人教版七年级数学上册有理数加减法计算题 (919)

合集下载

新人教数学七年级上册有理数的加减法测试题

新人教数学七年级上册有理数的加减法测试题

七年级上册有理数的加减法练习题一、 填空题1、+8与-12的和取___号,+4与-3的和取___号。

2、小华记录了一天的温度是:早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的温度是____℃。

3、3与-2的和的倒数是____,-1与-7差的绝对值是____。

4、小明存折中原有450元,取出260元,又存入150元,现在存折中还有____元。

5、-0.25比-0.52大____,比-521小2的数是____。

6、若b a ,b a -<>则0,0一定是____(填“正数”或“负数”) 7、已知21,43,32-=-==c b a ,则式子=--+-)()(c b a _____。

8、把下列算式写成省略括号的形式:)7()3()2()8()5(++---++-+=____。

9、+8与-12的和取___号,+4与-3的和取___号.10、0℃比-10℃高多少度?列算式为 ,转化为加法是 ,•运算结果为 . 11、小华记录了一天的温度是:早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的温度是 ℃.12、比-18小5的数是 ,比-18小-5的数是 .13、3与-2的和的倒数是____,-1与-7差的绝对值是____. 14、 已知两个数556和283-,这两个数的相反数的和是 . 15、小明存折中原有450元,取出260元,又存入150元,现在存折中还有____元. 16、将()()()6372-+--+-中的减法改成加法并写成省略加号的代数和的形式应是 .17、-0.25比-0.52大____,比-521小2的数是____. 18、已知m 是6的相反数,n 比m 的相反数小2,则m n -等于 . 19、若b a ,b a -<>则0,0一定是____(填“正数”或“负数”)20、在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 . 21、已知21,43,32-=-==c b a ,则式子=--+-)()(c b a _____.22、有理数中,所有整数的和等于 .23、把下列算式写成省略括号的形式:)7()3()2()8()5(++---++-+=____. 24、某足球队在一场比赛中上半场负5球,下半场胜4球,•那么全场比赛该队净胜 球为______. 25、若,,则_____0,_______0.二、选择题(每小题3分,共24分)1、已知胜利企业第一季度盈利26000元,第二季度亏本3000元,该企业上半年盈利(或亏本)可用算式表示为( )A 、)3000()26000(+++B 、)3000()26000(++-C 、)3000()26000(-+-D 、)3000()26000(-++ 2、下面是小华做的数学作业,其中算式中正确的是( ) ①74)74(0=+-;②417)417(0=--;③510)51(-=-+;④510)51(-=+- A 、①② B 、①③ C 、①④ D 、②④3、小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出1.25元,取出2元,这时银行现款增加了( ) A 、12.25元 B 、-12.25元 C 、12元 D 、-12元4、-2与414的和的相反数加上651-等于( ) A 、-1218 B 、1214- C 、125 D 、12545、一个数加上-12得-5,那么这个数为( )A 、17B 、7C 、-17D 、-76、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )A 、10米B 、15米C 、35米D 、5米7、计算:21)7()9()3()5(+---++--所得结果正确的是( ) A 、2110- B 、219- C 、218 D 、2123-8、若031=++-b a ,则21--a b 的值为( )A 、214-B 、212-C 、211-D 、2119、下面是小华做的数学作业,其中算式中正确的是( ) ①74)74(0=+-;②417)417(0=--;③510)51(-=-+;④510)51(-=+-A 、①②B 、①③C 、①④D 、②④ 10、下列交换加数的位置的变形中,正确的是( ) A 、14541445-+-=-+- B 、1311131134644436-+--=+-- C 、12342143-+-=-+- D 、4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+- 11、下列计算结果中等于3的是( )A 、74-++B 、 ()()74-++C 、74++-D 、()()74+--12、已知胜利企业第一季度盈利26000元,第二季度亏本3000元,该企业上半年盈利(或亏本)可用算式表示为( )A 、)3000()26000(+++B 、)3000()26000(++-C 、)3000()26000(-+-D 、)3000()26000(-++ 13、下列说确的是( )A 、两个数之差一定小于被减数B 、减去一个负数,差一定大于被减数C 、减去一个正数,差一定大于被减数D 、0减去任何数,差都是负数6、小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出1.25元,取出2元,这时银行现款增加了( )A 、12.25元B 、-12.25元C 、12元D 、-12元 14、-2与414的和的相反数加上651-等于( ) A 、-1218 B 、1214- C 、125 D 、125415、一个数加上-12得-5,那么这个数为( )A 、17B 、7C 、-17D 、-716、x <0, y >0时,则x, x+y, x -y ,y 中最小的数是 ( )A x B x -y C x+y D y 17、下面结论正确的有 ( )①两个有理数相加,和一定大于每一个加数. ②一个正数与一个负数相加得正数. ③两个负数和的绝对值一定等于它们绝对值的和. ④两个正数相加,和为正数. ⑤两个负数相加,绝对值相减. ⑥正数加负数,其和一定等于0.A 、0个B 、1个C 、2个D 、3个18、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )A 、10米B 、15米C 、35米D 、5米18、计算:21)7()9()3()5(+---++--所得结果正确的是( ) A 、2110- B 、219- C 、218 D 、2123-19、若031=++-b a ,则21--a b 的值为( )A 、214-B 、212-C 、211-D 、211三、解答题(共52分) 1、列式并计算: (1)什么数与125-的和等于87-? (2)-1减去5232与-的和,所得的差是多少?2、计算下列各式:(1))8()13(2)6(0+---+-- (2))127(65)43(6513--+--(3)4122)75.0()218()25.6()4317(-+---+-+(4))8()13(2)6(0+---+-- (5))127(65)43(6513--+--(6)4122)75.0()218()25.6()4317(-+---+-+ (7)(-441)-(+531)-(-441)(8)-0.5-(-341)+2.75-(+721) (9) 712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(10) ()34187.5213772⎛⎫⎛⎫⎛⎫-+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(11) ()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(12)(+9)+(-7)+(+10)+(-3)+(-9)3、下列是我校七年级5名学生的体重情况, (1)试完成下表:(3)最重的与最轻的相差多少?4、小红和小明在游戏中规定:长方形表示加,圆形表示减,结果小者获。

七年级数学上册《第一章 有理数的加减法》同步练习题及答案(人教版)

七年级数学上册《第一章 有理数的加减法》同步练习题及答案(人教版)

七年级数学上册《第一章有理数的加减法》同步练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.在2,﹣3,0,﹣√3这四个数中,最大的是()A.2 B.﹣3 C.0 D.﹣√32.若x<0,则︱-x +(- x)︱等于()A.-x B.0 C.2x D.-2x3.下列说法正确的是()A.两数之和必大于任何一个加数B.同号两数相加,符号不变,并把绝对值相加C.两负数相加和为负数,并把绝对值相减D.异号两数相加,取绝对值较大的加数的符号,并把绝对值相加4.下列与:﹣9+31+28﹣45相等的是()A.﹣9+45+28﹣31 B.31﹣45﹣9+28C.28﹣9﹣31﹣45 D.45﹣9﹣28+315.两个数的差是28.6,如果被减数减少3.2,减数增加3.2,差是()A.22.2 B.25.4 C.31.8 D.356.若y<0,且x+y>0,则以下结论错误的是()A.|x|−|y|>0B.|x|+|y|>0C.x−y<0D.x+|y|>07.有理数a、b在数轴上的位置如图所示,则下列判断正确的是()A.a+b>0B.a+b<0C.ab>0D.|a|>|b|8.一物体作左右方向运动,规定向左为负,向右为正。

如果物体先向右运动5米,再向左运动8米,用算式表示结果为( )A.(-5)+8 B.(+5)+(-8)C.(-5)+(+8)D.5-(-8)二、填空题9.计算:(﹣4 )+9= .10.大于 −2 而小于 3 的负整数是 . 11.当a=5,b=-3,c=-7时,a-(b-c)的值为 .12.某日最高气温是9℃,最低气温是﹣4℃,该日的温差为 ℃.13.魏晋时期数学家刘微在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数,图1表示的数值为:(+1)+(−1)=0,则可推算图2表示的数值是 .(请直接写出最后的结果)三、解答题14.画出数轴,把下列各数−5、312、0、 −52 在数轴上表示出来,并用“ ”号从小到大连接.15.计算题: (1)(-54)+17 (2)(-2)-9(3)[338+(−19)]+[(+358+(−329)] (4)( −25 )-(- 45 )-(-4.9)-0.616.已知|a|=|b|=1,|c|=2且a >b >c ,则a +b +c 的值为 .17.为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视。

