如何选择磁盘阵列?

合集下载

磁盘阵列方案

磁盘阵列方案
- RAID 5:分布式奇偶校验,兼顾数据安全和访问速度,空间利用率较高。
- RAID 6:双分布式奇偶校验,提高数据可靠性,但性能略低于RAID 5。
根据用户数据重要性及性能需求,推荐使用RAID 5或RAID 6。
2.硬件选型
-磁盘驱动器:选用企业级硬盘,具备高可靠性、大容量等特点。
-控制器卡:选用支持RAID功能的控制器卡,确保数据传输稳定。
2.数据安全性是企业最为关注的问题,需确保数据不因硬件故障而丢失。
3.高效的数据访问速度对于提升企业业务处理能力至关重要。
4.遵守国家相关法律法规,确保数据存储的合法合规性。
三、方案设计
1.存储架构选择
-采用RAID技术构建磁盘阵列,以实现数据的高效处理和冗余保护。
-根据数据重要性和性能需求,推荐使用RAID 5或RAID 6级别。
-按需调整数据保护策略,确保数据安全。
-定期进行性能评估,优化系统性能。
3.应急预案
制定磁盘阵列故障应急预案,确保在发生故障时能快速响应,降低损失。
本方案旨在为用户提供一套合法合规、高效稳定的磁盘阵列解决方案,确保数据安全性和访问速度,满足用户业务需求。在实施过程中,需根据实际情况调整和优化方案,确保项目顺利进行。
3.验收测试
-对磁盘阵列的性能、可靠性和安全性进行全面的测试。
-确认系统满足设计要求,达到预期性能指标。
五、运维管理
1.运维团队
-建立专业的运维团队,负责磁盘阵列的日常运维工作。
2.运维策略
-定期进行系统维护,包括硬件检查、软件更新等。
-监控系统性能,及时调整策略,优化资源分配。
-制定应急预案,对可能发生的故障进行预演和应对。
5.合法合规性

HP服务器RAID配置详细教程

HP服务器RAID配置详细教程

HP服务器RAID配置详细教程
RAID是一种磁盘阵列技术,可以提高数据读写速度和安全性。

在HP服务器中,RAID配置非常简单,只需按照以下步骤操作即可。

步骤一:进入HP服务器BIOS设置
在服务器开机时,按下F9键进入BIOS设置界面。

然后选择“存储”选项进入存储设置页面。

步骤二:创建RAID阵列
在存储设置页面,选择“RAID”选项,然后点击“创建阵列”按钮。

接下来按照提示进行RAID阵列配置,包括选择阵列类型、选择要
使用的硬盘、给阵列命名等。

步骤三:配置RAID阵列属性
在创建RAID阵列完成后,可以进入阵列配置页面,对阵列属性进行配置。

常用的阵列属性包括阵列块大小、读写策略、冗余级别等。

步骤四:保存并退出
在完成RAID阵列配置后,点击“保存并退出”按钮,保存设置并退出BIOS设置界面。

然后重启服务器,RAID阵列配置即可生效。

总之,HP服务器RAID配置非常简单,只需要几个简单的步骤就可以完成。

但是在操作前一定要备份好数据,以免误操作导致数据丢失。

电脑硬盘阵列组建方法

电脑硬盘阵列组建方法

电脑硬盘阵列组建方法随着科技的不断发展,电脑硬盘阵列成为了数据存储和备份的重要方式。

硬盘阵列是一种将多个硬盘组合在一起实现高速数据存储和冗余备份的技术。

在本篇文章中,我们将介绍几种常见的电脑硬盘阵列组建方法。

一、RAID 0RAID 0是一种将多个硬盘组合在一起的方式,通过数据条带化(Striping)的方式将数据分散存储在多个硬盘上,从而实现数据的并行读写,提高数据传输速度。

RAID 0的优点是读写速度较快,但缺点是数据冗余性较低,一旦其中一个硬盘出现故障,所有数据都会丢失。

二、RAID 1RAID 1是一种将多个硬盘进行镜像备份的方式,即将数据同时写入多个硬盘,从而实现数据的冗余备份。

RAID 1的优点是数据安全性高,一台硬盘出现故障时,其他硬盘可以继续工作,并且可以通过更换故障硬盘来恢复数据。

缺点是相比于单个硬盘,RAID 1的存储效率较低。

三、RAID 5RAID 5是一种将多个硬盘组合在一起,并通过奇偶校验的方式实现数据冗余备份的方式。

RAID 5至少需要三个硬盘,其中一个硬盘用于存储奇偶校验位。

当其中一个硬盘出现故障时,可以通过奇偶校验位计算出丢失的数据。

RAID 5的优点是数据安全性较高,并且相比于RAID 1,存储效率更高。

缺点是在故障硬盘未被更换之前,RAID 5的性能会受到一定影响。

四、RAID 6RAID 6是在RAID 5的基础上进一步发展的一种硬盘阵列组建方式。

RAID 6至少需要四个硬盘,其中两个硬盘用于存储奇偶校验位。

RAID 6可以容忍两个硬盘同时发生故障,并且可以通过奇偶校验位计算出丢失的数据。

RAID 6的优点是数据冗余性更高,存储效率也相对较高。

缺点是相比于其他RAID级别,RAID 6的写入性能较低。

五、RAID 10RAID 10是一种将RAID 1和RAID 0相结合的硬盘阵列组建方式。

RAID 10至少需要四个硬盘,其中两个硬盘进行镜像备份,另外两个硬盘进行数据条带化。

RAID :性能增强的磁盘阵列配置方案

RAID :性能增强的磁盘阵列配置方案

RAID :性能增强的磁盘阵列配置方案RAID(Redundant Array of Independent Disks)是一种通过将多个硬盘组合在一起形成磁盘阵列来提高存储性能和数据冗余的技术。

RAID有不同的级别,每个级别都有不同的特点和适用场景。

在本文中,我们将重点讨论几种常见的RAID配置方案,以及它们如何增强性能。

1. RAID 0:大幅提升读写速度RAID 0是最简单的RAID级别之一,它将两个或更多的硬盘组合在一起,并将数据分割成块,然后分别写入每个硬盘。

由于数据的并行读写操作,RAID 0将大幅提升存储系统的读写速度。

然而,RAID 0没有冗余功能,一旦其中一个硬盘出现故障,所有数据都将丢失。

2. RAID 1:提供数据冗余和备份RAID 1使用镜像技术,将相同的数据同时写入两个或多个硬盘。

这样,当其中一个硬盘出现故障时,系统可以从其他硬盘中获取相同的数据。

RAID 1提供了数据的冗余和备份功能,使得系统更加可靠。

然而,RAID 1并不能提升系统的读写速度,因为所有数据都要同时写入多个硬盘。

3. RAID 5:提供读取性能和数据冗余RAID 5是一种将数据分布在多个硬盘上并提供容错能力的RAID级别。

RAID 5至少需要三个硬盘,其中一个硬盘用于存储奇偶校验信息。

奇偶校验信息允许在一个硬盘故障的情况下恢复数据。

RAID 5在读取方面具有良好的性能,但在写入方面可能会稍慢。

4. RAID 10:融合RAID 1和RAID 0的优势RAID 10是将RAID 1和RAID 0结合起来的一种配置方案,它同时提供数据冗余和读写性能的优势。

RAID 10需要至少四个硬盘,它将硬盘分成两组,每组都是一个独立的RAID 1阵列,然后将这两个RAID 1阵列组成一个RAID 0阵列。

这样做的好处是不仅可以提供数据的冗余和备份功能,还可以大幅提升系统的读写性能。

5. RAID 6:提供更高的容错能力RAID 6是在RAID 5基础上进一步增强的配置方案,它使用两个奇偶校验信息来提供更高的容错能力。

RAID(磁盘阵列)的选用方法

RAID(磁盘阵列)的选用方法

RAID(磁盘阵列)的选用方法独立磁盘冗余阵列的英文名称为Redundant Array of Independent Disks,也就是我们通常所说的RAID。

