第七章 一元一次不等式单元测试卷(含答案)
一元一次不等式测试卷及答案
=================================================一元一次不等式测试卷姓名:___________班级:___________一、选择题(本大题共12小题,共36分) 1.若x <y ,则下列式子不成立的是( ) A .x ﹣1<y ﹣1B .﹣2x <﹣2yC .x+3<y+3D .<2. 给出下列数学表达式:①﹣3<0;②4x+3y >0;③x =5;④x 2﹣xy+y 2;⑤x+2>y ﹣7.其中不等式的个数是( ) A .5个 B .4个C .3个D .2个3.若13)21||=+--y a xa (是关于x ,y 的二元一次方程,则a=( )A .-2B .2C .2或-2D .04.如果不等式(a ﹣3)x <b 的解集是x >,那么a 的取值范围是( ) A .a >0 B .a <0C .a >3D .a <35.已知是不等式kx+2y ≤﹣5的一个解,则整数k 的最小值为( )A .3B .4C .5D .﹣56. 如下图所示,在数轴上表示1x <-的解集,正确的是( )7. 某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x 道题,则他答错或不答的题数为20﹣x .根据题意得( ) A .10x ﹣5(20﹣x )≥120 B .10x ﹣5(20﹣x )≤120C .10x ﹣5(20﹣x )>120D .10x ﹣5(20﹣x )<1208. 某景点普通门票每人50元,20人以上(含20人)的团体票六折优惠.现有一批游客不足20人,但买20人的团体票所花的钱,比各自买普通门票平均每人会便宜至少10元,这批游客至少有( ) A .14B .15C .16D .179. 小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .B .C .D .A .19B .18C .16D .1510. 已知关于x 的不等式23x a ->-的解集如图所示,则a 的值是( )A .0B .1-C .1D .211. 某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打( ) A .六折B .七折C .八折D .九折12. 已知关于x 的不等式ax<b 的解为x>-2,则下列关于x 的不等式中,解为x<2的是( )A.ax+2<-b+2B.ax>bC.xa<-1bD.-ax-1<b-1二、填空题(本大题共6小题,共18.0分)13. 比较2,375,的大小(用“<”连接) . 14. 若x,y 满足062||=-++-y x y x ,则xy 的平方根为 . 15. 不等式>的非负整数解为 .16. 现定义一种新的运算:a*b =a 2﹣2b ,例如:3*4=32﹣2×4=1,则不等式(﹣2)*x ≥0的解集为 . 17. 已知关于x ,y 的方程组的解满足不等式2x+y >8,则m 的取值范围是 .18. 不等式﹣4x ﹣k ≤0的负整数解是﹣1,﹣2,那么k 的取值范围是 . 三、解答题(本大题共6小题,共46.0分)19.(8分)(1)解不等式3(2)862(1)x x +---≥,并把解集在数轴上表示出(2)解不等式1312≤--x x ,并在数轴上表示它的解集.21.(8分)若不等式 的最小整数解是方程 的解,求m的值.22.(8分)某小店每天需水1m 3,而自来水厂每天只供一次水,故需要做一个水箱来存水。
第七章 一元一次不等式(§7.6~§7.7)(含答案)
第7章 一元一次不等式(11.6~11.7)一、作出你的选择(每小题3分,共24分)1.一个不等式组的解集为-1<x ≤2,那么在数轴上表示正确的是【 】.2.函数y =x -5+x1中自变量x 的取值范围是【】.(A )x ≤5 (B )x ≠0 (C )0<x ≤5 (D )x ≤5且x ≠0 3.结合正比例函数y=4x 的图像回答,当x >1时,y 的取值范围是【 】. (A )y <1 (B )1≤y <4 (C )y=4 (D )y >44.已知一次函数1y =-5+x ,2y =-3x +7,当1y≤2y 时,x 的取值范围是【 】. (A )x ≥3 (B )x ≤3 (C )x ≥-3 (D )x ≤-35.把不等式组⎩⎨⎧≤+-+32,112x x 的解集表示在数轴上,下列选项正确的是【 】.(A ) (B ) (C ) (D )6.如果一元一次不等式组⎩⎨⎧-a x x ,1的解集为x <-1,则a 的取值范围是【 】.(A )a >-1 (B )a ≥-1 (C )a ≤-1 (D )a <-17.如图1,直线(0)y kx b k =+<与x 轴交于点(3,0),关于x 的不等式0kx b +>的解集是【 】. (A )3x < (B )3x > (C )0x > (D )0x <8.直线1l :y =1k x +b 与直线2l :y =2k x +c 在同一平面直角坐标系中的图象如图2所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为【 】.(A )x >1 (B )x <1 (C )x >-2 (D )x <-2二、填得圆圆满满(每小题3分,共24分)1.使不等式x +2<0和x <0同时成立的x 的取值范围是 .2.不等式组⎩⎨⎧--+13,132 x x 的解集是 .(A )(B )(C )(D )c1k x +bAC B图 31 01- 1 0 1- 1 0 1- 11-3.已知不等式组⎩⎨⎧-.3,1 x x 若图3中椭圆A 表示x >―1的解集,椭圆B 表示x <3的解集,则椭圆A 与椭圆B 的公共部分C 表示 .4.已知一次函数y=-3x -5,当x 时,y <0. 5那么方程a x +b=0的解是 ;不等式ax +b >0的解集是 .6.如果不等式组⎪⎩⎪⎨⎧-≥+32,22 b x a x的解集是0≤x <1,那么a b +的值为 .7.如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式12x kx b >+>-的解集为 .8.直线11:l y k x b =+与直线22:l y k x =5所示,则关于x 的不等式12k x b k x +>的解集为 .三、用心解答(共32分)1.(5分)解下列不等式组⎪⎩⎪⎨⎧-+---≤+.413213,3223x x x x x ,并把解集在数轴上表示出来:2.(5分)解不等式组⎪⎩⎪⎨⎧-+-+≤+,11352),2(34x x x x 并写出它的整数解.3.(7分)已知关于x 、y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解满足x >0,y >0,求m 的取值范围.4.(7分)一次函数y=k x +b 与坐标轴的两个交点分别为A (2,0)和B (0,-3),求不等式k x +b ≥3x +6的解集.b +5.(8分)在保护地球爱护家园活动中,校团委把一批树苗分给八(7)班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).(1)设八(7)班有x名同学,则这批树苗有多少棵?(用含x的代数式表示).(2)八(7)班至少有多少名同学?最多有多少名同学?四、拓广探索(共20分)1.(8分)明明同学准备利用暑假卖报纸赚取140~200元钱,捐献给希望工程.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分....每份可得0.2元.(1)请说明:明明同学要达到目的,卖出报纸的份数必须超过1000份.(2)明明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内.2.(12分)某工厂要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别为600元和1000元.(1)设招聘甲种工种工人x人,工厂付给甲、乙两种工种的工人工资共y元,写出y(元)与x(人)的函数关系式;(2)现要求招聘的乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?提升能力超越自我(下列各题供各地根据实际情况选用)某冰箱厂为响应国家“家电下乡”号召,计划生产A、B两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买2套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.参考答案跟踪反馈 挑战自我一、1.A 2.C 3.D 4.B 5.B 6.C 7.A 8.B 二、1.x <-2 2.x >2 3.-1<x <3 4.>-35 5.x=1;x <1 6.1 7.-1<x <2 8.x >-1 三、1. x ≤-5.图略.2. -1≤x <1;―1,0.3.解已知方程组,得⎩⎨⎧+-=+=.5,23m y m x 依题意,得⎩⎨⎧+-+.05,023 m m解这个不等式组,得―32<m <5,即 m 的取值范围是―32<m <5. 4.依题意,得⎩⎨⎧=-+=.3,20b b k 解得⎪⎩⎪⎨⎧-==.3,23b k求不等式k x +b ≥3x +6的解集,即求不等式x 23-3≥3x +6的解集,解得x ≤-6. 5.(1)这批树苗有(242x +)棵.(2)根据题意,得⎩⎨⎧≥--+--+.1)1(3422,5)1(3422x x x x 解得40<x ≤44.答:八(7)班至少有41名同学,最多有44名同学.四、1.(1)如果明明同学卖出1000份报纸,则可获得:10000.1100⨯=元,没有超过140元,从而不能达到目的.(2)设明明同学暑假期间卖出报纸x 份,由(1)可知x >1000,依题意,得⎩⎨⎧≤-+⨯≥-+⨯.200)1000(2.01.01000,140)1000(2.01.01000x x 解得1200≤x ≤1500. 答:明明同学暑假期间卖出报纸的份数在1200~1500份之间. 2.(1)y=600x +1000(150-x),即y=-400x +150000.(2)依题意,得150-x ≥2x .解得x ≤50.因为-400<0,由一次函数的性质知,当x =50时,y 有最小值.所以150-50=100.答:甲工种招聘50人,乙工种招聘100人时可使得每月所付的工资最少. 提升能力 超越自我(1)设生产A 型冰箱x 台,则B 型冰箱为()100x -台,由题意,得 47500≤(2800-2200)x +(3000-2600)×(100-x )≤48000.解得37.5≤x ≤40.x 是正整数,∴x 取38,39或40.(2)设投入成本为y 元,由题意,有y=2200x +2600(100-x )=-400x +260000.∵-400<0,∴y 随x 的增大而减小.∴当x=40时,y 有最小值,即生产A 型冰箱40台,B 型冰箱60台,该厂投入成本最少.此时,政府需补贴给农民(2800×40+3000×60)×13%=37960(元).(3)实验设备的买法共有7种.提示:获得的全部利润为(2800-2200)×40+(3000-2600)×60=48000(元). 设买试验设备x 套,办公用品y 套,当买1套体育器材时, 根据3000x +1800y=42000,有4种买法:(1,11,5)、(1,8,10)、(1,5,15)、(1,2,20);同理,当买2套体育器材时,根据3000x +1800y=36000,有3种买法:(2,9,5)、(2,6,10)、(2,3,15).备用题(计3+3+3道题,答案附各题的后面) 一、选择题 1.不等式组1021x x +>⎧⎨-<⎩,的解集是【 】.C(A )1x >- (B )3x <(C )13x -<< (D )31x -<<2.若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是【 】.A(A )1a >- (B )1a -≥ (C )1a ≤ (D )1a <3.如图1,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为【 】.B(A )2x <- (B )21x -<<- (C )20x -<<(D )10x -<<二、填空题1.已知三角形的三条边长分别为8、1-2a 、3,则字母a 的取值范围是 .-5<a <-2 2.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 .-3<a ≤-2 3.“五·四”青年节,市团委组织部分中学的团员去市人民公园植树.某校八年级(8)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有 棵.121 提示:设八年级(8)班团支部有x 名团员参加植树,则1≤(4x +37)-5(x-1)<3. 解得20<x ≤21.所以x=21.故这批树苗共有4×21+37=121(棵). 三、解答题1.解不等式组:331213(1)8x x x x-⎧+>+⎪⎨⎪---⎩,≤并在数轴上把解集表示出来.解不等式(1)得x <1;解不等式(2)得x ≥-2.所以不等式组的解集为-2≤x <1. 2.解不等式组27163(1)5x x x x +-⎧⎨-->⎩≥, ①,②并求出所有整数解的和.解不等式①,得2x ≥,解不等式②,得32x <. 0 1 x∴原不等式组的解集是322x -<≤.则原不等式组的整数解是2101--,,,. 故所有整数解的和是2(1)012-+-++=-.3.某公司为了开发新产品,用A 、B 两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每.件.新产品所需原料的相关数据:(1(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y 元,写出成本总额y (元)与甲种产品件数x (件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.3.(1)依题意,得⎩⎨⎧≤-+≤-+)2.(290)50(103)1(,360)50(49x x x x由不等式①,得x ≤32;由不等式②,得x ≥30.x ∴的取值范围为30≤x ≤32. (2)y=70x +90(50-x ),即y=-20x +4500,∵-20<0,∴y 随x 的增大而减小.而30≤x ≤32,∴当x=32,50-x=18时,最小值y =-20×32+4500=3860(元).答:当甲种产品生产32件,乙种18件时,甲、乙两种产品的成本总额最少,最少的成本总额为3860元.。