人教版七年级数学上册 1.3有理数的加减法练习

人教版七年级数学上册 1.3有理数的加减法练习

有理数的加法和减法1姓名 班级一、 填空(每题4分,共32分)1、减去一个数,相当于 .2、甲乙两数的和为-16,乙数为-9,甲数是 .3、同号两数相加,取 的符号,并把 相加;绝对值不等的异号两数相加,取 的符号,并用 .4、比0小7的数是 ,比0小-7的数是 .5、一个数的绝对值的相反数是-3,这个数是 .6、-(-4)的相反数是 ,-(+4)的相反数是 .7、正数的绝对值是 ,负数的绝对值是 ,0的绝对值是 .8、用式子表示:有理数加法交换律 ,结合律 .二、选择(每题4分,共20分)1、下列计算正确的是 ( )A 、2-(+5)=7B 、2-(-5)=-7C 、2-(+5)=-7D 、2-(-5)= 72、如果A=-2.5,那么-A 是 ( )A 、- 2.5B 、2.5C 、+2.5或-2.5D 、 不能确定3、绝对值不大于3的所有负整数的和是 ( )A 、 0B 、-6C 、-3D 、64、下列各式,不成立的是 ( )A 、-(-5)= 5--B 、5-=5+C 、-(-5)=5-D 、55--=-+5、如果3X =-,那么X 的值是 ( )A 、3B 、-3C 、±3D 、以上答案都不对三、比较大小(共12分)(1)142- 和 5- (2)2-- 和 2 (3)13-- 和 12--四、计算( (1)至(6)每题3分,(7)、(8)每4分 共26分)(1)32()77-+ (2)(-12)+(-13) (3)0+(-45)(4)(-23)+23 (5)(-4)-7- (6)15()()36---(7)1.2 3.34 1.34+-- (8)1112(2)(8)(2)(3)2323---++--五、应用题(第1题6分,第2题4分)1、马戏团训练小狗,让它在指定的直线上跑动,假定向右跑的路程记为正数。

向左跑的路程记为负数,跑动的路程依次为(单位:m )+5,-3,+10,-8,-6,+12,-10(1)小狗停最后是否回到原来位置?(2)小狗离原来位置最远时是多少米?(3)在这个过程中,小狗每跑1m 奖励一份食物,则小狗共得到多少份食物?2、人们在地球的南极点附近曾测得的最低气温是-94.5℃,在非洲的利比亚曾测得的最高气温为58℃,这两个气温的温差是多少?有理数的加法和减法2一.填空题: (每小题2分,共40分)(1))8()2(+++= (2))17()16(-+- = (3))8()13(++-=(4)(-8.6)+0 = (5)3.78)+(-3.78)= (6)(-423)+(+316)= (7)(-823)+(+4.5)= (8)(-723)+(-356)= (9)│-7│+│-9715│= (10)(+4.85)+(-3.25)= (11)(-3.1)+(6.9)= (12)(-22914)+0= (13)-34+(-45)= (14)4.23+(-2.76)= (15)(-25)+(+56)+(-39)= (16)(-1.9)+3.6+(-10.1)+1.4 =(17) (-7)+(+11)+(-13)+9= (18)43+(-77)+37+(-23) =(19) 18+(-12)+(-21)+(+12) = (20)(+3)(-21)+(-19)+(+12)+(+5) =二.计算:(每小题4分,共60分)(21))25213(1789)16.2(11333-++-+ (22))79.21(21227)21.78(211849-++-+(23)(-9)+4+(-5)+8; (24)(-26.54)+(-6.4)-18.54+6.4(25)(-13)+(+25)+(+35)+(-123); (26)(-36.35)+(-7.25)+26.35+(+714)+10;(27)(-3.125)+(+318)(28)(-12)+(-23)+(-56);(29)13+(-34)+(-13)+(-14)+1819(30))5.2()7416(5.12)733(-+-++-(31)(-12)+314+2.75+(-612)(-2.4)+(-3.7)+(+4.2)+0.7+(-4.2);(32)(-1)+(+2)+(-3)+(+4)+…(-2007)+(+2008)+(-2009)+(+2010)(33)(-3.75)+2.85+(-114)+(-12)+3.15+(-2.5);(34)(-12)+(+13)+(-14)+(+19)+(+18)+(-49)(35)225+(-278)+(-1512)+435+(-118)+(-3712).。

人教版七年级数学上册1.3有理数的加减法练习题

人教版七年级数学上册1.3有理数的加减法练习题

人教版七年级数学上册1.3有理数的加减法练习题人教版七年级数学上册:1.3有理数的加减法测试题一、选择题1.计算(-3)+5的结果等于()A.2B.-2C.8D.-82.比-2小1的数是()A.-1B.-3C.1D.33.计算(-20)+17的结果是()A.-3B.3C.-2017D.20174.比-1小2015的数是()A.-2014B.2016C.-2016D.20145.下列说法不正确的个数是()①两个有理数的和可能等于零;②两个有理数的和可能等于其中一个加数;③两个有理数的和为正数时,这两个数都是正数;④两个有理数的和为负数时,这两个数都是正数.A.1个C.3个D.4个6.下列算式中:①2-(-2)=0;②(-3)-(+3)=0;③(-3)-|-3|=0;④0-(-1)=1.其中正确的有()A.1个B.2个C.3个D.4个7.算式-3-5不能读作()A.-3与-5的差B.-3与5的差C.3的相反数与5的差D.-3减去58.一个数减去2等于-3,则这个数是()A.-5B.-1C.1D.59.如图是一个三角形的算法图,每个方框里有一个数,这个数等于它所在边的两个圆圈里的数的和,则图中①②③三个圆圈里的数依次是()A.19,7,14B.11,20,19C.14,7,1914,1910.古希腊数学家帕普斯是丢潘图是最得意的一个学生,有一天他向老师请教一个问题:有4个数,把其中每3个相加,其和分别是22,24,27,20,则这个四个数是()A.3,8,9,10B.10,7,3,12C.9,7,4,11D.9,6,5,1111.与-3的差为0的数是()A.3B.-3C.-13D.13二、填空题12.计算:-1+8= ______ .13.计算1+4+9+16+25+…的前29项的和是 ______ .14.大于-3.5且不大于4的整数的和是 ______ .15.计算:-9+6= ______ .16.比1小2的数是 ______ .17.计算7+(-2)的结果为 ______ .三、解答题18.计算题(1)5.6+4.4+(-8.1)(2)(-7)+(-4)+(+9)+(-5)(3)14+(-236+(?14)+(?13)(4)535+(?523)+425+(?13)(5)(-9512)+1534+(?314)+(?22.5)+(?15712)(6)(-1845)+(+5335)+(-53.6)+(+1845)+(-100)人教版七年级数学上册:1.3有理数的加减法测试题答案和解析【答案】1.A2.B3.A4.C5.B6.A7.A8.B9.C 10.C 11.B12.713.855514.415.-316.-117.518.解:(1)5.6+4.4+(-8.1)=10-8.1=1.9;(2)(-7)+(-4)+(+9)+(-5)=-7-4+9-5=-16+9=-7;(3)14+(-23)+56+(?1)+(?13)=(14-14)+(-2 3-13)+56=0-1+5 6=-16;(4)53 5+(?52 3)+425+(?13)=(535+425)+(-52-13)=10-6 =4;(5)(-9512)+1534+(?314)+(?22.5)+(?15712)=(-9512-15712)+[(1534-314)-22.5]=-25+[12.5-22.5] =-25-10 =-35;(6)(-1845)+(+5335)+(-53.6)+(+1845)+(-100)=(-1845+1845)+(+5335-53.6)+(-100)=0+0-100=-100.【解析】1. 解:(-3)+5=5-3=2.故选:A.依据有理数的加法法则计算即可.本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.2. 解:-2-1=-3,故选:B.根据有理数的减法,即可解答.本题考查了有理数的减法,解决本题的关键是列出算式.3. 解:原式=-(20-17)=-3,故选A原式利用异号两数相加的法则计算即可得到结果.此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.4. 解:根据题意得:-1-2015=-2016,故选C根据题意列出算式,利用有理数的减法法则计算即可得到结果.此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.5. 解:①互为相反数的两个数相加和为0,所以两个有理数的和可能等于零,说法正确;②一个数同0相加,仍得这个数,所以两个有理数的和可能等于其中一个加数,说法正确;③两个有理数的和为正数时,可能这两个数都是正数;可能一正一负;还可能一个是正数,一个是0;所以原说法错误;④两个有理数的和为负数时,这两个数不能都是正数,所以原说法错误;故选B.有理数的加法法则:同号两数相加,取相同的符号,并把它们的绝对值相加;绝对值不等的异号两数相加,取绝对值较大的数的符号作为结果的符号,再用较大的绝对值减去较小的绝对值;互为相反数的两个数相加和为0;一个数同0相加,仍得这个数.根据这个法则进行解答即可.本题考查了有理数的加法法则,是基础知识要熟练掌握.6. 解:①2-(-2)=2+2=4,故本小题错误;②(-3)-(+3)=-3-3=-6,故本小题错误;③(-3)-|-3|=-3-3=-6,故本小题错误;④0-(-1)=0+1=1,故本小题正确;综上所述,正确的有④共1个.故选A.根据有理数的减法运算法则对各小题分别进行计算即可继续进行判断.本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.7. 解:-3-5不能读作:-3与-5的差.故选A.根据有理数的减法运算的读法解答.本题考查了有理数的减法,是基础题,熟记并理解有理数的减法与加法的意义是解题的关键.8. 解:由题意,得:-3+2=-1,∴这个数是-1,故选B.根据加法是减法的逆运算,将两数相加即可.本题主要考查有理数的减法,解决此题时,可以运用其逆运算计算.9. 解:如图,设①、②、③三处对应的数依次是x,y,z,则x+y=21y+z=26x+z=33,解得x=14y=7z=19.故选C.设①、②、③三处对应的数依次是x、y和z,根据每个方框里有一个数,这个数等于它所在边的两个圆圈里的数的和,列方程组求解.本题考查的是有理数的加法,解题关键是能够根据题意列出三元一次方程组,并且能熟练运用消元法解方程组,难度一般.10. 解:设a 、b 、c 、d 为这4个数,且a >b >c >d ,则有 a +b +c =27a +b +d =24a +c +d =22b +c +d =20,解得:a =11,b =9,c =7,d =4.故选C .设出4个数,按照题意列出方程组,即可得出结论.本题考查的有理数的加法,解题的关键是按大小顺序设出4个数,联立方程组得出结论.11. 解:根据题意得:0+(-3)=-3,则与-3的差为0的数是-3,故选B .根据差与减数之和确定出被减数即可.此题考查了有理数的减法,熟练掌握有理数减法法则是解本题的关键.12. 解:原式=+(8-1)=7,故答案为:7原式利用异号两数相加的法则计算即可得到结果.此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.13. 解:12+22+32+42+52+…+292+…+n 2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n -1)n +n=(1+2+3+4+5+…+n )+[0×1+1×2+2×3+3×4+…+(n -1)n ]=n (n +1)2+{13(1×2×3-0×1×2)+13(2×3×4-1×2×3)+13(3×4×5-2×3×4)+…+13[(n -1)?n ?(n +1)-(n -2)?(n -1)?n ]}=n (n +1)2+13[(n -1)?n ?(n +1)] =n (n +1)(2n +1)6,∴当n =29时,原式=29×(29+1)×(2×29+1)6=8555.故答案为8555.根据每一项分别是12、22、32、42、52可找到规律,整理可得原式关于n 的一个函数式,即可解题.本题考查了学生发现规律并且整理的能力,本题中整理出原式关于n的解析式是解题的关键.14. 解:大于-3.5且小于4的整数是-3、-2、-1、0、1、2、3、4,∴大于-3.5且小于4的整数的和为:-3-2-1+0+1+2+3+4=4.故答案为4.先找出符合条件的整数,然后把它们相加即可.此题考查了有理数的加法,解题时正确写出符合条件的整数是关键.15. 解:原式=-(9-6)=-3,故答案为:-3.根据有理数的加法,可得答案.本题考查了有理数的加法,熟记有理数的加法是解题关键.16. 解:比1小2的数是1-2=1+(-2)=-1.关键是理解题中“小”的意思,根据法则,列式计算.本题主要考查了有理数的减法的应用.17. 解:7+(-2)=5.故答案为:5.绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.考查了有理数加法法则:在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.18.(1)从左往右依此计算即可求解;(2)先化简,再计算加减法;(3)(4)(5)根据加法交换律和结合律计算即可求解;(6)先算相反数的加法,再相加即可求解.考查了有理数加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.。

