第十七章勾股定理复习(构建知识体系)练习测评
人教版八年级数学下册《第17章 勾股定理》单元练习卷
第17章勾股定理一.选择题(共8小题)1.下列选项中,不能用来证明勾股定理的是()A.B.C.D.2.以下列各组数为边长,不能构成直角三角形的是()A.3,4,5B.1,1,C.8,12,13D.3.若一个三角形的三边长为3、4、x,则使此三角形是直角三角形的x的值是()A.5B.6C.D.5或4.如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4C.3D.5.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B.3C.D.56.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC沿A﹣D的方向平移AD长,得△DEF(B、C的对应点分别为E、F),则BE长为()A.1B.2C.D.37.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB =3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm8.如图,学校教学楼旁有一块矩形花圃,有极少数同学为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了()步路(假设2步为1米),却踩伤了花草.A.6B.5C.4D.3二.填空题(共7小题)9.已知,如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=4,BC=3,则CD=.10.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为.11.如图,一个机器人从A点出发,拐了几个直角的弯后到达B点位置,根据图中的数据,点A和点B的直线距离是.12.如图,“赵爽弦图”由4个全等的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若图中大正方形的面积为42,小正方形的面积为5,则(a+b)2的值为.13.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,则C,D间的距离为km.14.如图①,已知正方体ABCD﹣A1B1C1D1的棱长为4cm,E,F,G分别是AB,AA1,AD 的中点,截面EFG将这个正方体切去一个角后得到一个新的几何体(如图②),则图②中阴影部分的面积为cm2.15.如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,平板车的长不能超过米.三.解答题(共7小题)16.已知:如图,在△ABC中,CD⊥AB,垂足为点D,AC=20,BC=15,DB=9.(1)求CD的长.(2)求AB的长.17.如图,在△ABC中,D为BC边上的一点,已知AB=13,AD=12,AC=15,BD=5,求CD的长.18.如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC 的面积.19.如图,在Rt△ABC中,∠A=90°,D为斜边BC中点,DE⊥DF,求证:EF2=BE2+CF2.20.如图,将Rt△ABC绕其锐角顶点A旋转90°得到Rt△ADE,连接BE,延长DE、BC 相交于点F,则有∠BFE=90°,且四边形ACFD是一个正方形.(1)判断△ABE的形状,并证明你的结论;(2)用含b代数式表示四边形ABFE的面积;(3)求证:a2+b2=c2.21.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图2.火柴盒的一个侧面ABCD倒下到AEFG的位置,连接CF,AB=a,BC=b,AC=c.(1)请你结合图1用文字和符号语言分别叙述勾股定理.(2)请利用直角梯形BCFG的面积证明勾股定理:a2+b2=c2.22.如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点B取∠ABD=120°,BD=520m,∠D=30°.那么另一边开挖点E离D多远正好使A,C,E三点在一直线上(取1.732,结果取整数)?参考答案一.选择题(共8小题)1.D.2.C.3.D.4.A.5.B.6.C.7.D.8.C.二.填空题(共7小题)9..10..11.10.12.79.13.(1)20;(2)13;14.2.15.4三.解答题(共7小题)16.解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,∵BC=15、DB=9,∴CD===12;(2)在Rt△ACD中,∵AC=20、CD=12,∴AD===16,则AB=AD+DB=16+9=25.17.解:∵AB=13,AD=12,BD=5,∴AB2=AD2+BD2,∴△ADB是直角三角形,∠ADB=90°,∴△ADC是直角三角形,在Rt△ADC中,CD==9.18.解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,,∴S△ABC=,因此△ABC的面积为84.答:△ABC的面积是84.19.证明:延长ED到G,使DG=DE,连接EF、FG、CG,如图所示:在△EDF和△GDF中,∴△EDF≌△GDF(SAS),∴EF=FG又∵D为斜边BC中点∴BD=DC在△BDE和△CDG中,,∴△BDE≌△CDG(SAS)∴BE=CG,∠B=∠BCG∴AB∥CG∴∠GCA=180°﹣∠A=180°﹣90°=90°在Rt△FCG中,由勾股定理得:FG2=CF2+CG2=CF2+BE2∴EF2=FG2=BE2+CF2.20.(1)△ABE是等腰直角三角形,证明:∵Rt△ABC绕其锐角顶点A旋转90°得到在Rt△ADE,∴∠BAC=∠DAE,∴∠BAE=∠BAC+∠CAE=∠CAE+∠DAE=90°,又∵AB=AE,∴△ABE是等腰直角三角形;(2)∵四边形ABFE的面积等于正方形ACFD面积,∴四边形ABFE的面积等于:b2.(3)∵S正方形ACFD=S△BAE+S△BFE即:b2=c2+(b+a)(b﹣a),整理:2b2=c2+(b+a)(b﹣a)∴a2+b2=c2.21.解:(1)直角三角形两直角边的平方和等于斜边的平方.Rt△ABC中,∠B=90°,AB=a,BC=b,AC=c,则有b2+c2=a2.(2)∵S梯形BCFG=S△AFG+S△AFC+S△ACB=ab+ab+c2=ab+c2,S梯形BCFG=•(FG+BC)•BG=(a+b)(a+b)=a2+ab+b2,∴ab+c2=a2+ab+b2,整理得:a2+b2=c2.22.解:∵∠ABD=120°,∠D=30°,∴∠AED=120°﹣30°=90°,在Rt△BDE中,BD=520m,∠D=30°,∴BE=BD=260m,∴DE==260≈450(m).答:另一边开挖点E离D450m,正好使A,C,E三点在一直线上.。
第十七章 勾股定理(整理)
八年级下册第17章《勾股定理》单元测试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A. 4 B.8 C.10 D.12分析:利用勾股定理即可解答.解答:解:设斜边长为x,则一直角边长为x﹣2,根据勾股定理列出方程:62+(x﹣2)2=x2,解得x=10,故选C.点评:本题考查了利用勾股定理解直角三角形的能力.2.(3分)小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是()A.小丰认为指的是屏幕的长度B.小丰的妈妈认为指的是屏幕的宽度C.小丰的爸爸认为指的是屏幕的周长D.售货员认为指的是屏幕对角线的长度考点:勾股定理的应用.分析:根据电视机的习惯表示方法解答.解答:解:根据29英寸指的是荧屏对角线的长度可知售货员的说法是正确的.故选D.点评:本题考查了勾股定理的应用,解题时了解一个常识:通常所说的电视机的英寸指的是荧屏对角线的长度.3.(3分)如图中字母A所代表的正方形的面积为()A. 4 B.8 C.16 D.64考点:勾股定理.分析:根据勾股定理的几何意义解答.解答:解:根据勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,所以A=289﹣225=64.故选D.点评:能够运用勾股定理发现并证明结论:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.运用结论可以迅速解题,节省时间.4.(3分)将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形考点:相似三角形的性质.分析:根据三组对应边的比相等的三角形相似,依据相似三角形的性质就可以求解.解答:解:将直角三角形的三条边长同时扩大同一倍数,得到的三角形与原三角形相似,因而得到的三角形是直角三角形.故选C.点评:本题主要考查相似三角形的判定以及性质.5.(3分)一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm考点:勾股定理.分析:设另一条直角边是a,斜边是c.根据另一条直角边与斜边长的和是49cm,以及勾股定理就可以列出方程组,即可求解.解答:解:设另一条直角边是a,斜边是c.根据题意,得,联立解方程组,得.故选D.点评:注意根据已知条件结合勾股定理列方程求解.解方程组的方法可以把①方程代入②方程得到c﹣a=1,再联立解方程组.6.(3分)适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2个B.3个 C.4个D.5个考点:勾股定理的逆定理;三角形内角和定理.分析:计算出三角形的角利用定义判定或在知道边的情况下利用勾股定理的逆定理判定则可.解答:解:①,根据勾股定理的逆定理不是直角三角形,故不是;②a=6,∠A=45不是成为直角三角形的必要条件,故不是;③∠A=32°,∠B=58°则第三个角度数是90°,故是;④72+242=252,根据勾股定理的逆定理是直角三角形,故是;⑤22+22≠42,根据勾股定理的逆定理不是直角三角形,故不是.故选A.点评:本题考查了直角三角形的定义和勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.(3分)在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形考点:勾股定理的逆定理;完全平方公式.分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解答:解:∵(n2﹣1)2+(2n)2=(n2+1)2,∴三角形为直角三角形,故选D.点评:本题利用了勾股定理的逆定理判定直角三角形,即已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.8.(3分)直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形有一个锐角是()A.15°B.30°C.45° D.60°考点:勾股定理.分析:根据斜边的平方等于两条直角边乘积的2倍,以及勾股定理可以列出两个关系式,直接解答即可.解答:解:设直角三角形的两直角边是a、b,斜边是c.根据斜边的平方等于两条直角边乘积的2倍得到:2ab=c2,根据勾股定理得到:a2+b2=c2,因而a2+b2=2ab,即:a2+b2﹣2ab=0,(a﹣b)2=0∴a=b,则这个三角形是等腰直角三角形,因而这个三角形的锐角是45°.故选C.点评:已知直角三角形的边长问题,不要忘记三边的长,满足勾股定理.9.(3分)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2 D.12cm2考点:勾股定理;翻折变换(折叠问题).分析:根据折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.解答:解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选C.点评:本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.10.(3分)已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D.40海里考点:勾股定理的应用;方向角.分析:根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离.解答:解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×2=32,12×2=24海里,根据勾股定理得:=40(海里).故选D.点评:熟练运用勾股定理进行计算,基础知识,比较简单.二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2008•湖州)利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为勾股定理,该定理的结论其数学表达式是a2+b2=c2.考点:勾股定理的证明.专题:证明题.分析:通过图中三角形面积、正方形面积之间的关系,证明勾股定理.解答:解:用图(2)较简单,如图正方形的面积=(a+b)2,用三角形的面积与边长为c的正方形的面积表示为4×ab+c2,即(a+b)2=4×ab+c2化简得a2+b2=c2.这个定理称为勾股定理.故答案为:勾股定理、a2+b2=c2.点评:本题是用数形结合来证明勾股定理,锻炼了同学们的数形结合的思想方法.12.(3分)如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为10.考点:勾股定理;等腰三角形的性质.分析:根据等腰三角形的三线合一得BD=8,再根据勾股定理即可求出AB的长.解答:解:∵等腰△ABC的底边BC为16,底边上的高AD为6,∴BD=8,AB===10.点评:注意等腰三角形的三线合一,熟练运用勾股定理.13.(3分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为480m.考点:勾股定理的应用.专题:应用题.分析:从实际问题中找出直角三角形,利用勾股定理解答.解答:解:根据图中数据,运用勾股定理求得AB===480米.点评:考查了勾股定理的应用,是实际问题但比较简单.14.(3分)小华和小红都从同一点O出发,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为15米.考点:勾股定理的应用.专题:应用题.分析:根据题意画出图形根据勾股定理解答.解答:解:如图,在Rt△AOB中,∠O=90°,AO=9m,OB=12m,根据勾股定理得AB====15m.点评:本题很简单,只要根据题意画出图形即可解答,体现了数形结合的思想.15.(3分)一个三角形三边满足(a+b)2﹣c2=2ab,则这个三角形是直角三角形.考点:勾股定理的逆定理.分析:化简等式,可得a2+b2=c2,由勾股定理逆定理,进而可得其为直角三角形.解答:解:(a+b)2﹣c2=2ab,即a2+b2+2ab﹣c2=2ab,所以a2+b2=c2,则这个三角形为直角三角形.故答案为:直角.点评:考查了勾股定理逆定理的运用,是基础知识比较简单.16.(3分)木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,这个桌面合格(填”合格”或”不合格”).考点:勾股定理的应用.分析:只要算出桌面的长为60cm,宽为32cm,对角线为68cm是否符合勾股定理即可,根据勾股定理直接解答.解答:解:==68cm,故这个桌面合格.点评:本题考查的是勾股定理在实际中的应用,需要同学们结合实际掌握勾股定理.17.(3分)直角三角形一直角边为12cm,斜边长为13cm,则它的面积为30 cm2.考点:勾股定理.分析:根据勾股定理求得其另一直角边的长,再根据面积公式即可求得其面积.解答:解:∵直角三角形一直角边为12cm,斜边长为13cm,∴另一直角边==5cm,∴面积=×5×12=30cm2.点评:解决本题的关键是根据勾股定理求得另一直角边的长.18.(3分)如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是25.考点:平面展开-最短路径问题.分析:先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.解答:解:如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.故答案为25.点评:本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.三、解答题(共46分)19.(6分)如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).考点:勾股定理的应用.专题:应用题.分析:根据题意画出图形,构造出直角三角形,利用勾股定理求解.解答:解:如图所示,过D点作DE⊥AB,垂足为E∵AB=13,CD=8又∵BE=CD,DE=BC∴AE=AB﹣BE=AB﹣CD=13﹣8=5∴在Rt△ADE中,DE=BC=12∴AD2=AE2+DE2=122+52=144+25=169∴AD=13(负值舍去)答:小鸟飞行的最短路程为13m.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.20.(6分)如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,求AC2的值.考点:勾股定理.分析:∵AD⊥BC于D,∴可得到两个直角三角形△ABD和△ADC,可利用勾股定理求得AD长,进而求得AC2的值.解答:解:∵AD⊥BC于D,∴∠ADB=∠ADC=90°∵AB=3,BD=2∴AD2=AB2﹣BD2=5∵DC=1,∴AC2=AD2+DC2=5+1=6.点评:本题需注意最后求的是AC2,所以在计算过程中都保持线段的平方即可.21.(8分)小明的叔叔家承包了一个矩形鱼池,已知其面积为48m2,其对角线长为10m,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗?考点:勾股定理的应用;二元一次方程组的应用;矩形的性质.专题:计算题.分析:根据矩形的面积公式得到长与宽的积,再根据勾股定理得到长与宽的平方和.联立解方程组求得长与宽的和可.解答:解:设矩形的长是a,宽是b,根据题意,得:,(2)+(1)×2,得(a+b)2=196,即a+b=14,所以矩形的周长是14×2=28m.点评:注意根据题意结合勾股定理联立解方程组,只需求得长与宽的和即可.22.(10分)如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?考点:勾股定理的应用.专题:应用题.分析:(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC>200则A城不受影响,否则受影响;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG 是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.解答:解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,所以△ADG是等腰三角形,因为AC⊥BF,所以AC是DG的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).点评:此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.四、创新探索题23.一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm、宽为1cm、高为4cm.考点:平面展开-最短路径问题.分析:要求长方体中两点之间的最短路径,最直接的作法,就是将正方体展开,然后利用两点之间线段最短解答.解答:解:如图:根据题意,如上图所示,最短路径有以下三种情况:(1)沿AA′,A′C′,C′B′,B′B剪开,得图(1)AB′2=AB2+BB′2=(2+1)2+42=25;(2)沿AC,CC′,C′B′,B′D′,D′A′,A′A剪开,得图(2)AB′2=AC2+B′C2=22+(4+1)2=4+25=29;(3)沿AD,DD′,B′D′,C′B′,C′A′,AA′剪开,得图(3)AB′2=AD2+B′D2=12+(4+2)2=1+36=37;综上所述,最短路径应为(1)所示,所以AB′2=25,即AB′=5cm.点评:此题考查最短路径问题,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.。
第十七章勾股定理 复习练习题 2022-2023学年八年级数学人教版下册
