13.2 三角形全等的条件(ASA或AAS)(含答案)-
八年级数学上学期全等三角形判定二(ASA,AAS)(基础)知识讲解——含课后作业与答案
全等三角形判定二(ASA ,AAS )(基础)【学习目标】1.理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】【高清课堂:379110 全等三角形判定二,知识点讲解】要点一、全等三角形判定3——“角边角”全等三角形判定3——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”) 要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法 一边一角对应相等SAS AAS ASA 两角对应相等ASA AAS 两边对应相等 SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定3——“角边角”【高清课堂:379110 全等三角形判定二,例5】1、已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.举一反三:【变式】(2014•青山区模拟)如图,已知AE=CF ,∠AFD=∠CEB,AD∥BC,求证:△ADF≌△CBE.【答案】证明:∵AE=CF,∴AE+EF=CF+EF ,即AF=CE;∵AD∥BC,∴∠A=∠C;在△ADF与△CBE中,,∴△ADF≌△CBE(ASA).类型二、全等三角形的判定4——“角角边”2、(2015•长乐市一模)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.求证:△ACD≌△CBE.【思路点拨】根据垂直的定义可得∠ADC=∠E=90°,然后根据同角的余角相等求出∠B=∠ACD,再利用“角角边”证明△ACD≌△CBE.【答案与解析】证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠E=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∵∠B+∠BCE=90°,∴∠B=∠ACD,在△BEC和△CDA中,,∴△ACD≌△CBE(AAS).【总结升华】本题考查了全等三角形的判定,求出∠B=∠ACD是证明三角形全等的关键.举一反三:【变式】如图,AD是△ABC的中线,过C、B分别作AD及AD的延长线的垂线CF、BE.求证:BE=CF.【答案】证明:∵AD 为△ABC 的中线∴BD =CD∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD =90°,在△BED 和△CFD 中BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等) ∴△BED ≌△CFD (AAS )∴BE =CF3、已知:如图,AC 与BD 交于O 点,AB ∥DC ,AB =DC .(1)求证:AC 与BD 互相平分;(2)若过O 点作直线l ,分别交AB 、DC 于E 、F 两点,求证:OE =OF.【思路点拨】(1)证△ABO ≌△CDO ,得AO =OC ,BO =DO (2)证△AEO ≌△CFO 或△BEO ≌△DFO【答案与解析】证明:∵AB ∥DC∴∠A=∠C在△ABO 与△CDO 中A C (AOB COD ∠∠⎧⎪∠∠⎨⎪⎩==对顶角相等) AB=CD∴△ABO ≌△CDO (AAS )∴AO =CO ,BO=DO在△AEO 和△CFO 中A C (AOE COF ∠∠⎧⎪⎨⎪∠∠⎩=AO=CO=对顶角相等) ∴△AEO ≌△CFO (ASA )∴OE =OF.【总结升华】证明线段相等,就是证明它们所在的两个三角形全等.利用平行线找角等是本题的关键.类型三、全等三角形判定的实际应用4、(2014春•通川区校级期末)要测量河两岸相对两点A ,B 间的距离,先在过点B 的AB 的垂线上取两点C 、D ,使CD=BC ,再在过点D 的l 的垂线上取点E ,使A 、C 、E 三点在一条直线上,这时ED 的长就是A ,B 两点间的距离.你知道为什么吗?说说你的理由.【思路点拨】利用“角边角”证明△ABC 和△EDC 全等,根据全等三角形对应边相等可得AB=DE ,从而得解.【答案与解析】解:∵AB⊥l,CD⊥l,∴∠ABC=∠EDC=90°,在△ABC 和△EDC 中,,∴△ABC≌△EDC(ASA ),∴AB=DE,即ED 的长就是A ,B 两点间的距离.【总结升华】此题主要考查了全等三角形的应用,解答本题的关键是借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.【巩固练习】一、选择题1. 能确定△ABC ≌△DEF 的条件是 ( )A .AB =DE ,BC =EF ,∠A =∠EB .AB =DE ,BC =EF ,∠C =∠EC .∠A =∠E ,AB =EF ,∠B =∠DD .∠A =∠D ,AB =DE ,∠B =∠E2.如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC 全等的图形是( )图4-3A.甲和乙B.乙和丙C.只有乙D.只有丙3.(2015•滕州市校级模拟)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD 4.