数学沪科版七年级下册第7章一元一次不等式与一元一次不等式组单元测试(Word版 含答案)
初中数学沪科版(2012)七年级下册第7章一元一次不等式与一元一次不等式组单元测试一、选择题1.不等式组211,420x x ->⎧⎨-≤⎩的解集是( ) A .x≤2B .1<x≤2C .x >1D .x≥2 2.若不等式ax+x>1+a 的解集是x>1,则a 必须满足的条件是( )A .a 1<-B .a 1<C .a 1>-D .a 1>3.若不等式组-00x b x a <⎧⎨+>⎩的解集为2<x<3,则a,b 的值分别为( ) A .-2,3 B .2,-3 C .3,-2 D .-3,24.下面说法正确的是( )A .x=3是不等式2x>3的一个解B .x=3是不等式2x>3的解集C .x=3是不等式2x>3的唯一解D .x=3不是不等式2x>3的解5.若不等式组0,122x a x x -≥⎧⎨->-⎩有解,则a 的取值范围是( ) A .a >-1B .a≥-1C .a≤1D .a <1 6.不等式组3(2)423x x a x x --≤⎧⎪+⎨>⎪⎩无解,则a 的取值范围是( ) A .a<1B .a≤1C .a>1D .a≥17.下列各对不等式中,解集不相同的一对是( )A .34227x x -+<与7(3)2(42)x x --<+B .31244x x +>-与31x >-C .22123x x +-≥与()()32221x x +≥- D .1923x x -+<与()()3129+x x -<- 8.不等式组21241x x x x ><-⎧⎨+-⎩的解集为( ) A .x>13 B .x>1 C .13>x>1 D .空集9.如果关于x 的不等式x >2a ﹣1的最小整数解为x=3,则a 的取值范围是( )A .0<a <2B .a <2C .32≤a <2D .a ≤210.甲、乙两人从相距24km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( )A .小于8km/hB .大于8km/hC .小于4km/hD .大于4km/h11.在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )A .B .C .D .12.若x >y >则下列不等式不一定成立的是( )A .x >1>y >1B .2x >2yC .2x >y 2 D .x 2>y 213.若m> -1,则下列各式中错误的是( )A .6m> -6B .-5m< -5C .m+1>0D .1-m<2 14.不等式72x -+1<322x -的负整数解有( ) A .1个 B .2个 C .3个 D .4个15.不等式﹣3x>1的解集是( )A .x>>2B .x>>13C .x>>13D .x>4二、填空题 16.若a b <,则不等式组x a x b >⎧⎨>⎩的解集是________,不等式组x a x b>⎧⎨<⎩的解集是_________,不等式组x a x b <⎧⎨>⎩的解集是_________. 17.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为___________>18.如图,左边物体的质量为xg ,右边物体的质量为50g ,用不等式表示下列数量关系是______.19.若不等式组1{21x m x m <+>-无解,则m 的取值范围是______.20.如图所示的不等式的解集是________.三、解答题21.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.22.已知实数x、y满足2x+3y=1.(1)用含有x的代数式表示y;(2)若实数y满足y>1,求x的取值范围;(3)若实数x、y满足x>﹣1,y≥﹣12,且2x﹣3y=k,求k的取值范围.23.解不等式组12215(1)xx x⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.24.解不等式1211232x x--≤,并把它的解集在数轴上表示出来.参考答案1.D2.A3.A4.A5.D6.B7.D8.B9.C10.B11.C12.D13.B14.A15.C 16.x b > a x b << 无解17.x <218.50x >19.m≥220.x≤221.(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析22.(1)y=123x -;(2)x <﹣1;(3)﹣5<k ≤4. 23.2<x≤2,不等式组的整数解为>1>0>1>2>24.x≥-3,数轴见解析.。
八年级(下)数学第七章一元一次不等式(组)单元测试卷
第七章 一元一次不等式单元测试班级 姓名 学号 得分一、选择题:(每小题2分,共16分) 1、下列结论:①4a>3a ②4+a>3+a ③4-a>3-a 中正确的是………………………………( ) A.①② B. ①③ C.②③ D.①②③ 2、下列不等式中,是一元一次不等式的是………………………………………………( )A .21->-B .1-<xC .3≤-y xD .0122≥++x x3、与不等式1523-<-x的解集相同的是………………………………………………( ) A .3-2x>5 B.3-2x<5 C.2x-3>5 D.x<4 4、若不等式b ax >的解集是abx <,则 ………………………………………………( ) A .0≥a B .0≤a C .0>a D .0<a5、下列不等式组中,无解的是 ……………………………………………………………( ) A .⎩⎨⎧<+<-0201x x B .⎩⎨⎧>+<-0201x x C .⎩⎨⎧<+>-0201x x D .⎩⎨⎧>+>-0201x x6、若点)2,1(+-a a M 在第二象限,则a 的取值范围是………………………………( ) A .2->a B .12<<-a C .2-<a D .1>a7、不等式)12(213x x -≤-的正整数解有 ……………………………………………( ) A .3个 B .4个 C .5个 D .6个8、若不等式组⎩⎨⎧>≤<m x x 21有解,则m 的取值范围是……………………………………( )A .1<mB .2<mC .2≤mD .21≤≤m二、填空题:(每空2分,共22分) 9、用适当符号表示下列关系:(1)a 、b 两数的和是负数: ;(2)m 与2的差不小于21: 。
(完整版)第七章一元一次不等式单元测试卷(含答案)
(完整版)第七章⼀元⼀次不等式单元测试卷(含答案)第七章《⼀元⼀次不等式》章节测试卷(本卷满分 100分)⼀、相信你的选择:(每⼩题2分,共20分) 1.若b a <,则下列各式中⼀定成⽴的是() A .11-<-b a B .33ba >C . b a -<-D . bc ac < 2.据佛⼭⽇报报道,2009年6⽉1⽇佛⼭市最⾼⽓温是33℃,最低⽓温是24℃,则当天佛⼭市⽓温t (℃)的变化范围是( ) A .33t > B .24t ≤ C .2433t << D .2433t ≤≤ 3.实数a ,b 在数轴上的对应点如图1所⽰,则下列不等式中错误..的是() A .0ab > B .0a b +< C .1ab <D .0a b -< 4. 若01x <<,则21x x x,,的⼤⼩关系是() A .21x x x << B .21x x x << C .21x x x << D .21x x x<<5.⼀个不等式的解集为12x -<≤,那么在数轴上表⽰正确的是()6.不等式53-x <x +3的正整数解有()A. 1个B. 2个C. 3个D. 4个 7.若440-=m ,则估计m 的值所在的范围是()A .21<B .32<C .43<D .54<8.⼀宾馆有⼆⼈间、三⼈间、四⼈间三种客房供游客租住,某旅⾏团20⼈准备同时租⽤这三种客房共7间,如果每个房间都住满,租房⽅案有() A . 4种 B .3种 C .2种 D .1种9.⼩刚准备⽤⾃⼰节省的零花钱购买⼀台MP4来学习英语,他已存有50元,并计划从本⽉起每⽉节省30元,直到他⾄少..有280元.设x 个⽉后⼩刚⾄少有280元,则可列计算⽉数的不等式为() A .3050280x +> B .3050280x -≥ C .3050280x -≤ D .3050280x +≥10.如图2,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,不等式20x kx b <+<的解集为()A .2x <-B .21x -<<-C .20x -<<D .10x -<<⼆、试试你的⾝⼿:(每⼩题3分,共30分)1.如果x -y <0,那么x 与y 的⼤⼩关系是x y .(填<或>符号)2. “m 与10的和不⼩于m 的⼀半”⽤代数式表⽰为 . 3.已知三⾓形的三条边长分别为3、5、x ,则x 的取值范围是 . 4.不等式23x x >-的解集为.AB CDa图15.若不等式组220x a b x ->??->?的解集是11x -<<,则2009()a b += . 6.不等式2x +7>-5-2x 的负整数解有 .7. 不等式组250112x x -+≥所有整数解的和是.8.若不等式组0,122x a x x +??->-?≥有解,则a 的取值范围是9. 某次环保知识竞赛试卷有20道题。
初中数学一元一次不等式单元测试及参考答案
初中数学一元一次不等式单元测试及参考答案一、 选择题:(每小题3分,共36分)1、不等式13≥-x 的解集是 ( )A 3-≥xB 3-≤xC 31-≥xD 31-≤x 2、下列各式中,一元一次不等式是 ( )A .x ≥5xB .2x>1-x 2C .x+2y<1D .2x+1≤3x 3、不等式组⎩⎨⎧->+<-25062x x 的解集是 ( )A 37<<-xB 7->xC 3<xD 37>-<x x 或4、如果x x 2121-=-,则的取值范围是 ( )A 21>xB 21≥xC 21≤xD 21<x 5、在数轴上表示不等式≥-2的解集,正确的是( )A B C D6、不等式7215>-x 的正整数解的个数为( )A 、3个B 、4个C 、5个D 、6个7、不等式组()⎪⎩⎪⎨⎧<-+<+043321413x x 的最大整数解是( ) A 、0 B 、-1 C 、-2 D 、18、不等式组⎩⎨⎧><m x x 8有解,的取值范围是( ) A 、8>m B 、≥8 C 、8<m D 、≤8 9、满足不等式-1<312-x ≤2的非负整数解的个数是( ) A .5 B .4 C .3 D .无数个10、不等式组⎩⎨⎧>+≤0312x x 的解集在数轴上可表示为 ( )11、如果不等式组⎩⎨⎧>-<+n x x x 737的解集是x >7,则n 的取值范围是( ) A 、n ≥7 B 、n ≤7 C 、n=7 D 、n <712、关于的方程x m x --=-425的解在2与10之间,则的取值范围是( )A 、8>mB 、32<mC 、328<<mD 、8<m 或32>m二、填空题(每小题3分,共30分)1、不等式64-x ≥157-x 的解是 。
第7章 元一次不等式与不等式组单元测试卷(沪科版)