RAID的作用就是把多个独立的磁盘组合在一起,成为一个磁盘组,而这个磁盘组我们可以将它看成一个大的磁盘,这是因为这个磁盘组的性能并没有受到多个磁盘组合而造成性能减弱,相反还有所增强,因此,RAID技术被广泛用于数据存储行业中。

在大型存储中,我们通常通过存储机柜来实现数据存储;而在服务器上的存储,我们就通过支持RAID功能的RAID卡来实现。

1、 RAID种类及作用RAID分为很多种,如常见的RAID 0、RAID 1一直到RAID 7,另外还有组合,如RAID0+1(也被称为RAID 10)、RAID0+5(50)、RAID 5+3(RAID 53),每一个RAID级别都有其优点和缺点。

下面和大家一起认识四种常用的RAID (RAID 0、RAID1、RAID0+1、RAID5)工作方式。

RAID 0采用磁盘分段的方法把数据写到多个磁盘,而不是只写到一个盘上,这叫RAID 0,在磁盘阵列子系统中,数据按系统规定的“段”(Segment)为单位依次写入多个磁盘,例如数据段1写入磁盘1,段2写入磁盘2,段3写入磁盘3等等。

当数据写完最后一个磁盘时,它就重新从盘1的下一可用段开始写入,写数据的全过程按此重复直至数据写完;简单来说RAID 0使用的是平行存取方式。

我们来看一下RAID 0系统的工作原理,图1是由三块磁盘组成的RAID 0系统:图1 RAID 0系统的工作原理由上图可以清楚地看到,该系统由三块磁盘同时读写同一数据的不同数据块来达到三倍于原来磁盘的速度。

实际上,RAID也可以只使用两块磁盘。

上图中,在任何时刻,这三块磁盘都在同步地工作,但它们读写的内容却完全不同。

由于一个传输过程由三个磁盘各完成1/3,也就相当于传输带宽增加了三倍,所以操作时间也就减少了2/3。

BIOS设置磁盘阵列RAID

BIOS设置磁盘阵列RAID

BIOS设置磁盘阵列RAIDRAID(Redundant Array of Independent Disks)是一种通过组合多个磁盘驱动器来提高数据存储性能和冗余性的技术。

在BIOS设置中,您可以配置和管理RAID阵列,以适应您的特定需求。

本文将介绍如何在BIOS中进行磁盘阵列RAID设置。

1. 进入BIOS设置首先,您需要进入计算机的BIOS设置。

通常,在计算机开机时按下特定的按键(如F2、Del或F10)即可进入BIOS设置界面。

请注意,不同品牌和型号的计算机可能有不同的按键,您可以在计算机开机时查看屏幕上的提示信息来确定正确的按键。

2. 查找RAID设置选项一旦进入BIOS设置界面,您需要找到RAID设置选项。

这通常位于菜单的存储或高级设置部分。

您可以使用箭头键来浏览菜单,然后按Enter键选择相应选项。

3. 启用RAID功能在RAID设置选项中,您可能会看到一个“RAID模式”或“RAID功能”的选项。

将其设置为“启用”或“开启”以启用RAID功能。

4. 配置磁盘阵列RAID一旦启用RAID功能,您可以开始配置磁盘阵列。

通常有几种常见的RAID配置,包括RAID 0、RAID 1和RAID 5。

以下是它们的简要介绍:- RAID 0:也被称为条带化,将多个磁盘驱动器组合成一个大容量的虚拟驱动器,以提高读写性能。

然而,RAID 0没有冗余功能,一旦一个驱动器损坏,所有数据都将丢失。

- RAID 1:也被称为镜像,将两个磁盘驱动器镜像成完全相同的副本。

当其中一个驱动器发生故障时,系统仍能正常运行,并且数据可以从备份驱动器恢复。

- RAID 5:通过将数据和奇偶校验分布在多个磁盘驱动器上来提供更高的冗余性和性能。

RAID 5至少需要三个驱动器,当其中一个驱动器发生故障时,可以使用奇偶校验信息重建数据。

您可以根据实际需求选择适合您的RAID配置。

使用箭头键选择相应的RAID级别,然后按Enter键进入下一步。

磁盘阵列存储系统方案

磁盘阵列存储系统方案

磁盘阵列存储系统方案磁盘阵列存储系统(RAID)是一种将多个硬盘驱动器组合在一起形成一个逻辑存储单元的技术。

RAID系统通过将数据分布在多个磁盘上,提高了数据的容错性和性能。

在本文中,我们将讨论不同的RAID级别及其应用场景,以及一些常见的RAID实施方案。

一、RAID级别及应用场景1. RAID 0RAID 0将数据均衡地分布在多个磁盘上,提高了数据的读写速度。

RAID 0在需要高速数据传输但不需要数据冗余的情况下非常适用,比如视频编辑、数据备份等。

2. RAID 1RAID 1采用镜像数据的方式,将数据同时写入两个磁盘上,提高了数据的冗余性和可靠性。

RAID 1适用于对数据安全性要求较高的场景,比如数据库服务器、关键业务系统等。

3. RAID 5RAID 5将数据进行条带化分布,并在每个数据条带上计算校验信息,提高了数据的容错性。

RAID 5适用于需要高容错性和相对较高读写性能的环境,比如文件服务器、电子邮件服务器等。

4. RAID 6RAID 6在RAID 5的基础上增加了一个额外的校验盘,提供更高的容错性。

RAID 6适用于对数据安全性要求非常高的场景,比如金融交易系统、医疗信息系统等。

5. RAID 10RAID 10将RAID 1和RAID 0结合起来,通过将磁盘分为多组进行数据镜像和条带化分布,提供了高容错性和高性能。

RAID 10适用于对性能和数据安全性都有较高要求的应用,比如虚拟化服务器、数据库集群等。

二、常见的RAID实施方案1. 硬件RAID硬件RAID是通过专用的RAID控制器来实现的,具有自己的处理器和缓存,可以提供更高的性能和可靠性。

硬件RAID通常需要使用指定的RAID控制卡,并且成本较高。

2. 软件RAID软件RAID是利用操作系统提供的RAID功能来实现的,不需要额外的硬件设备,适用于小型企业或个人用户。

软件RAID的性能和可靠性相对较低,但成本较低。

3. 储存阵列网络(SAN)SAN是一种集中式的储存解决方案,将多个服务器连接到共享的存储设备上。

磁盘阵列的不同级别及其特点

磁盘阵列的不同级别及其特点

磁盘阵列的不同级别及其特点磁盘阵列(RAID,Redundant Array of Independent Disks)技术是一种将多个物理硬盘组合在一起,以提高数据存储和处理的性能、可靠性和容错性的技术。

