 限度地提高 系统 容量具有很大的实际意义 #

CDMA系统中的闭环功率控制方法

CDMA系统中的闭环功率控制方法

蠹霎Ⅵ盟斟I ll*;C D M A系统中的闭环功率控制方法张海波12李方伟2刘开健1(1.长江大学电子与信息学院湖北荆州434023;2.重庆邮电大学移动通信技术重点实验室重庆400065)[摘要】介绍cD姒系统中常见的闭环功率控制方法,对传统和优化的功率控制算法进行比较,着重分析闭环功率控制中的几个关键要素及其相关算法的实现。

[关键词】CD M A系统闭环功率控制优化算法中圈分类号,T N91文献标识码:^文章编号:1671--7597(2008)1120130--01在C D M A系统中,多址干扰、远近效应和阴影效应的存在严重影响了系统的性能。

通过功率控制,一方面可以减少干扰,使系统内用户满足服务质量(qoS)的要求:另一方面能有效地降低系统中各用户的发射功率,从而提高系统的容量和优化系统的性能以及提高电池的使用寿命。

所以功率控制被认为是C D M A系统中的一项核心技术。

一、向环功率控一闭环功率控制包括内环功率控制和外环功率控制。

内环功控是指移动台根据基站台发送的功率控制指令T PC来调节移动台的发射功率的过程。

基站测量所接收到的每个移动台的信噪比SI R,并与SI R目标值相比较,确定发给移动台的T PC来决定是增大还是减小其发射功率。

而外环功控指基站实时测量反向链路的帧质量,并据此修i F内环功控中的目标值SI R。

从而克服由于多径效应和移动台速度等引起的控制偏差。

闭环功率控制是对开环功率控制的快速调整。

:、簟见的闭环功率控■算往(--)传统算法传统的闭环功率控制算法是单比特固定步长功率控制算法,它通过接收端测量接收到的SI R,与门限值相比较,产生并发送T PC命令,发射端根据接收到控制命令,按照固定步长调整发射功率,如图l所示(以反向链路为例):若SIR e st<SI R t a r,则TPC=I;若SI R es t>S I R t ar,则TPC=O.移动台接收到T PC指令以后,调节其发送功率,若TP C=I,则增加l dB;反之,T Pc=0,则减小l dB。

CDMA系统功率控制

CDMA系统功率控制

最小 , 保证基站能 同时接收稳定数量 的用户终端信号 , 提高 系统容量 。 反
向功率控制一般要求动态范 嗣大 、 控制速度快 、 制精度高 。 控 开环功率控制也称上行 链路开环功率控制 , 是反向功率控制在没有 基站参与 的时候 的功率 控制 。 当任一用户终端无 论处在什么位置上 , 用
开环功率控制的主要特点 是不需要反馈信息 , 因此在无线信道突然
变化时 , 它可 以快速 响应 变化 。此外 , 它可 以补偿 阴影、 拐弯等效应 以及
平均路径衰落 , 它可 以对功 率进 行较大范 围的调 整。开环功率控制不够 精确 ,只能起 到粗略控制 的作用 , D WC MA协 议巾要求开环 功率控制 的 控制方差在 l B内就可 以接受 。 Od 反 向功率控制在有基站参 与的时候 为闭环功率控制 。当任一用户终 端无论处在什么位置上 , 户终端根据基站发送 的功 率控制指令来涮节 用 用户终端 的发射功率 。基站 测量所接收 到的每一 个用户终端的信噪 比, 并与一 个 门限相 比较 ( 其测量 周期 为 1 5I )以决定 发给用户终 端的 . l , 2 l s 功率控制指令是增大还是减小其发射功率 。 户终端将接 收到的功率控 用 制指令 与开环功 率估算相结 合 ,来确定用 户终端闭环 控制应 发射的功 率 。在反 向闭环控制 巾, 基站起着重要作用 。 功率控制 的实现是在业 务信道帧 巾插入 功率控 制 比特 , 插入速率可 达 1 bs这样可有效跟踪快 衰落的影响 。其 中“ ” . k /, 6 O 比特指 示用户终端
户终端根据它接收到 的基站发射功率 , 用其 内置 的 D P数据信号处理器 S
由于小 区巾的所有用户 发射到基站 的信号功 率随着 他们距 离基站 的远 近各有不 同, 假设 各个JJ 的发射功率 相同 , 么离基站近 的用户 【户 } 那