《一元一次不等式与不等式组》单元测试卷一、选择题1、若实数m 在数轴上表示的点在原点的左边,则不等式0≥+n mx 的解集是 ( ) A.mn x -≥ B.mn x -≤ C.mn x ≥ D.mn x ≤2、如果|34-x |=-)43(x -,那么x 的取值范围是 ( ) A.等于43 B.大于43 C.不大于43 D.不小于433、不等式组⎪⎩⎪⎨⎧>-<+-nx x x3212的解集是16>x ,那么n 的取值范围是 ( )A.4≤nB.4≥nC.4<nD.4=n4、已知0<b<a,那么下列不等式组中无解的是 ( ) A.x a x b>< B.x a x b>-<- C.x a x b<-< D.x a x b>-<5、如果不等式组841x x x m +<-⎧⎨>⎩的解集是x >4,那么m 的取值范围是 ( )A .m ≥4B .m ≤4C .m=4D .m<46、甲从一个鱼摊上买了三条鱼,平均每条a 元;又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条2a b +元的价钱把鱼全部卖给了乙,结果发现陪了钱,原因是( ) A .a b B .a b C .a b = D .a 和b 的大小无关 7、若不等式组232x a x a +- 无解,则常数a 的取值范围是 ( )A .2aB . 2a ≤C .2aD .2a ≥8、关于x 的不等式组⎪⎩⎪⎨⎧<++>+01234a x x x 的解集为x<2,则a 的取值范围是 ( ) A . a ≤-2 B.a ≥-2 C.a ≤2 D.a ≥29、如果a<b<0,下列不等式中错误的是 ( )A .ab>0 B.a+b<0 C.ba<1 D.a-b<010、在数轴上与原点的距离小于8的点对应的x 满足 ( )A 、x <8B 、x >8C 、x <-8或x >8D 、-8<x <8二、填空题1、适合1<|x|<3的整数解有 个.2、若a >b >c,则不等式组x a x b x c <⎧⎪>⎨⎪>⎩的解集为 .3、已知关于x 的不等式组521x x a-≥-⎧⎨>⎩无解,则a 的取值范围是 .4、不等式a a x 233-≤-的正整数解为1,2,则a 的取值范围是 .5、当k 时,12(4)63x k x k +=-+的解是非正数.6、已知关于x 的不等式组⎩⎨⎧≥-≤-320x b x 整数解有4个,则b 的取值范围是 .7、不等式组⎩⎨⎧-<+<212m x m x 的解集是x <m -2,则m 的取值应为 .8、若不等式组⎩⎨⎧>->-022x b a x 的解集是-1<x<1.则+2008)(b a .9、某品牌电脑的成本为2400元,标价为2980元,如果商店要以利润不低于5%的售价打折销售,是低可打 折出售.10、如果m 2,m ,m -1这三个实数在数轴上所对应的点从左到右依次排列,那么m 的取值范围是 。
第七章一元一次不等式_单元过关测试卷
第七章 一元一次不等式 单元过关测试卷一、填空题(每空3分,共30分)1.不等式512<+x 的最大整数解是 .2.当x ______时,代数式623-x 的值为不小于0. 3.点p(x -2,3+x )在第二象限,则x 的取值范围是____________.4.已知:y 1=3x +2,y 2=-x +8,当x ________时,y 1>y 2.5.若不等式(m-2)x>2的解集是x <22-m , 则m 的取值范围是_______. 6.弟弟上午八点钟出发步行去郊游,速度为4千米/时;上午十点钟哥哥从同一地点骑自行车去追弟弟.如果哥哥要在上午十点四十分之前追上弟弟,问哥哥的速度至少是______.7.某试卷共有20道题,每道题选对了得10分,选错了或不选的扣5分,至少要选对________道题,其得分才能不少于80分.8、若不等式2x-a ≤0只有4个正整数解,则a 的取值范围9、不等式3x+3≥5x-2则 ︳2x-5︳=10、如果a <3,那么关于x 的不等式ax >3x+5的解集是二、选择题(每题3分,共18分)11.若-y x >则下列不等式中一定成立的是 ( ) .A. x y -<B. 0<-y xC. 0>+y xD.y m x m 22->12. 不等式12-4x ≥3的正整数解的个数有 ( ).A. 3个B. 2个C. 1个D. 0个13.一个不等式的解集在数轴上表示如图, 对应的不等式可能是 ( ).A. 01>-xB. 01<-xC. 01>+xD. 01<+x14.已知a <b ,下列式子中,错误的是( ) .A 、4a <4bB 、-4a <-4b C.、a +4<b +4 D 、a -4<b -415.2x +1是不小于-3的负数,表示为…………………………………( ).A 、-3≤2x +1≤0B 、-3<2x +1<0C 、-3≤2x +1<0D 、-3<2x +1≤016.解不等式32x +>512-x 的过程中,出现错误的一步……………………( ). 的是 ① 去分母:5(x +2)>3(2x -1)② 去括号:5x +10>6x -3③ 移项:5x -6x >-10-3④系数化为1:x >13A 、①B 、②C 、③D 、④三、解答题17.(每题5分,共15分)解下列不等式(组),并将解集地数轴上表示出来. (1) 433+<x x 231(3)123x x ++-<18.(本题6分)求不等式285-x ≤418-x 的非负整数解.19.(本题6分)某地长途汽车客运公司规定,旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y (元)是行李重量x (公斤)的一次函数,其图象如图所示. 求 (1)y 与x 之间的函数关系式;(2)旅客最多可免费携带行李的公斤数.20.(本题6分)已知一次函数y=(2m +4)x +(3-m ).(1)当y 随x 的增大而增大,求m 的取值范围;(2)若图象经过一、二、三象限,求m 的取值范围;(3)若m =1,当-1≤x ≤2时,求y 的取值范围.21.一只纸箱质量为1kg ,当放入一些苹果(每个苹果的质量为0.3kg )后,箱子和苹果的总质量不超过10kg .这只纸箱内最多能装多少个苹果?行李票费用(元)行李重量(公斤)22、某校组织学生参加“周末郊游”.甲旅行社说: “只要一名同学买全票,则其余学生可享受半价优惠.”乙旅行社说:“全体同学都可按6折优惠.”已知全票价为240元.1.设学生数为x ,甲旅行社收费为y 甲,乙旅行社收费为y 乙。
2022年沪科版七年级数学下册第7章一元一次不等式与不等式组专项测试练习题(精选含解析)
七年级数学下册第7章一元一次不等式与不等式组专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若x <y 成立,则下列不等式成立的是( )A .﹣x +2<﹣y +2B .4x >4yC .﹣3x <﹣3yD .x ﹣2<y ﹣22、已知x =1是不等式(x ﹣5)(ax ﹣3a +2)≤0的解,且x =4不是这个不等式的解,则a 的取值范围是( )A .a <﹣2B .a ≤1C .﹣2<a ≤1D .﹣2≤a ≤13、若实数a ,b 满足a >b ,则下列不等式一定成立的是( )A .a >b +2B .a ﹣1>b ﹣2C .﹣a >﹣bD .a 2>b 24、不等式331x +>-的解集为( )A .13x >-B .13x > C .1x > D .43x >- 5、已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有3个,则a 的取值范围是( ) A .21a -≤<- B .21a -<≤ C .21a -<<- D .21a -≤≤6、不等式组3114x x +>⎧⎨-<⎩的最小整数解是( ) A .5 B .0 C .1- D .2-7、如果点P (m ,1﹣2m )在第一象限,那么m 的取值范围是 ( )A .102m << B .102m -<< C .0m < D .12m > 8、﹣(﹣a )和﹣b 在数轴上表示的点如图所示,则下列判断正确的是( )A .﹣a <1B .b ﹣a >0C .a +1>0D .﹣a ﹣b <09、如果不等式组12x x a⎧>-⎪⎨⎪>⎩的解集是12x >-,那么a 的值可能是( ) A .13- B .0 C .﹣0.7 D .110、下列说法中,正确的是( )A .x =3是不等式2x >1的解B .x =3是不等式2x >1的唯一解C .x =3不是不等式2x >1的解D .x =3是不等式2x >1的解集第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若a >0,则关于x 的不等式ax >b 的解集是________;若a <0,则关于x 的不等式以ax >b 的解集是_______.2、安排学生住宿,若每间住3人,则还有13人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为_____.3、在数轴上表示数a 的点如图所示.若整数b 满足a b a -<<,则b 的值为______.4、代数式132x-的值不小于代数式2x-的值,则x的取值范围是___.5、不等式351x->的最小整数解是______.三、解答题(5小题,每小题10分,共计50分)1、阳光超市从厂家购进甲、乙两种商品进行销售,若该超市购进甲种商品3件,乙种商品2件,共需花费900元;若购进甲种商品2件,购进乙种商品1件,共需花费500元;(1)求甲、乙两种商品每件的进价分别为多少元;(2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为150元,乙种商品每件的售价400元,要使十一月份购进的甲、乙两种商品共80件全部销售完的总利润不少于6500元,那么该超市最多购进甲种商品多少件?2、解不等式:(1)2(x﹣1)﹣3(3x+2)>x+5.(2)2212 35x x+->-.3、解下列不等式组32122x xx+>⎧⎪⎨≤⎪⎩.4、2021年11月,我市政府紧急组织一批物资送往新冠疫情高风险地区,现已知这批物资中,食品和矿泉水共410箱,且食品比矿泉水多110箱.(1)求食品和矿泉水各有多少箱;(2)现计划租用A,B两种货车共10辆,一次性将所有物资送到群众手中,已知A种货车最多可装食品40箱和矿泉水10箱,B种货车最多可装食品20箱和矿泉水20箱,试通过计算帮助政府设计几种运输方案;(3)在(2)的条件下,A种货车每辆需付运费600元,B种货车每辆需付运费450元,政府应该选哪种方案,才能使运费最少?最少运费是多少?5、(1)解方程组:2523517x y x y +=⎧⎨-=⎩ (2)解不等式组()20 2131x x x +>⎧⎨+≥-⎩-参考答案-一、单选题1、D【分析】不等式的性质1:在不等式的两边都加上或减去同一个数,不等号的方向不变,性质2:在不等式的两边都乘以或除以同一个正数,不等号的方向不变,性质3:在不等式的两边都乘以或除以同一个负数,不等号的方向改变;根据不等式的基本性质逐一判断即可.【详解】解:A 、不等式x <y 的两边都乘﹣1,不等号的方向改变,即﹣x >﹣y ,不等式﹣x >﹣y 的两边都加上2,不等号的方向不变,即﹣x +2>﹣y +2,原变形错误,故此选项不符合题意;B 、不等式x <y 的两边都乘4,不等号的方向不变,即4x <4y ,原变形错误,故此选项不符合题意;C 、不等式x <y 的两边都乘﹣3,不等号的方向改变,即﹣3x >﹣3y ,原变形错误,故此选项不符合题意;D 、不等式x <y 的两边都减去2,不等号的方向不变,即x ﹣2<y ﹣2,原变形正确,故此选项符合题意;故选:D .【点睛】本题考查的是不等式的基本性质,掌握“不等式的基本性质”是解本题的关键.2、A【分析】根据不等式解的定义列出不等式,求出解集即可确定出a 的范围.【详解】解:∵x =1是不等式(x ﹣5)(ax ﹣3a +2)≤0的解,且x =4不是这个不等式的解,∴()()15320a a --+≤ 且()()454320a a --+> ,即﹣4(﹣2a +2)≤0且﹣(a +2)>0,解得:a <﹣2.故选:A .【点睛】此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键.3、B【分析】根据不等式的性质即可依次判断.【详解】解:当a >b 时,a >b +2不一定成立,故错误;当a >b 时,a ﹣1>b ﹣1>b ﹣2,成立,当a >b 时,﹣a <﹣b ,故错误;当a >b 时,a 2>b 2不一定成立,故错误;故选:B .【点睛】本题主要考查了不等式的性质的灵活应用,解题的关键是基本知识的熟练掌握.4、D【分析】首先根据一元一次不等式的一般步骤,对其移项,合并同类项,将系数化为1即可得出答案.【详解】331x+>-移项得:313x>--,合并同类项得:34x>-,将系数化为1得:43 x>-.故选:D.【点睛】本题考查了解一元一次不等式的知识,熟练掌握解不等式的一般步骤是解题的关键.5、A【分析】先分别求出每个不等式的解集,然后确定不等式组的解集,最后根据整数解的个数确定a的范围.【详解】解:0 320 x ax->⎧⎨->⎩①②解不等式①得:x>a,解不等式②得:x<32,∴不等式组的解集是a<x<32,∵原不等式组的整数解有3个为1,0,-1,∴-2≤a <-1.故选择:A .【点睛】本题考查了解一元一次不等式、解一元一次不等式组、不等式组的整数解的应用,确定不等式组的解集是解答本题的关键.6、C【分析】分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可.【详解】解:解不等式31x +>,得:2x >-,解不等式14x -<,得:5x <, 故不等式组的解集为: 25x -<<, 则该不等式组的最小整数解为:1-.故选:C .【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7、A【分析】根据第一象限的横坐标为正、纵坐标为负,列出关于m 的不等式组解答即可.【详解】解:∵P (m ,1﹣2m )在第一象限,∴120mm⎧⎨-⎩>>,解得:12m<<故选A.