(2016•永州)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD5. 某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.①②③都带去6.如图,∠1=∠2,∠3=∠4,下面结论中错误的是()A.△ADC≌△BCD B.△ABD≌△BACC.△ABO≌△CDO D.△AOD≌△BOC二、填空题7.(2015•黑龙江二模)如图,线段AD与BC相交于点O,连结AB、CD,且∠B=∠D,要使△AOB≌△COD,应添加一个条件是(只填一个即可)8. 在△ABC 和△'''A B C 中,∠A =44°,∠B =67°,∠'C =69°,∠'B =44°,且AC = ''B C ,则这两个三角形_________全等.(填“一定”或“不一定”)9. 已知,如图,AB ∥CD ,AF ∥DE ,AF =DE ,且BE =2,BC =10,则EF =________.10. (2016•石景山一模) 如图,AD=AE ,请你添加一个条件______________,使得△ADC ≌△AEB .11. 如图, 已知:∠1 =∠2 , ∠3 =∠4 , 要证BD =CD , 需先证△AEB ≌△AEC , 根据是 ,再证△BDE ≌△ ,根据是 .12. 已知:如图,∠B =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,(1)若以“ASA ”为依据,还缺条件(2)若以“AAS ”为依据,还缺条件(3)若以“SAS ”为依据,还缺条件E D C BA三、解答题13.(2014•丰台区一模)已知:如图,点E、C、D、A在同一条直线上,AB∥DF,ED=AB,∠E=∠CPD.求证:△ABC≌△DEF.14. 已知如图,E、F在BD上,且AB=CD,BF=DE,AE=CF,求证:AC与BD互相平分.15. 已知:如图, AB∥CD, OA = OD, BC过O点, 点E、F在直线AOD上, 且AE = DF.求证:EB∥CF.【答案与解析】一.选择题1. 【答案】D;【解析】A 、B 选项是SSA ,没有这种判定,C 选项字母不对应.2. 【答案】B ;【解析】乙可由SAS 证明,丙可由ASA 证明.3. 【答案】B ;【解析】解:A 、∵∠1=∠2,AD 为公共边,若BD=CD ,则△ABD≌△ACD(SAS );B 、∵∠1=∠2,AD 为公共边,若AB=AC ,不符合全等三角形判定定理,不能判定△ABD≌△ACD;C 、∵∠1=∠2,AD 为公共边,若∠B=∠C,则△ABD≌△ACD(AAS );D 、∵∠1=∠2,AD 为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA );故选:B .4. 【答案】D ;【解析】解:∵AB=AC ,∠A 为公共角,A 、如添加∠B=∠C ,利用ASA 即可证明△ABE ≌△ACD ;B 、如添AD=AE ,利用SAS 即可证明△ABE ≌△ACD ;C 、如添BD=CE ,等量关系可得AD=AE ,利用SAS 即可证明△ABE ≌△ACD ;D 、如添BE=CD ,因为SSA ,不能证明△ABE ≌△ACD ,所以此选项不能作为添加的条件.5. 【答案】C ;【解析】由ASA 定理,可以确定△ABC.6. 【答案】C ;【解析】△ABO 与△CDO 中,只能找出三对角相等,不能判定全等.二、填空题7. 【答案】OB=OD ;【解析】解:添加条件OB=OD ,在△ABO 和△CDO 中,,∴△AOB≌△COD(ASA ),故答案为:OB=OD .8. 【答案】一定;【解析】由题意,△ABC ≌△'''B A C ,注意对应角和对应边.9. 【答案】6;【解析】△ABF ≌△CDE ,BE =CF =2,EF =10-2-2=6.10.【答案】答案不唯一,B C ∠=∠或AC AB =等;【解析】11.【答案】ASA ,CDE ,SAS ;【解析】△AEB ≌△AEC 后可得BE =CE.12.【答案】(1)∠A = ∠D ;(2)∠ACB = ∠F ;(3) BC =EF.三、解答题13. 【解析】证明:∵AB∥DF,∴∠B=∠CPD,∠A=∠FDE,∵∠E=∠CPD.∴∠E=∠B,在△ABC 和△DEF 中,,∴△ABC≌△DEF(ASA ).14.【解析】证明: ∵BF =DE ,∴BF -EF =DE -EF ,即BE =DF在△ABE 和△CDF 中,AB CD BE DF ,AE CF ⎧⎪⎨⎪⎩===∴△ABE ≌△CDF (SSS )∴∠B =∠D ,在△ABO 和△CDO 中B D AOB COD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABO ≌△CDO (AAS )∴AO =OC ,BO =DO ,AC 与BD 互相平分.15.【解析】证明:∵AB ∥CD,∴∠CDO =∠BAO在△OAB 和△ODC 中,CDO BAO OD OA DOC AOB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△OAB ≌△ODC (ASA )∴OC =OB又∵AE = DF ,∴AE +OA =DF +OD ,即OE =OF 在△OCF 和△OBE 中OC OB DOC AOB OF OE =⎧⎪∠=∠⎨⎪=⎩∴△OCF ≌△OBE (SAS ) ∴∠F =∠E ,∴CF ∥EB.。
