函数的和、差、积、商的导数

合集下载

函数的求导法则

函数的求导法则
首页 上页 返回 下页 结束 铃
复合函数的求导法则: dy = f ′(u)⋅ g′(x) 或 dy = dy ⋅ du . dx dx du dx
求 dy . 例10 y = ln sin x, dx
解 dy =(ln sin x)′= 1 ⋅(sin x)′ = 1 ⋅cosx=cot x . dx sin x sin x dy 3 2 , 求 例11 y = 1−2x . . dx 1 dy −4x 1 (1−2x2)− 2 ⋅(1−2x2)′ = 2)3 ]′ = 解 3 =[( −2x 1 . 3 ( −2x2)2 dx 3 3 1 复合函数的求导法则可以推广到多个中间变量的情形. 例如, 设y=f(u), u=ϕ(v), v=ψ(x), 则
详细证明 首页 上页 返回 下页 结束 铃
复合函数的求导法则: dy = f ′(u)⋅ g′(x) 或 dy = dy ⋅ du . dx dx du dx 例8 y=ex3 , 求 dy . 9 dx 解 函数 y=ex3可看作是由y=e u, u=x3复合而成的, 因此
dy dy du u 2 = ⋅ =e ⋅3x =3x2ex3 . dx du dx dy 例9 y =sin 2x2 , 求 . 10 1+ x dx 解 函数 y =sin 2x 是由 y=sin u , u = 2x 复合而成的, 1+ x2 1+ x2 dy dy du 2(1+ x2) −(2x)2 2(1− x2) = ⋅ =cosu⋅ = ⋅cos 2x2 . 因此 dx du dx (1+ x2)2 (1+ x2)2 1+ x
u(x) u′(x)v(x) −u(x)v′(x) >>> [ ]′ = . 2(x) v(x) v

和、差、积、商的求导法则

和、差、积、商的求导法则

且 (ay) ayln a 0 , 在 Ix (0,) 内,有
(loga x) (a1y)
1 a y ln a
1. x ln a
特别地 (lnx) 1 .
x
首页
上页
下页
《高等数学》电子教案山东农业大学科技学院
三、复合函数的求导法则
定理 如果函 u数 (x)在点 x0可导 , 而yf(u)
同理可得 (cx o) tcs2x c.
首页
上页
下页
《高等数学》电子教案山东农业大学科技学院
例4 求ysexc的导. 数
解 y(sex)c( 1 )
coxs

(cosx) cos2 x

sin x cos 2 x
se x tc a x .n
同理可得 (c x )s c cx scc x o . t
2sinxcoxs1 x
2co2xsln x1si2n x. x
首页
上页
下页
《高等数学》电子教案山东农业大学科技学院
例3 求ytaxn的导. 数 解 y(tax)n (six n)
coxs (sx i)n cc o x o 2 ssxsixn (cx o ) s co2scxo2ssxin2 x co12sxse2cx 即(tx a ) n se 2x.c
n3xn1co xns fn1[ n(sx in)n] n1(sx in)n f[ n(sx in)n] (sx in)n.
首页
上页
下页
《高等数学》电子教案山东农业大学科技学院
五、双曲函数与反双曲函数的导数
(six n ) hcoxsh(cox)sh sin xh tanxhsinxh