七年级数学上册有理数的加减法测试题 (含答案)

七年级数学上册有理数的加减法测试题 (含答案)

七年级数学上册《有理数的加减法》测试题(附答案)一.选择题(共8小题,满分40分)1.计算﹣1﹣(﹣3)等于()A.﹣4B.2C.4D.﹣22.若x的相反数是2,|y|=5,且x+y<0,则x﹣y的值是()A.3B.3或﹣7C.﹣3或﹣7D.﹣73.下列计算正确的是()A.8+(﹣14)=+6B.8+|﹣14|=﹣6C.8+(﹣14)=﹣22D.8+(﹣14)=﹣64.以下叙述中,正确的有()①减去一个数,等于加上这个数的相反数;②两个正数的和一定是正数;③两个负数的差一定是负数;④在数轴上,零右边的点所表示的数都是正数.A.4个B.3个C.2个D.1个.5.冬季一天早晨的气温是﹣2℃,中午上升了8℃,下午又下降了4℃,则下午的气温是()A.10℃B.2℃C.﹣2℃D.﹣5℃6.在数4,﹣3,﹣12,﹣9中,任取三个不同的数相加,其中和最大的是()A.﹣11B.﹣8C.﹣17D.﹣67.如果a﹣b>0,且a+b<0,那么一定正确的是()A.a为正数,且|b|>|a|B.a为正数,且|b|<|a|C.b为负数,且|b|>|a|D.b为负数,且|b|<|a|8.11月10日,某股票的股价在连续上涨后开始高位震荡,当天开盘价为31.85元,相对开盘价,波动最高+0.13元,最低﹣0.84元,那么这天的最大价差(最高价减去最低价)为()A.31.98元B.31.01元C.0.71元D.0.97元二.填空题(共8小题,满分40分)9.比0小4的数是,比3小4的数是,比﹣5小﹣2的数是.10.我县某天的最低气温为﹣3℃,最高气温为5℃,这一天的最高气温比最低气温高℃.11.已知|x|=5与|y|=4,且x>y,则y﹣x=.12.x是最大负整数,y是最小的正整数,z是最小的自然数,则代数式x﹣y+z的值为.13.计算:﹣20+(﹣14)﹣(﹣18)+13=.14.计算(﹣0.5)﹣(﹣3)+2.75﹣(﹣7)的结果是.15.在4,﹣1,+2,﹣5这四个数中,任意三个数之和的最小值是.16.计算:(+1)+(﹣2)+(+3)+(﹣4)+……+(+2021)+(﹣2022)=.三.解答题(共6小题,满分40分)17.计算:(1)﹣16﹣8﹣(﹣8)+(﹣3)+5 (2)5.3﹣|﹣3|+2﹣2.18.计算下列各题(1)﹣20+(﹣17)﹣(﹣18)﹣11 (2)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(3).19.计算:(1)19+(﹣6.9)+(﹣3.1)+(﹣8.35)(2)(﹣)+3.25+2+(﹣5.875)+1.15 20.数学张老师在多媒体上列出了如下的材料:计算:.解:原式===.上述这种方法叫做拆项法.请仿照上面的方法计算:(1);(2).21.阅读绝对值拓展材料:|a|表示数a在数轴上的对应点与原点的距离,如:|5|表示5在数轴上的对应点到原点的距离而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离,类似的,|5+3|=|5﹣(﹣3)|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.根据上述材料,回答下列问题.(1)数轴上表示2和5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)借助数轴解决问题:如果|x+2|=1,那么x=;(3)|x+2|+|x﹣1|可以理解为数轴上表示x的点到表示和这两个点的距离之和,则|x+2|+|x﹣1|的最小值是.22.2020年“双十一”期间某淘宝商家提前搞促销活动,计划平均每天销售某品牌学习机100台,但由于种种原因,实际每天的销售量与计划量相比有出入.如表是双十一的一周销售倩况(超额记为正、不足记为负):星期一二三四五六日与计划量的差值+2﹣3+25+8﹣4+2﹣6(1)根据记录的数据,计算该店一周日销量最多比最少多多少台?(2)本周实际销售总量达到了计划数量吗,通过计算说明理由.(3)该店实行每日按销售台数计算工资,每销售一台学习机可得10元,若超额完成任务,则超过部分每台另奖20元;少销售一台扣30元,那么该店铺的销售人员这一周的工资总额是多少元?参考答案一.选择题(共8小题,满分40分)1.解:﹣1﹣(﹣3)=﹣1+3=2.故选:B.2.解:∵﹣2的相反数是2,∴x=﹣2.∵|y|=5,∴y=±5.∵x+y<0,∴x=﹣2,y=﹣5.∴x﹣y=﹣2﹣(﹣5)=﹣2+5=3.故选:A.3.解:8+(﹣14)=8﹣14=﹣6,故D选项正确,A选项、C选项错误;8+|﹣14|=8+14=22,故B选项错误.故选:D.4.解:①减去一个数,等于加上这个数的相反数,说法正确;②∵同号两数相加,取相同的符号,∴两个正数的和一定是正数,故②说法正确;③∵(﹣1)﹣(﹣5)=﹣1+5=4,∴两个负数的差一定是负数不正确,故③说法错误;④在数轴上,零右边的点所表示的数都是正数,说法正确;综上所述,正确的有3个.故选:B.5.解:由题意得,﹣2+8﹣4=2(°C),故选:B.6.解:根据题意得:4﹣3﹣9=﹣8,故选:B.7.解:∵a﹣b>0,∴a>b,①b≥0则a一定是正数,此时a+b>0,与已知矛盾,∵a+b<0,当b<0时,①若a、b同号,∵a>b,∴|a|<|b|,②若a、b异号,∴|a|<|b|,综上所述b<0时,a>0,|a|<|b|.故选:C.8.解:0.13﹣(﹣0.84)=0.13+0.84=0.97(元),故选:D.二.填空题(共8小题,满分40分)9.解:根据题意得:0﹣4=﹣4;3﹣4=﹣1;﹣5﹣(﹣2)=﹣5+2=﹣3,故答案为:﹣4;﹣1;﹣310.解:5﹣(﹣3)=5+3=8(℃).故答案为:811.解:∵|x|=5与|y|=4,∴x=±5,y=±4,∵x>y,∴x=5,y=±4,(1)当x=5,y=4时,y﹣x=4﹣5=﹣1(2)当x=5,y=﹣4时,y﹣x=﹣4﹣5=﹣9故答案为:﹣1或﹣9.12.解:∵x是最大负整数,y是最小的正整数,z是最小的自然数,∴x=﹣1,y=1,z=0,∴x﹣y+z=﹣1﹣1+0=﹣2.故答案为:﹣2.13.解:﹣20+(﹣14)﹣(﹣18)+13=﹣(20+14)+(18+13)=﹣3.故答案为:﹣314.解:(﹣0.5)﹣(﹣3)+2.75﹣(﹣7)=[(﹣0.5)﹣(﹣7)]+[﹣(﹣3)+2.75]=7+6=13故答案为:13.15.解:﹣5<﹣1<+2<4,(﹣5)+(﹣1)+(+2)=﹣4.16.解:原式=(1﹣2)+(3﹣4)+…+(20121﹣2022)=﹣1﹣1﹣1…﹣1=﹣1011,故答案为:﹣1011.三.解答题(共6小题)17.解:(1)﹣16﹣8﹣(﹣8)+(﹣3)+5=﹣16﹣8+8﹣3+5=(﹣16﹣8﹣3)+(8+5)=﹣27+13=﹣14;(2)5.3﹣|﹣3|+2﹣2=5.3﹣3+2﹣2=(5.3+2)+(﹣3﹣2)=7.3﹣6=1.3.18.解:(1)原式=﹣20+(﹣17)+18+(﹣11)=﹣37+18+(﹣11)=﹣19+(﹣11)=﹣30;(2)原式=﹣49+(﹣91)+5+(﹣9)=﹣140+5+(﹣9)=﹣135+(﹣9)=﹣144;(3)原式=4+(﹣3.85)+3+(﹣3.15)=(4+3)+[(﹣3.85)+(﹣3.15)]=8+(﹣7)=1.19.解:(1)19+(﹣6.9)+(﹣3.1)+(﹣8.35)=19+[(﹣6.9)+(﹣3.1)]﹣8.35=19﹣10﹣8.35=9﹣8.35=0.65;(2)(﹣)+3.25+2 +(﹣5.875)+1.15=[(﹣)+(﹣5.875)]+(3.25+1.15+2.6)=﹣6+7=1.20.解:(1)=(28+)+[(﹣25)+(﹣)]=(28﹣25)+(﹣)=3+=3;(2)=[(﹣2021)+(﹣)]+[(﹣2022)+(﹣)]+4044+(﹣)=(﹣2021﹣2022+4044)+(﹣﹣﹣)=1+(﹣1)=0.21.解:(1)2和5的两点之间的距离是|5﹣2|=3,1和﹣3的两点之间的距离是|﹣1﹣(﹣3)|=4,故答案为:3,4;(2)∵|x+2|=1,∴x+2=1或x+2=﹣1,∴x=﹣1或x=﹣3,故答案为:﹣1或﹣3;(3)|x+2|+|x﹣1|表示x轴上点到点﹣2和1的距离之和,∴|x+2|+|x﹣1|的最小距离是3,故答案为:﹣2,1,3.22.解:(1)25﹣(﹣6)=25+6=31(台),答:该店一周日销量最多比最少多31台;(2)2﹣3+25+8﹣4+2﹣6=24>0,∴本周实际销量达到了计划数量;(3)(100×7+24)×10+(2+25+8+2)×20+(﹣3﹣4﹣6)×30=7590(元).答:该店铺的销售人员这一周的工资总额是7590元.。