功率控制在CDMA以及实际接收机中的应用

功率控制在CDMA以及实际接收机中的应用
n a— r e r a,共道 干扰 C —h n e,信 道 衰 落 c a n la ig 的 定 义 ,功 率 控 制 的 f Oc a n l hne f n ) d 分类 以及 不足 ( o e ae ,SN ae ) pw r sd I R b sd ,功 率控 制 应 用 的 结构 种 类 ( 向 b 逆
给 出了特定 环境 下 的建议 。
2 2 功 率控 制功 能 划分 .
从 设计 角度 看功 率控 制 主要有 两类 :① 基 于接 收到 的功 率水 平 的功 率控 制 ;② 基 于
接收端 的 S R ( 噪 比) 或 SN ( N 信 I R 信干 噪 比 ) 。
基 于功 率 :根据 所在 通 道所 收到 的平 均信 号功 率 ,调整输 出功率 。 基 于 SN I R:根 据所在 通 道所 收到 的信 号 SN IR,调整输 出功率 。
1 1 远 近 问 题 .
任 意时 刻 ,系统 中所 有 的信 号 都 在 相 同 的 频 带 中传 输 ,距 离 近 的 ( 目标 ) 发射 非 机 到达 侦 听接 收机 的信号 淹没 了距 离远 的发射机 信 号 l 。功率 控制 的算 法在 于 选择 最 优 3 J 的功率 值使 得在 有 限 的功 率情 况下 可 以容 纳最 大数 量 的用 户 。
12 共 道 干扰 .
由位 于相 同信 道上 的其他 信 号产 生 的干扰 j 。
1 3 信 道 衰落 .
现实 中信道对于不同频率的载波的传输特性并不是相同的;不同频率的载波经过 同
个 信道 具有 不 同的信 道 衰 落 因 子 。 主要 研 究 阴影 衰 落 ,Rca i n衰 落 或 R y i e al g e h衰 落 , aaa 衰 落 。 ;目标 在 于避免 功率 因这些衰 落 因素而 变化 J N kgmi 。 。

WCDMA网络优化系统开环功率控制与闭环功率控制的区别

WCDMA网络优化系统开环功率控制与闭环功率控制的区别

CDMA系统开环功率控制与死循环功率控制的区别1. 开环功率控制开环方法是利用移动台接收器的功率水平PRX来估计前向链路损耗,然后指定移动台的初始发射功率PTX,这样基于不同用户终端选择(如蜂窝、PCS或是3G),前向和反向链路的功率之和保持为一个常量,即PTX+PRX为常数。

PRX通过Eb/Io计算得到,它由移动台的数字信号处理器(DSP)测量。

得到了初始的PTX之后,移动台和基站均开始死循环控制。

根据所执行的CDMA标准,基站给移动台发送一个误差信号,指示移动台增加或减少一个单位的能量。

2. 死循环功率控制死循环功率控制包含两个步骤:外环(仅基站进行)和内环(移动台和基站同时进行),在IS-9 5和CDMA 1X中死循环控制可以达到800Hz的功率控制速率。

死循环功率控制的主要目的是为了根据基站的测量结果,最小化信号多径传播损耗所造成的快速衰减效应。

结合使用外环和内环两个死循环功率控制过程,可以在20毫秒的帧间间隔中做到20-35dB 的衰减补偿,动态范围可达80dB2. 死循环功率控制死循环功率控制包含两个步骤:外环(仅基站进行)和内环(移动台和基站同时进行),在IS-9 5和CDMA 1X中死循环控制可以达到800Hz的功率控制速率。

死循环功率控制的主要目的是为了根据基站的测量结果,最小化信号多径传播损耗所造成的快速衰减效应。

结合使用外环和内环两个死循环功率控制过程,可以在20毫秒的帧间间隔中做到20~35dB的衰减补偿,动态范围可达80dB。

a. 外环死循环功率控制在外环中,基站每20毫秒为接收器的每一个帧规定一个目标Eb/Io(从移动台到基站)。

出现帧误差时,该Eb/Io值自动按0.2~0.3为单位逐步减少,或增加到3~5dB。

整个外环死循环控制步骤只与基站有关,而与移动台无关。

b. 内环死循环功率控制在内环,基站每1.25毫秒比较一次反向信道的Eb/Io和目标Eb/Io,然后指示移动台降低或增大发射功率,这样就可以达到目标Eb/Io。

CDMA前向功率控制,反向功率控制

CDMA前向功率控制,反向功率控制

为用于变速率传输的一个功率控制时隙内的时间。

在时隙内,功率波动应小于3db,功率电屏应比背景噪声高20db,功率上升和下降的时间应小于6μs。

如图1所示。

移动台发射机的平均输出功率应小于-50dbm/1.23MHz,即-110dbm/Hz;移动台发射机背景噪声应小于-60dbm/1.23MHz,即-54dbm/Hz。