磁盘阵列通过分割、复制和分布数据,以实现数据的并行读写和冗余备份。

不同的磁盘阵列级别提供了不同的数据保护和性能方案,适用于不同的应用场景。

本文将针对不同级别的磁盘阵列,分别介绍其特点和适用场景。

1. RAID 0RAID 0级别使用条带化的数据分布方式(striping),将数据分散存储在多个硬盘上,提供了更快的读写性能。

数据被拆分成固定大小的块,然后块按照顺序分布在不同的硬盘上。

由于数据同时存储在多个硬盘上,RAID 0可以实现并行读写,从而提高了整体的数据传输速度。

然而,RAID 0并不提供冗余备份和容错能力。

任一硬盘的故障都会导致整个阵列不可用,并且无法恢复数据。

因此,RAID 0通常用于对性能需求较高而对数据可靠性没有特别要求的场景,如视频编辑和游戏开发等。

2. RAID 1RAID 1级别通过镜像数据的方式提供冗余备份。

每个数据块都被复制到至少两个硬盘上,确保在其中一个硬盘故障时仍然可以通过另一个硬盘访问数据。

RAID 1具有很高的数据可靠性和容错性,但相比RAID 0,写入性能有所降低。

RAID 1适用于对数据保护较为重视的场景,如企业级存储和数据库服务器。

但需要注意的是,RAID 1并不能提供增加存储空间的功能,因为每个数据块都需要镜像存储。

3. RAID 5RAID 5级别结合了条带化和分布式奇偶校验(parity)的方式实现数据的分布存储和冗余备份。

RAID 5需要至少三个硬盘,并将奇偶校验信息按照轮换的方式存储在不同的硬盘上,以保证阵列中同时容忍一次硬盘故障。

当读取数据时,RAID 5可以通过奇偶校验信息恢复任何一个硬盘上的数据。

而在硬盘故障时,阵列可以通过奇偶校验信息实现数据的重建和恢复。

磁盘阵列方案

磁盘阵列方案

磁盘阵列方案1. 简介磁盘阵列是一种将多个磁盘组合在一起,形成一个逻辑上的单个存储单元的技术。

通过磁盘阵列,可以提高数据的可靠性和性能。

本文将介绍几种常见的磁盘阵列方案,包括RD 0、RD 1、RD 5和RD 10,并比较它们的优缺点。

2. RD 0RD 0,也称为条带化,是一种将数据分散存储在多个磁盘上的方案。

数据被分成多个块,并在不同的磁盘上同时写入。

由于数据分散在多个磁盘上,因此RD 0可以显著提高数据的读写速度。

然而,RD 0没有冗余,当一个磁盘故障时,所有数据都将丢失。

RD 0的配置方式如下:- 最少需要两个磁盘- 所有磁盘容量必须一致- 所有磁盘容量将相加,形成一个逻辑上的单个存储单元RD 0的优点包括:•提供高性能的读写速度•容量利用率高,不会浪费存储空间RD 0的缺点包括:•没有冗余,一个磁盘故障会导致数据丢失•可靠性低,系统的可用性不如其他RD级别3. RD 1RD 1,也称为镜像,是一种将数据在多个磁盘上完全复制的方案。

每个数据块都会被同时写入两个磁盘,因此当一个磁盘故障时,数据仍然可以从另一个磁盘恢复。

RD 1提供了最高的数据可靠性,但与RD 0相比,读写性能稍微降低。

RD 1的配置方式如下:- 最少需要两个磁盘- 所有磁盘容量相同- 所有磁盘上的数据完全相同RD 1的优点包括:•提供最高的数据可靠性•可以容忍一个磁盘故障,数据不会丢失•读取性能较高,因为可以从多个磁盘同时读取RD 1的缺点包括:•写入性能较低,因为数据需要同时写入多个磁盘•相对高的成本,因为需要多个磁盘提供冗余存储4. RD 5RD 5是一种在多个磁盘上分散存储数据和校验信息的方案。

数据被划分成多个块,并且校验信息也被分散存储在磁盘上。

当一个磁盘发生故障时,可以通过校验信息来恢复丢失的数据。

RD 5结合了RD 0和RD 1的优点,提供了较高的数据可靠性和良好的读写性能。

RD 5的配置方式如下:- 最少需要三个磁盘- 一个磁盘用于存储校验信息- 数据和校验信息的块交替分布在其他磁盘上RD 5的优点包括:•提供较高的数据可靠性,可以容忍一个磁盘故障•相对较低的成本,因为只需要一个磁盘提供校验信息RD 5的缺点包括:•写入性能较低,因为写入时需要计算和更新校验信息•在重建磁盘时,会对系统性能产生较大影响5. RD 10RD 10,也称为RD 1+0,是一种将RD 1和RD 0相结合的方案。

电脑硬盘RAID配置与管理技巧

电脑硬盘RAID配置与管理技巧

电脑硬盘RAID配置与管理技巧RAID(Redundant Array of Independent Disks,磁盘冗余阵列)是一种通过将多个磁盘组合起来形成一个逻辑驱动器来提高磁盘性能和数据可靠性的技术。