2022-2023学年八年级数学人教版(下) 《勾股定理》复习练习题一、选择题(本大题共10道小题)1. 下列各组数中,不能构成直角三角形的一组是( )A.1,2,5B.1,2,3C.3,4,5D.6,8,122. 在平面直角坐标系中,点P(3,4)到原点的距离是( )A.3B.4C.5D.±53. 下列命题的逆命题是真命题的是( ).A.若a=b,则|a|=|b|B.全等三角形的周长相等C.若a=0,则ab=0D.有两边相等的三角形是等腰三角形4. 三角形的三边a,b,c满足(a+b)2-c2=2ab,则此三角形是( ).A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形5. 已知直角三角形两边的长为3和4,则此三角形的周长为( ).A.12B.7+7C.12或7+7D.以上都不对6. 有六根细木棒,它们的长度分别是2,4,6,8,10,12(单位:cm),从中取出三根首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为( )A.2,4,8B.4,8,10C.6,8,10D.8,10,127. 如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为( )A.60海里B.45海里C.20海里D.30海里8. 如图,在△ABC中,已知AB=AC=5,BC=4,点E、F是中线AD上的两点,则图中阴影部分的面积是( )A.21B.221C.321D.4219. 将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是( ).A.h≤17cmB.h≥8cmC.15cm≤h≤16cmD.7cm≤h≤16cm10. 如图所示,要在离地面5m处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m四种备用拉线材料中,拉线AC最好选用( )A.L1B.L2C.L3D.L4二、填空题(本大题共8道小题)11. 命题“直角三角形中,30°角所对的直角边等于斜边的一半”的逆命题是_____,它是_____命题.12. 直角三角形两直角边长分别为5 和12,则斜边上的高为__________.13. 如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将直角边AB折叠使它落在斜边AC上,折痕为AD,则BD=______.14. 如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.•当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯____.15. 如图,B,C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60米,则点A到岸边BC的距离是______米.16. 如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3s时,△BPQ的面积为cm2.17. 如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A向外移动到A’,使梯子的底端A’到墙根O的距离等于3米,同时梯子的顶端B下降至 B’,那么 BB’的值:①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 .18. 如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300 m是盆景园B,从盆景园B向左转90°后直走400 m到达梅花阁C,则点C的坐标是_________.三、解答题(本大题共6道小题)19. △ABC中,AB=AC=4,点P在BC边上运动,猜想AP2+PB·PC的值是否随点P位置的变化而变化,并证明你的猜想.20. 如图,要修建一个育苗棚,棚高h=1.2 m,棚宽a=1.6m,棚长l=12 m,现要在棚顶上覆盖塑料薄膜,试求薄膜面积21. “为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN上限速60千米/时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B 行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由(参考数据:2≈1.41,3≈1.73).22. 如图,将长方形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接CE.(1)求证:AE=AF=CE=CF;(2)设AE=a,ED=b,DC=c,请写出一个a,b,c三者之间的数量关系式.23. 如图所示,在等腰直角三角形ABC中,∠ABC=90°,点D为AC边的中点,过D点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF的长.24. 高速公路的同一侧有A、B两城镇,如图,它们到高速公路所在直线MN的距离分别为AA′=2 km,BB′=4 km,A′B′=8 km.要在高速公路上A′、B′之间建一个出口P,使A、B两城镇到P的距离之和最小.求这个最短距离.。
人教版初2数学8年级下册 第17章(勾股定理)单元练习卷(含解析)
第17章勾股定理单元练习卷一、选择题1.下列三个长度的线段能组成直角三角形的是( )A.1,,B.1,,C.2,4,6D.5,5,62.有下列命题:①若|a|>|b|,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等.其中,原命题与逆命题均为真命题的有( )A.0个B.1个C.2个D.3个3.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是( )A.9B.36C.27D.344.下列各三角形中,面积为无理数的是( )A.B.C.D.5.如图,一棵大树,在一次强风中于离地面3米处折断倒下,倒下部分树头A着地与树底部B的距离为米,这棵大树的高度为( )米.A.6B.9C.12D.276.《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”( )A.3步B.5步C.6步D.8步7.如图,分别以直角△ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,若S2=7,S3=2,那么S1=( )A.9B.5C.53D.458.如图,小明准备测量一段水渠的深度,他把一根竹竿AB竖直插到水底,此时竹竿AB离岸边点C处的距离CD=1.5米.竹竿高出水面的部分AD长0.5米,如果把竹竿的顶端A 拉向岸边点C处,竿顶和岸边的水面刚好相齐,则水渠的深度BD为( )米.A.2B.2.5C.2.25D.39.如图,在四边形ABCD中,AB=3,BC=4,CD=1,AD=2,AB⊥BC,四边形ABCD 的面积为( )A.12B.6+C.2D.2+610.如图,在四边形ABCD中,AB=1,BC=1,CD=2,DA=,且∠ABC=90°,则四边形ABCD的面积是( )A.2B.C.D.11.下列命题:①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是( )A.①②B.①③C.①④D.②④二、填空题12.观察下列几组数:①,,;②1,1,2;③5,12,13;④6,7,8;⑤3,4,5其中能作为直角三角形三边长的是: (填序号).13.已知一个直角三角形的两边长分别为3,4,则第三边的长为 .14.如图,学校有一块长方形草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路“.他们仅仅少走了 .15.木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,这个桌面 (填“合格”或“不合格”).16.如果△ABC三边长为a,b,c满足|a﹣5|++(13﹣c)2=0,则该三角形是 三角形.17.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么ab的值为 .18.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B300m,结果他在水中实际游了500m,求该河流的宽度为 m.19.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是 .三、解答题20.一艘轮船以30千米/时的速度离开港口,向东南方向航行,另一艘轮船同时离开港口,以40千米/时的速度航行,它们离开港口一个半小时后相距75千米,求第二艘船的航行方向.21.喜迎军运会,青山区加大绿化力度,和平公园有一块如图所示的四边形空地ABCD,现计划在空地上种植草皮,经测量AB=3m,BC=4m,CD=12m,DA=13m,∠ABC=90°,若每平方米草皮需要200元,求这块地种植草皮需要投入多少元?22.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…这到底是巧合,还是有什么规律蕴涵其中呢?请你结合有关知识进行研究.若132=a+b,则a,b的值可能是多少?23.如图,铁路上A,B两点相距23km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=8km.现在要在铁路AB上建一个土特产品收购站E,使得C,D 两村到E站的距离相等,则E站应建在离A站多少km处?24.如图,△ABC中,AB=AC=20,BC=32,D是BC上一点,AD=15,且AD⊥AC,求BD长.25.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.参考答案一、选择题1.下列三个长度的线段能组成直角三角形的是( )A.1,,B.1,,C.2,4,6D.5,5,6【分析】根据勾股定理的逆定理进行判断.【解答】解:A、∵12+()2=()2,∴A能构成直角三角形,故本选项正确;B、∵12+()2≠()2,∴B不能构成直角三角形,故本选项错误;C、∵22+42≠62,∴C不能构成直角三角形,故本选项错误;D、∵52+52≠62,∴D不能构成直角三角形,故本选项错误;故选:A.2.有下列命题:①若|a|>|b|,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等.其中,原命题与逆命题均为真命题的有( )A.0个B.1个C.2个D.3个【分析】根据不等式的性质、等边三角形的性质和判定、绝对值逐个判断即可.【解答】解:①若|a|>|b|,则a不一定>b,是假命题;②若a+b=0,则|a|=|b|是真命题,但逆命题若|a|=|b|,则a=b或a+b=0,是假命题;③等边三角形的三个内角都相等原命题与逆命题均为真命题;故选:B.3.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是( )A.9B.36C.27D.34【分析】由正方形的性质和勾股定理求出小正方形和大正方形的面积,即可得出小正方形与大正方形的面积差.【解答】解:根据题意得:小正方形的面积=(6﹣3)2=9,大正方形的面积=32+62=45,45﹣9=36.故选:B.4.下列各三角形中,面积为无理数的是( )A.B.C.D.【分析】根据三角形的面积公式和勾股定理计算每个图形的面积即可知道问题的答案.【解答】解:A、三角形的面积为×8×3=12,12不是无理数,故该选项错误;B、三角形的面积为××=3,3不是无理数,故该选项错误C、三角形的面积为×5×=,是无理数,故该选项正确;D、三角形的面积为×2×3=3,3不是无理数,该选项错误,故选:C.5.如图,一棵大树,在一次强风中于离地面3米处折断倒下,倒下部分树头A着地与树底部B的距离为米,这棵大树的高度为( )米.A.6B.9C.12D.27【分析】设出大树原来的高度为x,用勾股定理列方程求解即可.【解答】解:设这颗大树原来的高度为x米,根据题意得,32+(3)2=(x﹣3)2,解得:x=9或x=﹣3(舍去),答:这棵大树原来的高度为9米.故选:B.6.《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”( )A.3步B.5步C.6步D.8步【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径.【解答】解:根据勾股定理得:斜边为=17,则该直角三角形能容纳的圆形(内切圆)半径r==3(步),即直径为6步,故选:C.7.如图,分别以直角△ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,若S2=7,S3=2,那么S1=( )A.9B.5C.53D.45【分析】根据勾股定理与正方形的性质解答.【解答】解:在Rt△ABC中,AB2=BC2+AC2,∵S1=AB2,S2=BC2,S3=AC2,∴S1=S2+S3.∵S2=7,S3=2,∴S1=7+2=9.故选:A.8.如图,小明准备测量一段水渠的深度,他把一根竹竿AB竖直插到水底,此时竹竿AB离岸边点C处的距离CD=1.5米.竹竿高出水面的部分AD长0.5米,如果把竹竿的顶端A 拉向岸边点C处,竿顶和岸边的水面刚好相齐,则水渠的深度BD为( )米.A.2B.2.5C.2.25D.3【分析】设BD的长度为xm,则AB=BC=(x+0.5)m,根据勾股定理构建方程即可解决问题;【解答】解:设BD的长度为xm,则AB=BC=(x+0.5)m,在Rt△CDB中,1.52+x2=(x+0.5)2,解得x=2.故选:A.9.如图,在四边形ABCD中,AB=3,BC=4,CD=1,AD=2,AB⊥BC,四边形ABCD 的面积为( )A.12B.6+C.2D.2+6【分析】连接AC,知四边形的面积是△ADC和△ABC的面积和,由已知得其符合勾股定理的逆定理从而得到△ACD是一个直角三角形.则四边形面积可求.【解答】解:连接AC,则有AC==5,∵52+122=132,即AD2+CD2=AC2,∴△ACD为直角三角形,∴四边形的面积=S△ABC+S△ACD=AB•BC+AD•CD=×3×4+×2×1=6+.故选:B.10.如图,在四边形ABCD中,AB=1,BC=1,CD=2,DA=,且∠ABC=90°,则四边形ABCD的面积是( )A.2B.C.D.【分析】在直角三角形ABC中,利用勾股定理求出AC的长,在三角形ACD中,利用勾股定理的逆定理判断得到三角形ACD为直角三角形,两直角三角形面积之和即为四边形ABCD的面积.【解答】解:在Rt△ABC中,AB=1,BC=1,根据勾股定理得:AC==,在△ACD中,CD=2,AD=,∴AC2+CD2=AD2,∴△ACD为直角三角形,则S=S△ABC+S△ACD=×1×1+×2×=+.故选:B.11.下列命题:①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是( )A.①②B.①③C.①④D.②④【分析】本题主要依据勾股定理的逆定理,判定三角形是否为直角三角形.【解答】解:①正确,∵a2+b2=c2,∴(4a)2+(4b)2=(4c)2,②错误,应为“如果直角三角形的两直角边是3,4,那么斜边必是5”③错误,∵122+212≠252,∴不是直角三角形;④正确,∵b=c,c2+b2=2b2=a2,∴a2:b2:c2=2:1:1,故选:C.二、填空题12.观察下列几组数:①,,;②1,1,2;③5,12,13;④6,7,8;⑤3,4,5其中能作为直角三角形三边长的是: ①③⑤ (填序号).【分析】利用给出的三边长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:①()2+()2=()2,能作为直角三角形三边长,故此选项正确;②12+12≠22,不能作为直角三角形三边长,故此选项错误;③52+122=132,能作为直角三角形三边长,故此选项正确;④62+72≠82,不能作为直角三角形三边长,故此选项错误;⑤32+42=52,能作为直角三角形三边长,故此选项正确.故答案为:①③⑤.13.已知一个直角三角形的两边长分别为3,4,则第三边的长为 5或 .【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:设第三边为x,(1)若4是直角边,则第三边x是斜边,由勾股定理得:32+42=x2,∴x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理得:32+x2=42,∴x=;∴第三边的长为5或.故答案为:5或.14.如图,学校有一块长方形草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路“.他们仅仅少走了 2m .【分析】根据题意结合勾股定理得出AB的长,进而得出AC+BC﹣AB的值即可.【解答】解:如图所示:AB==5(m),∵AC+BC=3+4=7(m),∴在草坪内走出了一条“路“.他们仅仅少走了:7﹣5=2(m).故答案为:2m.15.木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,这个桌面 合格 (填“合格”或“不合格”).【分析】只要算出桌面的长为60cm,宽为32cm,对角线为68cm是否符合勾股定理即可,根据勾股定理直接解答.【解答】解:==68cm,故这个桌面合格.16.如果△ABC三边长为a,b,c满足|a﹣5|++(13﹣c)2=0,则该三角形是 直角 三角形.【分析】根据非负数的性质可得a=5,b=12,c=13,再根据勾股定理逆定理即可得结论.【解答】解:因为|a﹣5|++(13﹣c)2=0,而|a﹣5|≥0,≥0,(13﹣c)2≥0,所以a﹣5=0,b﹣12=0,13﹣c=0,所以a=5,b=12,c=13,因为52+122=132,所以该三角形是直角三角形.故答案为:直角.17.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么ab的值为 12 .【分析】根据大正方形的面积是25,小正方形的面积是1,可得直角三角形的面积,即可求得ab的值.【解答】解:∵大正方形的面积是25,小正方形的面积是1,∴直角三角形的面积是(25﹣1)÷4=6,又∵直角三角形的面积是ab=6,∴ab=12.故答案为:12.18.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B300m,结果他在水中实际游了500m,求该河流的宽度为 400 m.【分析】根据勾股定理可得AB=,代入数即可.【解答】解:由题意得:AB===400(米).故答案为:400.19.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是 .【分析】在直角三角形中,利用勾股定理得到a2+b2=c2,在等式两边同时乘以,变形后得到S2+S3=S1,将已知的S1与S2代入,即可求出S3的值.【解答】解:在直角三角形中,利用勾股定理得:a2+b2=c2,∴a2+b2=c2,变形为:()2π+()2π=()2π,即S2+S3=S1,又S1=,S2=2π,则S3=S1﹣S2=﹣2π=.故答案为:三、解答题20.一艘轮船以30千米/时的速度离开港口,向东南方向航行,另一艘轮船同时离开港口,以40千米/时的速度航行,它们离开港口一个半小时后相距75千米,求第二艘船的航行方向.【分析】根据路程=速度×时间分别求得OA、OB的长,再进一步根据勾股定理的逆定理可以证明三角形OAB是直角三角形,从而求解.【解答】解:如图,根据题意,得OA=30×1.5=45(千米),OB=40×1.5=60(千米),AB=75千米.∵452+602=752,∴OA2+OB2=AB2,∴∠AOB=90°,即第二艘船的航行方向与第一艘船的航行方向成90°,∴第二艘船的航行方向为东北或西南方向.21.喜迎军运会,青山区加大绿化力度,和平公园有一块如图所示的四边形空地ABCD,现计划在空地上种植草皮,经测量AB=3m,BC=4m,CD=12m,DA=13m,∠ABC=90°,若每平方米草皮需要200元,求这块地种植草皮需要投入多少元?【分析】直接利用勾股定理的逆定理得出∠ACD=90°,再利用直角三角形的性质得出答案.【解答】解:连接AC∵∠B=90°,AB=3m,BC=4m,BC=12m,AC2=AB2+BC2=32+42=25,则AC=5m,∴AC2+CD2=25+144=169=132又∵AD2=132,∴AC2+CD2=CD2∴∠ACD=90°,∴△ACD是直角三角形,∴四边形ABCD的面积=6+30=36(m2),∴学校要投入资金为:200×36=7200(元);答:学校需要投入7200元买草皮.22.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…这到底是巧合,还是有什么规律蕴涵其中呢?请你结合有关知识进行研究.若132=a+b,则a,b的值可能是多少?【分析】观察三个数之间的关系可得出规律:第n组数为(2n+1)2,(),()由此规律解决问题.【解答】解:题目蕴含的规律为:(2n+1)2=+;∵13=2×6+1,∴132=+=84+85,∴a=84,b=85.23.如图,铁路上A,B两点相距23km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=8km.现在要在铁路AB上建一个土特产品收购站E,使得C,D 两村到E站的距离相等,则E站应建在离A站多少km处?【分析】根据使得C,D两村到E站的距离相等,则DE=CE,再利用勾股定理得出AE 的长.【解答】解:∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(23﹣x),∵DA=15km,CB=8km,∴x2+152=(23﹣x)2+82,解得:x=8,∴AE=8km.答:E站应建在离A站8km处.24.如图,△ABC中,AB=AC=20,BC=32,D是BC上一点,AD=15,且AD⊥AC,求BD长.【分析】因为BD=BC﹣CD,可以在Rt△CAD中,根据勾股定理先求出CD的值.【解答】解:∵AD⊥AC,AC=20,AD=15,∴CD==25∴BD=BC﹣CD=32﹣25=7.25.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.【分析】(1)直接根据勾股定理求出BC的长度;(2)当△ABP为直角三角形时,分两种情况:①当∠APB为直角时,②当∠BAP为直角时,分别求出此时的t值即可;(3)当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.【解答】解:(1)在Rt△ABC中,BC2=AB2﹣AC2=102﹣62=64,∴BC=8(cm);(2)由题意知BP=2tcm,①当∠APB为直角时,点P与点C重合,BP=BC=8cm,即t=4;②当∠BAP为直角时,BP=2tcm,CP=(2t﹣8)cm,AC=6cm,在Rt△ACP中,AP2=62+(2t﹣8)2,在Rt△BAP中,AB2+AP2=BP2,即:102+[62+(2t﹣8)2]=(2t)2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(3)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=16cm,t=8;③当BP=AP时,AP=BP=2tcm,CP=|2t﹣8|cm,AC=6cm,在Rt△ACP中,AP2=AC2+CP2,所以(2t)2=62+(2t﹣8)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.。
人教版八年级数学下册第17章勾股定理单元复习测试题(最新整理)
(1)求 DC 的长; (2)求 AD 的长; (3)求 AB 的长.