【点睛】本题主要考查了解一元一次不等式组、平面直角坐标系等知识点,根据点在平面直角坐标系的象限列出关于m的一元一次不等式组成为解答本题的关键.8、B【分析】化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,∵a<﹣1,∴﹣a>1,故A选项判断错误,不合题意;∵﹣b<0,∴b>0,b﹣a>0,故B正确,符合题意;∵a<﹣1,∴a+1<0,故C判断错误,不合题意;∵a<﹣b,∴a+b<0,∴﹣a﹣b>0,故D判断错误,不合题意.故选:B.【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.9、C【分析】根据不等式组解集的确定方法:大大取大可得12a≤-,再在选项中找出符合条件的数即可.【详解】解:∵不等式组12xx a⎧>-⎪⎨⎪>⎩的解集是12x>-,∴a≤12 -,而1132->-;12>-;112>-;10.72-<-,故选:C.【点睛】本题考查一元一次不等式组的解法,理解一元一次不等式组的解集的意义是正确解答的前提.10、A【分析】对A、B、C、D选项进行一一验证,把已知解代入不等式看不等式两边是否成立.【详解】解:A、当x=3时,2×3>1,成立,故A符合题意;B、当x=3时,2×3>1成立,但不是唯一解,例如x=4也是不等式的解,故B不符合题意;C、当x=3时,2×3>1成立,是不等式的解,故C不符合题意;D、当x=3时,2×3>1成立,是不等式的解,但不是不等式的解集,其解集为:x>12,故D不符合题意;故选:A.【点睛】此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题.二、填空题1、bxa>bxa<【分析】根据不等式的性质,两边同时除以一个正数,不等号方向不变;两边同时除以一个负数,不等号方向改变,由此即可得出解集.【详解】解:当0a>时,ax b>,两边同时除以a可得:bxa>;当0a<时,ax b>,两边同时除以a可得:bxa<;故答案为:①bxa>;②bxa<.【点睛】题目主要考查根据不等式的基本性质求不等式解集,熟练掌握不等式的基本性质是解题关键.2、5或6【分析】设共有x间宿舍,则共有(313)x+个学生,然后根据每间住6人,则还有一间不空也不满,列出不等式组进行求解即可.【详解】解:设共有x间宿舍,则共有(313)x+个学生,依题意得:3136(1) 3136x xx x+>-⎧⎨+<⎩,解得:131933x <<. 又x 为正整数,5x ∴=或6.故答案为:5或6.【点睛】本题主要考查了一元一次不等式组的应用,解题的关键在于能够准确根据题意列出不等式组进行求解.3、1-,0,1【分析】由数轴知a 的取值范围,根据相反数的两数关于原点对称得出,a -的取值范围,即可找出整数b 的取值范围.【详解】由数轴可知:12a <<,21a ∴-<-<-,a b a -<<,22b ∴-<<, b 是整数,b ∴的值为1-,0,1.故答案为:1-,0,1.【点睛】本题考查用数轴表示数以及实数的大小比较,写出数轴上点的范围是解题的关键.4、1x ≤【分析】根据题意列出不等式,依据解不等式得基本步骤求解可得.【详解】解:由题意得1322xx-≥-,解得1x≤,故答案为:1x≤.【点睛】本题主要考查解不等式,熟练掌握解一元一次不等式的基本步骤是解题的关键.5、3【分析】先求此不等式的解集,再确定最小的整数解.【详解】解:36x>2x>,∴此不等式的最小整数解为3.故答案为:3【点睛】本题考查了解一元一次不等式,正确解一元一次不等式是解本题的关键.三、解答题1、(1)甲种商品每件进价为100,乙种商品每件进价300元;(2)30件【分析】(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据等量关系:3件甲种商品的花费+2件乙种商品的花费=900;2件甲种商品的花费+1件乙种商品的花费=500,即可列出方程组,解方程组即可;(2)设该超市购进甲种商品m 件,根据不等关系:甲商品的利润+乙商品的利润≥6500,列出不等式,不等式即可,再取不等式解集中最大的整数值即可.【详解】(1)设甲种商品每件进价为x 元,乙种商品每件进价y 元,根据题意的329002500x y x y +=⎧⎨+=⎩ 解得100300x y =⎧⎨=⎩ 故甲种商品每件进价为100,乙种商品每件进价300元(2)设该超市购进甲种商品m 件,根据题意得:(150-100)m +(400-300)(80-m )≥6500解得m ≤30∵m 为整数∴m 的最大整数值为30.即该超市最多购进甲种商品30件.【点睛】本题考查了解二元一次方程组及解不等式的应用,关键是理解题意,找到等量关系和不等关系,然后列出方程组和不等式即可解决问题.2、(1)138x <-(2)43x < 【分析】(1)去括号,移项合并同类项,求解不等式即可;(2)去分母,去括号,移项合并同类项,求解不等式即可.【详解】解:(1)去括号,得:2x ﹣2﹣9x ﹣6>x +5,移项,得:2x ﹣9x ﹣x >5+2+6,合并,得:﹣8x >13,系数化为1,得:138x <-; (2)去分母,得:5(2+x )>3(2x ﹣1)﹣30,去括号,得:10+5x >6x ﹣3﹣30,移项,得:5x ﹣6x >﹣3﹣30﹣10,合并同类项,得:﹣x >﹣43,系数化为1,得:x <43.【点睛】此题考查了一元一次不等式的求解,解题的关键是掌握一元一次不等式的求解步骤.3、14x -<≤【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式3x +2>x 得:x >-1, 解不等式122x ≤,得:4x ≤, 则不等式组的解集为:14x -<≤.【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.4、(1)食品有260箱,矿泉水有150箱;(2)共有3种运输方案,方案1:租用A 种货车3辆,B 种货车7辆,方案2:租用A 种货车4辆,B 种货车6辆,方案3:租用A 种货车5辆,B 种货车5辆;(3)政府应该选择方案1,才能使运费最少,最少运费是4950元【分析】(1)设食品有x 箱,矿泉水有y 箱,根据“品和矿泉水共410箱,且食品比矿泉水多110箱”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设租用A 种货车m 辆,则租用B 种货车(10-m )辆,根据租用的10辆货车可以一次运送这批物质,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出各运输方案;(3)根据总运费=每辆车的运费×租车辆数,可分别求出三个运输方案所需总运费,比较后即可得出结论.【详解】解:(1)设食品有x 箱,矿泉水有y 箱,依题意,得410110x y x y +=⎧⎨-=⎩, 解得260150x y =⎧⎨=⎩, 答:食品有260箱,矿泉水有150箱;(2)设租用A 种货车m 辆,则租用B 种货车(10)m -辆,依题意,得4020(10)2601020(10)150m m m m +-≥⎧⎨+-≥⎩解得:3≤m ≤5,又∵m 为正整数,∴m 可以为3,4,5,∴共有3种运输方案,方案1:租用A 种货车3辆,B 种货车7辆;方案2:租用A种货车4辆,B种货车6辆;方案3:租用A种货车5辆,B种货车5辆.(3)选择方案1所需运费为600×3+450×7=4950(元),选择方案2所需运费为600×4+450×6=5100(元),选择方案3所需运费为600×5+450×5=5250元).∵4950<5100<5250,∴政府应该选择方案1,才能使运费最少,最少运费是4950元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)利用总运费=每辆车的运费×租车辆数,分别求出三个运输方案所需总运费.5、(1)43xy=⎧⎨=⎩;(2)﹣2﹤x≤3.【分析】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)2523 517x yx y+=⎧⎨-=⎩①②①+②×5得:27x=23+17×5,解得:x=4,将x=4代入②中,得:20﹣y=17,解得:y=3,∴原方程组的解为43xy=⎧⎨=⎩.(2)202(1)31xx x+>⎧⎨+≥-⎩①②,解:解①得:x﹥﹣2,解②得:x≤3,∴不等式组的解集为:﹣2﹤x≤3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
一元一次不等式(组)单元检测卷含答案
一元一次不等式(组)单元检测卷一、选择题(每题4分,共40分)1.y的13与z的5倍的差的平方是一个非负数,列出不等式为()A.5(13-y)2>0 B.13y-(5z)2≥0 C.(13y-5z)2≥0 D.13y-5z2≥02.不等式组23,182xx x>-⎧⎨-≤-⎩的最小整数解是()A.-1 B.0 C.2 D.33.已知点M(3a-9,1-a)在第三象限,且它的坐标是整数,则a等于()A.1 B.2 C.3 D.04.已知一次函数y=kx+b(k,b是常数,且k≠0),x与y的部分对应值如下表所示,那么不等式kx+b<0的解集是()X -2 -1 0 1 2 3y 3 2 1 0 -1 -2A.x<0 B.x>0 C.x<1 D.x>15.如图所示,在△ABC中,AB=12,BC=10,点O为AC的中点,则BO的取值范围是(• )A.1<BO<11 B.2<BO<22C.10<BO<12 D.5<BO<66.下列式子(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个7.已知一次函数y=(m+2)x-(m+3),y随x的增大而减小,且图象与y轴的交点在x轴上方,则实数m的取值范围是()A.m<-3 B.m>-2 C.m<-3或m>-2 D.-3<m<-28.已知m,n为常数,若mx+n>0的解集为x<13,则nx-m<0的解集是()A.x>3 B.x<3 C.x>-3 D.x<-39.若方程组231,54 6.x y kx y+=+⎧⎨+=⎩的解x,y满足2<x+y<4,则k的取值范围是()A.7<k<21 B.0<k<7 C.7<k<14 D.14<k<2110.若干学生分苹果,每人4个余20个,每人8个有一人分得的不够8个,•则学生数为()A.5个B.6人C.7人D.8人二、填空题(每题4分,共40分)11.如图为关于x的不等式3x-2a≤-2的解集,则a的值为_____.12.若x的6倍加上1小于x的3倍减去5,则x的取值范围是_______.13.已知一次函数y1=2x-6,y2=-5x+1,则x_____时,y>y.14.已知x满足不等式3(5x+2)+5<4x-6(x+1),化简│x+1│-│1-3x│=______.15.若a>b,则-12a+2_____-12b+2.16.若a<0,关于x的不等式ax+1>0的解集是_____.17.若│3m-4│=4-3m,则m的取值范围是_____.18.关于x的主程5x-b=7的解是负数,则b的取值范围是_______.19.若由(m+2)x<m+2,可得x>1,则m的范围为______.20.已知23(m+4)x|m|-3+6>0是关于x的一元一次不等式,则m=______.三、解答题(每题8分,共40分)21.已知关于x的不等式组212,3xxx k-⎧>-⎪⎨⎪-<⎩的解集是x<5,求k的取值范围.22.若关于x的不等式组321x mx-≥⎧⎨->⎩的整数解共有5个,求m的取值范围.23.若关于x,y的方程组25x y ax y+-=⎧⎨-=⎩的解x,y都是正数,试确定a的取值范围.24.为加快教学手段的现代化,学校计划同时从甲,乙两家电脑经销商(以下简称甲,乙)购置一定数量的电脑,订购甲的电脑数是乙的电脑数的2倍,提货时,由于资金不足,学校少购买了5台电脑,最后购买甲的电脑数与乙的电脑数相等.若学校最后购买的电脑总数为y 台,在少购买的5台电脑中,有甲的x台(0≤x≤5).(1)写出y与x的关系式;(2)学校最后所购买的电脑共多少台?25.一手机经销商计划购进某品牌的A型,B型,C型三款手机共60部,•每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:(1)用含x,y的式子表示购进C型手机的部数;(2)求出y与x之间的函数关系式.(3)假设购进的手机全部出售,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部?参考答案一、1.C 点拨:“非负数”即为“大于或等于0”的数.本题易错之处是漏掉“等于0”,因此选C.2.A 点拨:不等式组的解集为-32<x≤3,所以最小整数解为-1,故选A.3.B 点拨:因为点M在第三象限,所以390,10.aa-<⎧⎨-<⎩,解得1<a<3,因为点M的坐标为整数,•所以a=2.4.D 点拨:由表格可知y随x的增大而减小;当x=1时,y=0,所以不等式kx+b<0•的解集是x>1.5.A 点拨:如图,构造平行四边形ABCD,在△ABD中,AD=10,BA=12,•所以2<BD<22,所以1<BO<11,故选A.6.C 点拨:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),•(2),(4),(6)为不等式,共有4个.7.A 点拨:由题意知20(3)0mm+<⎧⎨-+>⎩解得m<-3.8.D 点拨:由mx+n>0到x<13,不等号方向改变,可知m<0且-nm=13,n>0;由nx-m<0得x<mn=-3,所以x<-3.9.A 点拨:231(1) 546(2) x y kx y+=+⎧⎨+=⎩由(1)+(2)得x+y=77k+.