在本文中,我们将探讨电脑硬盘RAID的配置和管理技巧,帮助您充分利用和保护您的数据。

一、RAID级别的选择RAID技术有不同的级别,每个级别都有其特定的优点和应用场景。

以下是一些常见的RAID级别及其特征:1. RAID 0:该级别提供了高性能和可用存储空间,通过将数据块分散到多个磁盘上并并行读写,从而提高了读写速度。

然而,RAID 0没有冗余功能,如果其中一个磁盘发生故障,所有数据都将丢失。

2. RAID 1:该级别提供了高数据冗余性,通过将数据同时写入两个磁盘来实现镜像。

即使其中一个磁盘故障,数据仍然可以从另一个磁盘恢复。

然而,RAID 1的存储容量只有单个磁盘的一半。

3. RAID 5:该级别通过将数据和校验信息分块分散到多个磁盘上来提供高性能和数据冗余性。

校验信息可用于从任何一个磁盘故障中恢复数据。

RAID 5的读性能良好,写性能略低于RAID 0,但对存储容量的损失有限。

4. RAID 6:该级别类似于RAID 5,但具有双重冗余性。

RAID 6需要在每个数据块上使用两个校验信息,以实现更高的数据可靠性。

然而,RAID 6对写入性能和存储空间的损失更大。

5. RAID 10:该级别结合了RAID 1和RAID 0的特点,提供了高性能和高冗余性。

RAID 10将数据分成多个块并进行镜像,并在镜像上进行条带化。

RAID 10的优点在于提供了更好的数据保护和更高的性能,但需要更多的磁盘。

根据您的需求和预算,选择适合您的RAID级别非常重要。

二、RAID的配置RAID的配置可以通过硬件或软件实现。

硬件RAID使用独立的RAID控制器,而软件RAID则依赖于操作系统来处理RAID功能。

硬件RAID通常性能更好,由于RAID控制器的专门设计,可以提供更高的读/写速度和更可靠的数据保护。

硬件RAID与软件RAID的比较与选择

硬件RAID与软件RAID的比较与选择

硬件RAID与软件RAID的比较与选择RAID(冗余磁盘阵列)是一种数据存储技术,通过将多个物理磁盘组合成一个逻辑磁盘来提高数据的可靠性和性能。

在RAID中,硬件RAID与软件RAID是两种常见的实现方式,在选择适合自己需求的RAID方案时,了解它们的特点和比较是非常重要的。

1. 硬件RAID硬件RAID是通过专用的RAID控制器来实现的。

这些控制器通常有自己的处理器和缓存,能够独立于主机进行RAID计算和管理。

硬件RAID的主要优点包括:- 性能:硬件RAID的处理器和缓存提供了更高的性能,可以提升数据的读写速度,特别是在处理大量IO请求时表现优异。

- 可靠性:硬件RAID控制器具备多种数据保护机制,如磁盘冗余、热备份和错误纠正等。

这些机制可以确保数据的安全性和可靠性。

- 管理:硬件RAID控制器通常配备了可视化的管理界面,方便用户进行配置和监控。

同时,由于控制器独立于主机,更换主机时不需要重新配置RAID。

然而,硬件RAID也存在一些限制和劣势:- 成本:硬件RAID需要专用的RAID控制器,对硬件要求较高,因此成本较高。

- 易用性:硬件RAID的配置和管理相对复杂,需要具备一定的技术知识和经验。

- 扩展性:硬件RAID的扩展性有限,当需要增加存储容量时,需要更换控制器或添加额外的硬件。

2. 软件RAID软件RAID是通过操作系统的软件来实现的,没有独立的RAID控制器。

软件RAID的特点和优势包括:- 成本:相比硬件RAID,软件RAID无需额外的硬件设备,因此成本较低。

- 灵活性:软件RAID可以根据需要进行配置和管理,不受硬件限制,更易于扩展和升级。

- 易用性:软件RAID的配置和管理相对简单,由操作系统提供GUI或命令行工具进行操作,用户可以快速上手。

然而,软件RAID也有一些局限性和劣势:- 性能:由于软件RAID依赖于操作系统的处理能力,对CPU的占用相对较高,可能会对系统性能产生一定影响,尤其是在处理大量IO请求时。

如何选择磁盘阵列

如何选择磁盘阵列

前言如何选择磁盘阵列在选择磁盘阵列时不外乎几个因素:规格、功能、维修能力(售后服务)、技术支持、公司的专业能力及价格等。

磁盘阵列的规格:我们由的磁盘阵列角度来看:磁盘阵列的规格最重要就在速度,也就是CPU的种类。

我们知道SCSI的演变是由SCSI 2 (Narrow, 8 bits, 10MB/s), SCSI 3 (Wide, 16bits, 20MB/s), Ultra Wide (16bits, 40MB/s), Ultra 2 (Ultra Ultra Wide, 80MB/s), Ultra 3 (Ultra Ultra Ultra Wide, 160MB/s),在由SCSI到Serial I/O,也就是所谓的Fibre Channel (FC-AL, Fibre Channel - Arbitration Loop, 100 –200MB/s), SSA (Serial Storage Architecture, 80 – 160 MB/s), 在过去使用Ultra Wide SCSI, 40MB/s 的磁盘阵列时,对CPU的要求不须太快,因为SCSI本身也不是很快,但是当SCSI演变到Ultra 2, 80MB/s时,对CPU的要求就非常关键。

一般的CPU, (如586)就必须改为高速的RISC CPU, (如Intel RISC CPU, i960RD 32bits, i960RN 64 bits),不但是RISC CPU, 甚至于还分32bits, 64 bits RISC CPU 的差异。

586 与RISC CPU 的差异可想而知! 这是由磁盘阵列的观点出发来看的。

我们再由服务器的角度来看:服务器的结构已由传统的I/O 结构改为I2O ( Intelligent I/O, 简称I2O )的结构,其目的就是为了减少服务器CPU的负担,才会将系统的I/O 与服务器CPU负载分开。