17.《勾股圆方图》是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如 图 ( 1)). 设 每 个 直 角 三 角 形 中 较 短 直 角 边 为 a, 较 长 直 角 边 为 b, 斜 边 为 c
勾股定理 单元复习测试题
一.选择题
1.以下列各组数为边长,不能构成直角三角形的是( )
A.3,4,5
B.1,1,
C.8,12,13
D.
2.如图所示,△ABC 的顶点 A、 B、C 在边长为 1 的正方形网格的格点上,BD⊥AC 于点 D,
则 BD 的长为( )
A.
B.
C.
D.
3.如图,字母 B 所代表的正方形的面积是( )
错误.
第 8 页 共 16 页
故选:B.
8.解:①、设较短的一个直角边为 M,则另一个直角边为 2M,所以 M×2M=2,解得 M=
,2M=2 .根据勾股定理解得斜边为 .所以此项正确;
②、根据勾股定理解得,另一边=
= , 所以此项正确;
③、设∠A=x,则∠B=5x,∠C=6x.因为 x+5x+6x=180°解得 x=15°, 从而得到三
二.填空题(共 5 小题) 11.解:∵DE 是 AB 的中垂线,
∴DA=DB, 设 AD=x,则 DB=x,CD=BC﹣BD=8﹣x, 在 Rt△ACD 中,∵AC2+CD2=AD2, ∴62+(8﹣x)2=x2, 解得 x= , ∴CD=8﹣x= , 故答案为: .
第 10 页 共 16 页
八年级数学(下)第十七章《勾股定理》测试题含答案
八年级数学(下)第十七章《勾股定理》测试题(测试时间:90分钟满分:120分)一.选择题(共10小题,每题3分,共30分)1.下列各组数中,以它们为边长的线段不能构成直角三角形的是().A. ,,B. ,,C. ,,D. ,,2.设直角三角形的两条直角边长分别为a和b,斜边长为c.已知b=8,c=10,则a的值为( ) A. 2 B. 6 C. 5 D. 363.在△ABC中,AB=1,AC=2,BC=5,则该三角形为( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形4.将直角三角形三条边的长度都扩大同样的倍数后得到的三角形().A. 仍是直角三角形B. 可能是锐角三角形C. 可能是钝角三角形D. 不可能是直角三角形5.如图字母所代表的正方形的面积是().A. B. C. D.6.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A. 4米B. 8米C. 9米D. 7米7.如图,AC是电线杆的一根拉线,测得BC=6米,∠ACB=60°,则AB的长为( )A. 12米B. 63米C. 6米D. 23米8.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A. 10mB. 15mC. 18mD. 20m9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A、B、C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A. 102B.104C.105D. 510.如图,在△ABC中,有一点P在直线AC上移动,若AB=AC=5,BC=6,则BP的最小值为()24二.填空题(共10小题,每题3分,共30分)11.已知直角三角形的两直角边长分别为5和12,则其斜边长为________.12.斜边的边长为17cm,一条直角边长为8cm的直角三角形的面积是_______.13.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7m,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3m,木板顶端向下滑动了0.9m,则小猫在木板上爬动了_____________m.14.如图,数轴上点A所表示的实数是______________.15.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.16.如图,若要建一个蔬菜大棚,棚宽3.2 m,高2.4 m,长15 m,请你计算,覆盖在顶上的塑料薄膜需要____m2.17.如图,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为_______厘米.18.如图,在△ABC中,∠C=90°,AD是角平分线,AC=12,AD=15,则点D到AB的距离为__________.19.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为________m220.如图是一个三级台阶,每一级的长,宽和高分别是50cm ,30cm ,10cm ,A 和B 是这个台阶的两个相对的端点,若一只壁虎从A 点出发沿着台阶面爬到B 点,则壁虎爬行的最短路线的长是________.三、解答题(共60分)21.(8分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.DACB(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. (2)求这块地的面积.22.(6分)飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000 米处,过了 20 秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?23.(6分)学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.24.(6分)一艘轮船以16千米/时的速度离开港口向正北方向航行,另一艘轮船同时离开港口以12千米/时的速度向正东方向航行,它们离开港口半小时后相距多少千米?25.(8分)正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点.(1)在图①中,画一个面积为10的正方形;(2)在图②、③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.26.(8分)如图,居民楼与马路是平行的,在一楼的点A处测得它到马路的距离为9m,已知在距离载重汽车41m处就可受到噪声影响.(1)试求在马路上以4m/s速度行驶的载重汽车,能给一楼A处的居民带来多长时间的噪音影响?(2)若时间超过25秒,则此路禁止该车通行,你认为载重汽车可以在这条路上通行吗?27.(8分)一架云梯长25 m,如图所示斜靠在一面墙上,梯子底端C离墙7 m.(1)这个梯子的顶端A距地面有多高?(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向也是滑动了4 m吗?28.(10分)某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长分别为6 m、8 m.现要将其扩建成等腰三角形,且扩充部分是以8 m为一个直角边长的直角三角形.请在下面三张图上分别画出三种不同的扩建后的图形,并求出扩建后的等腰三角形花圃的面积.答案(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分)1.下列各组数中,以它们为边长的线段不能构成直角三角形的是( ). A. ,, B. ,,C. ,, D. ,,【答案】D2.设直角三角形的两条直角边长分别为a 和b ,斜边长为c .已知b =8,c =10,则a 的值为( ) A. 2 B. 6 C. 5 D. 36 【答案】B【解析】a =22c b -=22108-=6.故选B .3.在△ABC 中,AB =1,AC =2,BC =5,则该三角形为( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形 【答案】B【解析】在△ABC 中,AB =1,AC =2,BC =5.∵()222125+=,∴△ABC 是直角三角形.故选B .4.将直角三角形三条边的长度都扩大同样的倍数后得到的三角形( ). A. 仍是直角三角形 B. 可能是锐角三角形 C. 可能是钝角三角形 D. 不可能是直角三角形 【答案】A【解析】将直角三角形三条边的长度都扩大同样的倍数后得到的三角形只是改变大小,不会改变它形状,故选A.5.如图字母所代表的正方形的面积是( ).A. B. C. D.【答案】C【解析】∵图中三角形为,∴,∴.故选C.6.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A. 4米B. 8米C. 9米D. 7米【答案】D7.如图,AC是电线杆的一根拉线,测得BC=6米,∠ACB=60°,则AB的长为( )A. 12米3 C. 6米3【答案】B8.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A. 10mB. 15mC. 18mD. 20m 【答案】C【解析】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m ,AB=12m , ∴AC=22AB BC +=22125+=13m ,∴这棵树原来的高度=BC+AC=5+13=18m. 故选:C. 学@科网9.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A 、B 、C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是( )A.102 B. 104 C. 105D. 5 【答案】A10.如图,在△ABC 中,有一点P 在直线AC 上移动,若AB =AC =5,BC =6,则 BP 的最小值为( )A. 24B. 5C. 4D. 4.8 【答案】D【解析】根据垂线段最短,得到BP ⊥AC 时,BP 最短,过A 作AD ⊥BC ,交BC 于点D ,∵AB =AC ,AD ⊥BC ,∴D 为BC 的中点,又BC =6,∴BD =CD =3.在Rt △ADC 中,AC =5,CD =3,根据勾股定理得:AD =22AB BD -=2253-=4.又∵S △AB C =12BC •AD =12BP •AC ,∴BP =BC AD AC ⋅=645⨯=4.8.故选D .二.填空题(共10小题,每题3分,共30分)11.已知直角三角形的两直角边长分别为5和12,则其斜边长为________. 【答案】13【解析】∵直角三角形的两直角边长分别是5和12,∴斜边长=22512 =13.故答案为:13.12.斜边的边长为17cm ,一条直角边长为8cm 的直角三角形的面积是_______. 【答案】60cm 213.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7m ,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3m ,木板顶端向下滑动了0.9m ,则小猫在木板上爬动了_____________m .【答案】2.5 【解析】如图所示:14.如图,数轴上点A所表示的实数是______________.【答案】【解析】由勾股定理,得斜线的为=,由圆的性质,得点表示的数为,故答案为:. 学科%网15.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.【答案】0.5【解析】结合题意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米, ∴CD=2米, ∴CE===1.5(米),∴AE=AC-EC=0.5(米). 故答案为:0.5.16.如图,若要建一个蔬菜大棚,棚宽3.2 m ,高2.4 m ,长15 m ,请你计算,覆盖在顶上的塑料薄膜需要____m 2.【答案】6017.如图,将一根长24厘米的筷子,置于底面直径为6厘 米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为_______厘米.【答案】14【解析】如图所示,筷子,圆柱的高,圆柱的直径正好构成直角三角形, ∴勾股定理求得圆柱形水杯的最大线段的长度,即2268 =10cm ,∴筷子露在杯子外面的长度至少为24-10=14cm , 故答案为14.18.如图,在△ABC 中,∠C=90°,AD 是角平分线,AC=12,AD=15,则点D 到AB 的距离为__________.【答案】919.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为________m 2【答案】24【解析】如图,连接AC .由勾股定理可知:AC=2222435AD CD +=+=,又∵AC 2+BC 2=52+122=132=AB 2, ∴△ABC 是直角三角形这块地的面积为=△ABC 的面积-△ACD 的面积=12×5×12- 12×3×4=24(m 2). 学#科网20.如图是一个三级台阶,每一级的长,宽和高分别是50cm ,30cm ,10cm ,A 和B 是这个台阶的两个相对的端点,若一只壁虎从A 点出发沿着台阶面爬到B 点,则壁虎爬行的最短路线的长是________.【答案】130cm三、解答题(共60分)21.(8分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.DC(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. (2)求这块地的面积.【答案】(1)以点A 、点B 、点C 为顶点的三角形是直角三角形; (2)这块地的面积24m 2. 【解析】试题分析:(1)根据勾股定理求得AC的长,再根据勾股定理的逆定理判定△ABC为直角三角形,考点:勾股定理的逆定理.22.(6分)飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000 米处,过了 20 秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?【答案】飞机每小时飞行540千米.学科%网【解析】试题分析:先画出图形,构造出直角三角形,利用勾股定理解答.试题解析:设A点为男孩头顶,C为正上方时飞机的位置,B为20s后飞机的位置,如图所示,则AB2=BC2+AC2,即BC2=AB2-AC2=9000000,∴BC=3000米,∴飞机的速度为3000÷20×3600=540(千米/小时),即飞机每小时飞行540千米.考点:勾股定理的应用.23.(6分)学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.【答案】旗杆的高度是12米. 【解析】考点:勾股定理24.(6分)一艘轮船以16千米/时的速度离开港口向正北方向航行,另一艘轮船同时离开港口以12千米/时的速度向正东方向航行,它们离开港口半小时后相距多少千米? 【答案】它们离开港口半小时后相距10千米 【解析】试题分析:根据已知条件,构建直角三角形,利用勾股定理进行解答. 试题解析:如图,由已知得,OB=16×0.5=8海里,OA=12×0.5=6海里,在△OAB 中,∵∠AOB=90°,由勾股定理得OB 2+OA 2=AB 2, 即82+62=AB 2,AB=2286 =10海里.考点:勾股定理25.(8分)正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点.(1)在图①中,画一个面积为10的正方形;(2)在图②、③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.【答案】(1)作图见解析;(2)作图见解析.【解析】考点:1.勾股定理;2.作图题.26.(8分)如图,居民楼与马路是平行的,在一楼的点A处测得它到马路的距离为9m,已知在距离载重汽车41m处就可受到噪声影响.学%科网(1)试求在马路上以4m/s速度行驶的载重汽车,能给一楼A处的居民带来多长时间的噪音影响?(2)若时间超过25秒,则此路禁止该车通行,你认为载重汽车可以在这条路上通行吗?【答案】(1)20s;(2)可以通行.【解析】考点:勾股定理的应用.27.(8分)一架云梯长25 m ,如图所示斜靠在一面墙上,梯子底端C 离墙7 m.(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向也是滑动了4 m 吗?【答案】(1)24;(2)不是. 【解析】试题分析:(1)应用勾股定理求出AB 的高度; (2)应用勾股定理求出BE 的距离即可解答. 试题解析:(1)如图:∠B=90°,在Rt △ABC 中,222225724AC BC -=-=,∴这个梯子的顶端A 距地面有24米高.(2)如果梯子下滑4米,则:BD=24-4=20,在Rt △BDE 中,2222252015DE BD -=-=, ∴CE=15-7=8,即:梯子的底部在水平方向也是滑动了8 m ,而不是滑动4m. 考点:勾股定理的应用. 学!科网28.(10分)某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长分别为6 m 、8 m .现要将其扩建成等腰三角形,且扩充部分是以8 m 为一个直角边长的直角三角形.请在下面三张图上分别画出三种不同的扩建后的图形,并求出扩建后的等腰三角形花圃的面积.【答案】48或40或1003.【解析】考点:1.勾股定理的应用;2.等腰三角形的性质.。
八年级数学(下)第十七章《勾股定理》同步练习(含答案)