函数的和、差、积、商的导数

函数的和、差、积、商的导数
函 数 的 和、差、积、商
的 导 数
常见函数的导数
1、常函数:
C 0
特别: 特别:
2、一次函数: (kx b) k
n 1 3、幂函数: ( x ) nx n
x 1
( x 2 ) 2 x
1 1 ( ) 2 x x
4、指数函数:(a
x
) a ln a(a 0且a 1)
1 ( A) x x 1 ( B) x (C ) 2 x
3
1 ( D) 2x3
(3)点P在曲线y=x3-x+2/3上移动时,过点P的曲线的 切线的倾斜角的取值范围是( D )
3 3 3 3 ( A)[0, ] ( B )[ , ) (C )[0, ) ( , ] ( D)[0, ] [ , ) 4 4 2 2 4 2 4
例:某运动物体自始点起经过t秒后的距离s满足
(1)此物体什么时刻在始点? (2)什么时刻它的速度为零? 解:(1)令s=0,即1/4t4-4t3+16t2=0,所以t2(t-8)2=0,解得: t1=0,t2=8.故在t=0或t=8秒末的时刻运动物体在 始点.
3 2 (2) s (t ) t 12t 32t , 令s(t ) 0, 即t3-12t2+32t=0, 解得:t1=0,t2=4,t3=8,
2
练习1:已知曲线C:y=3x4-2x3-9x2+4;(1)求曲线C上横坐 标为1的点的切线方程;(2)第(1)小题中切线与曲线C是 否还有其它公共点?如果有,求出这些点的坐标. 解:(1)把x=1代入曲线C的方程得切点(1,-4). y 12x 3 6 x 2 18x ,所以切线的斜率k=12-6-18= -12.故切线方程为y+4=-12(x-1),即y=-12x+8. y 3x4 2x3 9x2 4 ( 2)由 3 x 4 2 x 3 9 x 2 12x 4 0, y 12x 8

2.2函数的求导法则

2.2函数的求导法则
e5x (5x)
5e5x 20
例. 设 y (ax b)100 (a , b 为常数) 求 y '
解: 设 y u100 u ax b
y' dy du 100u99 a 100a(ax b)99
du dx
例 求函数 y ln sin x 的导数.
解 y ln u, u sin x.
2x
l n2 (tan
1 )'
:
x
tan 1
ln22 x
se c2
1
( 1 )'
xx
tan 1
ln 22 x
s ec2
1 x
1 x2
tan 1
2x
s e c2
1
ln2
x
x2
23
1. 求函数 y ( x2 1)10 的导数 . 2. 设
3. y 2sin x2 , 求 y.
4. y arctan 1 , 求 y ' x
24
1. 求函数 y ( x2 1)10 的导数 . 解 y 10( x2 1)9 ( x2 1)
10( x2 1)9 2x 20x( x2 1)9 .
2. 设
解:
x
1 1
x2 1
2
1 2x x2 1
1 x2 1
25
解(3) y 2sin x2 , 求 y.

y 2sin x2
(secx) x secx ( x )
secx tan x x secx 1 2x
14
二、反函数的求导法则
反函数的导数等于直接函数导数的倒数. [ f 1( x)] 1 f ( y)
15

求函数

函数求导法则

函数求导法则

1 x2 ,
x 1,
例4
已知f (x)
(1
x)(2
x), 1
x
2,
求 f (x), f (0)
(2
x),
2 x ,
2x , x 1,
f (x)
2x 3,
1<x 2,
1, 2 x ,
f (0)=0
二、反函数的求导法则
定理2. 设 y f (x)为 x f 1( y) 的反函数 , f 1( y) 在
x
sec2 x
(csc
x)
1 sin
x
(sin sin 2
x) x
cos x sin 2 x
csc x cot x
类似可证: (cot x) csc2 x , (sec x) sec x tan x .
例3
已知 f (x) x sin x ,
1 cos x
求 f (x)
x sin x . 1 cos x
在点
可导
复合函数
在点 x 可导, 且
d y f (u)g(x) dx
证: y f (u) 在点 u 可导, 故 lim y f (u) u0 u
y f (u)u u (当

)
故有
y f (u) u u
x
x x
(x
y 0) u
f
(u)
dy dx
lim y x0 x
lxim0
解: y ( x ) ( x3 4 cos x sin1)
x ( x3 4 cos x sin1)
1 ( x3 4 cos x sin1) x ( 3 x2 4sin x ) 2x
y x1

二节基本的导数公式与运算法则-精选

二节基本的导数公式与运算法则-精选
n22xx1n12x1(2(x2)x()22x1)(2x)
机动 目录 上页 下页 返回 结束
n2 2x x1n1(2 5x)25n ((22 xx )1 n)1 n1
作业: P5813(2)(3)(8),14(2)(4)15(4)(8)(13)(14)216
(5) (sxi)ncoxs
机动 目录 上页 下页 返回 结束
(6) (cxo )s sixn (7) (tax)nse2xcc1o2xs
(8) (cxo)tcs2xcs1i2nx
(9 ) (sx)e s ce xtcaxn (1)0 (c x )s c cx sc cx ot
(sixn)coxssinx(cox)s