全等三角形判定(AAS)和(ASA)
全等三角形(三)AAS和ASA 【知识要点】1.角边角定理(ASA):有两角及其夹边对应相等的两个三角形全等.2.角角边定理(AAS):有两角和其中一角的对边对应相等的两个三角形全等. 【典型例题】例1.如图,AB∥CD,AE=CF,求证:AB=CD例2.如图,已知:AD=AE,A B EA C D∠=∠,求证:BD=CE.例3.如图,已知:A B DB A CDC∠=∠∠=∠.,求证:OC=OD. 例4.如图已知:AB=CD,AD=BC,O是BD中点,过O点的直线分别交DA和BC的延长线于E,F.求证:AE=CF.例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,已知四边形ABCD中,AB=DC,AD=BC,点F在AD上,点E在BC上,AF=CE,EF的对角线BD交于O,请问O点有何特征?AAB D CEO123A F DOB E C【经典练习】1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠则△ABC 与△C B A ''' .2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .(4题)3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( ) ①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''=' A . 1个 B. 2个 C. 3个 D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是_________ _________。
12.2三角形全等的判定(ASA,AAS)教案-人教版八年级数学上册
2.学会运用ASA和AAS判定方法判断两个三角形是否全等。
3.通过实际例题,加深对ASA和AAS判定方法的理解,并培养运用这些方法解决问题的能力。
4.能够运用ASA和AAS判定方法解决实际问题,如测量角度和边长,确定物体的形状等。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形全等的ASA和AAS判定方法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些判定方法的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调ASA和AAS判定的条件和步骤这两个重点。对于难点部分,我会通过具体的图形示例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形全等判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示ASA和AAS判定方法的基本原理。
二、核心素养目标
本节课的核心素养目标主要包括:
1.培养学生的逻辑推理能力:通过探究ASA和AAS判定方法,让学生理解几何图形全等的:通过实际操作和例题分析,使学生能够在空间中正确构建和识别全等三角形,培养他们的空间想象力和直觉思维能力。
-难点三:将理论知识应用于解决具体问题,如实际测量和几何证明。
-解释:学生需要学会如何将ASA和AAS判定方法应用于解决具体问题,例如在给定一些角度和边长的情况下,确定三角形的形状和大小。
第十二讲 三角形全等的判定定理3(ASA)(含解析)(人教版)
第十二讲三角形全等的判定定理3(ASA)【学习目标】1.探索并正确理解三角形全等的判定方法“ASA”和“AAS”.2.会用三角形全等的判定方法“ASA”和“AAS”证明两个三角形全等.【新课讲解】知识点1:三角形全等的判定(“角边角”定理)1.文字语言:有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”).2.几何语言:在△ABC和△A′ B′ C′中,∴ △ABC≌△A′ B′ C′ (ASA).【例题1】已知:∠ABC=∠DCB,∠ACB=∠DBC,求证:△ABC≌△DCB.【答案】见解析。
【解析】证明:在△ABC和△DCB中,∴△ABC≌△DCB(ASA ).知识点2:用“角角边”判定三角形全等1.文字表述。
两角和其中一角的对边对应相等的两个三角形全等. 简写成“角角边”或“AAS”.2.几何语言表述。
在△ABC和△A′B′C′中,∴ △ABC≌△A′B′C′(AAS).【例题2】如图,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:(1)△BDA≌△AEC;(2)DE=BD+CE.【答案】见解析。
【解析】证明:(1)∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°.∵AB⊥AC,∴∠BAD+∠CAE=90°,∠ABD=∠CAE.在△BDA和△AEC中,∴△BDA≌△AEC(AAS).(2)证明:∵△BDA≌△AEC,∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE.知识点3:应用1.方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.2.全等三角形对应边上的高也相等.【例题3】已知:如图,△ABC ≌△A′B′C′ ,AD、A′ D′ 分别是△ABC 和△A′B′C′的高.试说明AD= A′D′ ,并用一句话说出你的发现.【答案】见解析。