磁盘阵列方案

磁盘阵列方案

磁盘阵列方案简介磁盘阵列(RAID)是一种将多个磁盘组合在一起,形成一个逻辑驱动器的技术。

它通过将数据分散存储在多个磁盘上,提高了数据的可靠性和性能。

在本文中,我们将介绍磁盘阵列的基本原理,并讨论几种常见的磁盘阵列方案。

磁盘阵列的原理磁盘阵列基于两个基本原理:数据分散(striping)和冗余(redundancy)。

数据分散是指将数据分成多个块,然后将这些数据块存储在多个磁盘上。

每个磁盘都存储一部分数据,这样可以提高读写数据的并发性和性能。

冗余是指将数据的冗余副本存储在不同的磁盘上。

冗余数据可以用于数据恢复和提高数据的可靠性。

当一个磁盘发生故障时,系统可以使用冗余数据来恢复丢失的数据。

常见的磁盘阵列方案1. RAID 0RAID 0是最基本的磁盘阵列方案,它只实现了数据分散功能,没有冗余。

RAID 0将数据块分散存储在多个磁盘上,以提高读写性能。

然而,由于没有冗余,任何一个磁盘的故障都会导致数据的完全丢失。

因此,RAID 0不适用于需要高可靠性的应用。

2. RAID 1RAID 1是一种基于冗余的磁盘阵列方案。

它将数据的完全副本存储在另一个磁盘上。

当一个磁盘发生故障时,系统可以使用冗余数据来恢复丢失的数据。

RAID 1提供了较高的数据可靠性,但读写性能较低,因为需要同时写入两个磁盘。

3. RAID 5RAID 5是一种基于数据分散和冗余的磁盘阵列方案。

它将数据分成多个块,并将每个块的校验信息存储在不同的磁盘上。

当一个磁盘发生故障时,系统可以使用校验信息和其他磁盘上的数据来恢复丢失的数据。

RAID 5提供了较高的数据可靠性和读写性能,并且可以容忍单个磁盘的故障。

4. RAID 6RAID 6是一种更高级的磁盘阵列方案,它提供了比RAID 5更高的数据可靠性。

RAID 6使用两个磁盘来存储数据的校验信息,这样可以容忍两个磁盘的故障。

RAID 6可以提供更高的数据可靠性,但写入性能相对较低。

5. RAID 10RAID 10是一种组合了RAID 1和RAID0的磁盘阵列方案。

如何选择磁盘阵列

如何选择磁盘阵列
磁盘阵列不外乎从以下几个方面考虑:规格、功能、售后服务、技术支持等等,现在我们就以以上几个因素展开讨论,论在选择磁盘阵列时应注意的问题。 选择32位或64位的RISC CPU还是普通的INTEL 586CPU? SCSI的按照如下的顺序发展的:SCSI2(窄带、8位、10MB/S)→SCSI3(宽带、16位、20MB/S)→Ultra Wide(16位、40MB/S) →Ultra2(Ultra Ultra Wide,80MB/S)→Ultra3(Ultra Ultra Wide,160M/S)。在过去使用Ultra Wide SCSI的磁盘阵列时,对CPU的要求不需要太快,因为SCSI本身也不是很快,但是当SCSI发展到Ultra2时,对CPU的要求就非常关键。一般的CPU(即586级别的CPU)就必须改为高速度的RISC CPU。服务器的结构已由传统的I/O结构改为I2O结构,其目的就是为了减少服务器的CPU的负担,将系统的I/O与服务器CPU负载分开,I2O是由一颗RISC CPU来负责I/O的工作。服务器上都已用RISC CPU,磁盘阵列上当然也必须用RISC CPU才不会形成瓶颈;另外我们现在常用的网络操作系统(NOS)大都是32位或64位的,在操作系统已由32位转到64位,磁盘阵列上的CPU必须是RISC CPU才能满足要求。 磁盘阵列内的硬盘是否有顺序的要求?也就是说硬盘是否可以不按原先的次序地插回阵列中,数据仍能正常存取?很多人都想当然地认为根本不应该有顺序的要求,其实不然,我们就用过一个阵列必须按照原来的次序才能正常地存取数据。现在我们想一想这样一种情况,我们想给硬盘阵列清理一下,把所有硬盘都放在一起,结果记不住顺序了,为了正常地存取数据只有我们只有试了,知道试多少次吗?对于有8块硬盘的阵列来说,必须试88次才行。现磁盘阵列产品已有这种不要求硬盘有顺序的功能,为了防止上述的事件发生,应选择对顺序没有要求的阵列。 是硬件磁盘阵列还是软件磁盘阵列?软件磁盘阵列指的是用一块SCSI卡与磁盘连接,硬件磁盘阵列指的是阵列柜中具有背板的阵列,与软件磁盘阵列的区别是很大的,硬件磁盘阵列是一个完整的磁盘阵列系统与系统相接,内置CPU,与主机并行动作,所有的I/O都在磁盘阵列中完成,减轻主机的负担,增加系统整体性能;有SCSI总线主控与DMA通道,加速数据的存取与传输。而软件磁盘阵列是一个程序,在主机执行,通过一块SCSI卡与磁盘相接形成阵列,它的最大的缺点是大大增加了主机的负担,对于大量输入输出的系统,很容易使系统瘫痪。显而易见,应选择硬件磁盘阵列。 是IDE磁盘阵列还是SCSI磁盘阵列?最近市场上出现IDE磁盘阵列,它们的速度也挺快,如增强型IDE界面在PCI总线的传输速率可达66MB/S,价格与SCSI磁盘阵列相比相对便宜的多 ;而SCSI Ultra3速率接近160MB/S,但是由实际应用情况来看,在单任务时,IDE磁盘阵列比SCSI磁盘阵列快;在多任务时SCSI磁盘阵列比IDE磁盘阵列要快得多。但是IDE磁盘阵列有一个致命的缺点:不能带电热插拔。这个缺点使IDE磁盘阵列命中注定只能使用于非重要场合。如果您的应用不能停机,一定要选择SCSI磁盘阵列。 是单控制器还是冗余控制器?磁盘阵列一般都是以一个控制器连接主机及磁盘,在磁盘阵列的容错功能下达到数据的完整性。但磁盘阵列控制器同样会发生故障,在此情况之下,数据就有可能丢失,为了解决此问题,可以把两个控制器用缆线连接起来,相互备份。但两个独立控制器在机箱内的连接,意味着一旦出故障必须打开机箱换控制器,即一出故障就必须停机,这在很多应用中根本就不可能,所以我们应该选择热插拔双控制冗余的架构,现在有些磁盘阵列新产品上利用快取内存和内存镜像的方式,以保证在出现故障时不丢失数据,且在控制器更换后,自动恢复故障前的工作设置,把工作负荷分散给相互备份的控制器,以达到负载均衡,这种架构能提供单控制器所达不到的高性能及高安全性。 SCSI接口还是光纤通道接口? SCSI的完善规格、成熟技术及高性能一直吸引着小型系统,但从目前的情况来看,光纤通道已形成市场,双环可达200MB/S,且传输距离达10KM,可接126个设备,光纤通道把总线与网络合而为一,是存储网络的根本,光纤通道取代SCSI已是大势所趋,所以为了保证系统的生命力,应该选择光纤通道接口。但光纤通道网络造价特别高,大约是SCSI接口网络的4~5倍。且从实际情况来看,光纤通道在管理上仍是一个薄弱之处,对客户端的软件要求比校高,所以在选择时应根据实际情况来选择。 因为磁盘阵列是一个新产品,用者不多,但是从目前的情况来看,大容量存贮、数据安全的需要越来越强烈,选择磁盘阵列是必然的,本文只是从宏观方面讨论选择磁盘阵列应注意的方面,关于具体的技术指标请仔细阅读产品说明书。

raid1raid2raid5raid6raid10如何选择使用?

raid1raid2raid5raid6raid10如何选择使用?

raid1raid2raid5raid6raid10如何选择使⽤?我们在做监控项⽬存储时,经常会⽤到磁盘阵列,什么是磁盘阵列呢?那为什么要做磁盘阵列呢?raid1 raid2 raid5 raid6 raid10各有什么优势?本期我们来看下。

⼀、什么是Raid?它有什么作⽤?1、什么是Raidraid就是冗余磁盘阵列,把多个硬磁盘驱动器按照⼀定的要求使整个磁盘阵列由阵列控制器管理组成⼀个储存系统。

最开始研制⽬的是为了利⽤多个廉价的⼩磁盘来替代昂贵的⼤磁盘,以此来降低成本。

⽽随着硬盘技术的发展,如今的磁盘阵列采⽤了冗余信息的⽅式,使得其具有数据保护的功能。

2、那么服务器为啥要做磁盘阵列呢?主要有两个作⽤:提供容错功能普通的磁盘驱动器是⽆法提供容错功能的,⽽磁盘阵列可以通过数据校验提供容错功能,服务器会将数据写⼊多个磁盘,如果某个磁盘发⽣故障时,此时仍能保证信息的可⽤性,重要数据不会丢失,也不会耽误服务器的正常运转。

提⾼传输速率磁盘阵列将多个磁盘组成⼀个阵列,当做⼀个单⼀的磁盘使⽤,把数据已分段的形式存储到不同的硬盘之中,发⽣数据存取变动时,阵列中的相关磁盘⼀起⼯作,这就可以⼤幅的降低数据存储的时间,同时还能拥有更佳的空间和使⽤率。