(cox)2s
coxcs oxssixn(sixn) co2xs
1 sec2 x co2sx
类似地可求得 (co x)ts1 i2nxcs2xc
机动 目录 上页 下页 返回 结束


f
(x)

ln x x2
,
求f
(e)
机动 目录 上页 下页 返回 结束
可导,且有
(arcsixn) (si1ny)

1 cos
y
1
1 sin2 y
1 1 x2
即(arcsx)in 1 1x2
类似地可得
(arccx)os 1 1x2
机动 目录 上页 下页 返回 结束
三、复合函数的求导法则
定理2.6 设函数 yf(u)与 u(x)构成了复合函数
(1)1 (arcxs)in 1 1x2
机动 目录 上页 下页 返回 结束
(1)2(arc)cox 1 1x2
(1)3(arcx)ta1n1x2

导数的运算法则和与基本公式

导数的运算法则和与基本公式

§3.2.2导数的运算法则与基本公式一、导数的和、差、积、商运算法则如果函数()u x 、()v x 在x 处都可导,则它们的和、差、积、商在x 处也可导;(1) [()()]()()u x v x u x v x '''±=±;(2) [()()]()()()()u x v x u x v x u x v x '''⋅=+;(3) 2()()()()()()[()]u x u x v x u x v x v x v x '''⎛⎫-= ⎪⎝⎭(()0)v x ≠;推广到多个函数情形:设有n 个函数1()u x 、2()u x 、…、()n u x 都可导,则:(1)1212[()()()]()()()n n u x u x u x u x u x u x ''''±±±=±±±(2)12121212[()()()]()()()()()()()()()n n n n u x u x u x u x u x u x u x u x u x u x u x u x ''''=+++(3)[()]()ku x ku x ''=(k 为常数)定理2.3 设函数1()x f y -=在某个开区间内单调可导,且1[()]0f y -'≠,则反函数()y f x =在对应区间内可导,且11()[()]f x f y -'='.证明:0001011()lim lim lim 11[()]lim x x x y y f x x xx y yx f y y∆→∆→∆→-∆→∆'===∆∆∆∆∆==∆'∆二、基本初等函数的求导公式1.常数的导数:()0c '= (c 为常数)证明:()f x c =00()()()limlim 0x x f x x f x f x xc c x∆→∆→+∆-'=∆-==∆2.幂函数的导数:1()n n x nx -'= (n 为常数)证明:()nf x x =,0()()lim nnx x x xf x x∆→+∆-'=∆110()lim nn n n nnn nx C x C x x C x xx-∆→+∆++∆-=∆ 112210lim[()]n n n n nnnx C xC xx C x ---∆→=+∆++∆ 1n nx -=例1 求4sin y x x =+的导数.解:4(sin )y x x ''=+4()(sin )x x ''=+.34cos x x =+.例2 求5cos y x x =的导数.解:5(cos )y x x ''=55()cos (cos )x x x x ''=+.455cos sin x x x x =-.例3 求2sin xy x =的导数.解:2sin ()xy x''=2222(sin )sin ()()x x x x x ''-=. 24cos 2sin x x x x x-=. 3cos 2sin x x x x-=.例4 求23313y x x=--的导数.解:2333y xx -=--233(3)y x x -''=--.233()()(3)x x -'''=--.134233x x --=--.例5 求232x y x -=的导数.解:312223232x y x x x--==- 3122(32)y x x -''=-.3122(3)(2)x x -''=-.31223()2()x x -''=-.312292x x -=+.例6 求21xy x=+的导数. 解:2()1xy x''=+2222()(1)(1)(1)x x x x x ''+-+=+. 22212(1)x x x x +-⋅=+. 2221(1)x x -=+.3.指数函数x y a =(0,1a a >≠)的导数:()ln x x a a a '=()x xe e '= 001lim lim x x x x y a y a x x∆∆→∆→∆-'==∆∆. 证明:(1)x x x x x y a a a a +∆∆∆=-=-令1xt a ∆=-,有log (1)a x t ∆=+ 当0x ∆→时,有0t →1001lim lim log (1)log (1)x x t t a a t t y a a t t →→'==++. 1011lim ln log log (1)t x x x t a a a a a a e t →===+.4.对数函数log a y x =(0,1a a >≠)的导数:1(log )ln a x x a '= 1(ln )x x'= 证明:log a y x =的反函数为y x a =(0,1a a >≠),由定理2.3可得111()ln ln y y y a a a x a'==='.例7 求33x xy x e =-+的导数. 解:3(3)x xy x e ''=-+3()(3)()x x x e '''=-+. 233ln3x xx e =-+.例8 求2x y x e =的导数. 解:2()x y xe ''= 22()()x x x e x e ''=+.22x x xe x e=+. (2)x xe x =+.例9 求ln x y x=的导数. 解:2ln (ln )ln ()x x x x x y x x''-⋅''== 122ln 1ln xx x x x x ⋅--==.例10 求22log y x x =的导数. 解:22(log )y x x ''= 2222()log (log )x x x x ''=+. 2212log ln 2x x x x =+. 22log ln 2x x x =+.5.三角函数的导数: 1.(sin )cos x x '=2.(cos )sin x x '=-3.221(tan )sec cos x x x '== 4.221(cot )csc sin x x x '=-=-5.(sec )sec tan x x x '=⋅6.(csc )csc cot x x x '=-⋅证明:1.(sin)cosx x'=2.(cos)sinx x'=-参考前面例题.3.sin(tan)()cosxxx''=2(sin)cos sin(cos)cosx x x xx''-=22222cos sin1seccos cosx xxx x+===.同理可证(请同学自己证明) 4.21(cot )csc sin x x x'=-=- 5.(sec )sec tan x x x '=⋅ 6.(csc )csc cot x x x '=-⋅例11 求sin cos y x x x =+的导数. 解:(sin cos )y x x x ''=+(sin )(cos )x x x ''=+. sin (sin )sin x x x x x ''=+-. sin cos sin x x x x =+-. cos x x =.6.反三角函数的导数: 1.21(sin )1arc x x '=-(11x -<<)2.21(cos )1arc x x '=--( 11x -<<) 3.21(tan )1arc x x'=+ 4.21(cot )1arc x x '=-+证明:sin y arc x =的反函数是sin x y =由定理2.3 1(sin )(sin )y arc x y ''==' (sin )cos ()22y y y ππ'=-<<. 而22cos 1sin 1y y x =-=- 所以21(sin )1arc x x '=-.其余反三角函数求导公式同理可证(请同学自己证明).例12 求2arctan 1x y x =+的导数. 解:22221(1)arctan 21(1)x x x x y x +-⋅+'=+ 2212arctan (1)x x x -=+.。