全等三角形的判定(ASA)
04 边角边(sas)判定定理
定理内容
两个三角形中,如果两边和它们之间的夹角分别相等,则 这两个三角形全等。
用数学符号表示为:如果$Delta ABC cong Delta DEF$, 且$AB = DE, BC = EF, angle B = angle E$,则$angle A = angle D$。
三角形全等在几何证明中的应用
证明线段相等
通过构造两个全等的三角形 ,利用全等三角形的对应边 相等,证明两条线段相等。
证明角度相等
利用全等三角形的对应 角相等,证明两个角度
相等。
证明垂直关系
通过证明两个三角形全等, 利用全等三角形的对应角为 直角,证明两条线段垂直。
证明平行关系
通过证明两个三角形全等, 利用全等三角形的对应边平
第六步,根据第三步和第五步的 结论,可得 $AC = A'C'$。
第七步,由全等三角形的判定条 件,有 $triangle ABC cong triangle A'B'C'$。
定理应用
01
在几何证明中,角边角(asa)判定 定理常用于证明两个三角形全等 ,从而可以进一步推导出其他几 何性质和结论。
定理证明
其次,根据已知条件$AB = AB$和$AC = AC$,利用 SSS判定定理可得$triangle ABC cong triangle ACD$。
首先,由已知条件可知,$angle A = angle A$和 $angle B = angle B$,所以$angle C = angle C$ (三角形的内角和性质)。
有答案-直角三角形全等判定(基础)知识讲解
有答案-直角三角形全等判定(基础)知识讲解本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March直角三角形全等判定要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS ”,“ASA ”或“SAS ”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”.【典型例题】类型一、直角三角形全等的判定——“HL”1、 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =CD :(2)AD ∥BC .【思路点拨】先由“HL ”证Rt △ABD ≌Rt △CDB ,再由内错角相等证两直线平行.【答案与解析】证明:(1)∵AB ⊥BD ,CD ⊥BD ,∴∠ABD =∠CDB =90°在Rt △ABD 和Rt △CDB 中,AD BC BD DB⎧⎨=⎩=∴Rt △ABD ≌Rt △CDB (HL )∴AB =CD (全等三角形对应边相等)(2)由∠ADB =∠CBD∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB ,∴∠DAE =∠CBA =90°在Rt △DAE 与Rt △CBA 中,ED AC AE AB ⎧⎨⎩==,∴Rt △DAE ≌Rt △CBA (HL )∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E+∠EAF=90°,即∠AFE=90°即ED ⊥AC .2、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和斜边对应相等; ( )(3)两直角边对应相等; ( )(4)一条直角边和斜边对应相等. ( )【答案】(1)全等,“AAS ”;(2)全等,“AAS ”;(3)全等,“SAS ”;(4)全等,“HL ”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.( )(2)有两边和其中一边上的高对应相等的两个三角形全等.( )(3)有两边和第三边上的高对应相等的两个三角形全等.( )【答案】(1)√;(2)×;在△ABC 和△DBC 中,AB =DB ,AE 和DF 是其中一边上的高,AE =DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AE 为第三边上的高,3、已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;【答案与解析】证明:连接DC∵AD ⊥AC ,BC ⊥BD∴∠DAC =∠CBD =90°在Rt △ADC 与Rt △BCD 中,DC CD AC BD=⎧⎨⎩=∴Rt △ADC ≌Rt △BCD (HL )∴AD =BC .(全等三角形对应边相等)【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形在Rt △ABD 和Rt △BAC 中AB BA BD AC =⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL)∴AD =BC在△AOD 和△BOC 中D C AOD BOC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOD ≌△BOC(AAS)∴OD =OC .4、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【答案与解析】解:全等三角形为:△ACD ≌△CBE.