人教版数学七年级上册《有理数加减法》练习题(3套)(附答案)

人教版数学七年级上册《有理数加减法》练习题(3套)(附答案)

人教版数学七年级上册《有理数加减法》练习题(一)一、单选题:1. 计算:13-12正确的结果是( )A.15 B .-15 C.16 D .-162.计算|-13|-23的结果是( )A .-13 B.13 C .-1 D .13.下列计算正确的是( )A .(-15)-(+5)=-10B .0-(+3)=3C .(-9)-(-9)=-18D .0-(-6)=64. 比-5小-2的数是( )A .-7B .7C .-3D .35.在(-5)- =-6中的方框里应填( )A .-1B .+1C .-11D .+116.下列运算结果为1是( )A .|+3|-|+4|B .|(-3)-(-4)|C .|-2|-|-4|D .|+3|-|-4|7.下列说法正确的是( )A .减去一个数等于加上这个数的相反数B .互为相反数的两数之差为0C .零减任何有理数,差为负数D .减去一个正数,差大于被减数8. 若x 是2的相反数,|y|=3,则x -y 的值是( )A.-5 B.1 C.-1或5 D.1或-59.a,b在数轴上的位置如图,下列结论不正确的是( )A.a+b<0 B.a-b<0 C.-a-b>0 D.-a+b<0二、填空题:10. 计算:(-5)-(-3)=-5+____11. 计算: (-6)-4=-6+________12. 计算: 0-(+5)=0+_________13. 计算:8-(+2 016)=8+________14. 下列说法中:①一个数减去零仍得这个数;②零减去一个数等于这个数的相反数;③一个数减去它的相反数得零;④两个有理数之差不一定小于这两数之和.其中正确的是___________.(填序号)15. 扬州市某天最高气温是6 ℃,最低气温是-2 ℃,那么当日的温差是____℃.16.数轴上表示-3的点与表示-7的点之间的距离是____.17.某粮店出售的3种品牌的面粉袋上,分别标有质量为(25±0.2) kg,(25±0.3) kg,(25±0.4) kg的字样,从中任意拿出两袋,它们的质量最多相差______kg.18.-8与3的差的绝对值是_______.19.在数5,-2,7,-6中,任意两个数相减差最大是______,最小是_________.20.数字解密:第一个数是3=2-(-1);第2个数是5=3-(-2);第三个数是9=5-(-4);第四个数是17=9-(-8)……第六个数是___________________.21.小亮做这样一道计算题:|(-3)+|,其中“”表示被污染看不清的一个数,他翻开答案,知道该题的结果是6,那么“”表示的数是__________.22.已知x是5的相反数,y比x小-7,则x与-y的差是______.三、计算题:23. 计算:(1)(-5)-(-23);(2)(-9.25)-(-414 ).24.已知|a|=5,|b|=4,且a+b<0,求a-b的值.四、解答题:25. 世界上最高的山峰是珠穆朗玛峰,其海拔高度是8 844 m,吐鲁番盆地的海拔是-155 m,两处的海拔高度相差多少米?26. 符号“f”表示一种运算,它的一些运算结果如下:①f(1)=0,f(2)=1,f(3)=2,f(4)=3…②f(12)=2,f(13)=3,f(14)=4,f(15)=5…利用上述规律求:(1)f(10)-[-f(110 )];(2)f(2 015)-f(12 016).人教版数学七年级上册《有理数加减法》练习题(一)答案:一、单选题1-9. DADCB BADB10. 311. (-4)12. (-5)13. (-2016)14. ①②④15. 816. 417. 0.818. 1119. 13 -1320. 65=33-(-32)21. 9或-322. -323. (1)解:原式=18(2)解:原式=-524. 解:a-b的值为-9或-125. 解:8 999米26. (1)解:原式=19(2)解:原式=-2人教版数学七年级上册《有理数加减法》练习题(二)一、单选题1. 某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( )A.10℃B.6℃C.﹣6℃D.﹣10℃2. 在-2,0,1,3这四个数中,最大的数和最小的数的和是( )A.1B.0C.2D.33. 5的相反数与-2的差是( )A.3B.-3C. 7D.-74. 下列表示某地区早晨、中午和午夜的温度(单位:℃),则下列说法正确的是( )A.午夜与早晨的温差是11℃B.中午与午夜的温差是0℃C.中午与早晨的温差是11℃D.中午与早晨的温差是3℃5. 若|a|=2,|b|=3,且0>a>b,则a+b=( )A.5B.﹣5C.﹣1D.﹣36. 比-6的一半大2的数是( )A.2B.0C.﹣1D.﹣37. 温度由﹣4℃上升7℃是( )A.3℃B.﹣3℃C.11℃D.﹣11℃8. 绝对值大于1且小于5的所有的整数的和是( )A.9B.-9C.6D.09. 计算:-2+3=( )A.1B.-1C.-5D.-610. 已知3x=,2y=,且0xy>,则x y-的值等于( )A.5或-5B.1或-1C.5或1D.-5或-111. 下面说法中正确的是( )A.-2-1-3可以说是-2,-1,-3的和B.-2-1-3可以说是2,-1,-3的和C.-2-1-3是连减运算不能说成和D.-2-1-3=-2+3-112. 计算﹣(﹣1)+|﹣1|,其结果为( )A.﹣2B.2C.0D.﹣113. 若x的相反数是5,|y|=8,且x+y<0,那么x-y的值是( )A.3B.3或-13C.-3或-13D.-13二、填空题14. 比最大的负整数大2的数是_____.15. 比-5大-6的数是____.16. 小怡家的冰箱冷藏室温度是4℃,冷冻室的温度是-2℃,则冷藏室温度比冷冻室温度______℃。