⼆、常⽤Raid的优缺点Raid 0:⼀块硬盘或者以上就可做raid0优势:数据读取写⼊最快,最⼤优势提⾼硬盘容量,⽐如3块80G的硬盘做raid0,可⽤总容量为240G,也就是利⽤率是100%,速度也⽐较快。

缺点:⽆冗余能⼒,⼀块硬盘损坏,数据全⽆。

建议:做raid0 可以提供更好的容量以及性能,推荐对数据安全性要求不⾼的项⽬使⽤。

Raid 1:⾄少2块硬盘可做raid1优势:镜像,数据安全强,⼀块正常运⾏,另外⼀块镜像备份数据,保障数据的安全。

⼀块坏了,另外⼀块硬盘也有完整的数据,保障运⾏。

所以这种安全性⽐较性最⾼。

缺点:性能提⽰不明显,做raid1之后硬盘使⽤率为50%,有些费硬盘。

服务器存储管理指南RAID级别和磁盘阵列的选择

服务器存储管理指南RAID级别和磁盘阵列的选择

服务器存储管理指南RAID级别和磁盘阵列的选择服务器存储管理指南:RAID级别和磁盘阵列的选择在今天的数字化时代,大量的数据需要被存储和管理。

为了确保数据的安全性和可靠性,服务器存储管理的选择变得尤为重要。

在这篇文章中,我们将重点介绍RAID级别和磁盘阵列的选择,帮助您了解如何在服务器存储管理中做出明智的决策。

一、RAID级别的选择RAID(冗余阵列磁盘)是一种将多个磁盘组合起来以提供更高性能、更高可靠性和更大容量的技术。

不同的RAID级别适用于不同的应用场景。

以下是几种常见的RAID级别和它们的特点:1. RAID 0:这是一种条带化分区的方法,通过将数据同时写入多个磁盘,提高了性能。

然而,RAID 0没有冗余功能,一旦任一磁盘损坏,所有数据将丢失。

因此,RAID 0适用于对性能要求高、数据可靠性要求较低的场景,如实时视频编辑等。

2. RAID 1:这是一种镜像技术,将数据同时写入两个磁盘,实现数据的冗余备份。

RAID 1提供了更高的数据可靠性,但成本更高,可用存储容量减半。

RAID 1适用于对数据可靠性要求较高的场景,如数据库服务器和关键业务应用。

3. RAID 5:这是一种条带化和分布式奇偶校验的RAID级别。

数据和奇偶校验码分布到多个磁盘上,实现数据冗余和容错能力。

RAID 5提供了一种平衡性能与成本的选择,适用于需求较高的读写工作负载,如文件共享和虚拟化环境。

4. RAID 6:这是一种类似于RAID 5的奇偶校验方法,但能够容忍两个磁盘的故障。

RAID 6在性能和容错能力之间取得了良好的平衡。

对于大规模数据存储和处理,以及对数据可靠性要求极高的企业应用,RAID 6是一个理想的选择。

5. RAID 10:这是RAID 1和RAID 0的组合,将数据同时写入多个磁盘并实现数据冗余。

RAID 10具备高性能和高可靠性,但是成本较高,利用率也较低。

对于对性能和可靠性要求都很高的应用,如虚拟化服务器和数据库服务器,RAID 10是首选。

如何在电脑上设置RAID阵列

如何在电脑上设置RAID阵列

如何在电脑上设置RAID阵列RAID(冗余磁盘阵列)是一种数据存储技术,它结合了多个硬盘驱动器以提供更高的性能和冗余。

RAID阵列可以保护数据免受硬件故障的影响,并提供更快的读写速度。

如果您想在电脑上设置RAID阵列,下面的步骤将向您展示如何完成这个过程。

1. 购买兼容的硬件:首先,您需要购买与您计划设置的RAID类型兼容的硬盘驱动器。

RAID有不同的级别,如RAID 0、RAID 1、RAID 5等。

每个级别都有不同的特点和优势。

选择适合您需求的级别,并购买相应数量和容量的硬盘驱动器。

2. 安装硬盘驱动器:将硬盘驱动器安装到您的电脑中。

确保将它们连接到主板上支持RAID的SATA端口上。

如果您的主板不支持RAID,您可能需要购买一个RAID卡并将其插入主板上的PCI-E插槽。

3. 进入BIOS设置:启动计算机并进入BIOS设置界面。

您可以按下特定的按键(通常是Del、F2或F10)来进入BIOS。

在BIOS设置界面中,找到并启用RAID功能。

具体的菜单选项和步骤可能因不同的主板而异。

4. 创建RAID阵列:一旦启用了RAID功能,您可以选择创建一个新的RAID阵列。

进入RAID配置界面,选择合适的RAID级别并按照屏幕上的指示创建阵列。

您可能需要选择要包括在阵列中的硬盘驱动器,并设置其他RAID选项,如条带大小或冗余级别。

5. 完成设置:一旦设置完成,保存并退出BIOS设置界面。

您的计算机将重新启动,并开始初始化和构建RAID阵列。

这个过程可能需要一些时间,具体取决于阵列的规模和硬盘驱动器的速度。

6. 配置操作系统:当RAID阵列构建完成后,您需要重装操作系统或者从备份中恢复数据到阵列中。

在安装或恢复过程中,您需要指定RAID阵列作为目标位置。

确保在安装操作系统之前备份重要数据。

7. 监控和维护:一旦您的电脑成功设置了RAID阵列,您应该定期监控和维护它。

使用相关的软件工具来检查阵列的健康状态,并确保及时替换任何故障的硬盘驱动器。

服务器硬盘RAID模式详解与选择

服务器硬盘RAID模式详解与选择

服务器硬盘RAID模式详解与选择在服务器硬盘的存储方案中,RAID(Redundant Array of Independent Disks)技术是一种常见且重要的选择。

RAID技术通过将多个硬盘组合在一起,实现数据的冗余备份、提升性能或者两者兼顾。

不同的RAID级别有着不同的特点和适用场景,因此在选择服务器硬盘RAID模式时,需要根据实际需求进行详细的考量。

本文将对常见的RAID级别进行详细解析,并提供选择建议。

一、RAID 0RAID 0是一种条带化(Striping)的RAID级别,它将数据分散存储在多个硬盘中,提升了数据的读写速度。

RAID 0不具备冗余备份功能,因此在一定程度上增加了数据丢失的风险。

然而,由于数据被分散存储在多个硬盘中,RAID 0能够充分利用硬盘的性能,适用于对数据安全性要求不高但对性能要求较高的场景,如视频编辑、实时数据处理等。

二、RAID 1RAID 1是一种镜像化(Mirroring)的RAID级别,它将数据同时写入两个硬盘中,实现了数据的冗余备份。

RAID 1能够提供较高的数据安全性,即使一块硬盘发生故障,数据仍然可以从另一块硬盘中恢复。

然而,由于数据需要同时写入两块硬盘,RAID 1的读写速度通常会略低于单块硬盘的速度。

RAID 1适用于对数据安全性要求较高的场景,如数据库服务器、文件存储等。

三、RAID 5RAID 5是一种条带化带奇偶校验(Striping with Parity)的RAID级别,它将数据和奇偶校验信息分散存储在多个硬盘中,实现了数据的冗余备份和读写性能的提升。