因为2<x+y<4,所以2<77k+<4,7<k<21.10.B 点拨:设学生数为x,则苹果数为(4x+20),根据题意可得不等式组4208(1)04208(1)8,x xx x+-->⎧⎨+--<⎩,解得5<x<7,因为x为整数,所以x=6.二、11.-12点拨:原不等式的解集为x≤223a-,结合图象可知223a-=-1,即a=-12.12.x<-2 点拨:根据题意列不等式为:6x+1<3x-5,所以x<-2.13.>1 点拨:由题意知2x-6>-5x+1,7x>7,x>1.14.2x-2 点拨:解不等式3(5x+2)+5<4x-6(x+1)得x<-1.当x<-1时,│x+1│- │1-3x│=-(x+1)-(1-3x)=-x-1-1+3x=2x-2.15.< 点拨:利用不等式基本性质3,在a>b两边同时乘以-12,得-12a<-12b,然后利用不等式基本性质1,两边同时加上2,得-12a+2<-12b+2.16.x<-1a点拨:由ax+1>0得ax>-1,因为a<0,所以x<-1a.17.m≤43点拨:│3m-4│=4-3m=-(3m-4),说明3m-4≤0,m≤43.18.b<-7 点拨:由5x-b=7,得x=75b+,因为x<0,所以75b+<0,7+b<0,b<-7.19.m<-2 点拨:x>1是由(m+2)x<m+2两边都除以m+2得到的,而不等号的方向改变了,所以m+2<0,即m<-2.20.4 点拨:由题意知│m│-3=1,│m│=4,m=±4,因为m+4≠0,即m≠-4,所以m=4.三、21.解:由不等式213x->x-2得x<5;由x-k<0得x<k,因为不等式组的解集是x<5,•所以k≥5.22.解:解不等式x-m≥0得x≥m,解不等式3-2x>1,得x<1.由题意可得m≤x<1,•因为满足不等式组的整数解共有5个,所以-5<m≤-4.点拨:由m≤x<1,满足不等式组的整数解共有5个,可知这五个整数解为0,-1,-•2,-3,-4,所以m的取值范围是-5≤m<-4.23.解:解方程组得25,35.3axay+⎧=⎪⎪⎨-⎪=⎪⎩由题意,得250,350.3aa+⎧>⎪⎪⎨-⎪>⎪⎩解得a>5.点拨:先解方程组,然后根据方程组的解x,y都是正数列不等式组,解不等式组,•得a 的取值范围.24.解:(1)根据题意,得23(y+5)-x=13(y+5)-(5-x),整理得y=6x-20.(2)根据题意及(1)的结果,得62005xxx->⎧⎪≥⎨⎪≤⎩,解得103<x≤5,所以x=4或x=5.当x=4时,y=6×4-20=4;当x=5时,y=6×5-20=10.答:学校最后购买的电脑为4台或10台.点拨:本题的关键在于根据等量关系列出含x,y的二元一次方程:2 3(y+5)-x=13(y+5)-(5-x),继而整理成y=6x-20.25.解:(1)60-x-y.(2)由题意,得900x+1200y+1100(60-x-y)=61000.整理,得y=2x-50.(3)①由题意,得P=1200x+1600y+1300(60-x-y)-61000-1500,整理,得P=500x+•500.②购进C型手机部数为60-x-y=110-3x,根据题意列不等式组,得8 2508 11038 xxx≥⎧⎪-≥⎨⎪-≥⎩解得29≤x≤34,所以x的范围为29≤x≤34,且x为整数.因为P是x的一次函数,k=500>0,所以P•随x的增大而增大,所以当x取最大值34时,P有最大值,为17500元,此时购进A型手机34部,B型手机18部,C型手机8部.。
新沪科版七年级数学下《第7章一元一次不等式及不等式组》单元检测卷含答案与解析
第7章检测(ji ǎn c è)卷(45分钟 100分)一、选择题(本大题共10小题,每小题4分,满分(m ǎn f ēn)40分)题 号 1 2 3 4 5 6 7 8 9 10 答 案BBBBADDCBC1.下列不等式变形(bi àn x íng)正确的是 A.由a>b ,得a-2<b-2 B.由a>b ,得-2a<-2b C.由a>b ,得|a|>|b|D.由a>b ,得a 2>b 22.对不等式-3x>1变形(bi àn x íng)正确的是 A.两边(li ǎngbi ān)同除以-3,得x>-13 B.两边同除以-3,得x<-13C.两边同除以-3,得x>-3D.两边同除以-3,得x<-33.若关于x 的不等式3m-2x<5的解集是x>2,则实数m 的值为 A.2 B.3C.4D.54.不等式组{2x+13-3x+22>1,3-x ≥2的解集在数轴上表示正确的是5.一元一次不等式组{2x +1>0,x -5≤0的解集中,最小整数解是A.0B.1C.4D.56.已知不等式:①x>1;②x>4;③x<2;④2-x>-1.从这四个不等式中取两个,构成整数解是2的不等式组是 A.①与②B.②与③C.③与④D.①与④7.若关于x 的不等式{x -m <0,7-2x ≤1的整数解共有4个,则m 的取值范围是A.6<m<7B.6≤m<7C.6≤m ≤7D.6<m ≤78.不等式组{2x ≤4+x ,x +2<4x -1的正整数解有A.1个B.2个C.3个D.4个9.有一个两位数,它的十位(sh í w èi)数字比个位数字大2,并且这个两位数大于40且小于52,则这个两位数是 A.41B.42C.44D.4610.某市天然气公司在一些居民小区安装天然气管道时,采用一种(y ī zh ǒn ɡ)鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区(xi ǎo q ū)住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户 A.至少(zh ìsh ǎo)20户 B.至多(zh ìdu ō)20户 C.至少21户 D.至多21户二、填空题(本大题共4小题,每小题4分,满分16分)11.“a 的3倍与b 的差不大于0”用不等式可表示为 3a-b ≤0 .12.请你写出一个满足不等式2x-1<6的正整数x 的值 1(1,2,3都可以) . 13.若不等式组{x >a ,4-2x >0的解集是-1<x<2,则a= -1 .14.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm .某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm,长与宽的和最多为 130 cm .三、解答题(本大题共6小题,满分44分) 15.(6分)根据下列数量关系,列不等式: (1)x 的3倍与2的差是非负数; (2)a 的12与3的和小于1;(3)a 与b 两数的和的平方不小于3. 解:(1)3x-2≥0.(2)12a+3<1.(3)(a+b )2≥3. 16.(6分)解不等式组:{3x -1<x +5,x -32<x -1,并写出它的整数解.解:解不等式3x-1<x+5,得x<3. 解不等式x -32<x-1,得x>-1.∴不等式组的解集为-1<x<3,它的整数解为0,1,2.17.(8分)解下列不等式,并把它们的解集分别表示在数轴上. (1)5x>-10; (2)-3x+12≤0; (3)x -12<4x -53; (4)x+72-1<3x+22.解:(1)两边(li ǎngbi ān)同时除以5,得x>-2. 这个不等式的解集在数轴(sh ùzh óu)上表示为(2)移项(y í xi àn ɡ),得-3x ≤-12, 两边(li ǎngbi ān)都除以-3,得x ≥4.这个不等式的解集在数轴(sh ùzh óu)上表示为(3)去分母,得3(x-1)<2(4x-5), 去括号,得3x-3<8x-10, 移项、合并同类项,得5x>7, 两边都除以5,得x>75,不等式的解集在数轴上表示为(4)去分母,得x+7-2<3x+2, 移项、合并同类项,得2x>3, 两边都除以2,得x>32,不等式的解集在数轴上表示为18.(8分)阅读理解:我们令|a bcd|=ad-bc.如:|2345|=2×5-3×4=-2.如果有|23-x 1x|>0,求x 的解集.解:由|23-x 1x |>0得出2x-(3-x )>0,去括号(ku òh ào),得2x-3+x>0, 移项(y í xi àn ɡ),合并同类项得,3x>3, 系数(x ìsh ù)化为1,得x>1.19.(8分)若x=-3是方程(f āngch éng)x -a2-2=x-1的解. (1)试确定(qu èd ìng)a 的值; (2)求不等式(a5-2)x ≤310的解集. 解:(1)由于x=-3是方程x -a2-2=x-1的解, 所以-3-a 2-2=-3-1,解得a=1.(2)由于a=1,所以原不等式为(15-2)x ≤310,解得x ≥-16.20.(8分)将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则最后一个小朋友分不到8个苹果,但至少分到了1个苹果.求这一箱苹果的个数与小朋友的人数. 解:设有x 人,则苹果有(5x+12)个, 由题意,得{5x +12-8(x -1)<8,5x +12-8(x -1)>0.解得4<x<203. 因为x 为正整数, 所以x 为5或6. 当x=5时,5x+12=37; 当x=6时,5x+12=42.答:苹果37个,小朋友5人或苹果42个,小朋友6人.内容总结。
苏科版八年级下第七章一元一次不等式单元试题
第七章单元测验班级_______ 姓名____________得分________一、填空题:(每空3分,共33分)1、点p(x-2,3+x)在第二象限,则x 的取值范围是____________.2、不等式3(x +2)≥4+2x 的负整数解为________;当x ______时,代数式623-x 的值为非负数. 3、弟弟上午八点钟出发步行去郊游,速度为每小时4千米;上午十点钟哥哥从同一地点骑自行车去追弟弟.如果哥哥要在上午十点四十分之前追上弟弟,问哥哥的速度至少是______.4、函数y=kx+b 的图象如右图所示, 则方程kx+b=0的解为________, 不等式kx+b>0的解集为_________, 不等式kx+b-3>0的解集为5、若不等式(m-2)x>2的解集是x<22-m , 则m 的取值范围是_______. 6、要使函数y=(2m-3)x+(3-m)的图像经过第一、二、三象限,则m 的取值范围是__________.7、若a>-b>0,关于x 的不等式组 的解集是_____________.8、如果关于x 的不等式组⎩⎨⎧+>+>+1915m x x x 的解集是2>x ,那么m 的取值范围是.二、选择题:(每题4分,共24分)9、下列式子(1)2x -7≥-3, (2)1x - x>0, (3)7< 9, (4)x 2+3x>1, (5)a 2 -2(a+1)≤1,(6)m -n>3中是一元一次不等式的有( )A 1个B 2个C 3个D 4个10、不等式组 的解在数轴上可以表示为 ( )A 、、C 、、11、关于x 的方程x m x --=-425的解x 满足2<x<10,则m 的取值范围是 ( ) A 、8>m B 、32<m C 、328<<m D 、8<m 或32>m12、一个三角形的一边长是(x+3)cm ,这边上的高是5cm ,它的面积不大于20cm 2,则 ( ) A .x >5 B .-3 < x ≤5 C .x ≥ -3 D .x ≤5⎩⎨⎧<>a bx bax 2x ≤1x+3 ≥013、八年级某班级部分同学去植树,若每人平均植树7课,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数不到8棵。
2013-2014学年沪科版七年级数学下第7章一元一次不等式与不等式组单元检测试卷含答案解析