八年级数学(下)第十七章《勾股定理》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.一个直角三角形有两条边长分别为6和8,则它的第三条边长可能是 A .8B .9C .10D .11【答案】C2.Rt △ABC 中,斜边BC =2,则AB 2+AC 2+BC 2的值为 A .8B .4C .6D .无法计算【答案】A【解析】利用勾股定理,由Rt △ABC 中,BC 为斜边,可得AB 2+AC 2=BC 2,代入数据可得 AB 2+AC 2+BC 2=2BC 2=2×22=8.故选A .3.如图,在四边形ABCD 中,∠BAD =90°,∠DBC =90°,AD =4,AB =3,BC =12,则CD 为A .5B .13C .17D .18【答案】B【解析】∵∠BAD =90°,∴△ADB 是直角三角形,∴BD =22AD AB +=2234+=5,∵∠DBC =90°,∴△DBC 是直角三角形,∴CD =22BD BC +=22512+=13,故选B .4.如图的三角形纸片中,AB =8,BC =6,AC =5,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长是A .7B .8C .11D .14【答案】A5.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为2和10,则b 的面积为A .8B .10+2C .23D .12【答案】D【解析】如图,∵a 、b 、c 都为正方形,∴BC =BF ,∠CBF =90°,AC 2=2,DF 2=10,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABC 和△DFB 中, 13BAC FDBBC BF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DFB ,∴AB =DF ,在△ABC 中,BC 2=AC 2+AB 2=AC 2+DF 2=2+10=12,∴b 的面积为12.故选D .6.如图,一棵大树被大风刮断后,折断处离地面8 m ,树的顶端离树根6 m ,则这棵树在折断之前的高度是A .18 mB .10 mC .14 mD .24 m【答案】A【解析】∵BC =8 m ,AC =6 m ,∠C =90º,∴AB 22228610BC AC +=+= m ,∴树高10+8=18 m . 故选A .7.如图,盒内长、宽、高分别是6 cm、3 cm、2 cm,盒内可放木棒最长的长度是A.6 cm B.7 cm C.8 cm D.9 cm【答案】B8.如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为A.45B.85C.165D.245【答案】C【解析】S△ABC=12×BC×AE=12×BD×AC,∵AE=4,AC=2243=5,BC=4,即12×4×4=12×5×BD,解得BD=165.故选C.二、填空题:请将答案填在题中横线上.9.已知在△ABC中,AB=9,AC=10,BC=17,那么边AB上的高等于__________.【答案】8【解析】如图,作CD⊥AB交AB的延长线于D点,设CD=x,AD=y,在直角△ADC中,AC2=x2+y2,在直角△BDC中,BC2=x2+(y+AB)2,解方程得y=6,x=8,即CD=8,∵CD即AB边上的高,∴AB边上的高等于8.故答案为:8.10.如图,在△ABC中,∠C=90°,AC=6,AB=10,现分别以A、B为圆心,大于12AB长为半径作弧,两弧相交于点M、N,作直线MN,分别交AB、BC于点D、E,则CE的长为__________.【答案】7 411.如图,在△ABC中,∠BAC=120°,AB=AC,点M、N在边BC上,且∠MAN=60°.若BM=2,CN=4,则MN的长为__________.【答案】23【解析】∵∠BAC=120°,AB=AC,∴△ABM绕点A逆时针旋转120°至△APC,如图,连接PN,∴△ABM≌△ACP,∴∠B=∠ACP=30°,PC=BM=2,∠BAM=∠CAP,∴∠NCP=60°,∴∠CPD=30°.∵∠MAN=60°,∴∠BAM+∠NAC=∠NAC+∠CAP=60°=∠MAN,∵AM=AP,AN=AN,∴△MAN≌△PAN,∴MN=PN,过点P作BC的垂线,垂足为D,∴CD=12PC=1,DN=CN-CD=4-1=3,∴PD3∴PN =22PD DN +=22(3)3+=23,∴MN =PN =23.故答案为:23.12.如图,△ABC 中,∠A =90°,AB =3,AC =6,点D 是AC 边的中点,点P 是BC 边上一点,若△BDP 为等腰三角形,则线段BP 的长度等于__________.【答案】32或5在△BDC 中,设BH =x 2222(32)3(35)x x =-,解得:5x =在△BDH 中,229(32)()55DH =-=, 在△PDH 中,设PH =y ,则BP =PD 5y -,由勾股定理得222()(55y y +=,解得:5y = ③当BP 为底时,则BD =PD =32P 点与C 点重合时,PD =3,且点P 是BC 边上一点,不是延上长线上的,所以不存在.故答案为:325 三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知:四边形ABCD 中,BD 、AC 相交于O ,且BD 垂直AC ,求证:2222AB CD AD BC +=+.14.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?【解析】在Rt ABC △中,224AC AB BC =-=米,故可得地毯长度=AC +BC =7米, ∵楼梯宽2米,∴地毯的面积=14平方米, 故这块地毯需花14×30=420元. 答:地毯的长度需要7米,需要花费420元.15.如图,在一棵树(AD )的10 m 高B 处有两只猴子,其中一只爬下树走向离树20m 的池塘C 处,而另一只则爬到树顶D 后直扑池塘,如果两只猴子经过的路程相等,那么这棵树有多高?16.如图,A城气象台测得台风中心在A城正西方向320 km的B处,以每小时40 km的速度向北偏东60°的BF方向移动,距离台风中心200 km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?【解析】(1)如图,由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320 km,则AC=160 km,因为160<200,所以A城要受台风影响.。
(完整word版)最新人教版第十七章勾股定理整理练习题及详细解析答案
题型一:直接考查勾股定理 例1。
在ABC ∆中,90C ∠=︒.(1)知6AC =,8BC =.求AB 的长.(2)已知17AB =,15AC =,求BC 的长。
题型二:应用勾股定理建立方程例2。
⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =__________ ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为___________ ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为_______________例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积题型三:实际问题中应用勾股定理例5。
如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6。
已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为直角三角形。
① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c =例7。
三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状?题型五:勾股定理与勾股定理的逆定理综合应用例8。
已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =【例1】、分析:直接应用勾股定理222a b c +=解:⑴10AB⑵8BC【例2】分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解:⑴4AC =, 2.4AC BCCD AB⋅==3k ,4k ∴222(3)(4)15k k +=,3k ∴=,⑵ 两直角边的长分别为54S =⑶ 两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm【例3】分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E , 12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中90,2BED BE ∠=︒= Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=【例4】答案:6【例5】分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,则6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD 【例6】答案:10m【例7】解:①22221.52 6.25a b +=+=,222.5 6.25c == ∴ABC ∆是直角三角形且90C ∠=︒②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 【例8】解:此三角形是直角三角形理由:222()264a b a b ab +=+-=,且264c =222a b c ∴+= 所以此三角形是直角三角形【例9】证明:AD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=,90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=勾股定理练习题(家教课后练习)DCBADBA C1。
第十七章勾股定理综合测试题-学而思培优
第十七章综合测试题(满分100分,时间90分钟)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是正确的)1.有六根细木棒,它们的长度分别是2、4、6、8、10、12(单位:cm),从中取出三根首尾顺次连接搭成一个直角三角形,则这三根细木棒的长度分别为( ).842.、、A 1084.、、B 1086.、、C 12108.、、D2.右图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( )13.A 26.B 47.C 94.D3.如右图所示,正方形的小方格边长为1,则网格中的△ABC 是( ).A.锐角三角形 B .直角三角形 C .钝角三角形 D .以上答案都不对4.把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的( )A .2倍B .4倍C .6倍D .8倍5.在直角三角形中,有一个锐角为,30 且斜边与较短直角边之和为18cm ,则斜边长为( ).cm A 4. cm B 6. cm C 8. cm D 12.6.在Rt△ABC 中,有两边的长分别为2和4,则第三边的长( ).32.A 52.B 632.或C 5232.或D7.一块木板如右图所示,已知,90,13,12,3,4 =∠====B AD DC BC AB 则木板的面积为( ).60.A 30.B 24.C 12.D8.在△ABC 中,AD C ,90 =∠平分AB DE BAC ⊥∠,于E ,下列等式错误的是( ).222.AD DC AC A =+ 222.AE DE AD B =-222.AC DE AD C += 22241.BC BE BD D =- 9.如右图所示,在同一平面上把三边为5,4,3===AB AC BC 的三角形沿最长边AB 翻折后得到,ABC ∆ 则/CC 的长等于( ). 512.A 513.B 65.c 524.D10.如右图所示,方格纸中小正方形的边长为1,△ABC 的三个顶点都在小正方形的格点上,小强在观察 探究时发现:①△ABC 的形状是等腰三角形;②△ABC 的周长是;2102+③△ABC 的面积是5;④点C 到AB 边的距离是;1054⑤直线EF 是线段BC 的垂直平分线;你认为小强观察的结论正确的序号有 ①②③.A ②③④.B ①③⑤.C ①④⑤.D二、填空题(本大题共10小题,每小题2分,共20分)11.直角三角形一直角边长为5,另两条边长是连续自然数,则其周长为12.如右图所示,一棵大树在一次强台风中于离地面5m 处折断倒下,倒下部分与地面成30夹角,此时树的顶端B 与树的底端A 之间的距离为 m.13.如右图所示,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 m.14.等边三角形的边长为4,则它的面积是15.已知a 、b 、c 是三角形的三边长,如果满足,0|10|8)6(2=-+-+-c b a 则三角形的形状是16.如下左图所示,正方体的棱长为,2cm 用经过A ,B ,C 三点的平面截这个正方体,所得截面的周长是 cm .17.如下中图所示,在△ABC 中,BC AC AB ,3,5==边上的中线,2=AD 则△ABC 的面积是18.如下右图所示,一牧童在A 处牧马,牧童家在B 处,A 、B 处距河岸的距离AC 、BD 的长分别为500m 和700m ,且,500m CD =天黑前牧童从A 点将马牵到河边去饮水后,再赶回家,那么牧童最少要走 m19.右图所示是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间的小路走到长边中点O ,再从0走到正方形OCDF 的中心,1O 再从1O 走到正方形GFH O 1的中心,2O 又从2O 走到正方形2O IHJ 的中心,3O 再从3O 走到正方形KJP O 3的中心,4O 一共走了,231m 则长方形花坛的周长是 m.20.给出一组式子:,,261024,17815,1068,543222222222222 =+=+=+=+请你写出第n 个表达式:三、解答题(2l 题8分.22题5分.23题10分.24题6分.25—27题每题7分)21.如下图所示,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分 别按下列要求画三角形:(1)使三角形的三边长分别为;10,22,2(2)使三角形为钝角三角形且面积为2.22.如右图所示,在平静的湖面上,有一支红莲,高出水面1m ,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m ,求水深是多少米?23.如右图所示,在Rt△ABC 中,,3,4,90===∠BC AC ACB 在Rt△ABC 外部拼接一个合适的直角三角形,使得拼成的图形刚好是一个等腰三角形,求出等腰三角形的底边长,并求出以AB 为底边的等腰三角形的面积.24.如右图所示,设四边形ABCD 是边长为1的正方形,以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以第二个正方形的对角线AE 为边作第三个正方形AEGH ,如此下去…”(1)记正方形ABCD 的边长,11=a 依上述方法所作的正方形的边长依次为,,,,,432n a a a a 求出432,,a a a 的值.(2)根据上述规律写出第n 个正方形的边长n a 的表达式.25.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A 的正南方向240千米的B 处有一台风中心,其中心风力为12级,每远 离台风中心25千米,风力就会减弱一级,该台风中心现正以20千米/时的速度沿北偏东30的方向往 C 移动,如下图所示,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.(1)该城市是否受台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?(结果保留整数)26.问题背景在△ABC 中,AB 、BC 、AC 三边的长分别为,17132、、求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),如图(a)所示,这样不需求△ABC 的高,而借用网格就能计算出它的面积.(1)请你将△ABC 的面积直接填写在横线上,=∆ABC s思维拓展(2)我们把上述求△ABC 面积的方法叫做构图法.若△ABC 三边的长分别为),0(17,22,5>a a a a 请利用图(b)所示的正方形网格(每个小正方形的边长为n )画出相应的△ABC,并求出它的面积. 探索创新(3)若△ABC 三边的长分别为且m≠n),请在图(c),0,02,4,16222222>><+++n m n m n m n m 中运用构图法求出这三角形的面积.27.已知:△ABC 中,D AC AB BAC ,,90==∠ 是BC 边上任一点,.,90DE AD ADE ==∠(1)如图(a)所示,当点D 与BC 边的中点O 重合,点E 与点C 重合时,222.AE CD BD ⋅+的值为 (2)如图(b)所示,当点D 在BC 边上运动时,222AE CD BD +的值等于 ,请填空并证明你的结论. (3)如图(c)所示,当点D 在CB 的延长线上运动时,线段BD 、CD 、AE 之间的数量关系是 (只写结论,不需证明)。
第十七章勾股定理知识与题型总结及测试题含答案
勾股定理知识技能和题型归纳(一)——知识技能一、本章知识内容归纳1、勾股定理——揭示的是平面几何图形本身所蕴含的代数关系。
(1)重视勾股定理的叙述形式:①直角三角形直角边上的两个正方形的面积之和等于斜边上的正方形的面积.②直角三角形斜边长度的平方,等于两个直角边长度平方之和.从这两种形式来看,有“形的勾股定理”和“数的勾股定理”之分。
(2)定理的作用:①已知直角三角形的两边,求第三边。
②证明三角形中的某些线段的平方关系。
,2……的无理数线段的几③作长为n的线段。
(利用勾股定理探究长度为,3何作图方法,并在数轴上将这些点表示出来,进一步反映了数与形的互相表示,加深对无理数概念的认识。
)2、勾股定理的逆定理(1)勾股定理的逆定理的证明方法,通过构造一个三角形与直角三角形全等,达到证明某个角为直角的目的。
(2)逆定理的作用:判定一个三角形是否为直角三角形。
(3)勾股定理的逆定理是把数转化为形,是利用代数计算来证明几何问题。
要注意叙述及书写格式。
运用勾股定理的逆定理的步骤如下:①首先确定最大的边(如c)②验证22b a +与2c 是否具有相等关系:若222c b a =+,则△ABC 是以∠C 为90°的直角三角形。
若222c b a ≠+,则△ABC 不是直角三角形。
补充知识:当222c b a >+时,则是锐角三角形;当222c b a <+时,则是钝角三角形。
(4)通过总结归纳,记住一些常用的勾股数。
如:3,4,5;5,12,13;6,8,10;8,15,17;9,40,41;……以及这些数组的倍数组成的数组。
勾股数组的一般规律: ① 丢番图发现的:式子n m n m mn n m >+-(,2,2222的正整数) ② 毕达哥拉斯发现的:122,22,1222++++n n n n n (1>n 的整数) ③柏拉图发现的:1,1,222+-n n n (1>n 的整数)3、勾股定理与勾股定理逆定理的关系 (1)注意分清应用条件:勾股定理是由直角得到三条边的关系,勾股定理逆定理则是由边的关系来判断一个角是否为直角。
最新人教版初中八年级数学下册第17章 勾股定理 课后同步练习题含答案解析