第三节 导数的基本公式与运算法则

第三节 导数的基本公式与运算法则

3
3
10/12/2018 1:25 PM
第三章
导数与微分
4、乘积的导数 则 y( x ) u( x ) v ( x ) 设 u u( x ) , v v ( x ) 可导, 且 y( x ) u( x )v( x ) u( x )v( x ) 也可导, 证明
y ( x h) y ( x ) y( x ) lim h 0 h
(sec x ) sec x tan x
(csc x ) csc x cot x
10/12/2 2 x sin x cos x ln x 的导数 解
y (2 x sin x ) (cos x ln x )
( x n ) nx n1
设 y x n ( n 为正整数), 由二项式定理知
n( n 1) n 2 2 x nx x x x x n x n 2 y n( n 1) n 2 n 1 y lim lim ( nx x x x n 1 ) x 0 x x 0 2
2( x ) sin x 2 x (sin x )(cos x ) ln x cos x(ln x )
1 2 sin x 2 x cos x sin x ln x cos x x 2 x 1 1 ( ln x )sin x (2 x )cos x x x
例2
3 2 y (1 2 x )(3 x 2 x ) 的导数 求
解 y (1 2 x )(3 x 3 2 x 2 ) (1 2 x )(3 x 3 2 x 2 )
2(3 x 3 2 x 2 ) (1 2 x )(9 x 2 4 x)