人教版七年级上册有理数的加减法练习题

人教版七年级上册有理数的加减法练习题

人教版七年级上册有理数的加减法练习题一、选择题(共8小题;共40分)1. 计算的结果等于A. B. C. D.2. 一天早晨的气温是,中午的气温比早晨上升了,则中午的气温是A. B. C. D.3. 运用运算律计算恰当的是A.B.C.D. 以上都不对4. 把写成省略括号的和的形式是B.C. D.5. 已知,那么A. 与互为相反数B. 与互为倒数C. 与是相等的D. 与互为负倒数6. 下列说法中,正确的是A. 减去一个数,等于加上这个数B. 零减去一个数,仍得这个数C. 互为相反数的两个数的差是零D. 在有理数减法中,被减数不一定比减数或差大7. 气温由上升了时的气温是A. B. C. D.8. 下列各式中正确利用了加法运算律的是A.B.C.D.二、填空题(共4小题;共20分)9. 如果向东走为正,一个人先向东走千米,然后再向西走千米,则这个人此时离出发地千米,在原出发地的方.10. 算筹是我国古代的计算工具之一,也是中华民族智慧的结晶,图中用算筹表示的算式是“”,则图中算筹表示的算式的运算结果为.11. 计算:.12. 计算:.三、解答题(共4小题;共52分)13. 如图,时钟的钟面上标有,,,,,共个数,一条直线把钟面分成了两部分.请你再画一条直线分割钟面,使钟面被分成三个不同的部分且各部分所包含的几个数的和都相等.14. 用简便方法计算:.15. 一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):,.(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?16. 计算:.答案第一部分1. A 【解析】.故选A.2. D 【解析】根据有理数的加法法则可知,中午的气温是.故选D.3. A4. D 【解析】先把加减法统一成加法,再省略括号和加号,.故选D.5. C6. D 【解析】A选项中减去一个数,等于加上这个数的相反数;B选项中零减去一个数,得到的是这个数的相反数;C选项中互为相反数的两个数的和是零,故 A,B,C中的说法错误,故选D.7. A8. A第二部分9. ,东10.【解析】题图中算筹表示的算式为.11.【解析】.故答案为.12.【解析】.第三部分13. 根据题意画出所求直线,如图所示,;,.14.15. (1)米,故守门员回到了原来的位置,(2)守门员离开球门的位置最远是米.(3)总路程米.16.。

初一有理数的加减法计算题

初一有理数的加减法计算题

初一有理数的加减法计算题一、有理数加法的运算法则1. 同号两数相加- 法则:取相同的符号,并把绝对值相加。

- 例1:计算(+3)+(+5)- 解析:因为这两个数都是正数(同号),所以取正号,然后把它们的绝对值3和5相加,| + 3|+|+5| = 3 + 5=8,所以(+3)+(+5)=8。

- 例2:计算(-2)+(-4)- 解析:这两个数都是负数(同号),取负号,再把它们的绝对值2和4相加,| - 2|+|-4| = 2+4 = 6,所以(-2)+(-4)= - 6。

2. 异号两数相加- 法则:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

- 例3:计算(+5)+(-3)- 解析:+5是正数,-3是负数(异号),|+5| = 5,| - 3|=3,因为5>3,所以取+5的符号,即正号,然后用较大的绝对值5减去较小的绝对值3,5 - 3=2,所以(+5)+(-3)=2。

- 例4:计算(-7)+(+4)- 解析:-7是负数,+4是正数(异号),| - 7| = 7,|+4| = 4,因为7>4,所以取-7的符号,即负号,然后用较大的绝对值7减去较小的绝对值4,7 - 4 = 3,所以(-7)+(+4)=-3。

- 例5:计算(+3)+(-3)- 解析:+3和-3是互为相反数,根据互为相反数的两个数相加得0,所以(+3)+(-3)=0。

3. 一个数同0相加- 法则:仍得这个数。

- 例6:计算0+( - 5)- 解析:根据法则,一个数同0相加仍得这个数,所以0+( - 5)=-5。

二、有理数减法的运算法则有理数减法法则:减去一个数,等于加这个数的相反数。

用字母表示为a - b=a+( -b)。

1. 直接运用法则计算- 例7:计算5-(-3)- 解析:根据有理数减法法则,5-(-3)=5+(+3),然后按照有理数加法法则计算,5+(+3)=8。

人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案

人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案

人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案一.选择题(共10小题 满分20分 每小题2分)1.(2分)(2022·台湾)算式91123722182218⎛⎫+-- ⎪⎝⎭之值为何?( ) A .411 B .910 C .19 D .54【答案】A【完整解答】解:91123722182218⎛⎫+-- ⎪⎝⎭ 91123722182218=+-+ 92311722221818⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭ 7111=-+ 411=. 故答案为:A.【思路引导】首先根据去括号法则“括号前面是负号 去掉括号和负号 括号内各项都要变号”先去括号 再利用加法的交换律和结合律 将分母相同的加数结合在一起 进而根据有理数的加法法则算出答案.2.(2分)(2021六下·哈尔滨期中)一天早晨的气温为-3℃ 中午上升了7°C 半夜又下降了8℃ 则半夜的气温是( )A .-5°CB .-4°C C .4°CD .-16°C 【答案】B【完整解答】根据题意可得:-3+7-8=-4故答案为:B【思路引导】根据题意可得算式:-3+7-8 计算即可。

3.(2分)(2022·雄县模拟)下面算式与11152234-+的值相等的是( ) A .111324234⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭ B .11133234⎛⎫--+ ⎪⎝⎭C.111227234⎛⎫+-+⎪⎝⎭D.11143234⎛⎫--+⎪⎝⎭【答案】C【完整解答】解:1111115 52527 23423412 -+=+-++=A1111111117 3243243241 23423423412⎛⎫⎛⎫--+-=++-=+++--=⎪ ⎪⎝⎭⎝⎭B 1111111111 3333337 23423423412⎛⎫--+=++=++++=⎪⎝⎭C1111115 2272277 23423412⎛⎫+-+=+--++=⎪⎝⎭D1111111 43438 23423412⎛⎫--+=++++=⎪⎝⎭故答案为:C【思路引导】利用有理数的加减法的运算方法求解即可。

七年级数学上册《第一章-有理数加减混合运算》练习题附答案-人教版

七年级数学上册《第一章-有理数加减混合运算》练习题附答案-人教版

七年级数学上册《第一章 有理数加减混合运算》练习题附答案-人教版一、选择题1.计算(﹣3)+9的结果等于( )A.6B.12C.﹣12D.﹣62.如图为我县十二月份某一天的天气预报,该天最高气温比最低气温高( )A.﹣3℃B.7℃C.3℃D.﹣7℃3.在算式﹣1+7﹣( )=﹣3中,括号里应填( )A.+2B.﹣2C.+9D.﹣94.﹣6的相反数与比5的相反数小1的数的和为( )A.1B.0C.2D.115.如果两个数的和为负数,那么这两个数一定是( )A.正数B.负数C.一正一负D.至少一个为负数6.计算﹣(+1)+|﹣1|,结果为( )A.﹣2B.2C.1D.07.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的数,则a ﹣b +c 的值为() A.﹣1 B.0 C.1 D.2 8.把﹣2+(+3)﹣(﹣5)+(﹣4)﹣(+3)写成省略括号和的形式,正确的是( )A.﹣2+3﹣5﹣4﹣3B.﹣2+3+5﹣4+3C.﹣2+3+5+4﹣3D.﹣2+3+5﹣4﹣39.若四个有理数之和的14是3,其中三个数是﹣10,+8,﹣6,则第四个数是( )A.+8B.﹣8C.+20D.+1110.若|m|=3,|n|=5且m ﹣n >0,则m +n 的值是( )A.﹣2B.﹣8或 ﹣2C.﹣8或 8D.8或﹣211.已知a,b,c 在数轴上的位置如图,化简∣a+c ∣﹣∣a ﹣2b ∣﹣∣c ﹣2b ∣的结果是()A.0B.4bC.﹣2a﹣2cD.2a﹣4b;12.计算+++++……+的值为( )A. B. C. D.二、填空题13.把(+5)﹣(﹣7)+(﹣23)﹣(+6)写成省略括号的和的形式为________.14.某冷库的室温为﹣4 ℃,一批食品需要在﹣28 ℃冷藏,如果每小时降温3 ℃,经过小时后能降到所要求的温度.15.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,则a+b+c= .16.若∣x+y∣+∣y﹣3∣=0,则x﹣y的值为 .17.已知a、b、c是三个非负实数,且a+b=7, c ﹣ a =﹣5, s=a+b+c,则s的最大值与它最小值为的差为________.18.已知有理数a, b, c在数轴上的位置如图所示,则化简代数式∣b﹣c∣﹣∣c﹣a∣+∣b ﹣a∣= .三、解答题19.计算:13+(﹣15)﹣(﹣23).20.计算:﹣17+(﹣33)﹣10﹣(﹣16).21.计算:(﹣34)﹣(﹣12)+(+34)+(+8.5)﹣13;22.计算:434﹣(+3.85)﹣(﹣314)+(﹣3.15).23.一辆货车从货场A出发,向东行驶了2km到达批发部B,继续向东行驶了1.5km到达商场C,又向西行驶了5.5km到达超市D,最后回到货场.(1)用一个单位长度表示1km,以东为正方向,以货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;(2)超市D距货场A多远?(3)货车一共行驶了多少千米?24.某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:千米),依先后次序记录如下:+9,﹣3,﹣5,+6,﹣7,+10,﹣6,﹣4,+4,﹣3,+7.(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每千米耗油量为0.1升,则这辆出租车这天下午耗油多少升?25.检查一商店某水果罐头10瓶的质量,超出记为“+”号,不足记为“﹣”号,情况如下:﹣3克,+2克,﹣1克,﹣5克,﹣2克,+3克,﹣2克,+3克,+1克,﹣1克.(1)总的情况是超出还是不足?(2)这些罐头平均超出或不足为多少?(3)最多与最少相差是多少?26.某摩托车厂家本周计划每天生产250辆摩托车,由于工厂实行轮休,每天上班人数不一定相等,实际每天生产与计划相比情况如下表:(1)本周六生产了多少辆摩托车?(2)本周总产量与计划相比是增加了还是减少了?具体数量是多少?产量最多的一天比产量最少的一天多生产了多少27.某冷库一天的冷冻食品进出记录如下表(运进用正数表示,运出用负数表示):(1)这天冷库的冷冻食品比原来增加了还是减少了?增加或减少了多少吨?(2)根据实际情况,现有两种方案:方案一:运进每吨冷冻食品费用是500元,运出每吨冷冻食品费用是800元;方案二:不管是运进还是运出,每吨冷冻食品费用都是600元.从节约运费的角度考虑,选用哪一种方案比较合适?参考答案1.【答案】A2.【答案】B3.【答案】C4.【答案】B5.【答案】D6.【答案】D.7.【答案】C8.【答案】D9.【答案】C10.【答案】D11.【答案】B12.【答案】B13.【答案】5+7﹣23﹣614.【答案】815.【答案】016.【答案】﹣517.【答案】2.18.【答案】0.19.【答案】解:原式=13﹣15+23=21.20.【答案】解:原式=﹣17﹣33﹣10+16=﹣60+16=﹣44.21.【答案】解:原式=(﹣34+34)+(12+8.5)﹣13=0+9﹣13=823.22.【答案】解:原式=4.75﹣3.85+3.25﹣3.15=123.【答案】解:(1)如图.(2)由数轴可知超市D距货场A有2km.(3)货车一共行驶了2+1.5+5.5+2=11(km).24.【答案】解:(1)出租车离公园8千米,在公园的东方;(2)这辆出租车这天下午耗油6.4升.25.解:(1)﹣3+2﹣1﹣5﹣2+3﹣2+3+1﹣1=﹣5(克),即总的情况是不足5克.(2)5÷10=0.5(克),即平均不足0.5克.(3)3﹣(﹣5)=8(克),即最多与最少相差8克. 26.【答案】解:(1)250﹣9=241(辆).故本周六生产了241辆摩托车.(2)﹣5+7﹣3+4+10﹣9﹣25=﹣21<0所以本周总产量与计划相比减少了21辆.产量最多的一天为周五,产量最少的一天多生产了35辆.与计划相比减少了21辆.27.【答案】解:(1)﹣3×2+4×1+(﹣1)×3+2×3+(﹣5)×2=﹣9.故这天冷库的冷冻食品比原来减少了,减少了9吨.(2)方案一:费用为4×500+2×3×500+3×2×800+3×1×800+5×2×800=20200(元)方案二:费用为(6+4+3+6+10)×600=17400(元)由于17400<20200,所以从节约运费的角度考虑,选用方案二比较合适.。