第十七章勾股定理17.1 勾股定理(1)课堂学习检测一、填空题1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为______.4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.二、选择题6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).(A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ).2(A)4 (B)6 (C)8 (D)108.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ).(A)150cm2 (B)200cm2(C)225cm2(D)无法计算三、解答题9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b;(2)若a∶c=15∶17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.综合、运用、诊断一、选择题10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).(A)1个 (B)2个(C)3个(D)4个二、填空题11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.第11题第12题12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______.三、解答题13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.拓展、探究、思考14.如图,△ABC中,∠C=90°.(1)以直角三角形的三边为边向形外作等边三角形(如图),探究S1+S2与S3的关系;(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图),探究S1+S2与S3的关系;(3)以直角三角形的三边为直径向形外作半圆(如图),探究S1+S2与S3的关系.参考答案1.a2+b2,勾股定理. 2.(1)13; (2)9; (3)2,; (4)1,.3.. 4.5,5. 5.132cm. 6.A. 7.B. 8.C.9.(1)a=45cm.b=60cm; (2)540; (3)a=30,c=34;(4)6; (5)12.10.B. 11. 12.4. 13.14.(1)S1+S2=S3;(2)S1+S2=S3;(3)S1+S2=S3.17.1 勾股定理(2)课堂学习检测一、填空题1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距______km.3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m路,却踩伤了花草.第3题第4题4.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m.二、选择题5.如图,一棵大树被台风刮断,若树在离地面3m处折断,树顶端落在离树底部4m处,则树折断之前高( ).325223.5.310(A)5m (B)7m (C)8m (D)10m6.如图,从台阶的下端点B 到上端点A 的直线距离为( ).(A)(B) (C)(D)三、解答题7.在一棵树的10米高B 处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处;另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?综合、运用、诊断一、填空题9.如图,一电线杆AB 的高为10米,当太阳光线与地面的夹角为60°时,其影长AC 为______米. 2123105658第9题第10题10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______(3)二、解答题:11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m.12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?拓展、探究、思考13.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.参考答案1.13或 2.5. 3.2. 4.10.5.C . 6.A . 7.15米. 8.米. 9. 10.25. 11. 12.7米,420元.13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O .17.1 勾股定理(3)课堂学习检测一、填空题 1.在△ABC 中,若∠A +∠B =90°,AC =5,BC =3,则AB =______,AB 边上的高CE =______.2.在△ABC 中,若AB =AC =20,BC =24,则BC 边上的高AD =______,AC 边上的高BE =______.3.在△ABC 中,若AC =BC ,∠ACB =90°,AB =10,则AC =______,AB 边上的高CD =______.4.在△ABC 中,若AB =BC =CA =a ,则△ABC 的面积为______.5.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______.二、选择题6.已知直角三角形的周长为,斜边为2,则该三角形的面积是( ).(A) (B) (C) (D)17.若等腰三角形两边长分别为4和6,则底边上的高等于( ).(A)(B)或 (C) (D)或三、解答题 .11923⋅3310.2232-62+4143217741242478.如图,在Rt△ABC中,∠C=90°,D、E分别为BC和AC的中点,AD=5,BE=求AB的长.9.在数轴上画出表示及的点.综合、运用、诊断10.如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD的长.11.如图,将矩形ABCD沿EF折叠,使点D与点B重合,已知AB=3,AD=9,求BE的长.102101312.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.13.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.拓展、探究、思考14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长是多少?15.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,……已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,…,S n(n为正整数),那么第8个正方形的面积S8=______,第n个正方形的面积S n=______.参考答案1. 2.16,19.2. 3.5,5. 4. 5.6,,. 6.C . 7.D8. 提示:设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB = 9.图略. 10.BD =5.提示:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5.11.BE =5.提示:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5.12.EC =3cm .提示:设EC =x ,则DE =EF =8-x ,AF =AD =10,BF =,CF =4.在Rt △CEF 中(8-x )2=x 2+42,解得x =3. 13.提示:延长FD 到M 使DM =DF ,连结AM ,EM .14.提示:过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得△AMB ≌△BNC ,则 15.128,2n -1.17.2 勾股定理的逆定理课堂学习检测一、填空题1.如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号);343415,342.432a 3633.132.1324422=+k m ,3213,31102222+=+=622=-AB AF .172,34=∴=AC AB4.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,①若a 2+b 2>c 2,则∠c 为____________;②若a 2+b 2=c 2,则∠c 为____________;③若a 2+b 2<c 2,则∠c 为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形.7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______.二、选择题9.下列线段不能组成直角三角形的是( ).(A)a =6,b =8,c =10 (B)(C) (D)10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2(B)1∶3∶4 (C)9∶25∶26(D)25∶144∶169 11.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形(B)一定是等腰三角形 (C)一定是直角三角形 (D)形状无法确定综合、运用、诊断12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.3,2,1===c b a 43,1,45===c b a 6,3,2===c b a13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =,求证:AF ⊥FE .15.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?CB 41拓展、探究、思考16.已知△ABC中,a2+b2+c2=10a+24b+26c-338,试判定△ABC的形状,并说明你的理由.17.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.参考答案1.直角,逆定理. 2.互逆命题,逆命题. 3.(1)(2)(3).4.①锐角;②直角;③钝角. 5.90°. 6.直角.7.24.提示:7<a <9,∴a =8. 8.13,直角三角形.提示:7<c <17.9.D . 10.C . 11.C .12.CD =9. 13.14.提示:连结AE ,设正方形的边长为4a ,计算得出AF ,EF ,AE 的长,由AF 2+EF 2=AE 2得结论.15.南偏东30°.16.直角三角形.提示:原式变为(a -5)2+(b -12)2+(c -13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a 2-b 2)(a 2+b 2-c 2)=0.18.352+122=372,[(n +1)2-1]2+[2(n +1)]2=[(n +1)2+1]2.(n ≥1且n 为整数).51。
人教版初2数学8年级下册 第17章(勾股定理)单元复习测试(含答案)
专题复习提升训练卷《勾股定理》单元训练人教版八年级数学下册一、选择题1、下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c +=B. 若a b c ,,是Rt ABC ∆的三边,则222a b c +=C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c +=D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=2、下列各组数据中的三个数,可作为三边长构成直角三角形的是()A.1、2、3B.2223,4,53、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A. 7,24,25B. 312,412,512C. 3,4,5D. 4,712,8124、如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,已知3AC =,4BC =,则BD =()A .125B .95CD .1655、如图,在四边形ABCD 中,2AB BC ==,DC =AD =,90ABC ∠=︒,则四边形ABCD 的面积是().A .6B .8C .10D .126、如图,梯子AB 斜靠在墙面上,AC BC AC BC ⊥=,,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( )y C .x y < D .不确定7、已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A . 32B . 332 C . 32D . 不能确定8、七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )A. B. C. D.9、△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( )A. 42B. 32C. 42或32D. 37或3310、如图,等边ABC 的边长为8.P ,Q 分别是边,AC BC 上的点,连结,AQ BP ,交于点O .以下结论:①若AP CQ =,则BAP ACQ ≌;②若AQ BP =,则120AOB ∠=︒;③若,7AP CQ BP ==,则5PC =;④若点P 和点Q 分别从点A 和点B 同时出发,以相同的速度向点C运动(到达点C 就停止),则点O经过的路径长为.其中正确的()A .①②③B .①④C .①②D .①③④二、填空题11、观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.12、如果梯子的底端距离墙根的水平距离是9m ,那么15m 长的梯子可以达到的高度为13、如图,一根高8米的旗杆被风吹断倒地,旗杆顶端A 触地处到旗杆底部B 的距离为6米,则折断点C到旗杆底部B 的距离为14、已知△ABC 的三边a,b,c 满足(a-5)2+(b-12)2+|c-13|=0,则△ABC 是__________三角形.15、如图是一棵勾股树,它是由正方形和直角三角形排成的,若正方形A ,B ,C ,D 的边长分别是4,5,3,4,则最大正方形E 的面积是___.16、若ABC ∆的三边a b c ,,满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为17、如图,长方体的底面边长分别为1cm 和2cm ,高为4cm ,点P 在边BC 上,且BP=BC .如果用一根细线从点A 开始经过3个侧面缠绕一圈到达点P ,那么所用细线最短需要 cm.18、如图,P 是等边ABC ∆中的一个点,2,4PA PB PC ===,则ABC ∆的边长是.19、如图,在Rt △ABC 中,∠C=30°,以直角顶点A 为圆心,AB 长为半径画弧交BC 于点D ,过D 作DE ⊥AC于点E .若DE=a ,则△ABC 的周长用含a 的代数式表示为________________.CBA PCBA20、已知ABC ∆是边长为1的等腰直角三角形,以Rt ABC ∆的斜边AC 为直角边,画第二个等腰Rt ACD ∆,再以Rt ACD ∆的斜边AD 为直角边,画第三个等腰Rt ADE ∆,……,依此类推,第n 个等腰直角三角形的斜边长是 .三、解答题21、如图,在吴中区上方山动物园里有两只猴子在一棵树CD 上的点B 处,且5BC m =,它们都要到池塘A处吃东西,其中一只猴子甲沿树爬至C 再沿CA 走到离树24m 处的池塘A 处,另一只猴子乙先爬到树顶D 处后再沿缆绳DA 线段滑到A 处.已知猴子甲所经过的路程比猴子乙所经过的路程多2m ,设BD 为xm .(1)请用含有x 的整式表示线段AD 的长为 m ;(2)求这棵树高有多少米?22、如图,△ABC ≌△DBE ,∠CBE =60°,∠DCB =30°.求证:DC 2+BE 2=AC 2.23、如图,△ABC 中,AB=BC ,BE ⊥AC 于点E ,AD ⊥BC 于点D ,∠BAD=45°,AD 与BE 交于点F ,连接CF .(1)求证:BF=2AE ;(2)若,求AD 的长.24、如图,在ABC ∆中,90ACB ∠=︒,AC BC =,P 是ABC ∆内的一点,且123PB PC PA ===,,,求BPC ∠的度数.GFED CBA25、如图,在ABC ∆中,21AC =,13BC =,D 是AC 边上一点,12BD =,16AD =,(1)若E 是边AB 的中点,求线段DE 的长;(2)若E 是边AB 上的动点,求线段DE 的最小值.26、如图,长方形纸片中,,将纸片折叠,使顶点落在边上的 点处,折痕的一端点在边上. (1)如图(1),当折痕的另一端在边上且AE=4时,求AF 的长 (2)如图(2),当折痕的另一端在边上且BG=10时,①求证:EF=EG . ②求AF 的长. (3) 如图(3),当折痕的另一端在边上,B 点的对应点E 在长方形内部,E 到AD 的距离为2cm,且BG=10时,求AF 的长.(图1) (图2) (图3)ABCD 8AB =B AD E G BC F AB F AD F AD GFED C B A HAE F BGC D ABG CDEFH专题复习提升训练卷 《勾股定理》单元训练 人教版八年级数学下册一、选择题1、下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c +=B. 若a b c ,,是Rt ABC ∆的三边,则222a b c +=C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c +=D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=【解析】在直角三角形中,才可应用勾股定理.其次,要注意边和角的对应.故选D.2、下列各组数据中的三个数,可作为三边长构成直角三角形的是( )A.1、2、3B.2223,4,5【解析】因为222+=,故选C.3、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A. 7,24,25B. 312,412,512C. 3,4,5D. 4,712,812【解析】 按照勾股数的规律计算.选B.4、如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,已知3AC =,4BC =,则BD =()A .125B .95C D .165解:∵90ACB ∠=︒,3AC =,4BC =,∴AB 5===,设BD=x ,AD=5-x ,∵CD AB ⊥,∴∠CDA=∠CDB=90°,2222AC AD BC BD -=-,22223(5)4x x --=-, 解得,x=165,故选D5、如图,在四边形ABCD 中,2AB BC ==,DC =AD =,90ABC ∠=︒,则四边形ABCD 的面积是().A .6B .8C .10D .12解:连接AC ,如图:∵90ABC ∠=︒,2AB BC ==,∴AC =;∵在ADC 中,222226AC DC +=+=,226AD ==,∴222A C D C A D +=,ADC 是直角三角形,12222S ABC =⨯⨯= ,162S ADC =⨯= ,268S ABCD S ABC S ADC =+=+= 四边形,故选B6、如图,梯子AB 斜靠在墙面上,AC BC AC BC ⊥=,,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( )y C .x y < D .