导数的基本公式与运算法则

导数的基本公式与运算法则

ln y
1 [ln|x 1| ln|x 2| ln|x 3| ln|x 4|] , 2
上式两边对x求导,得
1 1 y y 1 1 ( ( 1 1 1 1 1 1 1 1 ) , ) , y y 2 2 x x 1 1 x x 2 2 x x 3 3 x x 4 4
解 当x0时, f(x)1,
当x0时, f ( x ) 1 ,
1 x 当x0时,
f (0 )h l i0m (0h ) h ln 1( 0 ) 1,
f (0 ) h l 0 ilm n 1 (0 [ h h ) ]ln 1 0 ( ) 1,
f(0)1.f(x)111,x,
x0 x0.
2. 设 f(x ) (x a )(x ),其中(x) 在 xa处连续,
两边对 x 求导
y ln a a b
y
bxx
yb axb xaa xbln
a b
a x
b x
七、由参数方程所确定的函数的导数
若参数方 xy 程 ((tt))确定 y与x间的函数 , 关
称此为由参数 定方 的程 函 . 所 数确
例如
x 2t,
y
t
2,
t x 2
消去参数
yt2 (x)2 x 2 24
(arcsin x ) 1 1 x2
(arctan
x )
1 1 x2
( x ) x 1 (cos x ) sin x
(cot x ) csc 2 x (csc x ) csc x cot x
(e x ) e x
(ln x ) 1 x
(arccosx) 1 1 x2
(
arccot
推论:
n
n

函数的和差积商的导数教案

函数的和差积商的导数教案

函数的和差积商的导数教案一、教学目标1. 理解函数的和、差、积、商的导数概念。

2. 掌握求解函数的和、差、积、商的导数的方法。

3. 能够运用导数解决实际问题。

二、教学内容1. 函数的和导数:两个函数的和导数等于各自导数的和。

2. 函数的差导数:两个函数的差导数等于各自导数的差。

3. 函数的积导数:两个函数的积导数等于第一个函数乘以第二个函数的导数加上第一个函数的导数乘以第二个函数。

4. 函数的商导数:两个函数的商导数等于第一个函数的导数乘以第二个函数减去第一个函数乘以第二个函数的导数,除以第二个函数的平方。

三、教学重点与难点1. 教学重点:函数的和、差、积、商的导数的概念及求解方法。

2. 教学难点:函数的积、商导数的求解。

四、教学方法1. 采用讲解法,引导学生理解函数的和、差、积、商的导数概念。

2. 采用例题解析法,讲解求解函数的和、差、积、商的导数的方法。

3. 采用练习法,让学生巩固所学知识。

五、教学安排1. 课时:2课时2. 教学过程:第一课时:1. 导入新课,讲解函数的和、差、积、商的导数概念。

2. 讲解求解函数的和、差、积、商的导数的方法。

3. 布置练习题,让学生巩固所学知识。

第二课时:1. 讲解例题,运用导数解决实际问题。

2. 学生自主练习,教师辅导。

3. 总结本节课所学内容,布置家庭作业。

六、教学策略1. 案例分析:通过分析具体案例,让学生了解导数在实际问题中的应用。

2. 互动讨论:引导学生参与课堂讨论,提高学生的思维能力和解决问题的能力。

3. 练习巩固:布置课后习题,让学生通过练习加深对知识点的理解和掌握。

七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 课后作业:检查学生完成的课后习题,评估学生对知识点的掌握程度。