1.2IS-95及cdma20001x系统前向及反向功率控制cdma系统功率控制类型包括:反向开环功率控制移动台根据接收功率变化,调整发射功率。

反向闭环功率控制移动台根据接收到的功率控制比特调整平均输出功率。

前向功率控制根据移动台测量报告,基站调整对移动台的发射功率。

1.2.1反向开环功率控制移动台的开环功率控制是指移动台根据接收的基站信号强度来调节移动台发射功率的过程。

其目的是使所有移动台到达基站的信号功率相等,以免因“远近效应”影响扩频cdma系统对码分信号的接收,降低系统容量。

1、IS-95A中的开环功率控制IS-95A系统内,只要手机开机,开环就起作用。

移动台根据前向链路信号强度来判断路径损耗。

功率变化过程中,只有移动台参与。

移动台不知道基站实际的有效发射功率(ERP),只能通过接收到的信号来估计前向链路损耗。

移动台通过对接收信号强度的测量,调整发射功率。

接收的信号越强,移动台的发射功率越小。

应当指出的是,移动台的开环功率控制的响应时间大约为30ms,只能克服由于阴影效应引起的慢衰落。

移动台对接收信号测量和调整是基于认为前向信道和反向信道的衰落特性是一致的,这种依前向信道信号电平来调节移动台发射功率的开环调节是不完善的。

需要采用闭环控制加以补充。

移动台在接入过程中的功率控制过程是通过接入探针实现的。

接入过程中移动台的发初始发射功率不能太大,会干扰小区内其他用户;同时发射功率也不能太小,基站会接收不到。

因此,移动台参用通过接入探针缓慢增加发射功率的方式。

移动台接入前,先发送一个低强度请求接入信号,若基站没有应答,则以PWR_STEP为步长一点一点的增加发射功率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号强度以及系统参数
MS
接入探针尝试
BTS
手机发射功率 (dBm) = - 手机接收功率 (dBm)+ 频带等级常量 + nom_pwr (dB)+ init_pwr (dB) + interference correction (dB) + 接入探针功率增量 (dB) + 反向导频偏置 (dB).
数据业务功率控制参数设置 不同速率的参数设置独立 与语音参数基本可以类比
All Rights Reserved © Alcatel-Lucent 2006, #####
数据业务功率控制 前向SCH信道功率控制要点
内环功率控制
• 400Hz控制速率 • 最大/最小功率增益对于不同速率的SCH独立设置 • 初始化功率增益由资源调配算法决定
无线功率控制参数
ISE RNO Oct.2007
学习目标 详细了解3G1x语音的前反向功率控制算法 详细了解3G1x语音的功率控制参数设置 了解3G1x数据的功率控制算法
All Rights Reserved © Alcatel-Lucent 2006, #####
学习目标 3G1x语音的前反向功率控制算法
功率控制比特位置
每个1.25ms的功率控制组包含1536个PN chips,手机在前面的1152个PN Chips中发送 导频信号,在接下来的384个PN Chips发送功率控制子信道,该子信道是功率控制比特 的重复。
All Rights Reserved © Alcatel-Lucent 2006, #####
All Rights Reserved © Alcatel-Lucent 2006, #####
前向功控参数
前向外环功控参数
目标FER设置 Eb/Nt Setpoint设置
• 初始值设定 • 最大值设定 • 最小值设定
参数 目标FER 最小Setpoint设置 初始Setpoint设置 最大Setpoint设置
All Rights Reserved © Alcatel-Lucent 2006, #####
功率控制组概念 反向功率控制子信道
功率控制组:
将20ms的reverse pilot channel FRAME(after channel coding)平均分为16份,每一个为 1.25ms, 称为Power Control Group.
F-FCH Eb/Nt setpoint
All Rights Reserved © Alcatel-Lucent 2006, #####
前向功控算法
前向内环功率控制
Байду номын сангаас
All Rights Reserved © Alcatel-Lucent 2006, #####
前向功控参数
前向内环功控参数:
FCH功率范围
All Rights Reserved © Alcatel-Lucent 2006, #####
学习目标 3G1x数据的功率控制算法
在语音的基础上,了解数据功控与语音的基本差异 理解数据功率控制的特点 理解数据功率控制算法流程 理解数据功率控制参数设置
All Rights Reserved © Alcatel-Lucent 2006, #####
设置范围 0.2,0.5 to 3% 2 to 11 5 to 13 3 to 16
推荐值 1-3% 3 7 8
All Rights Reserved © Alcatel-Lucent 2006, #####
反向功控算法
反向功率控制
开环功控要素
• 初始功率设置 • 功率增加步长
闭环功控要素
外环功率控制
• 不同的Eb/No限制设置和目标FER对于不同速率的SCH独立设置 • 初始化的Eb/No由资源调配算法决定
All Rights Reserved © Alcatel-Lucent 2006, #####