不确定【解析】设AC=BC=a ,=()2220a x y x y -=+>,x y>选B.7、已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A . 32B . 332 C . 32D . 不能确定【解析】如解图,△ABC 是等边三角形,AB =3,点P 是三角形内任意一点,过点P 分别向三边AB ,BC ,CA 作垂线,垂足依次为D ,E ,F ,过点A 作AH ⊥BC 于点H ,则BH =32,AH =AB 2-BH 2=332.连接PA ,PB ,PC ,则S △PAB +S △PBC +S △PCA =S △ABC ,∴12AB ·PD +12BC ·PE +12CA ·PF =12BC ·AH ,∴PD +PE +PF =AH =332. 故选B 8、七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )A. B. C. D.【解析】观察可得,选项C 中的图形与原图中的④、⑦图形不符,故选C.9、△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( )A. 42B. 32C. 42或32D. 37或33【详解】情况一:如下图,△ABC 是锐角三角形,∵AD 是高,∴AD⊥BC∵AB=15,AD=12,∴在Rt△ABD 中,BD=9∵AC=13,AD=12,∴在Rt△ACD 中,DC=5,∴△ABC 的周长为:15+12+9+5=42情况二:如下图,△ABC 是钝角三角形,在Rt△ADC 中,AD=12,AC=13,∴DC=5在Rt△ABD 中,AD=12,AB=15,∴DB=9,∴BC=4,∴△ABC 的周长为:15+13+4=32故选:C10、如图,等边ABC 的边长为8.P ,Q 分别是边,AC BC 上的点,连结,AQ BP ,交于点O .以下结论:①若AP CQ =,则BAP ACQ ≌;②若AQ BP =,则120AOB ∠=︒;③若,7AP CQ BP ==,则5PC =;④若点P 和点Q 分别从点A 和点B 同时出发,以相同的速度向点C运动(到达点C 就停止),则点O经过的路径长为.其中正确的()A .①②③B .①④C .①②D .①③④解:①在三角形△BAP 和△ACQ 中:AP CQBAC C AB AC =⎧⎪∠=∠⎨⎪=⎩,则△BAP ≌△ACQ (SAS) ;①正确;②如图1,题中AQ=BP ,存在两种情况:在1P 的位置,∠AOB=120°,在2P 的位置,∠AOB 的大小无法确定;②错误;③本问与AP=CQ 这个条件无关,如图, P 还是会有两个位置即:1P 、2P ,当在1P 时,作BE ⊥AC 于E 点,则E 为AC 中点,∵AB=8,AE=12AC ,∴BE ==,又BP=7,∴1PE ==,∴CP=CE+PE=5,当在2P 时,同理解△BCP ,得CP= CE-PE=3;故③错;④由题可得:AP=BQ ,由对称性可得O 的运动轨迹为△ABCAB 则∵AB=8,∴BC=AB=8,则AB=∴运动轨迹路径长为④正确;∴正确的为①④;故选B二、填空题11、观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.【解答】由题意得,每组第一个数是奇数,且逐步递增2,第二、第三个数相差为一故第⑥组的第一个数是13设第二个数为x ,第三个数为x+1;根据勾股定理得()22213+1x x =+解得84x =,则第⑥组勾股数:13,84,85。
第十七章 勾股定理练习题(有答案)
第十七章勾股定理练习题1.已知命题:如果a=b,那么|a|=|b|.该命题的逆命题是()A.如果a=b,那么|a|=|b| B.如果|a|=|b|,那么a=bC.如果a≠b,那么|a|≠|b| D.如果|a|≠|b|,那么a≠b2.如图,花园住宅小区有一块长方形绿化带,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”.他们仅仅少走了()步路(假设2步为1米),却踩伤了花草.A.6步B.5步C.4步D.2步3.在下列四组线段中,能组成直角三角形的是( )6.如图,小明要给正方形桌子买一块正方形桌布.铺成图1时,四周垂下的桌布,其长方形部分的宽均为20cm;铺成图2时,四周垂下的桌布都是等腰直角三角形,且桌面四个角的顶点恰好在桌布边上,则要买桌布的边长是 cm.(提供数据:2 1.4,≈1.7)7.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长.答案第十七章勾股定理练习题1.B 解析:已知本题中命题的题设是a=b,结论是|a|=|b|,所以它的逆命题中的题设是|a|=|b|,结论是a=b,所以本题中的逆命题是如果|a|=|b|,那么a=b.2.C3. C4. 2解析:∵∠C=90°,AB=7,BC=5,∴AC===2.5.②③解析:①的逆命题是“相等的角是对顶角”,是假命题;②的逆命题是“两个底角相等的三角形是等腰三角形”,是真命题;③的逆命题是“同位角相等,两直线平行”,是真命题.6. 136 解析:设桌子边长为xcm,由图1知:桌布边长为(x+40)cm,由图2,,解可得;于是桌布长为≈136(cm).7.解:(1)∠BAC=180°-60°-45°=75°;(2)∵AD⊥BC,∴△ADC是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC,∵AC=2,∴由已知得:∠EAC=60°,∠FBC=30°,∴∠1=30°,∠2=90°-30°=60°,∵∠1+∠3=∠2,。
2022-2023学年人教版八年级数学下册第十七章 勾股定理 单元复习题(含答案)
人教版八年级数学下册第十七章勾股定理单元复习题一、选择题1.在平面直角坐标系中,点(34)Q --,到原点的距离为()A .3B .4C .5D .72.如图,作一个正方形,使其边长为单位长度,以表示数1的点为圆心,正方形对角线的长为半径画弧,交数轴于点A ,则点A 表示的数是()A .12-B .13-C .1-D .13.下列各组数据中,不能作为直角三角形的三边边长的是()A .3,4,6B .6,8,10C .7,24,25D .9,12,154.如图,有一个水池,水面是边长为8尺的正方形,在水池中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度是()A .7.5尺B .8尺C .8.5尺D .9尺5.一个直角三角形的两条边分别为,,那么这个直角三角形的面积是()A B .CD .6.如图,在ABC 中,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧(弧所在圆的半径都相等),两弧相交于M ,N 两点,直线MN 分别与边BC AC ,相交于点D ,E ,连接AD .若45BD DC AE AD ===,,,则AB 的长为()A .9B .8C .7D .67.如图,点A ,B ,C 在边长为1的正方形网格格点上,则AB 边上的高为()A .5B C .6D 8.如图,长方体的底面边长分别为2厘米和4厘米,高为5厘米.若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为()厘米A .8B .10C .12D .13二、填空题9.一个直角三角形的两边长分别为1和2,则第三边长为.10.一艘船以20海里/时的速度从A 港向东北方向航行,另一艘船以15海里/时的速度从A 港向西北方向航行,经过1小时后,它们相距海里.11.如图,在Rt ABC 中,9086C AC BC ∠=︒==,,,D 为AC 上一点,若BD 是ABC ∠的角平分线,则AD =.12.我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成.如图,直角三角形的直角边长为a 、b ,斜边长为c ,若420b a c -==,,则每个直角三角形的面积为.三、解答题13.如图,在四边形ABCD 中,90C ∠=︒,1BC CD ==,2AB =,6AD =.求ABC ∠的度数.14.如图,在ABC 中,3AC =,2AB =,E 是边BC 的中点,且52AE =.求证:ABC 是直角三角形.15.要把宣传牌()AB ,装订在教室的黑板上面(如图所示).一架梯子(5AE =米)靠在宣传牌()AB A ,底端落在地板E 处,然后移动的梯子使顶端落在宣传牌()AB 的B 处,而底端E 向外移到了1米到C 处(1CE =米).测量得4BM =米.求宣传牌()AB 的高度(结果用根号表示).四、综合题16.如图,在四边形ABCD 中,点E 是边BC 上一点,且BE CD =,B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠;(2)若60C ∠=︒,4DE =时,求AED 的面积.17.如图,永定路一侧有A 、B 两个送奶站,C 为永定路上一供奶站,CA 和CB 为供奶路线,现已测得8km AC =,15km BC =,AC BC ⊥,130∠=︒.(1)连接AB ,求两个送奶站之间的距离.(2)有一人从点C 处出发,沿永定路路边向右行走,速度为2.5km /h ,多长时间后这个人距B 送奶站最近?18.图1、图2、图3均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中ABC 的形状是;(2)在图1中确定一点D ,连接DB DC ,,使DBC 与ABC 全等但不成轴对称;(3)在图2中确定一点D ,连接DB DC ,,使DBC 与ABC 成轴对称;(4)在图3中ABC 边BC 上找一个点D ,使得它与点A B ,与点A C ,构成的三角形为等腰三角形.19.如图,点O 是等边 ABC 内一点,将CO 绕点C 顺时针旋转60°得到CD ,连接OD ,AO ,BO ,AD .(1)求证: BCO≌ ACD.(2)若OA=10,OB=8,OC=6,求∠BOC的度数.答案解析部分1.【答案】C【解析】【解答】解:点(34)Q --,到原点的距离为=5,故答案为:C.【分析】直接利用勾股定理计算即可.2.【答案】D【解析】=,则点A 表示的数为1-,故答案为:D .【分析】利用勾股定理求出正方形的对角线的长,即可得到点A 表示的数为13.【答案】A【解析】【解答】解:A 、∵32+42≠62,∴由勾股定理的逆定理可知这三条线段不能作为直角三角形的三边边长,故此选项符合题意;B 、∵62+82=102,∴由勾股定理的逆定理可知这三条线段能作为直角三角形的三边边长,故此选项不符合题意;C 、∵72+242=252,∴由勾股定理的逆定理可知这三条线段能作为直角三角形的三边边长,故此选项不符合题意;D 、∵92+122=152,∴由勾股定理的逆定理可知这三条线段能作为直角三角形的三边边长,故此选项不符合题意;故答案为:A.【分析】分别计算各选项中各数的平方,观察是否满足a 2+b 2=c 2,由勾股定理的逆定理可知:若满足,则可构成直角三角形,反之,不能构成直角三角形,结合各选项即可判断求解.4.【答案】C【解析】【解答】解:设芦苇的长度为x 尺,则AB 为(x-1)尺,根据勾股定理得:2228(1)(2x x -+=,解得:8.5x =,∴芦苇的长度为8.5尺.故答案为:C.【分析】设芦苇的长度为x 尺,则AB 为(x-1)尺,利用勾股定理建立方程,求解即可.5.【答案】C【解析】【解答】解:分两种情况:2==,则S ∆=122⨯=为直角边时,则S ∆=12=;.故答案为:C.为斜边时,用勾股定理求出另一条直角边,然后根据直角三角为直角边时,根据直角三角形的面积等于两直角边乘积的一半可求解.6.【答案】D【解析】【解答】解:由题意可得:MN 是AC 的垂直平分线,∴AC =2AE =8,DA=DC ,∴∠DAC=∠C ,∵BD =CD ,∴BD =AD ,∴∠B =∠BAD ,∵∠B+∠BAD+ZC+∠DAC =180°,∴2∠BAD+2∠DAC =180°,∴∠BAD+∠DAC=90°,∴∠BAC =90°,∵BC =BD+CD =2AD =10,∴6AB ===,故答案为:D.【分析】根据垂直平分线求出AC =2AE =8,DA=DC ,再求出∠B =∠BAD ,最后利用勾股定理计算求解即可。
知识点详解人教版八年级数学下册第十七章-勾股定理同步测评试题(含答案解析)
人教版八年级数学下册第十七章-勾股定理同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),∠ACB=90°,AC=BC,从三角板的刻度可知AB=20cm,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方是().A.20013cm2B.15013cm2C.10013cm2D.5013cm22、如图,在△ABC中,∠A=90°,AB=6,BC=10,EF是BC的垂直平分线,P是直线EF上的任意一点,则PA+PB的最小值是()A.6 B.8 C.10 D.123、下列条件:(1)∠A=90°﹣∠B,②∠A:∠B:∠C=3:4:5,③∠A=2∠B=3∠C,④AB:BC:AC=3:4:5,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个4、如图,在Rt△ABC中,∠CBA=60°,斜边AB=10,分别以△ABC的三边长为边在AB上方作正方形,S1,S2,S3,S4,S5分别表示对应阴影部分的面积,则S1+S2+S3+S4+S5=()A.50 B.C.100 D.5、如图,高速公路上有两点A,B相距25km,C,D为两个乡镇,已知DA=10km,CB=15km,DA⊥AB 于点A,CB⊥AB于点B,现需要在AB上建一个高速收费站E,使得C,D两个乡镇到E站的距离相等,则BE的长为()A.10km B.15km C.20km D.25km6、有下列条件:①A B C∠=∠-∠;④::3:4:5∠∠∠=;③C A Ba b c=,其中A B C∠+∠=∠;②::3:4:5能确定ABC∆是直角三角形的是()A.①②④B.①②③C.①③④D.②③④7、如图,在Rt△ABC中,∠ACB=90°,分别以AB,AC,BC为斜边作三个等腰直角△ABD,△ACE,△BCF,图中阴影部分的面积分别记为S1,S2,S3,S4,若已知Rt△ABC的面积,则下列代数式中,一定能求出确切值的代数式是()A.S4B.S1+S4﹣S3C.S2+S3+S4D.S1+S2﹣S38、如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm.若这支铅笔长为18cm,则这只铅笔在笔筒外面部分长度不可能的是()A.3cm B.5cm C.6cm D.8cm9、如图,在△ABC中,AD⊥BC于点D,若AB=3,BD=2,CD=1,则AC的长为()A.6 B C D.410、如图,点A在点O的北偏西30的方向5km处,AB OA.根据已知条件和图上尺规作图的痕迹判断,下列说法正确的是()A.点B在点A的北偏东30方向5km处B.点B在点A的北偏东60︒方向5km处C.点B在点A的北偏东30方向处D.点B在点A的北偏东60︒方向处第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,△ABC中,AB=AC=5,在BA延长线上取一点D,使AD=7,连结CD,点E为AC边上一点,当∠AEB=∠D时,△BCD的面积是△BCE的面积的6倍,则AE=___,△BCD的面积为 ___.2、如图,在一次夏令营活动中,小明从营地A出发,沿北偏东60︒方向走了到达B地,然后再沿北偏西30方向走了50m到达目的地C,则A、C两地之间的距离为_______m.3、(1)已知甲、乙两人在同一地点出发,甲往东走了4 km,乙往南走了3 km,这时甲、乙两人相距_____km.(2)如图是某地的长方形大理石广场示意图,如果小王从A角走到C角,至少走_____米.(3)如图:有一个圆柱,底面圆的直径AB=16,高BC=12,P为BC的中点,蚂蚁从A点爬到P点的最短距离是_____.4、如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么_____.5、如图,点M,N把线段AB分割成AM,MN和NB,若以AM,MN,NB为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB的“勾股分割点”,若AM=3,MN=4,则BN的长为______.三、解答题(5小题,每小题10分,共计50分)1、如图,△ABC中,BC的垂直平分线DE分别交AB、BC于点D、E,且BD2﹣DA2=AC2.(1)求证:∠A=90°;(2)若AB=8,AD:BD=3:5,求AC的长.2、2000多年来,人们对直角三角形三边之间的关系的探究颇感兴趣,古往今来,下至平民百姓,上至帝王总统都愿意探究它,研究它的证明,新的证法不断出现下面给出几种探究方法(由若干个全等的直角三角形拼成以下图形).试用面积法选择其中一种推导直角三角形的三边a,b,c之间的数量关系.(1)三边a,b,c之间的数量关系为.(2)理由:3、如图,Rt△ABC中,∠ACB=90°,分别以AC,BC,AB为边作正方形,面积分别记作S1、S2、S3.求证:S1+S2=S3.4、如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,DE⊥CD,且DE=CD,CE交边AB于点F,连接BE.(1)若AC=CD=7,求线段AD的长;(2)如图2,求证:△CBE是直角三角形;(3)如图3,若CD≠CF,直接写出线段AC,CD,BE之间的数量关系.5、如图,厂房屋顶的人字架是等腰三角形,AB=AC,AD⊥BC,若跨度BC=16m,上弦长AB=10m,求中柱AD的长.---------参考答案-----------一、单选题1、A【分析】设每块砖的厚度为x cm,则AD=3x cm,BE=2x cm,然后证明△DAC≌△ECB得到CD=BE=2x cm,再利用勾股定理求解即可.【详解】解:设每块砖的厚度为x cm,则AD=3x cm,BE=2x cm,由题意得:∠ACB=∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC =∠ECB ,又∵AC =CB ,∴△DAC ≌△ECB (AAS ),∴CD =BE =2x cm ,∵222AC BC AB +=,222AD DC AC +=,∴()()222232220x x +=, ∴220013x =, 故选A .【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.2、B【分析】如图,由线段垂直平分线的性质可知PB =PC ,则有PA +PB =PA +PC ,然后可知当点A 、P 、C 三点共线时,PA +PB 取得最小值,即为AC 的长.