RAID 5至少需要三块硬盘来组建,其中任意一块硬盘发生故障时,数据仍然可以通过奇偶校验信息进行恢复。

RAID 5在提升性能的同时也保证了一定程度的数据安全性,适用于中小型企业的文件服务器、邮件服务器等场景。

四、RAID 6RAID 6是在RAID 5的基础上增加了第二个奇偶校验信息的RAID级别,提供了比RAID 5更高的数据冗余能力。

如何选择磁盘阵列

如何选择磁盘阵列

如何选择磁盘阵列(1、避免磁盘杀手)很多人很慎重地选用容错的磁盘阵列,但是很不幸,数据还是毁了,因为,磁盘驱动器同时坏了两个〈以上〉。

到底是谁害了这些磁盘驱动器?很可能就是用来保护他们的磁盘阵列柜一个 SCSI 硬盘的平均故障间隔时间〈MTBF, Mean Time Between Failure〉,都在数万小时以上,在正常使用情况下,要坏掉一个硬盘已经很不容易了;在同一系统内,两个磁盘驱动器同时坏掉的机率,更是微乎其微。

但是,如果把磁盘驱动器放在布满杀手的环境内,就另当别论了。

构建一个磁盘阵列储存系统,可靠度远比速度来的重要。

因此,不但要选一个高性能的阵列控制器,更要慎重地挑一个高可靠度的磁盘阵列柜。

因为,宝贵的数据不是存在数组控制器里,而是存放在磁盘驱动器里;而磁盘驱动器又是放在磁盘阵列柜内。

所以,要仔细挑选一个可靠的磁盘阵列柜,来当磁盘驱动器的神盾,千万不要挑一个磁盘驱动器杀手!磁盘阵列柜的设计挑战由于磁盘驱动器的技术以及传输接口的技术不断的发展,磁盘阵列系统的设计随时都面临新的挑战,以便符合与日俱增的要求。

一个优质的磁盘阵列柜,必须在设计阶段,就要考虑到其规格必须符合更大容量、更高转速磁盘驱动器的需求,提供:1. 稳定、高容量、容错的电源供应系统2. 可靠、高性能、容错的冷却系统3. 能够克服震动的机械结构4. 支持SCA2 热抽换接头之被动背板5. 一体成型、无主动组件之磁盘载盒6. 数组柜环境监控与警示功能7. 直接热抽换且方便的维护操作功能8. 最佳的空间利用以下我们就针对这些规格和功能,提供一些建议。

稳定、高容量、容错的电源供应系统如果各位仔细看看磁盘驱动器的规格书,您会发现磁盘驱动器马达启动时,需要很大的启动电流〈约2A〉,约为平常读写时〈约0.66A〉的 3 倍;磁盘驱动器在 SEEK 时,需要很大的瞬间电流〈约2.1A〉,约为读写时〈约0.66A〉之 3 倍。

因此,电源供应系统必须能提供足够、稳定之瞬间电流,否则会造成磁盘驱动器无法启动,甚至造成数据写入错误〈此为导致 RAID 磁盘驱动器被 RAID 控制器判定为 Down,但磁盘驱动器送回原厂测试却无故障之原因〉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.为什么需要磁盘阵列?如何增加磁盘的存取(access)速度,如何防止数据因磁盘的故障而失落及如何有效的利用磁盘空间,一直是电脑专业人员和用户的困扰;而大容量磁盘的价格非常昂贵,对用户形成很大的负担。

磁盘阵列技术的产生一举解决了这些问题。

过去十几年来,CPU的处理速度增加了五十倍有多,内存(memory)的存取速度亦大幅增加,而数据储存装置--主要是磁盘(hard disk)--的存取速度只增加了三、四倍,形成电脑系统的瓶颈,拉低了电脑系统的整体性能(through put),若不能有效的提升磁盘的存取速度,CPU、内存及磁盘间的不平衡将使CPU及内存的改进形成浪费。

目前改进磁盘存取速度的的方式主要有两种。

一是磁盘快取控制(disk cache controller),它将从磁盘读取的数据存在快取内存(cache memory)中以减少磁盘存取的次数,数据的读写都在快取内存中进行,大幅增加存取的速度,如要读取的数据不在快取内存中,或要写数据到磁盘时,才做磁盘的存取动作。

这种方式在单工环境(single- tasking envioronment)如DOS之下,对大量数据的存取有很好的性能(量小且频繁的存取则不然),但在多工(multi-tasking)环境之下(因为要不停的作数据交换(swapping) 的动作)或数据库(database)的存取(因为每一记录都很小)就不能显示其性能。

这种方式没有任何安全保障。

其二是使用磁盘阵列的技术。

磁盘阵列是把多个磁盘组成一个阵列,当作单一磁盘使用,它将数据以分段(striping)的方式储存在不同的磁盘中,存取数据时,阵列中的相关磁盘一起动作,大幅减低数据的存取时间,同时有更佳的空间利用率。

磁盘阵列所利用的不同的技术,称为RAID level,不同的level针对不同的系统及应用,以解决数据安全的问题。

一般高性能的磁盘阵列都是以硬件的形式来达成,进一步的把磁盘快取控制及磁盘阵列结合在一个控制器(RAID controler或控制卡上,针对不同的用户解决人们对磁盘输出入系统的四大要求:(1)增加存取速度,(2)容错(fault tolerance),即安全性(3)有效的利用磁盘空间;(4)尽量的平衡CPU,内存及磁盘的性能差异,提高电脑的整体工作性能。

2.磁盘阵列原理磁盘阵列中针对不同的应用使用的不同技术,称为RAID level,RAID是Redundent Array of Inexpensive Disks的缩写,而每一level代表一种技术,目前业界公认的标准是RAID 0~RAID 5。

这个level并不代表技术的高低,level 5并不高于level 3,level 1也不低过level 4,至于要选择那一种RAID level的产品,纯视用户的操作环境(operating environment)及应用(application)而定,与level的高低没有必然的关系。

RAID 0及RAID 1适用于PC及PC相关的系统如小型的网络服务器(network server)及需要高磁盘容量与快速磁盘存取的工作站等,比较便宜;RAID 3及RAID 4适用于大型电脑及影像、CAD/CAM等处理;RAID 5多用于OLTP(在线事务处理),因有金融机构及大型数据处理中心的迫切需要,故使用较多而较有名气, RAID 2较少使用,其他如RAID 6,RAID 7,乃至RAID 10等,都是厂商各做各的,并无一致的标准,在此不作说明。

介绍各个RAID level之前, 先看看形成磁盘阵列的两个基本技术:磁盘延伸(Disk Spanning):译为磁盘延伸,能确切的表示disk spanning这种技术的含义。