数据业务功率控制 反向SCH信道功率控制要点
内环功率控制
初始化外环Eb/No(参数采用初始化的Eb/No setpoint) 从每个功率控制组测量FCH的Eb/No 判断Eb/No与Setpoint 的差异 根据差异插入相应的功率增加减少的功率控制比特 判断帧好坏与否 重新评估Eb/No setpoint 值,将该值应用到外环 setpoint设置
• 初始化增益 • 最大增益 • 最小增益
参数 基本功控步长 切换功控步长 内环初始化增益 内环最小化增益 内环最大化增益
设置范围 0 to 1.0 0 to 1.0 -9.0 to 0.0 -20 to +9 -4 to +4
推荐值 0.5 0.5 -1 -15 -1
功率控制步长
• 基本步长 • 切换状态步长
功率控制组概念 前向功率控制子信道结构
All Rights Reserved © Alcatel-Lucent 2006, #####
功率控制组概念 反向功率控制子信道结构
All Rights Reserved © Alcatel-Lucent 2006, #####
功率控制组概念 前向功率控制子信道
如何实现功率控制的目的
通过设定和控制Eb/Nt来控制误帧率 通过前向功率控制来最小化基站发射功率 通过反向功率控制来最小化手机发射功率 通过对误帧率的设定来控制语音服务质量 通过参数设定为运营商提供容量和话音质量的均衡
All Rights Reserved © Alcatel-Lucent 2006, #####
学习理解语音功率控制的目的 了解语音功率控制的分类 学习理解语音功率控制的具体过程和算法
• 功率控制比特 • 算法流程
All Rights Reserved © Alcatel-Lucent 2006, #####
学习目标 3G1x语音的功率控制参数设置
了解功率控制参数的组成 理解不同参数的作用机理以及设置范围 充分理解推荐参数值模版
FPC 模式设置的不同,对于FCH和SCH功率控制速率上就有不同 FPC=0,800Hz FCH,SCH没有功控 FPC=1,400/400Hz FCH/SCH功控速率 FPC=2,200/600Hz FCH/SCH功控速率
All Rights Reserved © Alcatel-Lucent 2006, #####
All Rights Reserved © Alcatel-Lucent 2006, #####
前向功控算法
前向外环
操作在手机侧 手机判断接收到的Frame
= bad frame
Outer Loop
= good frame
• 好帧:Eb/Nt setpoint 下降 • 坏帧:Eb/Nt setpoint 上升
All Rights Reserved © Alcatel-Lucent 2006, #####
功率控制目的
通过功控,来维持系统的期望性能
提供语音质量保证 最大化系统容量 最大化功率利用率 提高手机电池使用时间
All Rights Reserved © Alcatel-Lucent 2006, #####
功率控制分类
前向功率控制
周期性帧报告触发(IS-95A)(本章内容不涉及) 快速前向功率控制(闭环功率控制)
• 内环功率控制 • 外环功率控制
反向功率控制
开环功率控制 闭环功率控制
• 内环功率控制 • 外环功率控制
All Rights Reserved © Alcatel-Lucent 2006, #####
• 外环功率控制要素 – 测量Ec/Io – 判断Frame好坏与否 – 调整新的Eb/No Setpoint • 内环功率控制要素 – 比较Ec/Io – 调整基站功率
All Rights Reserved © Alcatel-Lucent 2006, #####
反向功控算法 反向开环功率控制
All Rights Reserved © Alcatel-Lucent 2006, #####
反向功控参数 反向开环参数
Nom_pwr Init_pwr RPICH-offset Pwr_step Num_step
All Rights Reserved © Alcatel-Lucent 2006, #####
外环功率控制
• 通过对帧是否有误进行判断,控制Eb/No的设定变化,配合内环功控
All Rights Reserved © Alcatel-Lucent 2006, #####
功率控制组概念 功率控制组 功率控制比特位
All Rights Reserved © Alcatel-Lucent 2006, #####
不同功率控制类别基本作用
开环功率控制
由手机根据基站的信号强度,估算所需发射功率,发生在基站对手机控制之前. 速度较慢,主要用于克服路径损耗
闭环功率控制
手机和基站共同参与,估算所需发射功率.速度较快, 用于克服快衰落及环境 变化造成的信号变化 内环功率控制
• 前向采用Eb/No与设定门限比较,反向采用Ec/Io与设定门限比较,控制手机发射功率
All Rights Reserved © Alcatel-Lucent 2006, #####
反向功控算法 反向闭环功率控制流程说明
初始化外环Eb/No(参数采用初始化的Eb/No setpoint) 将Eb/No转换为反向导频信道的Ec/Io 从每个反向功率控制组测量导频信道的Ec/Io 判断Ec/Io与Setpoint 的差异 根据差异插入相应的功率增加减少的功率控制比特 判断帧好坏与否 重新评估Eb/No setpoint 值,将该值应用到外环 setpoint 设置
相关文档
最新文档