人教版七年级上册数学有理数的加减法 题型分类练习题

人教版七年级上册数学有理数的加减法 题型分类练习题

2022-2023学年人教版七年级数学上册《1.3有理数的加减法》题型分类练习题(附答案)一.有理数的加法1.若|a|=﹣a,则a0;|x|=3.|y|=4,且x>y,则x+y=;b为正整数,且a,b满足|2a﹣4|+b=1,则a+2006b=.2.用“>”或“<”填空:(1)如果a>0,b>0,那么a+b0;(2)如果a<0,b<0,那么a+b0;(3)如果a>0,b<0,|a|>|b|,那么a+b0;(4)如果a>0,b<0,|a|<|b|,那么a+b0.3.计算(1)23+(﹣17)+6+(﹣22)(2)﹣6.35+(﹣1.4)+(﹣7.6)+5.35.4.计算题(1)﹣(﹣8)+(﹣32)+(﹣|﹣16|)+(+28)(2)0.36+(﹣7.4)+0.3+(﹣0.6)+0.64;(3)(﹣3.5)+(﹣)+(﹣)+(+)+0.75+(﹣)(4)(+17)+(﹣9)+(﹣2.25)+(﹣17.5)+(﹣10)(5)1+(﹣2)+3+(﹣4)…+2019+(﹣2020)+2021+(﹣2022)5.阅读下列第(1)题中的计算方法,再计算第(2)题中式子的值. (1)﹣+(﹣9)++(﹣3)解:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+[(+17)+(+)]+[(﹣3)+(﹣)]=[(﹣5)+(﹣9)+(+17)+(﹣3)]+[(﹣)+(﹣)+(+)+(﹣)] =0+(﹣1)=﹣上面这种方法叫拆项法.仿照上述方法计算: (2)(﹣2021)+(﹣2020)+324043+(﹣)6.计算:(1)(﹣9)+15(2)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)7.请根据情景对话回答下面的问题:小明:这条数轴上的两个点A 、B 表示的数都是绝对值是4的数,点A 在点B 的左边; 小宇:点C 表示负整数,点D 表示正整数,且这两个数的差为3; 小智:点E 表示的数的相反数是它本身;(1)求A 、B 、C 、D 、E 五个不同的点对应的数. (2)求这五个点表示的数的和.8.如图,在数轴上,点A 向右移动1个单位得到点B ,点B 向右移动(n +1)个单位得到点C (n 为正整数),点A 、B 、C 分别表示有理数a 、b 、c(1)若a 、b 、c 这三个数的和与其中最大的数相等,则a =(2)若a、b、c这三个数中只有一个数为正数,且这三个数的和等于6,则正整数n的最小取值为多少?9.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是;(3)从下到上前35个台阶上数的和为.10.|a|=22,|b|=2022,|a+b|≠a+b,试计算a+b的值.11.若两个有理数A、B满足A+B=8,则称A、B互为“吉祥数”.如5和3就是一对“吉祥数”.回答下列问题:(1)求﹣5和2x的“吉祥数”;(2)若3x的“吉祥数”是﹣4,求x的值;(3)4|x|和9能否互为“吉祥数”?若能,请求出;若不能,请说明理由.12.王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作﹣1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,﹣3,+10,﹣8,+12,﹣7,﹣10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?13.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?14.8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5,8筐白菜的总重量是多少?二.有理数的减法15.用p、m分别表示加法、减法,例如:5p6m4=5+6﹣4=7,按照以上规定,计算下列各题.(1)12m1p(﹣5)p6m3p(﹣4)(2)m1p(﹣)p|﹣2|m.16.列式计算:(1)已知甲、乙两数之和为﹣2030,其中甲数是﹣7,求乙数;(2)已知x是5的相反数,y比x小﹣7,求x与﹣y的差.17.已知x是绝对值最小的有理数,y是最大的负整数,z是最小的正整数,m的绝对值等于3,求:x﹣y﹣z+m的值.18.已知|a|=8,|b|=6.(1)若a,b同号,求a+b的值;(2)若|a﹣b|=b﹣a,求a+b的值.19.已知|a|=4,|b|=2,且|a+b|=|a|+|b|,求a﹣b的值.三.有理数的加减混合运算20.若|a|=2,|b|=3,|c|=6,|a+b|=﹣(a+b),|b+c|=b+c.计算a+b﹣c的值.21.计算:|﹣16.2|+|﹣2|+[﹣(﹣3)]﹣|10.7|22.计算题:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)(2)5.7﹣4.2﹣8.4﹣2.3+1(3)﹣(﹣12)+(+18)﹣(+37)+(﹣41)(4)(﹣1)﹣1+(﹣2)﹣(﹣3)﹣(﹣1)+4.参考答案一.有理数的加法1.解:若|a|=﹣a,则a≤0;|x|=3.|y|=4,且x>y,则x=3、y=﹣4或x=﹣3、y=﹣4,∴x+y=﹣1或﹣7;∵|2a﹣4|≥0,b为正整数,且a,b满足|2a﹣4|+b=1,所以b=1,2a﹣4=0,解得:a=2,b=1,把a=2,b=1代入a+2006b=2+2006=2008,故答案为:≤,﹣1或﹣7,2008.2.解:同号两数相加,取相同的符号,所以(1)中两数的和为正;(2)中两数的和为负;异号两数相加,取绝对值较大的加数的符号,所以(3)中两数的符号为正;(4)中两数的符号为负.故答案为:(1)>,(2)<,(3)>,(4)<.3.解:(1)23+(﹣17)+6+(﹣22)=23﹣17+6﹣22=29﹣39=﹣10;(2)﹣6.35+(﹣1.4)+(﹣7.6)+5.35=(﹣6.35+5.35)+(﹣1.4﹣7.6)=﹣1﹣9=﹣10.4.解:(1)﹣(﹣8)+(﹣32)+(﹣|﹣16|)+(+28)=8﹣32﹣16+28=36﹣48=﹣12;(2)0.36+(﹣7.4)+0.3+(﹣0.6)+0.64=(0.36+0.64)+(﹣7.4﹣0.6)+0.3=1﹣8+0.3=﹣6.7;(3)(﹣3.5)+(﹣)+(﹣)+(+)+0.75+(﹣)=(﹣3.5+)+(﹣﹣)+(﹣+0.75)=0﹣3+0=﹣3;(4)(+17)+(﹣9)+(﹣2.25)+(﹣17.5)+(﹣10)=(+17﹣2.25﹣17.5)+(﹣9﹣10)=﹣2﹣20=﹣22;(5)1+(﹣2)+3+(﹣4)…+2019+(﹣2020)+2021+(﹣2022)=(1﹣2)+(3﹣4)…+(2019﹣2020)+(2021﹣2022)=﹣1×1011=﹣1011.5.