数学沪科七年级下第7章一元一次不等式与不等式组单元检测(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.若m >n ,则下列不等式一定成立的是( ). A .<1n m B .>1n mC .-m >-nD .m -n >02.不等式2x +1>-3的解集在数轴上表示正确的是( ).3.不等式组235,312x x -<⎧⎨+>-⎩的解集是( ).A .-1<x <4B .x >4或x <-1C .x >4D .x <-14.不等式3(x -2)≤x +4的非负整数解的个数为( ). A .4 B .5 C .6 D .无数5.如下图,一天平右盘中的每个砝码的质量都是1 g ,则物体A 的质量m (g)的取值范围在数轴上可表示为( ).6.下列说法中错误的是( ). A .不等式x +1≤4的整数解有无数个 B .不等式x +4<5的解集是x <1 C .不等式x <4的正整数解为有限个 D .0是不等式3x <-1的解7.若0<x <1,则x ,1x,x 2的大小关系是( ). A .1x <x <x 2 B .x <1x<x 2C .x 2<x <1xD .1x<x 2<x8.某射击运动员在一次比赛中前5次射击共中46环,如果他要打破92环(10次射击)的纪录,第6次射击起码要超过( ).A .6环B .7环C .8环D .9环9.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ).A .m >2B .m >-3C .-3<m <2D .m <3或m >210.已知三个数a -1,3-a,2a 在数轴上所对应的点从左到右依次排列,那么,a 的取值范围是( ).A .1<a <2 C .1<a <3 C .-1<a <1 D .以上都不对 二、填空题(每小题3分,共21分)11.若不等式(m -2)x >2的解集是22x m <-,则m 的取值范围是________. 12.把某个不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是________.13.如果a >b ,则-ac 2________-bc 2(c ≠0).14.当x ________时,式子3x -5的值大于5x +3的值.15.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小明最多能买________枝钢笔.16.若关于x 的方程kx -1=2x 的解为正数,则k 的取值范围是________. 17.如果不等式2x -m ≤0的正整数解共3个,则m 的取值范围是________. 三、解答题(本大题共6小题,满分49分.解答需写出解题步骤)18.(8分)(1)求同时满足不等式6x -2≥3x -4和2112132x x+--<的整数x 的值. (2)解不等式组30,312 1.x x x +>⎧⎨(-)≤-⎩19.(6分)已知不等式组1,1,1.x x x k >⎧⎪<⎨⎪<-⎩(1)当k =-2时,该不等式组的解集是________,当k =3时,该不等式组的解集是________;(2)由(1)可知,该不等式组的解集是随数k 的值的变化而变化.当k 为任意有理数时,写出这个不等式组的解集.20.(8分)已知方程2x -ax =3的解是不等式5(x -2)-7<6(x -1)-8的最小整数解,求代数式144a a-的值. 21.(8分)如果关于x 的不等式(2a -b )x +a -5b >0的解集为107x <,求关于x 的不等式ax >b 的解集.22.(8分)某车间有3个小组计划在10天内生产500件产品(每天每个小组生产量相同),按原先的生产速度,不能完成任务,如果每个小组每天比原先多生产1件产品,就能提前完成任务,请问每个小组原先每天生产多少件产品?(结果取整数)23.(11分)为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两种型号设备共8台用于二期工程的污水处理,预算本次购买资金不超过...84万元,预计二期工程完成后每月将产生不少于...1 300吨污水.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?(2)请你求出用于二期工程的污水处理设备的所有购买方案.参考答案1.答案:D 点拨:根据不等式的基本性质,不等式的两边都除以m ,而m 并不知道是正数还是负数,所以A ,B 均不正确;不等式的两边都乘以-1,不等号的方向改变,所以C 不正确;不等式的两边都减去n ,不等号的方向不变,D 是正确的.故选D.2.答案:C3.答案:A 点拨:分别解两个不等式,得x <4,x >-1,所以-1<x <4.故选A. 4.答案:C 点拨:先求出原不等式的解集是x ≤5,从而得出符合条件的非负整数解是0,1,2,3,4,5.故选C.5.答案:A 6.答案:D7. 答案:C 点拨:解答此题可选用特殊值法,因为0<x <1,可假设1=2x ,则1=2x,21=4x ,所以x 2<x <1x .8.答案:A 解析:设第6次射中x 环,由于后4次最多只能射40环,所以有46+x+40>92,解得x >6.9.答案:A 点拨:本题可先解方程组求出x ,y ,再根据x >y >0,转化为关于m 的不等式.再将选择项代入不等式中检验.10.答案:A 点拨:已知a -1,3-a,2a 在数轴上所对应的点从左到右依次排列,即已知a -1<3-a <2a ,解该不等式组即可得a 的范围.11.答案:m <2 点拨:由题意可知不等式(m -2)x >2的两边都除以(m -2)后,不等号的方向发生了改变,因此m -2<0,从而可知m <2.12.答案:x >113.答案:< 点拨:因为c ≠0,所以c 2>0,-c 2<0.根据不等式的基本性质“两边同乘以一个负数,不等号的方向改变”可知-ac 2<-bc 2(c ≠0).14.答案:<-4 点拨:当3x -5>5x +3时,解得x <-4.15.答案:13 点拨:设小明能买x 枝钢笔,则他能买(30-x )本笔记本,依题意,得5x +2(30-x )≤100,解得1133x ≤.故小明最多能买13枝钢笔.16.答案:k >2 点拨:因为关于x 的方程kx -1=2x 可化简为(k -2)x =1,所以1=>02x k -,即k -2>0,也即k >2. 17.答案:6≤m <8 点拨:解不等式2x -m ≤0得12x m ≤,结合题意知该不等式有3个正整数解:1,2,3,于是3≤12m <4.故6≤m <8. 18.答案:解:(1)解不等式6x -2≥3x -4得23x ≥-. 解不等式2112<132x x+--得 2(2x +1)-3(1-2x )<6, 所以7<10x . 因为x 同时满足这两个不等式, 所以x 的取值范围是27310x -≤.故整数x 为0.(2)解不等式x +3>0,得x >-3. 解不等式3(x -1)≤2x -1,得x ≤2. 在同一条数轴上表示两个不等式的解集:结合数轴可知原不等式组的解集是-3<x ≤2. 19.答案:解:(1)-1<x <1 无解(2)当k ≤0时,该不等式组的解集为-1<x <1;当0<k <2时,该不等式组的解集为-1<x <1-k ;当k ≥2时,该不等式组无解.20.解:解不等式5(x -2)-7<6(x -1)-8,得x >-3. 因此不等式5(x -2)-7<6(x -1)-8的最小整数解是-2. 从而可知方程2x -ax =3的解是x =-2.把x =-2代入方程2x -ax =3中得2×(-2)-(-2)×a =3,解得7=2a . 当7=2a 时,代数式14724=414=144=1027a a -⨯-⨯-. 21.答案:解:由不等式(2a -b )x +a -5b >0的解集为10<7x ,可知2a -b <0,且510=27b a a b --,得3=5b a . 结合2a -b <0,3=5b a ,可知b <0,a <0.故ax >b 的解集为3<5x .22.答案:解:设每个小组原先每天生产x 件产品,根据题意,得310500,3101500,x x ⨯<⎧⎨⨯(+)>⎩解得2215<<1633x . 因为x 的值是整数,所以x =16.故每个小组原先每天生产16件产品.23.答案:解:(1)设一台甲型设备的价格为x 万元, 由题意,得3x +2×75%x =54, 解得x =12. ∵12×75%=9,∴一台甲型设备的价格为12万元,一台乙型设备的价格是9万元. (2)设二期工程中,购买甲型设备a 台,由题意有129884,20016081300,a a a a +(-)≤⎧⎨+(-)≥⎩解得12≤a ≤4. 由题意知a 为正整数,因此a =1,2,3,4. 故所有购买方案有四种,分别为 方案一:甲型1台,乙型7台; 方案二:甲型2台,乙型6台; 方案三:甲型3台,乙型5台; 方案四:甲型4台,乙型4台.。
沪科版七年级数学下册第七章不等式及不等式组单元试题含答案解析
沪科版七年级数学下册第七章不等式及不等式组单元试题含答案解析一、选择题(本大题共10小题,共30分)1.下列不等式中,是一元一次不等式的是()A. 2x−1>0B. −1<2C. 3x−2y≤−1D. y2+3>52.已知x>y,则下列不等式成立的是()A. x−1<y−1B. 3x<3yC. −x<−yD. x2<y23.不等式4−2x>0的解集在数轴上表示为()A. B.C. D.4.不等式组{x<4x≥3的解集在数轴上表示为()A. B. C. D.5.设三角形三边之长分别为3,8,1−2a,则a的取值范围为()A. −6<a<−3B. −5<a<−2C. −2<a<5D. a<−5或a>26.不等式3x−1≤2(x+2)的正整数解有几个().A. 3B. 4C. 5D. 67.如果不等式组{x<7x>m有解,那么m的取值范围是()A. m>7B. m≥7C. m<7D. m≤78.已知关于不等式2<(1−a)x的解集为x<21−a,则a的取值范围是()A. a>1B. a>0C. a<0D. a<19.若关于x的不等式组{x−m<07−2x≤1的整数解共有4个,则m的取值范围是()A. 6<m<7B. 6≤m<7C. 6<m≤7D. 3≤m<410.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A. 8(x−1)<5x+12<8B. 0<5x+12<8(x−1)C. 0<5x+12−8(x−1)<8D. 8x<5x+12<8二、填空题(本大题共4小题,共12分)11.x的3倍与5的和大于8,用不等式表示为______.12.若a<b,那么−2a+9______−2b+9(填“>”“<”或“=”).13.当x______ 时,代数式x4−2的值不小于x2+2的值.14.如果不等式(a+1)x<a+1的解集为x>1,那么a的取值范围是______.三、计算题(本大题共5小题,共30分)15. 解不等式23(x −1)≤x +1,并把它的解集在数轴上表示出来.16. 解不等式:2x−13−10−x 2≤14x .17. 求不等式组{1−x ≤0x+12<3的解集.18. {x −3(x −2)≤42x−15>x+12.19. 已知关于x 的方程2x+m x−2=3的解是正数,求m 的取值范围.四、解答题(本大题共3小题,共28分)20.【提出问题】已知x−y=2,且x>1,y<0,试确定x+y的取值范围.【分析问题】先根据已知条件用一个量如y去表示另一个量如x,然后根据题中已知量x的取值范围,构建另一量y的不等式,从而确定该量y的取值范围,同理再确定另一未知量x的取值范围,最后利用不等式性质即可获解.【解决问题】解:∵x−y=2,∴x=y+2.又∵x>1,∴y+2>1,∴y>−1.又∵y<0,∴−1<y<0,①同理得1<x<2.②由①+②得−1+1<y+x<0+2,∴x+y的取值范围是0<x+y<2.【尝试应用】已知x−y=−3,且x<−1,y>1,求x+y的取值范围.21.已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?22.某校5名教师要带若干名学生到外地参加一次科技活动.已知每张车票价格是120元,购车票时,车站提出两种优惠方案供学校选择.甲种方案是教师按车票价格付款,学生按车票价格的60%付款;乙种方案是师生都按车票价格的70%付款.设一共有x名学生,请问选择哪种方案合算?答案和解析1.【答案】A【解析】【分析】本题考查一元一次不等式的定义中的含有一个未知数,且未知数的最高次数为1次.根据一元一次不等式的定义作答. 【解答】解:A.是一元一次不等式; B .不含未知数,不符合定义;C .含有两个未知数,不符合定义;D .未知数的次数是2,不符合定义. 故选A . 2.【答案】C【解析】【分析】本题主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变; (2)不等式两边乘(或除以)同一个正数,不等号的方向不变; (3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 根据不等式的性质逐项分析即可. 【解答】解:A 、根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,故本选项错误; B 、不等式两边乘(或除以)同一个正数,不等号的方向不变,故本选项错误; C 、不等式两边乘(或除以)同一个负数,不等号的方向改变,正确;D 、不等式两边乘(或除以)同一个正数,不等号方向不变.故本选项错误. 故选:C . 3.【答案】D【解析】解:移项,得:−2x >−4, 系数化为1,得:x <2, 故选:D .根据解一元一次不等式基本步骤:移项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 4.【答案】B【解析】解:不等式组{x <4x ≥3的解集在数轴上表示为:.故选:B .直接把各不等式的解集在数轴上表示出来即可.本题考查的是在数轴上表示不等式组的解集,熟知:“小于向左,大于向右”是解答此题的关键. 5.【答案】B【解析】【分析】本题考查了根据三角形三边关系建立不等式组解实际问题的运用,不等式组的解法的运用,解答时根据三角形的三边关系建立不等式组是关键.根据三角形的三边关系,两边之和大于第三边和两边之差小于第三边列出不等式组求出其解即可. 【解答】解:由题意,得8−3<1−2a <8+3, 即5<1−2a <11, 解得−5<a <−2. 故选B . 6.【答案】C【解析】【分析】本题考查了一元一次不等式的正整数解,正确解不等式是关键.首先去括号、然后移项、合并同类项求得不等式的解集,然后确定正整数解. 【解答】解:去括号,得3x −1≤2x +4, 移项,得3x −2x ≤4+1, 合并同类项得x ≤5.则正整数解是1,2,3,4,5共5个. 故选C . 7.【答案】C【解析】解:由(1)得x <7, 由(2)得x >m , ∵不等式组{x <7x >m 有解,∴m <x <7; ∴m <7, 故选:C .解出不等式组的解集,与不等式组{x <7x >m有解相比较,得到m 的取值范围.