如图磁盘阵列控制器, 联接了四个磁盘,这四个磁盘形成一个阵列(array),而磁盘阵列的控制器(RAID controller)是将此四个磁盘视为单一的磁盘,如DOS环境下的C:盘。

这是disk spanning的意义,因为把小容量的磁盘延伸为大容量的单一磁盘,用户不必规划数据在各磁盘的分布,而且提高了磁盘空间的使用率。

并使磁盘容量几乎可作无限的延伸;而各个磁盘一起作取存的动作,比单一磁盘更为快捷。

很明显的,有此阵列的形成而产生RAID的各种技术。

磁盘或数据分段(Disk Striping or Data Striping):因为磁盘阵列是将同一阵列的多个磁盘视为单一的虚拟磁盘(virtual disk),所以其数据是以分段(block or segment)的方式顺序存放在磁盘阵列中,数据按需要分段,从第一个磁盘开始放,放到最後一个磁盘再回到第一个磁盘放起,直到数据分布完毕。

至于分段的大小视系统而定,有的系统或以1KB最有效率,或以4KB,或以6KB,甚至是4MB或8MB的,但除非数据小于一个扇区(sector,即521bytes),否则其分段应是512byte的倍数。

因为磁盘的读写是以一个扇区为单位,若数据小于512bytes,系统读取该扇区后,还要做组合或分组(视读或写而定)的动作,浪费时间。

从上图我们可以看出,数据以分段于在不同的磁盘,整个阵列的各个磁盘可同时作读写,故数据分段使数据的存取有最好的效率,理论上本来读一个包含四个分段的数据所需要的时间约=(磁盘的access time+数据的tranfer time)X4次,现在只要一次就可以完成。

若以N表示磁盘的数目,R表示读取,W表示写入,S表示可使用空间,则数据分段的性能为: R:N(可同时读取所有磁盘)W:N(可同时写入所有磁盘)S:N(可利用所有的磁盘,并有最佳的使用率)Disk striping也称为RAID 0,很多人以为RAID 0没有甚么,其实这是非常错误的观念, 因为RAID 0使磁盘的输出入有最高的效率。

而磁盘阵列有更好效率的原因除数据分段外,它可以同时执行多个输出入的要求,因为阵列中的每一个磁盘都能独立动作,分段放在不同的磁盘,不同的磁盘可同时作读写,而且能在快取内存及磁盘作并行存取(parallel access)的动作,但只有硬件的磁盘阵列才有此性能表现。

从上面两点我们可以看出,disk spanning定义了RAID的基本形式,提供了一个便宜、灵活、高性能的系统结构,而disk striping解决了数据的存取效率和磁盘的利用率问题,RAID 1至RAID 5是在此基础上提供磁盘安全的方案。

RAID 1RAID 1是使用磁盘镜像(disk mirroring)的技术。

磁盘镜像应用在RAID 1之前就在很多系统中使用,它的方式是在工作磁盘(working disk)之外再加一额外的备份磁盘(backup disk),两个磁盘所储存的数据完全一样,数据写入工作磁盘的同时亦写入备份磁盘。

磁盘镜像不见得就是RAID 1,如Novell Netware亦有提供磁盘镜像的功能,但并不表示Netware有了RAID 1的功能。

一般磁盘镜像和RAID 1有二点最大的不同:RAID 1无工作磁盘和备份磁盘之分,多个磁盘可同时动作而有重叠(overlaping)读取的功能,甚至不同的镜像磁盘可同时作写入的动作,这是一种最佳化的方式,称为负载平衡(load-balance)。

例如有多个用户在同一时间要读取数据,系统能同时驱动互相镜像的磁盘,同时读取数据,以减轻系统的负载,增加I/O的性能。

RAID 1的磁盘是以磁盘延伸的方式形成阵列,而数据是以数据分段的方式作储存,因而在读取时,它几乎和RAID 0有同样的性能。

从RAID的结构就可以很清楚的看出RAID 1和一般磁盘镜像的不同。

下图为RAID 1,每一笔数据都储存两份:从图可以看出:R:N(可同时读取所有磁盘)W:N/2(同时写入磁盘数)S:N/2(利用率)读取数据时可用到所有的磁盘,充分发挥数据分段的优点;写入数据时,因为有备份,所以要写入两个磁盘,其效率是N/2,磁盘空间的使用率也只有全部磁盘的一半。

很多人以为RAID 1要加一个额外的磁盘,形成浪费而不看好RAID 1,事实上磁盘越来越便宜,并不见得造成负担,况且RAID 1有最好的容错(fault tolerence)能力,其效率也是除RAID 0之外最好的。

在磁盘阵列的技术上,从RAID 1到RAID 5,不停机的意思表示在工作时如发生磁盘故障, 系统能持续工作而不停顿,仍然可作磁盘的存取,正常的读写数据;而容错则表示即使磁盘故障,数据仍能保持完整,可让系统存取到正确的数据,而SCSI的磁盘阵列更可在工作中抽换磁盘,并可自动重建故障磁盘的数据。

磁盘阵列之所以能做到容错及不停机, 是因为它有冗余的磁盘空间可资利用,这也就是Redundant的意义。

RAID 2RAID 2是把数据分散为位(bit)或块(block),加入海明码Hamming Code,在磁盘阵列中作间隔写入(interleaving)到每个磁盘中,而且地址(address)都一样,也就是在各个磁盘中,其数据都在相同的磁道(cylinder or track)及扇区中。

RAID2的设计是使用共轴同步(spindle synchronize)的技术,存取数据时,整个磁盘阵列一起动作,在各作磁盘的相同位置作平行存取,所以有最好的存取时间(accesstime),其总线(bus)是特别的设计,以大带宽(band wide)并行传输所存取的数据,所以有最好的传输时间(transfer time)。

在大型档案的存取应用,RAID 2有最好的性能,但如果档案太小,会将其性能拉下来,因为磁盘的存取是以扇区为单位,而RAID 2的存取是所有磁盘平行动作,而且是作单位元的存取,故小于一个扇区的数据量会使其性能大打折扣。

RAID 2是设计给需要连续且大量数据的电脑使用的,如大型电脑(mainframe to supercomputer)、作影像处理或CAD/CAM的工作(workstation)等,并不适用于一般的多用户环境、网络服务器(network server),小型机或PC。

RAID 2的安全采用内存阵列(memory array)的技术,使用多个额外的磁盘作单位错误校正(single-bit correction)及双位错误检测(double-bit detection);至于需要多少个额外的磁盘,则视其所采用的方法及结构而定,例如八个数据磁盘的阵列可能需要三个额外的磁盘,有三十二个数据磁盘的高档阵列可能需要七个额外的磁盘。

RAID 3RAID 3的数据储存及存取方式都和RAID 2一样,但在安全方面以奇偶校验(parity check)取代海明码做错误校正及检测,所以只需要一个额外的校检磁盘(parity disk)。

相关文档
最新文档