3. 单元测试:进行单元测试,全面评估学生对本单元知识的掌握情况。

八、教学资源1. 教材:选用合适的数学教材,为学生提供权威的学习资料。

函数的求导法则

函数的求导法则
即 (sec x ) sec x tan x
类似可得 ( c s c x ) c s c x c o t x
§2.2
函数的求导法则
s i n x c o sx ) 例5 求 f(x 在x 处的导数. s i n x c o sx 4 s i nc x o s x 2 c o s x 解 f ( x ) 1 s i nc x o s x s i nc x o s x o sx c f(x ) 2 s i n x c o s x ( c o s x ) ( s i nc x o s x )c o s x ( s i nc x o s x ) 2 2 ( s i nc x o s x ) s i n x ( s i nc x o s x )c o s x ( c o s x s i n x ) 2 2 ( s i nc x o s x ) 2 f ( ) 1. x 2 代入得 将 (sinx cos x) 4 4
推论
( 1 )[ C u () x ] Cu( x) ( C为常数 )
( 2 ) ( u u u ) u u u u u u u u u 1 2 n 1 2 n 1 2 n 1 2 n 1 ln x ( 3 )( l o g x ) a l n a x ln a .
u x ) v ( x ) ] 证 [( [( u x h ) v ( x h ) ] [( u x ) v ( x ) ] l i m h 0 h [ u ( x hu ) () x ][ v ( x hv ) () x ] l i m h 0 h h u ( x h ) u ( x ) v ( x h ) v ( x ) l i m l i m h 0 h 0 h h u () x vx () .

倒数的运算法则

倒数的运算法则

例8 求函数 y ( x 2 1)10 的导数 . 解 令 y u10 , u x 2 1,
第 二 章 导 数 与 微 分
dy dy du 10u9 ( 2 x ) 10( x 2 1)9 2 x dx du dx 20 x( x 2 1) 9 .
例2 解
i 1
求 y x 3e x 的导数 .
3 x 3 x y ( x ) e x (e )
3x e x e
2 x
3 x
-3-
第二节
导数的运算法则
例3 求 y tan x 的导数 . 解
第 二 章 导 数 与 微 分
sin x (sin x ) cos x sin x(cos x ) y (tan x ) ( ) cos x cos 2 x cos 2 x sin2 x 1 sec2 x cos 2 x cos 2 x
1 (thx ) 2 ch x
- 13 -
例14 求幂函数 y x ( x 0, 为任意常数) 的导数 y.
第 二 章 导 数 与 微 分
ln x y x e 解 ln x ( ln x ) x (ln x ) x 1 x 1 y e x 可以推出, 对所有的 x 只要 x 可导, 都有
-1-
第二节
导数的运算法则
证 (1)、(2)略,仅对(3)进行证明
u( x ) 设 f ( x) , (v ( x ) 0), v( x )
u( x h) u( x ) f ( x h) f ( x ) v ( x h) v ( x ) f ( x ) lim lim h 0 h 0 h h u( x h)v ( x ) u( x )v ( x h) lim h 0 v ( x h)v ( x )h [u( x h) u( x )]v ( x ) u( x )[v ( x h) v ( x )] lim h 0 v ( x h)v ( x )h u( x h) u( x ) v ( x h) v ( x ) v ( x ) u( x ) h h lim h 0 v ( x h)v ( x )

2.2导数的运算法则

2.2导数的运算法则


x 1 2 1 法二 y x 1 x 1 2 1 2 y (1) ( ) 2 2 x 1 (1 x ) ( x 1) 2
在进行求导运算中, 尽量先化简再求导, 这样使求导过程简单, 且也能提高结果的准 确性.
8
函数的求导法则
二、复合函数的求导法则
例 求 y x 3 2 x 2 sin x 的导数 . 解
y 3 x 2 4 x cos x.
4
函数的求导法则
例 求 y tan x 的导数 .
sin x 解 y (tan x ) cos x
uv uv u 2 v v
9
函数的求导法则
推广 设 y f (u), u (v ), v ( x ),
则复合函数y f { [ ( x )]}的导数为 dy dy du dv × × . dx du dv dx 例 求函数 y ln sin x 的导数.
解 y lnu, u sin x .
1
2
首页
上页
下页
返回
函数的求导法则
一、函数的和、差、积、商的求导法则
定理1 并且
如果函数u( x ), v( x )在点 x处可导,
在点 x处也可导,
则它们的和、差、积、商
(1) [ u( x ) v( x )] u( x ) v( x ); , R.
即 (sec x ) sec x tan x 同理可得 (csc x ) csc x cot x
7
函数的求导法则
x 1 求 y 的导数 . x 1
v ( x ) 1 2 v( x ) v ( x)