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数. 8.【答案】A【解析】解:由题意可得1−a <0, 移项得−a <−1, 化系数为1得a >1. 故选:A .因为不等式的两边同时除以1−a ,不等号的方向发生了改变,所以1−a <0,再根据不等式的基本性质便可求出不等式的解集.本题考查了同学们解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.9.【答案】C【解析】解:{x−m<0⋯ ①7−2x≤1⋯ ②,解①得x<m,解②得x≥3.则不等式组的解集是3≤x<m.∵不等式组有4个整数解,∴不等式组的整数解是3,4,5,6.∴6<m≤7.首先解不等式组,利用m表示出不等式组的解集,然后根据不等式组只有1个整数解即可求得m的范围.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.【答案】C【解析】解:设有x人,则苹果有(5x+12)个,由题意得:0<5x+12−8(x−1)<8,故选:C.设有x人,由于每位小朋友分5个苹果,则还剩12个苹果,则苹果有(5x+12)个;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果,就是苹果数5x+12−8(x−1)大于0,并且小于8,根据不等关系就可以列出不等式.此题主要考查由实际问题抽象出一元一次不等式组,关键是正确理解题意,找出题目中的不等关系.11.【答案】3x+5>8【解析】【分析】本题考查由实际问题抽象出一元一次不等式,用不等式表示出不等关系是本题的关键.根据关键词语,弄清运算的先后顺序和不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.【解答】解:根据题意可列不等式:3x+5>8,故答案为3x+5>8;12.【答案】>【解析】解:∵a<b,∴−2a>−2b,∴−2a+9>−2b+9不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变.能够通过观察理解由已知变化到所要比较的式子,是如何的得到的是解题的关键.13.【答案】≤−16【解析】【分析】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.先根据“代数式x4−2的值不小于x2+2的值”,列出不等式,再解不等式即可.【解答】解:由题意,得x4−2≥x2+2,去分母,得x−8≥2x+8,移项、合并同类项,得−x≥16,系数化为1,得x≤−16.故答案为≤−16.14.【答案】a<−1【解析】【分析】此题主要考查了不等式的解集,关键是掌握不等式的性质.根据不等式的性质:不等式的两边同时乘以或除以同一个负数,不等号的方向改变可得a+1<0,再解即可.【解答】解:∵不等式(a+1)x<a+1的解集为x>1,∴a+1<0,解得:a<−1,故答案为a<−1.15.【答案】解:去分母得2x−2≤3x+3,移项得2x−3x≤3+2,合并得−x≤5,系数化为1得x≥−5,不等式的解集在数轴上表示如下:【解析】本题考查了解一元一次不等式:解一元一次不等式的一般步骤为:先去括号,再移项,接着合并同类项,然后把系数化为1.也考查了在数轴上表示不等式的解集.先去分母、移项得到2x−3x≤3+2,然后合并后把x的系数化为1即可得到不等式的解集,再利用数轴表示解集.16.【答案】解:去分母得:4(2x−1)−6(10−x)≤3x,去括号得:8x−4−60+6x≤3x,移项合并得:11x≤64,解得:x≤6411.【解析】此题考查了解一元一次不等式,其步骤为:去分母,去括号,移项合并,将x系数化为1,求出解集.不等式去分母,去括号,移项合并,将x系数化为1,即可求出解集.17.【答案】解:{1−x≤0①x+12<3②,解不等式①,得x≥1.解不等式②,得x<5.所以,不等式组的解集是1≤x<5.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.18.【答案】解:{x−3(x−2)≤4①2x−15>x+12②,由①得:x≥1,由②得:x<−7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.19.【答案】解:原方程整理得:2x+m=3x−6,解得:x=m+6.因为x>0,所以m+6>0,即m>−6.①又因为原式是分式方程,所以x≠2,即m+6≠2,所以m≠−4.②由①②可得,m的取值范围为m>−6且m≠−4.【解析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.本题主要考查了分式方程的解法及其增根产生的原因.解答本题时,易漏掉m≠4,这是因为忽略了x−2≠0这个隐含的条件而造成的,这应引起同学们的足够重视.20.【答案】解:∵x−y=−3,∴x=y−3.又∵x<−1,∴y−3<−1,∴y<2.又∵y>1,∴1<y<2,…①同理得−2<x<−1.…②由①+②得1−2<y+x<2−1,∴x+y的取值范围是−1<x+y<1.【解析】先根据已知条件用一个量如y去表示另一个量如x,然后根据题中已知量x的取值范围,构建另一量y的不等式,从而确定该量y的取值范围,同理再确定另一未知量x的取值范围,最后利用不等式性质即可获解.此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或式子,不等号的方向不变.21.【答案】解:(1)设每个篮球x 元,每个足球y 元, 由题意得,{x +y =130x +2y =180,解得:{x =80y =50,答:每个篮球80元,每个足球50元;(2)设买m 个篮球,则购买(54−m)个足球, 由题意得,80m +50(54−m)≤4000, 解得:m ≤4313,∵m 为整数, ∴m 最大取43,答:最多可以买43个篮球.【解析】(1)设每个篮球x 元,每个足球y 元,利用购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元得出等式求出答案;(2)根据题意表示出总费用得出不等式求出答案.此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确得出不等关系是解题关键.22.【答案】【解答】解:设每张车票的原价为a 元,按第一种方案购票应付款y 1元,按第二种方案购票应付款y 2元, 依题意得:y 1=5a +a ×60%⋅x ,y 2=(x +5)⋅a ⋅70%, ①当y 2>y 1时,(x +5)⋅a ⋅70%>5a +a ×60%⋅x , 解得x >15,②当y 2=y 1时,(x +5)⋅a ⋅70%=5a +a ×60%⋅x , 解得:x =15,③当y 2<y 1时,(x +5)⋅a ⋅70%<5a +a ×60%x , 解得:x <15.答:当学生多于15人时,按第一种方案;当学生等于15人时,两种方案都可以;当学生少于15人时,按第二种方案.【解析】【分析】设每张车票的原价为a 元,分别表示出第一种方案及第二种方案需要的付款,然后比较即可.本题考查的是一元一次不等式的应用,此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力,解题关键是要读懂题目的意思.。
一元一次不等式单元测试试题(含答案)
一元一次不等式单元测试题(一)山东沂源县徐家庄中心学校 256116 左效平时间: 120分钟满分:120分姓名:一、选择题:(共12个小题,每小题4分,共48分)1.已知a>b,则下列变形正确的是()A. ac>bc,其中c是实数B. a+c>b-c,其中c是实数C. a÷c>b ÷c ,其中c是实数D. a-3c>b-3c, 其中c是实数2.不等式4-2x>0的解集在数轴上表示为()3.不等式组⎪⎪⎩⎪⎪⎨⎧-+≥+132139x2xx>的解集为()A.x≥3> B.-3≤x<4 C.-3≤x<2 D.x>44. 不等式组21,512xx->⎧⎪⎨+≥⎪⎩①②中,不等式①和②的解集在数轴上表示正确的是()5若3x>-3y,则下列不等式中一定成立的是 ( ).A.x+y>0 B.x-y>0 C.x+y<0 D.x-y<06. 不等式6﹣4x≥3x﹣8的非负整数解为()A.2个 B.3个 C.4个 D.5个7. 如图表示下列四个不等式组中其中一个的解集,这个不等式组是()A.B.C.D.8. 不等式组29611x xx k+>+⎧⎨-<⎩的解集为2x<.则k的取值范围为()A .1k >B .1k < C.1k ≥ D .1k ≤9. 已知45m <<,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有 ( )A .1个B .2个 C.3个 D .4个10. 不等式组1122(2)13x x -⎧<⎪⎨⎪++≥⎩的解集是 ( )A .﹣1<x ≤3B .1≤x <3C .﹣1≤x <3D .1<x ≤311. 若关于x 的一元一次不等式组()2132,x x x m->-⎧⎪⎨<⎪⎩的解是5x <,则m 的取值范围 是 ( )A .5m ≥B .5m > C.5m ≤ D .5m <12. 关于x 的不等式组⎪⎩⎪⎨⎧+≤0320a -x φa x 的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1D .23二、填空题:(本题共5个小题,每小题4分,共20分.请直接填写最后结果).13. 据淄博气象台“天气预报”报道,今天的最低气温是17℃,最高气温是25℃, 则今天气温t (℃)的范围是 .14. 不等式组⎪⎩⎪⎨⎧-≥-->+1312112x x x 的整数解是 .15. 商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为________元/千克.16. 运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作,17. 不等式组2x+13x 1x+1x-2-≥0252⎧⎪⎨⎪⎩K K K <()()的所有整数解的积是 . 三.解答题18. (满分5分)解不等式:2723x x --≤.19. (满分5分)解不等式组:⎪⎩⎪⎨⎧--+4)1(2341x 3-ππx x .20. (满分6分)解不等式组,并把它的解集在数轴上表示出来.21. (满分6分)解不等式组⎪⎪⎩⎪⎪⎨⎧--2121x 21ππx )(,并写出该不等式组的最大整数解.22.(满分8分)小明解不等式121123x x ++-≤的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.23.(满分10分)关于x 的不等式组{x-m 03x-12(x-1)<>无解,求m 的取值范围.24(满分12分)根据交通法规定,普通车辆高速公路超速罚款扣分如下:1.超速处罚超过规定时速10%以内,暂不处罚.2.超过规定时速10%以上未达20%的,处以200元罚款,记3分.3.超过规定时速20%以上未达50%的,处以200元罚款,记6分.4.超过规定时速50%以上的,处以2000元罚款,记12分. 下图是小明爸爸国庆节在高速公路上拍下的行车指示牌,你能根据指示牌和上面的超速处罚规定,正确解答下面的问题吗?1.设小明爸爸在高速路上行驶的速度v千米/小时,若汽车行驶在最右边的车道,则行驶速度v的取值范围是;若汽车行驶在中间的车道,则行驶速度v的取值范围是;若汽车行驶在最左边的车道,则行驶速度v的取值范围是;2.若汽车行驶在最左边的车道,且不被处罚,则其行驶的最大速度是;3.若小明的爸爸行驶在中间的车道,且车速为130千米/小时,假设你是交警,你如何处理?(提示:各车道指示牌上红色圆中的数字是最高限速,蓝色圆中的数字是最低限速)参考答案:一元一次不等式单元测试题(一)一、选择题:1.D2.D3.B4. B5A6.B7. D8. C9.B10. C11. A12. B二、填空题:.13.17≤t ≤2514. 0,1,2.提示:不等式组的解集为﹣1<x ≤2,不等式组的整数解为0,1,2,15.10元/千克提示:设至少定价为x 元/千克,根据题意,得(80-80×5%)x ≥760,解得x ≥10, 所以售价至少应定为10元/千克.16.x <8.17.24提示:不等式组的整数解有2,3,4,一共,3个.三.解答题18.解:()()420561423214637223≤≤+≤+-≤--≤-x x x x xx x x所以不等式组的解集为4≤x .19.解:解不等式-3x+1<4,得x >-1,解不等式3x-2(x-1) <6,得x <4.所以原不等式组的解集是-1<x <4.20.解:因为所以解不等式①,得x <3.解不等式②,得x≥﹣1.所以不等式组的解集是﹣1≤x<3.它的解集在数轴上表示出来为:21.解:不等式①的解集是x≤5,不等式②解集是x>-1,所以不等式组的解集为:-1<x≤5,数轴描述如下图所示,仔细观察图,得不等式组的整数解为x=0,x=1,x=2,x=3,x=4,x=5一共六个,且最大的整数解为5.22.解:第一步就出现错误,第二步的解答也是错误的.去分母,得3(1+x)-2(2x+1)≤6,去括号,得:3+3x-4x-2≤6,移项,得,3x-4x≤6-3+2,合并同类项,得 -x≤5,两边都除以-1,得x≥-5.23.解:因为{x-m0(1)3x-12(x-1)(2)KL L<>中(1)的解集是x<m,(2)的解集是x>-1,且不等式组{x-m03x-12(x-1)<>无解,所以m≤-1.24解:1.最右边的车道时,60≤v≤80;中间车道时,80≤v≤100;最左边的车道时,100≤v≤120;2. 设小明爸爸在高速路上行驶的速度v千米/小时,根据上面的交规知道,只要不超过最高限速的10%,就不会受处罚,而最左边车道的最高限速是120千米/小时,根据题意,得120120v-≤10%,解得v≤132,所以行驶在最左边车道不受到处罚的最高速度为132千米/小时;3.因为中间车道的最高限速为100千米/小时,小明爸爸的车速为130千米/小时,所以超速130-100=30(千米/小时),且超速率为30100×100%=30%,因为20%<30%<50%,所以要对小明的爸爸处以200元罚款,记6分.。