解:原式=(﹣2021)+(﹣)+(﹣2020)+(﹣)+4043++(﹣1)+(﹣),=(﹣2021﹣2020+4043﹣1)+(﹣﹣+﹣),=1﹣,=﹣.6.解:(1)(﹣9)+15=(﹣9﹣15)+[(15﹣3)﹣22.5]=﹣25+[12.5﹣22.5]=﹣25﹣10=﹣35;(2)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)=(﹣18+18)+(+53﹣53.6)+(﹣100)=0+0﹣100=﹣100.7.解:(1)∵点E表示的数的相反数是它本身,∴E表示0,∵A.B表示的数都是绝对值是4的数,且点A在点B左边,∴A表示﹣4,B表示4,∵点C表示负整数,点D表示正整数,且这两个数的差是3,∴若C表示﹣1,则D表示2:若C表示﹣2.则D表示1.即A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣1,2,0或﹣4,4,﹣2,1,0;(2)当A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣1,2,0时,这五个点表示的数的和是﹣4+4+(﹣1)+2+0=1;当A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣2,1,0时,这五个点表示的数的和是﹣4+4+(﹣2)+1+0=﹣1.8.解:(1)依题意有a+(a+1)+(a+1+n+1)=a+1+n+1,解得a=﹣;(2)依题意有a+(a+1)+(a+1+n+1)=6,n=3﹣3a,∵a、b、c这三个数中只有一个数为正数,∴a+1≤0且a+1+n+1>0,则a≤﹣1且n>﹣a﹣2,即3﹣3a>﹣a﹣2,解得a≤﹣1,∴n≥6,∵n是正整数,∴正整数n的最小取值为6.故答案为:﹣.9.解:(1)由题意得前4个台阶上数的和是:﹣5+(﹣2)+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;(3)由题意知台阶上的数字是每4个一循环,35÷4=8……3,∵﹣5﹣2+1+9=3.∴3×8+(﹣5)+(﹣2)+1=24﹣6=18.即从下到上前35个台阶上数的和为18.故答案为:﹣5,18.10.解:∵|a|=22,|b|=2022∴a=±22,b=±2022.∵|a+b|≠a+b,∴|a+b|=﹣(a+b),∴a+b<0.当a=22,b=﹣2022时,a+b=22+(﹣2022)=﹣2000,当a=﹣22,b=﹣2022时,a+b=(﹣22)+(﹣2022)=﹣2044,当b=2022时,不合题意,∴a+b的值为﹣2000或﹣2044.11.解:(1)根据“吉祥数”的定义可得,﹣5的吉祥数为8﹣(﹣5)=13,2x的“吉祥数”为8﹣2x,答:﹣5的吉祥数为13,2x的“吉祥数“为8﹣2x;(2)由题意得,3x﹣4=8,解得x=4,答:x的值是4;(3)不能,由题意得,4|x|+9=8,则|x|=﹣,因为任何数的绝对值都是非负数,所以4|x|和9不能互为“吉祥数”.12.解:(1)(+6)+(﹣3)+(+10)+(﹣8)+(+12)+(﹣7)+(﹣10),=6﹣3+10﹣8+12﹣7﹣10,=28﹣28,=0,∴王先生最后能回到出发点1楼;(2)王先生走过的路程是3×(|+6|+|﹣3|+|+10|+|﹣8|+|+12|+|﹣7|+|﹣10|),=3×(6+3+10+8+12+7+10),=3×56,=168(m),∴他办事时电梯需要耗电168×0.2=33.6(度).13.解:(1)超产记为正、减产记为负,所以星期四生产自行车(200+13)辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409(辆),故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26(辆),故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675(元),故该厂工人这一周的工资总额是84675元.14.解:1.5+(﹣3)+2+(﹣0.5)+1+(﹣2)+(﹣2)+(﹣2.5)=[1.5+1+(﹣2.5)]+[2+(﹣2)]+[(﹣3)+(﹣2)+(﹣0.5)]=0+0+(﹣5.5)=﹣5.525×8+(﹣5.5)=194.5(千克),答:8筐白菜的总重量是194.5千克.二.有理数的减法15.解:(1)原式=12﹣1+(﹣5)+6﹣3+(﹣4)=5;(2)原式=﹣1+(﹣)+2﹣=1.16.解:(1)根据题意知乙数为﹣2030﹣(﹣7)=﹣2030+7=﹣2023;(2)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.17.解:∵x是绝对值最小的有理数,∴x=0,∵y是最大的负整数,∴y=﹣1,∵z是最小的正整数,∴z=1,∵m的绝对值等于3,∴m=±3,故x﹣y﹣z+m=0+1﹣1±3=±3.18.解:∵|a|=8,|b|=6,∴a=±8,b=±6.(1)因为a,b同号,所以a=8,b=6或者a=﹣8,b=﹣6.①当a=8,b=6时a+b=14.当a=﹣8,b=﹣6时a+b=﹣14.所以,当a,b同号时a+b等于14或﹣14;(2)由题意得b>a所以a=﹣8,b=6,或者a=﹣8,b=﹣6.①当a=﹣8,b=6时,a+b=﹣2;②当a=﹣8,b=﹣6时,a+b=﹣14.所以,当|a﹣b|=b﹣a时,a+b等于﹣2或者﹣14.19.解:∵|a+b|=|a|+|b|,∴a、b同号,∵|a|=4,|b|=2,∴a=±4,b=±2,当a=4,b=2时,a﹣b=2;当a=﹣4,b=﹣2时,a﹣b=﹣2.三.有理数的加减混合运算20.解:∵|a|=2,|b|=3,|c|=6,∴a=±2,b=±3,c=±6,∵|a+b|=﹣(a+b),|b+c|=b+c,∴a+b≤0,b+c≥0,∴a=±2,b=﹣3,c=6,∴当a=2,b=﹣3,c=6时,a+b﹣c=2+(﹣3)﹣6=﹣7,a=﹣2,b=﹣3,c=6时,a+b﹣c=﹣2+(﹣3)﹣6=﹣11.21.解:|﹣16.2|+|﹣2|+[﹣(﹣3)]﹣|10.7|=16.2+2+3﹣10.7=11.5.22.解:(1)原式=﹣53+21+69﹣37=(21+69)+(﹣53﹣37)=90﹣90=0;(2)原式=(5.7+1.2)+(﹣4.2﹣8.4﹣2.3)=6.9﹣14.9=﹣8;(3)原式=12+18﹣37﹣41=30﹣78=﹣48;(4)原式=(﹣1﹣2)+(﹣1+3+1)+4=﹣4+3+4=3.。