【详解】解:如图,连接PC ,∵EF是BC的垂直平分线,∴PB=PC,∴PA+PB=PA+PC,∴PA+PB的最小值即为PA+PC的最小值,当点A、P、C三点共线时,PA+PB取得最小值,即为AC的长,∴在Rt△ABC中,∠A=90°,AB=6,BC=10,由勾股定理可得:AC,8∴PA+PB的最小值为8;故选B.【点睛】本题主要考查垂直平分线的性质及勾股定理,熟练掌握垂直平分线的性质及勾股定理是解题的关键.3、B【分析】利用三角形内角和定理和勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【详解】解:①∵∠A=90°﹣∠B,∴∠A+∠B=90°,∴∠C=90°,∴△ABC是直角三角形;②∵∠A:∠B:∠C=3:4:5,设∠A=3x,则∠B=4x,∠C=5x,∴3x+4x+5x=180,解得:x=15°,∴∠C=15°×5=75°,∴△ABC不是直角三角形;③∵∠A=2∠B=3∠C,∴11,23B AC A ∠=∠∠=∠∴1118023A B C A A A︒∠+∠+∠=∠+∠+∠=,∴∠A=(108011)°,∴△ABC为钝角三角形;④∵AB:BC:AC=3:4:5,设AB=3k,则BC=4k,AC=5k,∴AB2+BC2=AC2,∴△ABC是直角三角形;∴能确定△ABC是直角三角形的条件有①④共2个,故选:B.【点睛】此题主要考查了勾股定理逆定理以及三角形内角和定理,关键是掌握勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.4、B【分析】根据题意过D作DN⊥BF于N,连接DI,进而结合全等三角形的判定与性质得出S1+S2+S3+S4+S5=Rt△ABC的面积×4进行分析计算即可.【详解】解:在Rt△ABC中,∠CBA=60°,斜边AB=10,∴BC=12AB=5,AC过D作DN⊥BF于N,连接DI,在△ACB和△BND中,90 ACB BNDCAB NBD AD BD ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△ACB≌△BND(AAS),同理,Rt△MND≌Rt△OCB,∴MD=OB,∠DMN=∠BOC,∴EM=DO,∴DN=BC=CI,∵DN∥CI,∴四边形DNCI是平行四边形,∵∠NCI=90°,∴四边形DNCI是矩形,∴∠DIC=90°,∴D 、I 、H 三点共线,∵∠F =∠DIO =90°,∠EMF =∠DMN =∠BOC =∠DOI ,∴△FME ≌△DOI (AAS ),∵图中S 2=S Rt△DOI ,S △BOC =S △MND ,∴S 2+S 4=S Rt△ABC .S 3=S △ABC ,在Rt△AGE 和Rt△ABC 中,AE AB AG AC =⎧⎨=⎩, ∴Rt△AGE ≌Rt△ACB (HL ),同理,Rt△DNB ≌Rt△BHD ,∴S 1+S 2+S 3+S 4+S 5=S 1+S 3+(S 2+S 4)+S 5=Rt△ABC 的面积+Rt△ABC 的面积+Rt△ABC 的面积+Rt△ABC 的面积=Rt△ABC 的面积×4=故选:B .【点睛】 本题考查勾股定理的应用和全等三角形的判定,解题的关键是将勾股定理和正方形的面积公式进行灵活的结合和应用.5、A【分析】根据题意设出AE 的长为km x ,再由勾股定理列出方程求解即可.【详解】解:设km AE x =,则()25km BE x =-,由勾股定理得:在Rt ADE ∆中,2222210DE AD AE x =+=+,在Rt BCE ∆中,2222215(25)CE BC BE x =+=+-,由题意可知:DE CE =,∴22221015(25)x x +=+-,解得:15x =,∴BE =10km .故选A .【点睛】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.6、C【分析】由题意根据所给的数据和三角形内角和定理,勾股定理的逆定理分别对每一项进行分析,即可得出答案.【详解】解:①由题意知,180A B C C ︒∠+∠=-∠=∠,解得90C ∠=︒,则ABC ∆是直角三角形; ②518075345C ∠=⨯︒=︒++,则ABC ∆不是直角三角形; ③由题意知,180C B A A ︒∠+∠=-∠=∠,解得90A ∠=︒,则ABC ∆是直角三角形;④由题意知,22225a b c +==,则ABC ∆是直角三角形;故选:C .【点睛】本题主要考查直角三角形的判定方法.注意掌握如果三角形中有一个角是直角,那么这个三角形是直角三角形;如果一个三角形的三边a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.7、A【分析】设AC =a ,BC =b ,由勾股定理分别求出AE 、EC 、CF 、BF 、AD 、BD 、ED 、DC 的值,再根据三角形面积逐项判断即可.【详解】解:设AC =a ,BC =b ,∴S △ABC =12ab ,AB在等腰直角三角形中,AE =EC=,CF =BF=,AD =BD在Rt △AED 中,ED =,DC =EC -ED =()2a b -,A :S 4=12AE •ED =12b a =14ab =12•12ab =12•S △ABC , 已知R t△ABC 的面积,可知S 4,故S 4能求出确切值;B :设AC 与BD 交于点M ,则S 3+S △ADM =S △ADC =12•CD •AE =12(a -b =24a ab -, 又∵S 1+S △ADM =S △ADB =12•AD 2=12•22+2a b =22+4a b , ∴(S 1+S △ADM )-(S 3+S △ADM )=S 1-S 3=22+4a b -24a ab -=24b ab +=2142ABC b S +,则S 1-S 3与b 有关,∴求不出确切值:C :设AC 交BD 于点M ,则S △BFD =12FD •BF =12=4ab ,∴S △ADM +S 3=12a -b =14(a 2-abS △BCM +S 3=S △BCD =12•CD •BF =12(a -b =14(ab -b 2), S △ADM +S 1=S △ADB =14(a 2+b 2),S △BCM +S 1=S △ABC ,S 2=12BF 2=12•22b =24b , S 2+S 3+S 4=S 梯形AEFB -S △ABD -S △ABC +S 1,∴S 2+S 3+S 4=S 1∵S 1无法确定,∴无法确定C ;D:由B选项过程得S1-S3=24b ab+,又∵S2=12•12b2,得到:S1+S2-S3=12b2+14ab=12b2+12S△ABC,此时S1+S2-S3与b有关,无法求出确切值.故选:A.【点睛】本题主要考查勾股定理和直角三角形面积公式,关键是对知识的掌握和运用.8、D【分析】当铅笔不垂直于底面放置时,利用勾股定理可求得铅笔露出笔筒部分的最小长度;考虑当铅笔垂直于笔筒底面放置时,铅笔在笔筒外面部分的长度是露出的最大长度;从而可确定答案.【详解】15(cm)=,则铅笔在笔筒外部分的最小长度为:18−15=3(cm);当铅笔垂直于笔筒底面放置时,铅笔在笔筒外面部分的长度为18−12=6(cm),即铅笔在笔筒外面最长不超过6cm,从而铅笔露出笔筒部分的长度不短于3cm,不超过6cm.所以前三项均符合题意,只有D选项不符合题意;故选:D【点睛】本题考查了勾股定理的实际应用,关键是把实际问题抽象成数学问题,分别考虑两种极端情况,问题即解决.9、B【分析】由勾股定理先求出Rt△ADB的直角边AD的长,然后再根据勾股定理求Rt△ADC的斜边AC的长即可.【详解】解:如图,∵在△ABC中,AD⊥BC于点D,∴∠ADB=∠ADC=90°.∵在Rt△ADB中,AB=3,BD=2,∴AD=在Rt△ADC中,AD CD=1,∴AC故选:B.【点睛】本题考查了勾股定理的应用,解题的关键是理解勾股定理.10、D【分析】过A作AC∥OM交ON于C,作AD∥ON,求出AB及∠DAB即可得到答案.【详解】过A作AC∥OM交ON于C,作AD∥ON,如图:∵∠MON=90°,∠AOC=30°,∴∠AOM=120°,由作图可知,OB平分∠AOM,∴∠AOB=12∠AOM=60°,∴∠B=30°,在Rt△AOB中,OB=2OA=10,∴2253AB OB OA=-=,∵∠AOC=30°,∠ACO=90°,∴∠CAO=60°,∴∠DAB=90°-∠BAC=∠CAO=60°,∴B在A北偏东60°方向53km处,故选:D.【点睛】本题考查作图-基本作图、方向角、角平分线的作法等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.二、填空题1、3【分析】过点B作BH⊥CA交CA的延长线于点H,过点C作CG⊥AD于点G,在线段DG上截取GF=GA,连接CF,则CG是AF的垂直平分线,证明△CFD≌△BAE,可得FD=AE,根据△BCD的面积是△BCE的面积的6倍,可得CG=S△BCE,AE=32CE,进而可得AE的长;再利用勾股定理求出CG,进而可得△BCD的面积.【详解】解:如图,过点B 作BH ⊥CA 交CA 的延长线于点H ,过点C 作CG ⊥AD 于点G ,在线段DG 上截取GF =GA ,连接CF ,则CG 是AF 的垂直平分线,∴CA =CF ,∴∠CAF =∠CFA ,∴180°﹣∠CAF =180°﹣∠CFA ,∴∠CAB =∠CFD ,∵AB =AC =5,∴CF =AB =AC =5,在△CFD 和△BAE 中,CFD BAE FDC AEB CF BA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CFD ≌△BAE (AAS ),∴FD =AE ,∵AB =5,AD =7,∴BD =AB +AD =12,∴S △BCD =12⨯BD •CG =12⨯12CG =6CG ,∵S △BCD =6S △BCE ,∴6CG=6S△BCE,∴CG=S△BCE,∵S△ABC=12BA•CG=12⨯5CG=52CG,∴S△ABC=52S△BCE,∴S△ABE=S△ABC﹣S△BCE=52S△BCE﹣S△BCE=32S△BCE,∵S△ABE=12⨯AE•BH,S△BCE=12⨯CE•BH,∴12⨯AE•BH=32×12⨯CE•BH,∴AE=32 CE,∴AECE=32,∴AE=35AC=35×5=3,∴FD=AE=3,∴AF=AD﹣FD=7﹣3=4,∴AG=FG=12AF=2,∵CG⊥AG,∴∠AGC=90°,在Rt△ACG中,∠AGC=90°,AC=5,AG=2,∴CG=∵BD=12,∴S△BCD =12⨯BD •CG =12⨯综上所述:AE =3,△BCD 的面积为故答案为:3;.【点睛】本题属于三角形的综合题,是中考填空题的压轴题,考查了全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的性质,勾股定理,三角形面积公式,解决本题的关键是掌握全等三角形的判定与性质.2、100【分析】根据题意点C 位于点B 的西偏北60゜方向,再根据平行线的性质可得点A 位于点B 的西偏南30゜方向,从而可得AB ⊥BC ,由勾股定理即可求得AC 的长.【详解】如图所示,∠CBH =30゜,∠DAB =60゜∴∠BAE =90゜-∠DAB =30゜,∠CBF =90゜-∠CBH =60゜∵FB ∥AE∴∠FBA =∠BAE =30゜∴∠ABC =∠CBF +∠FBA =60゜+30゜=90゜在Rt △ABC 中,AB =,50m BC =由勾股定理得:100(m)AC故答案为:100【点睛】本题主要考查了勾股定理的应用,关键是知道方位角的含义并得出△ABC是直角三角形.3、5 50 10【分析】(1)因为甲向东走,乙向南走,其刚好构成一个直角.两人走的距离分别是两直角边,则根据勾股定理可求得斜边即两人的距离;(2)连接AC,利用勾股定理求出AC的长即可解决问题;(3)把圆柱的侧面展开,连接AP,利用勾股定理即可得出AP的长,即蚂蚁从A点爬到P点的最短距离.【详解】解:(1)如图,∵∠AOB=90°,OA=4km,OB=3km,∴AB km.故答案为:5;(2)如图连接AC,∴四边形ABCD是矩形,∴∠B=90°,在Rt△ABC中,∵∠B=90°,AB=30米,BC=40米,∴AC=米).根据两点之间线段最短可知,小王从A角走到C角,至少走50米,故答案为:50;(3)解:已知如图:∵圆柱底面直径AB=16π,高BC=12,P为BC的中点,∴圆柱底面圆的半径是8π,BP=6,∴AB=12×2×8π•π=8,在Rt△ABP中,AP,∴蚂蚁从A点爬到P点的最短距离为10.故答案为:10.【点睛】本题考查勾股定理的应用,平面展开-最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解答此题的关键.4、222+=a b c【分析】利用勾股定理:两条直角边长的平方和等于斜边长的平方和,即可得到答案.【详解】解:在直角三角形中,由勾股定理可知:222+=a b c .故答案为:222+=a b c .【点睛】本题主要是考查了直角三角形的勾股定理,熟练掌握勾股定理的内容,注意区分好直角边和斜边,这是解决该类问题的关键.5、5【分析】分两种情况讨论:当3,4AM NM为直角边时,当4MN =为斜边时,则3AM =为直角边,再利用勾股定理可得答案.【详解】解:当3,4AM NM为直角边时, 22345,BN 当4MN =为斜边时,则3AM =为直角边, 22437,BN故答案为:5【点睛】本题考查的是新定义情境下的勾股定理的应用,理解新定义,再分类讨论是解本题的关键.三、解答题1、(1)见解析;(2)4AC【分析】(1)利用线段垂直平分线的性质可得CD=BD,然后利用勾股定理逆定理可得结论;(2)首先确定BD的长,进而可得CD的长,再利用勾股定理进行计算即可.【详解】(1)证明:连接CD,∵BC的垂直平分线DE分别交AB、BC于点D、E,∴CD=DB,∵BD2﹣DA2=AC2,∴CD2﹣DA2=AC2,∴CD2=AD2+AC2,∴△ACD是直角三角形,且∠A=90°;(2)解:∵AB=8,AD:BD=3:5,∴AD=3,BD=5,∴DC=5,∴AC4=.【点睛】本题主要考查勾股定理及其逆定理、线段垂直平分线的性质定理,熟练掌握勾股定理及其逆定理、线段垂直平分线的性质定理是解题的关键.2、(1)a2+b2=c2;(2)见解析【分析】(1)由勾股定理即可得出结果;(2)选择图①由大正方形的面积=4个直角三角形的面积+小正方形的面积,即可得出结果;选择图②由梯形的面积=2个直角三角形的面积+等腰直角三角形的面积,即可得出结果;选择图③由大正方形的面积=4个直角三角形的面积+小正方形的面积,即可得出结果.【详解】解:(1)由勾股定理得:a2+b2=c2.故答案为:a2+b2=c2;(2)选择图①.∵大正方形的面积=4个直角三角形的面积+小正方形的面积,∴(a+b)2=4×12ab+c2,即a2+2ab+b2=2ab+c2,∴a2+b2=c2;选择图②由梯形的面积=2个直角三角形的面积+等腰直角三角形的面积,∴12(a+b)2=2×12ab+12c2,即a2+2ab+b2=2ab+c2,∴a2+b2=c2;选择图③由大正方形的面积=4个直角三角形的面积+小正方形的面积,∴c2=4×12ab+ (b-a)2,即c2=2ab+b2-2ab+a2,∴a2+b2=c2.【点睛】本题考查了勾股定理的证明、正方形和三角形面积的计算方法;熟练掌握勾股定理的证明,通过图形面积关系得出结论是解决问题的关键.3、见解析【分析】在直角三角形ABC中,利用勾股定理求出AC2+BC2的值,根据S1,S2分别表示正方形面积,求出S1+S2的值即可.【详解】证明:由题意得S1=AC2,S2=BC2,S3=AB2.在Rt△ABC中,∠ACB=90°,则由勾股定理,得AC2+BC2=AB2,∴S1+S2=S3.【点睛】本题考查的是与勾股定理相关的图形面积问题,掌握“勾股定理”是解本题的关键.4、(1)6(2)见解析;(3)AC2+BE2=2CD2,理由见解析【分析】(1)根据题意过点C作CM⊥AB于M,由等腰直角三角形的性质得CM⊥AB, AM=BM,CM=12AB=AM=BM=6,再由勾股定理得DM(2)根据题意过点C作CM⊥AB于M,过E作EN⊥AB于N,证△CDM≌△DEN(AAS),得CM=DN,DM=EN,则DM+MN=CM,由(1)得∠ABC=45°,CM=12AB=AM=BM,证出DM=BN=EN,得△BNE是等腰直角三角形,即可解决问题;(3)根据题意过点C作CM⊥AB于M,过E作EN⊥AB于N,由(2)可知:EN=BN=DM,BE2=EN2+BN2=BE2,再由AC2=CM2+AM2,CD2=CM2+DM2,即可得出结论.2EN2=2DM2,则DM2=12【详解】解;(1)过点C作CM⊥AB于M,如图1所示:∵∠ACB=90°,AC=BC,AC=,∴AB=12,∵CM⊥AB,AB=AM=BM=6,∴AM=BM,CM=12∴DM∴AD=AM﹣DM=6(2)证明:过点C作CM⊥AB于M,过E作EN⊥AB于N,如图2所示:则∠CMD=∠DNE=90°,∴∠MCD+∠MDC=90°,∵DE⊥CD,∴∠MDC+∠NDE=90°,∴∠MCD=∠NDE,又∵CD=DE,∴△CDM≌△DEN(AAS),∴CM=DN,DM=EN,∴DM+MN=CM,AB=AM=BM,由(1)得:∠ABC=45°,CM=12∴BM=MN+BN=CM=DM+MN,∴DM=BN=EN,∴△BNE是等腰直角三角形,∴∠ABE=45°,∴∠CBE=∠ABC+∠ABE=90°,∴△CBE是直角三角形;(3)AC2+BE2=2CD2,理由如下:过点C作CM⊥AB于M,过E作EN⊥AB于N,如图3所示:由(2)可知:EN=BN=DM,BE2=EN2+BN2=2EN2=2DM2,∴DM2=12BE2,在Rt△ACM中,CM=AM,AC2=CM2+AM2,在Rt△CDM中,CM=AM,CD2=CM2+DM2,∴CD2=12AC2+ 12BE2,∴AC2+BE2=2CD2.【点睛】本题属于三角形综合题目,主要考查全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、直角三角形斜边上的中线性质等知识;本题综合性强,熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.5、6mAD=【分析】由等腰三角形的性质得BC=CD=12BC=8(m),再由勾股定理求解即可.【详解】解:∵AB=AC,AD⊥BC,BC=16m,∴BC=CD=12BC=8(m),∠ADB=90°,∴AD6(m),即中柱AD的长为6m.【点睛】本题主要考查了等腰三角形的性质和勾股定理,熟练掌握等腰三角形的性质和勾股定理是解题的关键.。
2024年第十七章勾股定理课堂复习题及答案章末整合集训 (1)
1 2 3 4 5 6 例7 1 81 92 103 114
章末整合集训 勾股定理的实际应用 7.如图有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一 棵树的树梢飞到另一棵树的树梢,至少飞了___1_0___m.