数学:第七章《一元一次不等式组》单元测试(二)(沪科版七年级)
第七章 一元一次不等式与不等式组单元测试(二)一、慧眼识金(每小题3分,共30分):1.不等式260x ->的解集在数轴上表示正确的是( );2.把一个不等式组的解集表示在数轴上,如图2所示,则该不等式组的解集为( )A.102x <≤B.12x ≤C.102x <≤D.0x >3.解集在数轴上表示为如图3所示的不等式组是( )A .32x x >-⎧⎨⎩≥B .32x x <-⎧⎨⎩≤C .32x x <-⎧⎨⎩≥D .32x x >-⎧⎨⎩≤;4.不等式组2110x x >-⎧⎨-⎩,≤的解集是( );A.12x >-B.112x -<≤ C.1x ≤D.12x <-5.如果点(12)P m m -,在第四象限,那么m 的取值范围是( ). A .102m <<B .102m -<<C .0m <D .12m >; 6.如果一元一次不等式组3x x a >⎧⎨>⎩的解集为3x >.则a 的取值范围是( ) A .3a > B .a ≥3 C .a ≤3 D .3a < 7.不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )3- 03A .3- 03 B .3- 03 C .3- 03D .12图223-图31 2A .B .1 2C .1 2D .1 28.不等式2752x x <--的正整数解有( )A .1个;B .2个;C .3个;D .4个; 9.关于x 的不等式2x a -≤1-的解集如图所示, 则a 的取值是( );A .0B .-3C .-2D .-110.当m 取何值时,关于x 的方程32(2)3x m m m x +-+=+的解在-5和5之间? A .5122m -<<;B .3522m -<<;C .7322m -<<;D .5722m -<<; 二、画龙点睛(每小题3分,共30分)11.如果m 是一个正整数,且它的3倍加10不小于它的5倍减2,则m 为_____; 12.若-1<x <0,则x _____x1(填“>”、“<”)。
七年级下沪科版数学第七章一元一次不等式(组)测试卷共两套
欢迎下载
第七章一元一次不等式(组)测试卷 1
一、选择题 ( 每小题 3 分,共 30 分)
1、“x 的 2 倍与 3 的差不大于 8”列出的不等式是
()
A .2x-3≤8 B.2x-3≥8
C.2x-3<8 D.2x-3>8
2、如果 x<- 3,那么下列不等式成立的是 A. x2>- 3x B..x2≥- 3x C.x2<- 3x
() D.x2≤- 3x
3、下列说法正确的是
()
A.x=2 不是不等式 3x>6 的解 B.x>2 是不等式 3x>5 的解集
C.x=2 是不等式 3x>6 的一个解 D.以上说法都正确
4、如下图,在数轴上所表示的是哪一个不等式的解集
A. 1 x 1
2
C. x 1 1
B. x 3 3
2
D. 2x 4
厂家批发价(元 / 市场零售价(元 /
只)
只)
130
160
排球
100
120
( 1)该采购员最多可购进篮球多少只? ( 2)若该商场把 100 只球全部以零售价售出, 为使商场的利润不低于 2580 元,则采购员至少 要购篮球多少只?该商场最多可盈利多少元?
23.(14 分)20XX年北京奥运会的比赛门票开始接受公众预订. 下表为北京奥运会官方票务网
A.
1 x
4
2x
5
B.
1 x 4 2x 5
C.
1 x4
2x 5
D.
3
3
3
1 x 4 2x
3
) 5
xa b 3. 已知关于 x 的不等式组
的解集为 3 x 5 ,则 b 的值是 ( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 《一元一次不等式》章节测试卷(本卷满分 100分)一、相信你的选择:(每小题2分,共20分) 01、若b a <,则下列各式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac < 02、据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t (℃)的变化范围是( ) A .33t > B .24t ≤ C .2433t << D .2433t ≤≤ 03、实数a ,b 在数轴上的对应点如图1所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -< 04、 若01x <<,则21x x x,,的大小关系是( )A .21x x x <<B .21x x x <<C .21x x x <<D .21x x x<<05、一个不等式的解集为12x -<≤,那么在数轴上表示正确的是( )06、不等式53-x <x +3的正整数解有()A. 1个B. 2个C. 3个D. 4个 07、若440-=m ,则估计m 的值所在的范围是( )A .21<<mB .32<<mC .43<<mD .54<<m08、一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有 ( ) A . 4种 B .3种 C .2种 D .1种09、小刚准备用自己节省的零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他至少..有280元.设x 个月后小刚至少有280元,则可列计算月数的不等式为( ) A .3050280x +> B .3050280x -≥ C .3050280x -≤ D .3050280x +≥10、如图2,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为( )A .2x <-B .21x -<<-C .20x -<<D .10x -<<AB CDa图1二、试试你的身手:(每小题3分,共30分)1.如果x -y <0,那么x 与y 的大小关系是x y .(填<或>符号)2. “m 与10的和不小于m 的一半”用代数式表示为 . 3.已知三角形的三条边长分别为3、5、x ,则x 的取值范围是 . 4.不等式23x x >-的解集为 .5.若不等式组220x a b x ->⎧⎨->⎩的解集是11x -<<,则2009()a b += .6.不等式2x +7>-5-2x 的负整数解有 .7. 不等式组250112x x -<⎧⎪⎨+⎪⎩≥所有整数解的和是 .8.若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是9. 某次环保知识竞赛试卷有20道题。
评分办法是答对一题记5分,答错一题扣2分,不答记0分。
小明有3道题没答,但成绩超过了60分。
小明最多答对了 道题。
10.如图3,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 . 三、挑战你的技能:(本大题30分) 1.(本题6分)x 取什么值时,代数式5x –12不大于2(4x -3)?并将解集表示在数轴上.2.(本题7分)解不等式组331213(1)8x x x x-⎧+>+⎪⎨⎪---⎩,≤并求出所有整数解的和.2 0图33.(本题8分)先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式290x ->. 解:∵29(3)(3)x x x -=+-,∴(3)(3)0x x +->.由有理数的乘法法则“两数相乘,同号得正”,有 (1)3030x x +>⎧⎨->⎩ (2)3030x x +<⎧⎨-<⎩解不等式组(1),得3x >,解不等式组(2),得3x <-,故(3)(3)0x x +->的解集为3x >或3x <-,即一元二次不等式290x ->的解集为3x >或3x <-.问题:求分式不等式51023x x +<-的解集.4. (本题8分)星期天,小明和七名同学共8人去郊游,途中,他用20元钱去买饮料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一杯,如果20元钱刚好用完. (1)有几种购买方式?每种方式可乐和奶茶各多少杯?(2)每人至少一杯饮料且奶茶至少二杯时,有几种购买方式?四、拓广探索:(本大题20分)1.(本题10分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所彖的竖式与横式两种长方体形状的无盖纸盒.(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,设做竖式纸盒2个.①根据题意,完成以下表格:②按两种纸盒的生产个数来分,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板口张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.则n的值是.(写出一个即可)2.(本题10分)“六一”前夕,某玩具经销商用去2350元购进A、B、C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种玩具x套,B种玩具y套,三种电动玩具的进价和售价如右表所示,⑴用含x、y的代数式表示购进C种玩具的套数;⑵求y与x之间的函数关系式;⑶假设所购进的这三种玩具能全部卖出,且在购销这种玩具的过程中需要另外支出各种费用200元。
①求出利润P(元)与x(套)之间的函数关系式;②求出利润的最大值,并写出此时三种玩具各多少套。
型号ABC 进价(元/套)4555售价(元/套)5865参考答案一、相信你的选择(每小题2分,共20分)1. A2. D3. C4. C5. A6. C7. B8. C9. D 10. B 二、试试你的身手(每小题3分,共30分) 1. < ;2. m +10≥21m ;3. 2<x <8 ;4. x >1;5. -1 ;6. -2,-1; 7. 3 ;8. a >-1 ; 9. 17 ;10. 12x -<< ; 三、挑战你的技能(本大题30分)1. 解:5x –12≤8x -6.3x -≤6. x ≥-2 .解集在数轴上表示为:2. 解:解不等式(1)得1x <解不等式(2)得2x -≥所以不等式组的解集为21x -<≤.满足不等式解集的所有整数有-2,-1,0, 所有整数解的和是:(-2)+(-1)+0=-3. 3. 解:由有理数的除法法则“两数相除,同号得正”,有(1)510230x x +>⎧⎨-<⎩ (2)510230x x +<⎧⎨->⎩解不等式组(1),得135x -<<,解不等式组(2),得无解,故分式不等式51023x x +<-的解集为135x -<<.4. 解:(1)设买可乐、奶茶分别为x 、y 杯,根据题意得 2x +3y =20(且x 、y 均为自然数) ∴x =2032y -≥0 解得y ≤203∴y =0,1,2,3,4,5,6.代入2x +3y =20 并检验得10,0;x y =⎧⎨=⎩7,2;x y =⎧⎨=⎩4,4;x y =⎧⎨=⎩1,6.x y =⎧⎨=⎩所以有四种购买方式,每种方式可乐和奶茶的杯数分别为:(亦可直接列举法求得)(2)根据题意:每人至少一杯饮料且奶茶至少二杯时,即y ≥2且x +y ≥8 由(1)可知,有二种购买方式.四、拓广探索(本大题20分) 1. 解:(1②由题意得解得38≤x≤40又因为x 取整数,所以x=38,39,40答:有三种方案:生产竖式纸盒38个,横式纸盒62个;生产竖式纸盒39个,横式纸盒61个;生产竖式纸盒40个,横式纸盒60个。
(2)293或298或303(写出其中一个即可) 2.解:(1)购进C 种玩具套数为:50-x -y (或47-54x -1011y ) (2)由题意得405550()2350x y x y ++-=整理得230y x =-(3)①利润=销售收入-进价-其它费用(5040)(8055)(6550)(50)200p x y x y =-+-+----又∵230y x =-∴整理得15250p x =+②购进C 种电动玩具的套数为:5050(230)803x y x x x --=---=-据题意列不等式组102301080310x x x ≥⎧⎪-≥⎨⎪-≥⎩,解得70203x ≤≤∴x 的范围为70203x ≤≤,且x 为整数 ∴x 的最大值是23∵在15250p x =+中,15k =>0∴P 随x 的增大而增大 ∴当x 取最大值23时,P 有最大值,最大值为595元. 此时购进A 、B 、C 种玩具分别为23套、16套、11套.⎩⎨⎧≤-+≤-+340)100(34162)100(2x x x x。