导数的运算公式和法则_OK

导数的运算公式和法则_OK

(1) y sin 2x
解 10 逐层分解) 令y sinu, u 2x, 则
20 链式求导) dy dy du cos u 2 dx du dx
30 回代)
dy 2cos 2x dx
完了吗?
20
(2) y (2x 1)3 解 令y u3, u 2x+1, 则 dy dy du 3u2 2 6(2x 1)2
层次(包括四则,复合), 再按照相应法则求解
23
练习
求下列函数的导数
sin 1
1) y e x 2) y arcsin
x 3) y arctan 1 4) y e2x tan 3 x
x
5) y x2 a2 arccos a(其中x 0,a 0) x
答案:
1) y
sin 1
ex
(sin 1 )
例2 求函数y x sin x sin 的导数
2

y
x
sin
x
sin
2
1 sin x x cos x 2x
6
例3 求函数y sin 2x的导数 cos 2x ? 解 y' (2sin xcos x)'
2[(sin x)'cos x sin x(cos x)']
2(cos2 x sin2 x) 2cos 2x
sin 1
ex
cos 1 ( 1 )
sin 1
ex
cos 1
(
1
)
x
xx
x x2
2) y
1 ( 1 ( x)2
x)
1
sin 1
ex
cos
1
x2
x
1 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的和、差、积、商的导数
教学目的:
1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数.
2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数
3.能够综合运用各种法则求函数的导数
教学重点:
用定义推导函数的和、差、积、商的求导法则
教学难点:
函数的积、商的求导法则的推导.
授课类型:新授课
教学过程:
一、复习引入:
常见函数的导数公式:
0'=C ;()'kx b k +=(k,b 为常数) 1)'(-=n n nx x ; ()'ln (0,0)x x a a a a a =>≠且 ()'x x e e =1(ln )'x x = 11(log )'log (0,0)ln a a x e a a x x a
==>≠且 x x cos )'(sin =; x s i n )'(cos -=
二、讲解新课:
例1.求2y x x =+的导数.
法则 1 两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即 []()()''()'()f x g x f x g x ±=±
法则2常数与函数的积的导数,等于常数与函数的积的导数.[]()'()'cf x cf x = 法则3两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即 []()()''()()()'()f x g x f x g x f x g x =+
证明:令()()y f x g x =,则
=∆y ()f x x +∆()g x x +∆-()()f x g x
()f x x =+∆()g x x +∆-()f x ()g x x +∆+()f x ()g x x +∆-()()f x g x , =∆∆x y ()()f x x f x x +∆-∆()g x x +∆+()f x ()()g x x g x x
+∆-∆ 因为()g x 在点x 处可导,所以它在点x 处连续,于是当0→∆x 时,()()g x x g x +∆→,
从而0lim →∆x =∆∆x y 0lim →∆x ()()f x x f x x +∆-∆()g x x +∆+()f x 0lim →∆x ()()g x x g x x
+∆-∆ '()()()'(f x g x f x g x =+,
法则4 两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方,即
'2()'()()()'()(()0)()()f x f x g x f x g x g x g x g x ⎛⎫-=≠ ⎪⎝⎭
三、讲解范例:
例1 求下列函数的导数
1、y =x 2+sin x 的导数.
2、求2(23)(32)y x x =+-的导数.(两种方法)
3、求下列函数的导数 ⑴()sin h x x x = ⑵21()t s t t
+= 4、y =5x 10sin x -2x cos x -9,求y ′
5、求y =x
x sin 2
的导数. 变式:(1)求y =3
32++x x 在点x =3处的导数.
(2) 求y =
x
1·cos x 的导数. 例2求y =tan x 的导数.
例3求满足下列条件的函数()f x
(1) ()f x 是三次函数,且(0)3,'(0)0,'(1)3,'(2)0f f f f ===-=
(2)'()f x 是一次函数, 2'()(21)()1x f x x f x --=
变式:已知函数f(x)=x 3+bx 2+cx+d 的图象过点P(0,2),且在点M 处(-1,f(-1))处的切线方程为6x-y+7=0,求函数的解析式
四、课堂练习:
1.求下列函数的导数:(1)y =x a x a +- (2)y =232x
x + (3)y =x cos 11- 五、小结 :由常函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数,商的导数法则(v u
)′=2v
v u v u '-'(v ≠0),如何综合运用函数的和、差、积、商的导数法则,来求一些复杂函数的导数.要将和、差、积、商的导数法则记住
六、课后作业:。

相关文档
最新文档