1 2 3 4 5 6 例7 1 81 92 103 114
章末整合集训
8.[教材第25页例2改编]如图,一架梯子 AC长2.5米,斜靠在一面墙AB上,梯子底端 离墙0.7米. (1)这个梯子的顶端距地面有多高?
1 2 3 4 5 6 例7 1 81 92 103 114
章末整合集训
勾股定理与逆定理的综合应用 10.若 △ABC 的三边长 a , b , c 满足 (a-b)2+|a2+b2-c2|=0,则下列对 △ABC 的形状描述最准确的是 ( C ) A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形
解:如图1, 802+402= 8 000(cm); 如图2, 302+902= 9 000(cm); 如图3, 502+702= 7 400(cm); ∵ 7 400< 8 000< 9 000, ∴ 7 400=10 74. ∴至少爬行10 74cm.
人教版数学八年级下第17章《勾股定理》章节基础巩固测试试题
人教版数学八年级下第17章《勾股定理》章节基础巩固测试题一、 选择题(每题3分,共30分)1. 三角形的三边长分别为6,8,10,它的最短边上的高为( )A . 6B . 4.5C . 2.4D . 82. 下面几组数:①7,8,9;②12,9,15;③m 2 +n 2, m 2–n 2, 2mn (m ,n 均为正整数,m >n )④2a ,12+a ,22+a .其中能组成直角三角形的三边长的是( )A . ①②B . ②③C . ①③D . ③④3. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A .a :b :c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c)D . a :b :c =13∶5∶124. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A . 等边三角形B . 钝角三角形C . 直角三角形D . 锐角三角形.5.已知一个直角三角形的两边长分别为3和4,则第三边长是( )A .5B .25C .7D .5或76.已知Rt △ABC 中,∠C =90°,若a +b =14cm ,c =10cm ,则Rt △ABC 的面积是( )A. 24cm 2B. 36cm 2C. 48cm 2D. 60cm2 7.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定8. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行 走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离 为( )A .600米B . 800米C . 1000米 D. 不能确定9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )(A) 2cm (B) 3cm(C) 4cm (D) 5cm10.如图,将三边长分别为3、4、5的ABC V ,沿最长边AB 翻转180︒成'ABC V ,则'CC 的长为( ) (A )125 (B )512(C )56 (D )245A BE C BA 'C二、 填空题(每题3分,共30分)11. 下面几组数:①7,8,9;②12,9,15;③m 2+n 2,m 2-n 2,2mn (m ,n 均为正整数,m >n );④a 2,a 2+1,a 2+2.其中能组成直角三角形的三边长的是________.12. 在△ABC 中,∠C =90°,AB =5,则AB 2+AC 2+BC 2=________.13. 如图,在等腰△ABC 中,AB =AC ,AD 是底边上的高,若AB =5cm ,BC =6cm ,则AD =________cm.14. 命题“角平分线上的点到角两边的距离相等”的逆命题是___________________________________.15. 如图,已知在△ABC 中,AB =17,AC =10,BC 边上的高AD =8,则边BC 的长为_________________.16. 如图所示是一个外轮廓为矩形的机器零件平面示意图,根据图中标注的尺寸(单位:mm),可得两圆孔中心A 和B 的距离为________.17. 小刚准备测量河水的深度,他把一根竹竿插到离岸边 1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为________.18. A 、B 、C 分别表示三个村庄,AB =1000m ,BC =600m ,AC =800m ,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在________.19. 已知Rt △ABC 的周长是344 ,斜边上的中线长是2,则S △ABC =____________20. 如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m.现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O 的距离等于3m ,同时梯子的顶端B 下降至B ′,那么BB ′的值:①等于1m ;②大于1.5m ;③小于1m.其中正确结论的序号是________.三、 解答题(第21、22题每题6分,其余每题7分,共40分)21. 已知a ,b ,c 是三角形的三边长,a =2n 2+2n ,b =2n +1,c =2n 2+2n +1(n 为大于1的自然数),试说明△ABC 为直角三角形.22. 如图所示,在△ABC 中,AC =10,BC =17,CD =8,AD =6.(1)求BD 的长;(2)求△ABC 的面积.23. 如图是由16个边长为1的小正方形拼成的,任意连接这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段.24.一辆表装满货物的卡车高2. 5米,宽1. 6米,要开进厂门,如图所示,厂门的顶部呈半圆(AB 为直径),下部呈长方形,问这辆卡车能否顺利通过厂门?为什么?25. 如图,甲、乙两船从港口A 同时出发,甲船向北偏东40°方向航行,乙船以16海里/时的速度向南偏东50°方向航行.3h 后,甲船到达C 岛,乙船到达B 岛.若C 、B 两岛相距60海里,甲船的航速是多少?(第25题)26. 如图,一个牧童在小河南面4km 的A 处牧马,而他与他的小屋B 之间的水平距离为8km ,垂直距离为7km ,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最A CB ACD 2.3米2米短路程是多少?(第26题)参考答案:1.D2.B3.A4.C5.D6.A7.C8.C9.B 10.D11. ②③12. 50 解析:由于AB 是斜边,根据勾股定理可知:AC2+BC2=AB2=25,所以AB2+AC2+BC2=50.13. 4 解析:本题考查了等腰三角形的性质和勾股定理.根据等腰三角形的三线合一可得:BD =12BC =12×6=3(cm),在直角三角形ABD 中,由勾股定理,得AB2=BD2+AD2,所以,AD =AB2-BD2=52-32=4(cm).14. 到角两边距离相等的点在这个角的角平分线上15. 21 解析:CD =AC2-AD2=6,BD =AB2-AD2=15,BC =21.16. 100mm 解析:由图可知,在Rt △ABC 中,AC =60mm ,BC =80mm ,再利用勾股定理即可求得结果.17. 2m18. AB 中点处 解析:利用勾股定理逆定理得出△ABC 为直角三角形.19. 8点拨:由斜边中线长为2,可知斜边长为4,所以这个直角三角形两直角边长度之和为34. 20. ③21. 证a2+b2=c2,用勾股定理逆定理得∠C =90°.22.解: 因为AC2 = 102 = 100,AD2 = 62 = 36,CD2 = 82 = 64,所以AC2 = AD2+ CD2,所以∠ADC = 90°,所以∠BDC = 90°,在Rt △BCD 中,由勾股定理,得BD =22CD BC -=15,所以ABC S ∆=21AB ×CD =21×(15+6)×8=84; 23. 略24.解: 这辆卡车能通过厂门,如图2所示,卡车从正中通过,设半圆的圆心为O ,在直径AB 上取OM =0. 8米,过点M 作MP ⊥AB ,交半圆于点P ,交CD 边于点N ,连接OP ,OP =21AB =1米,OM =0. 8米,在Rt △OPM 中,PM2=12-0. 82=0. 62,故PM =0. 6米,PN =PM +MN =0. 6+2. 3=2. 9米,而卡车高仅2. 5米,故卡车能顺利通过该厂大门.25. 12海里/时26. 如图,作出点A 关于河岸MN 的对称点A ′,连接A ′B 交MN 于点P ,则A ′B 就是最短路线.在Rt △A ′DB 中,由勾股定理求得A ′B =17km.A BCD 2.3米2米 PO M N。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第十七章勾股定理》单元测验
班级: _________ 姓名: ____________ 号数: __________ 分数: __________
一、选择题
1 •已知直角三角形中30°角所对的直角边长是2..、3cm,则另一条直角边的长为(
)
A 、4cm
B 、4.3 cm
C 、. 6cm
D 、63 cm
2、 ^ ABC 中,A 吐 15, AC= 13,高 AD= 12,则厶 ABC 的周长为(
) A 、42 B 、32 C 、42 或 32 D 、37 或 33
3、 一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端 7分米.如果梯子的 顶端沿墙下滑4分米,那么梯足将滑动( )
A 、9分米
B 15分米
C 、5分米
D 、8分米
4、 如果下列各组数不能组成直角三角形的是( )
3 4
A 、 2, 3, 4
B 、 3, 4, 5
C 、 6, 8, 10
D 、 一 , — , 1
5 5
5、 如果把直角三角形的两条直角边同时扩大到原来的 2倍,那么斜边扩大到原来的(
)
A 1倍
B 、2倍
C 、3倍
D 、4倍
6、 下列说法中正确的是( )
A 、已知a,b,c 是三角形的三边,则a 2 b 2 c 2
B 、在直角三角形中两边和的平方等于第三边的平方
C 在 Rt ABC 中,c=90,所以 a 2 b 2 二 c 2
D 在 Rt ABC 中,.B=90,所以 a 2 b^ c 2
7、 在Rt ABC 中,.ACB=90 , AO 5, BO 12,其中斜边上的高为( )
A 、6
B 、8.5
C 、6°
D 、竺
13 13
2 2 2 2 2
&已知a , b , c ABC 三边,且满足(a — b )(a+b — c ) = 0,则它的形状为(
)
填空题
等腰△ ABC 的腰长A 吐10cm 底BC 为16cm 则底边上的高为 _ ,面积为—.
A 、直角三角形
B 等腰三角形
C 、等腰直角三角形
D 等腰三角形或直角三角形
9、 Rt △一直角边的长为11,另两边为自然数,贝U Rt △的周长为(
A 10、 A C 、121
B 、120
C 、132
D 不能确定
如图1,正方形网格中的厶ABC 若小方格边长为1,则厶ABC 是 ( 、
直角三角形B 、锐角三角形
、钝角三角形 D 、以上答案都不对
11、 12、
5m
一天,小明买了一张底面是边长为260cm的正方形,厚30cm的床垫回家.到了家门口, 才发现门口只有242cm高,宽100cm你认为小明能拿进屋吗?__________ .
13、如图,某会展中心在会展期间准备将高5m,长13m宽2m的楼道上铺地毯,已知地毯每
平方米
18元,请你帮助计算一下,铺完这个楼道至少需要 _________ 元钱
14、 如图△ ABC 中, / C=90°, AB 垂直平分线交 BC 于 D 若 BC=8, AD=5,
贝 U AC _ 。
15、 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,
其中最大的正方形的边和长为 7cm,则正方形A, B, C, D 的面积之和
为 ________ c m
16、 已知某直角三角形斜边上的中线为 2,其面积为?,则直角三角形的周
4
长为 -
三、解答题
17、已知:如图,人。
是厶ABC 的高,AB=10 AD=8 BC=12 . 求证:△ ABC 是等腰三角形.
18、如图,在四边形 ABCD 中, AB=20 BC=15 CD=7 AD=24 / B=90°,求/ D 的度数。
19、有一个直角三角形纸片,两直角边 AC=6cm,BC=8cr 现将直角边AC 沿/ CAB 的角平分线
AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出
20、如图,在厶ABC 中, / B=90 , AB=BC=6ffi^ ABC 进行折叠,使点A 与点D 重合,
BD:DC=1:2
折痕为EF,点E 在AB 上,点F 在AC 上,求EC 的长。
B D
D
E。