人教版七年级上册有理数计算题集

人教版七年级上册有理数计算题集

正负数加减法则:1. 同号两数相加,取相同的符号,并把他们的绝对值相加。

例题:(+1)+(+2 )= +1+2=+3(-1)+(-2 )=-1-2= -32.不同号两数相加取绝对值较大的数的符号,并用绝对值较大的减去绝对值较小的。

例题:+1+(-2)= -(2-1)= -1+2+(-1)=2-1=+13.不同号两数相减,负负得正例题:+2 -(-1)= +2+1=+34.零加减任何数都等于原数例题:0+(+1)=+10-1 = -1乘法两数相乘,同号为正,异号为负,并把绝对值相乘。

例题:(-1)×(-2)=+2(-1)×(+2)= -22、任何数字同0相乘,都得0。

除法法则 除以一个数等于乘以这个数的倒数。

法则:正数+正数=正数1、 负数+负数=负数2、正数(小)-正数(大)=负数3、正数(大)-正数(小)=正数4、负数(小)-负数(大)=正数5、负数(大)-负数(小)=负数6、正数x正数=正数7、正数/正数=正数8、负数X负数=正数9、负数/负数=正数10、 正数-负数=正数11、负数-正数=负数12、正数+负数(大)=负数13、正数+负数(小)=正数14、 正数X负数=负数15、正数/负数=负数16、负数/正数=负数人教版七年级上册有理数计算题一、有理数加法(-9)+(-13)(-12)+27 (-28)+(-34)67+(-92) (-27.8)+43.9 (-23)+7+(-152)+65|52+(-31)| (-52)+|―31| 38+(-22)+(+62)+(-78) (-8)+(-10)+2+(-1) (-32)+0+(+41)+(-61)+(-21)(-8)+47+18+(-27) (-5)+21+(-95)+29(-8.25)+8.25+(-0.25)+(-5.75)+(-7.5) 6+(-7)+(9)+272+65+(-105)+(-28) (-23)+|-63|+|-37|+(-77)19+(-195)+47 (+18)+(-32)+(-16)+(+26)(-0.8)+(-1.2)+(-0.6)+(-2.4) (-8)+(-321)+2+(-21)+12 53+(-52)+42+(-1) (-6.37)+(-33)+6.37+2.75有理数减法 8-9 -8-97-9 ―7―9 0-(-9) (-25)-(-13)8.2―(―6.3) (-321)-541(-12.5)-(-7.5) (-26)―(-12)―12―18 ―1―(-21)―(+23)(-20)-(+5)-(-5)-(-12) (-23)―(-59)―(-3.5)|-32|―(-12)―72―(-5) (-41)―(-85)―81 (+103)―(-74)―(-52)―710 (-516)―3―(-3.2)―7 (+1)―(-2)―3 (+6.1)―(-4.3)―(-2.1)―5.1 (-32)―(-143)―(-132)―(+1.75) (-332)―(-2)43―(-132)―(-1.75) -843-597+461-392 -443+61+(-32)―250.5+(-41)-(-2.75)+21 (+4.3)-(-4)+(-2.3)-(+4)有理数乘法(-9)×32 (-132)×(-0.26) (-2)×31×(-0.5) 31×(-5)+31×(-13) (-4)×(-10)×0.5×(-3)(-83)×34×(-1.8) (-0.25)×(-74)×4×(-7) (-73)×(-54)×(-127) (-8)×4×(-21)×(-0.75) 4×(-96)×(-0.25)×481 (74-181+143)×56 (5―3―7)×36 (-36)×(4+5-7)(-43)×(8-34-0.4) (-66)×〔12221-(-31)+(-115)〕 25×43-(-25)×21+25×41 (187+43-65+97)×72有理数除法18÷(-3) (-24)÷6 (-57)÷(-3) (-53)÷52 (-42)÷(-6) (+215)÷(-73) (-139)÷9 0.25÷(-81) -36÷(-131)÷(-32) (-1)÷(-4)÷74 3÷(-76)×(-97) 0÷[(-341)×(-7)] -3÷(31-41) (-2476)÷(-6) 2÷(5-18)×1 11÷(-3)×(-1) -7×(-3)÷(-3)(43-87)÷(-65) (29-83+43)÷(-43) -3.5 ×(61-0.5)×73÷21-12÷(-15)×13×(-7) 6×(-1-1)÷575÷(-252)-75×125-35÷4 0.8×112+4.8×(-72)-2.2÷73+0.8×119五、有理数混合运算(-7431-+-)×(-15×4) ()⨯⨯-37(-2.4)2÷(-73)×74÷(-571) [1521-(141÷152+321]÷(-181) 51×(-5)÷(-51)×5 -(31-211+143-72)÷(-421)-13×32-0.34×72+31×(-13)-75×0.34 8-(-25)÷(-5)(-13)×(-134)×131×(-671) (-487)-(-521)+(-441)-381(-16-50+352)÷(-2) (-0.5)-(-341)+6.75-521178-87.21+432+5319-12.79 (-6)×(-4)+(-32)÷(-8)-3-72-(-21)+|-121| (-9)×(-4)+ (-60)÷12[(-149)-175+218]÷(-421) -|-3|÷10-(-15)×31-153×(327-165)÷221 (231-321+11817)÷(-161)×(-7)-2×23 -22-()31- 43-34 31--2×()31- ()23-÷()24- 2-×()22-232- +()34- ()32-×()42-×()52- 2-×23-()232⨯-()22-2-+()32-+32 22--3)3(-×()31--()31- -()[]221--+()221-0-()23-÷3×()32- 22-×()221-÷()38.0- -23×()231--()32-÷()221-()243-×(-32+1) ×0 6+22×()51- -10+8÷()22--4×3 -51-()()[]55.24.0-⨯- ()251--(1-0.5)×31 ()32-×()232-×()323-4×()23-+6 ()1321-×83×()122-×()731- -27+2×()23-+(-6)÷()231-()42-÷(-8)-()321-×(-22) ()()[]222345----×(11587÷)×()47-()22--2[()21--3×43]÷51 ()26-÷9÷()296÷- 36×()211--{()⎥⎦⎤⎢⎣⎡-÷⎪⎭⎫ ⎝⎛-⨯+--)2(2114.0333} -41+(1-0.5)×31×[2×()23-]-4×()[]3671÷-+()[]()33235-÷-- -33-()[]1283--÷+()23-×()32-÷25.01有理数的混合运算(一)填空4.23-17-(+23)=______.5.-7-9+(-13)=______.6.-11+|12-(39-8)|=______.7.-9-|5-(9-45)|=______.8.-5.6+4.7-|-3.8-3.8|=______.9.-|-0.2|+[0.6-(0.8-5.4)]=______12.9.53-8-(2-|-11.64+1.53-1.36|)=_____ 13.73.17-(812.03-|219.83+518|)=______.173.(-1)2×5+(-1)×52-12×5+(-1×5)2.174.(-2)(-3)(-36)+(-1)20×63.178.(-32)÷(3×2)×(-3-2).180.3×(-2)2+(-2×3)2+(-2+3)2.188.2+42×(-8)×16÷32.190.[5.78+3.51-(0.7)2]÷(0.2)3×11.191.(1.25)4÷(0.125)4×0.0036-(0.6)2.194.(-42×26+132×2)÷(-3)7×(-3)5.195.(3-9)4×23×(-0.125)2.201.741×[(-30)2-(-402)]3÷(1250)2.211.[(-5)3+3.4×2-2×4+53]2.213.(24-5.1×3-3×5+33)2.234.(-5)×(-3)×(-4)2+(-2)3×(-8)×(-3)-(-12)×3÷24.240.-18-23×[(-4)3÷(-43)+0.2×8+(-3)2÷(-32)].(四)用符号“>”,“<”,“≥”,“≤”,“=”之一填空241.当两个数和的绝对值______这两个数差的绝对值时,这两个数同号.242.一个正数与一个负数差的绝对值______这两个数绝对值的和.243.一个正数与一个负数和的绝对值______这两个数绝对值的差.244.一个正数与一个负数差的绝对值______这两个数绝对值的差.245.一个正数与一个负数和的绝对值______这两个数绝对值的和.246.当两个数和的绝对值______这两个数差的绝对值时,这两个数异号.247.当两数和的绝对值______这两个数差的绝对值时,这两个数至少有一个是零.248.当两数和的绝对值______这两个数的绝对值之和时,这两个数可以是任意的有理数.249.当两数差的绝对值______这两个数的绝对值之和时,这两个数可以是任意的有理数.250.当两个数和的绝对值______这两个数绝对值的差时,这两个数可以是任意的有理数.251.当两个数差的绝对值______这两个数绝对值的差时,这两个数可以是任意的有理数.(五)回答问题252.欲使两个数的绝对值的和等于这两个数的和的绝对值,这两个数必须是怎样的数?253.欲使两个数和的绝对值不小于这两个数的差的绝对值,这两个数必须是怎样的数?254.欲使两数和的绝对值不大于这两数差的绝对值,这两个数必须是怎样的数?255.欲使两数和的绝对值不小于这两个数的绝对值的和,这两个数必须是怎样的数?(六)应用题256.一个盛有水的圆柱形水桶,其底面半径为1.6分米①.现将一个半径为1.2分米的铁球沉没在桶内水面下,问桶内水面升高多少分米?(列综合算式计算,球的体积公式为,其中V表示体积,R表示球的半径)257.一个盛有水的长方体状容器,它的底面是边长为2.4分米的正方形,现将一个半径是1.2分米的铁球放在容器内,正好铁球体积的1/3在水面下,问放入铁球后,水面升高了多少分米?(列综合算式计算,球的体积公式为,其中V表示体积,R表示球的半径,π取3.14。

人教版七年级上册有理数的加减法练习题90

人教版七年级上册有理数的加减法练习题90

人教版七年级上册有理数的加减法练习题90一、选择题(共8小题;共40分)的值是B. C.2. 如果以学校为起点,沿龙腾大道向东走记为正,向西走记为负.小江放学后从学校出发,先走了米去公交站,又走了米离开公交车站去的士招呼点,此时小江离学校的距离是A. 米B. 米C. 米D. 米3. 若,则的值A. 是正数B. 是负数C. 零D. 无法确定4. 记,令,称为,,,这列数的“理想数”.已知,,,的“理想数”为,那么,,,,的“理想数”为A. B. C. D.5. 一名粗心的同学在进行加法运算时,将“”错写成进行运算,这样他得到的结果比正确答案A. 少B. 少C. 多D. 多6. 如果,那么中的数是A. B. D.7. 如果向北走记作,那么表示A. 向东走B. 向南走C. 向西走D. 向北走8. 计算的结果是B. D.二、填空题(共4小题;共20分)9. 如果某天中午的气温是,到傍晚下降了,那么傍晚的气温是.10. 德国数学家莱布尼兹证明由此可.11. ;.12. 绝对值大于而小于的所有整数的和是.三、解答题(共4小题;共52分)13. .嘉嘉:.琪琪:.观察嘉嘉、琪琪的解题过程,判断是否正确,如果不正确,请分析错误原因,并写出正确的答案.14. 对于正整数,我们有如下结论:.请计算:.15. 某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程(单位:千米)为,,,.(1)问收工时相对A地是前进了还是后退了?距 A地多远?(2)若检修组最后回到了 A地且每千米耗油升,问共耗油多少升?16. 小明在电脑中设置了一个有理数的运算程序,输入数,按键,再输入数,就可以得到运算.(1)求的值;(2)求的值.答案第一部分1. A .2. A 【解析】,此时,小江离学校的距离为.3. D4. C5. B【解析】一名粗心的同学在进行加法运算时,将“”错写成”进行运算,这样他得到的结果比正确答案少.6. A7. B 【解析】如果向北走记作,那么表示向南走.8. B第二部分【解析】由题意可得:傍晚的气温为:.10.【解析】令,则代入莱布尼兹证明的等式,得,,.12.第三部分13. 嘉嘉解法不正确,符号选取虽正确,但将绝对值相减错写成了绝对值相加;琪琪解法也不正确,错在注意了绝对值相减,但符号的选取不正确.正解:.14.15. (1)因为,所以收工时相对 A地是前进了,距 A地千米.(2)(千米),又因为检修组回到 A地,故(升).所以共耗油升.16. (1)(2)因为,,所以.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档