证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE在△ACD 与△CBE 中,90ADC CEB CAD BCEAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBE (AAS ).【总结升华】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【巩固练习】一、选择题1.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两等腰直角三角形全等2.如图,AB =AC ,AD ⊥ BC 于D ,E 、F 为AD 上的点,则图中共有( )对全等三角形.A .3B .4C .5D .63. 能使两个直角三角形全等的条件是( )A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等4. 在Rt △ABC 与Rt △'''A B C 中, ∠C = ∠'C = 90, A = ∠'B , AB =''A B , 那么下列结论中正确的是( ) A. AC = ''A C = ''B C C. AC = ''B C D. ∠A = ∠'A5. 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形( )A.一定全等B.一定不全等C.可能全等D.以上都不是二、填空题7.如图,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.8. 已知,如图,∠A =∠D =90°,BE =CF ,AC =DE ,则△ABC ≌_______.9. 如图,BA ∥DC ,∠A =90°,AB =CE ,BC =ED ,则AC =_________.10. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,EC ⊥AC ,AC =EC ,若DE =2,AB =4,则DB =______.11.有两个长度相同的滑梯,即BC =EF ,左边滑梯的高度AC 与右边滑梯的水平方向的长度DF 相等,则∠ABC +∠DFE =________.12. 如图,已知AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD.则∠BAD =_______.三、解答题13. 如图,工人师傅要在墙壁的O 处用钻打孔,要使孔口从墙壁对面的B 点处打开,墙壁厚是35cm ,B点与O 点的铅直距离AB 长是20cm ,工人师傅在旁边墙上与AO 水平的线上截取OC =35cm ,画CD ⊥OC ,使CD =20cm ,连接OD ,然后沿着DO 的方向打孔,结果钻头正好从B 点处打出,这是什么道理呢请你说出理由.13.【解析】解:在Rt △AOB 与Rt △COD 中,(3590AOB COD AO CO A C ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩对顶角相等) ∴Rt △AOB ≌Rt △COD (ASA ) ∴AB =CD =20cm14. 如图,已知AB ⊥BC 于B ,EF ⊥AC 于G ,DF ⊥BC 于D ,BC =DF. 求证:AC =EF.证明:由EF ⊥AC 于G ,DF ⊥BC 于D ,AC 和DF 相交,可得:∠F +∠FED =∠C +∠FED =90°即 ∠C =∠F (同角或等角的余角相等),在Rt △ABC 与Rt △EDF 中B EDF BC DF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△EDF (ASA ),∴AC =EF (全等三角形的对应边相等).15. 如图,已知AB =AC ,AE =AF ,AE ⊥EC ,AF ⊥BF ,垂足分别是点E 、F.求证:∠1=∠ 2.证明:∵AE ⊥EC ,AF ⊥BF ,∴△AEC 、△AFB 为直角三角形在Rt △AEC 与Rt △AFB 中AB AC AE AF⎧⎨⎩==∴Rt △AEC ≌Rt △AFB (HL )∴∠EAC =∠FAB∴∠EAC -∠BAC =∠FAB -∠BAC ,即∠1=∠2.【答案与解析】一、选择题1. 【答案】C ; 【解析】等腰直角三角形确定了两个锐角是45°,可由AAS 定理证明全等.2. 【答案】D ;【解析】△ABD ≌△ACD ;△ABF ≌△ACF ;△ABE ≌△ACE ;△EBF ≌△ECF ;△EBD ≌△ECD ;△FBD ≌△FCD.3. 【答案】D ;4. 【答案】C ;【解析】注意看清对应顶点,A 对应'B ,B 对应'A .5. 【答案】C ;【解析】等底等高的两个三角形面积相等.6. 【答案】C ;【解析】如果这对角不是直角,那么全等,如果这对角是直角,那么不全等.二、填空题7. 【答案】HL ;8. 【答案】△DFE9. 【答案】CD ;【解析】通过HL 证Rt △ABC ≌Rt △CDE.10.【答案】6;【解析】DB =DC +CB =AB +ED =4+2=6;11.【答案】90°;【解析】通过HL 证Rt △ABC ≌Rt △DEF ,∠BCA =∠DFE.12.【答案】45°;【解析】证△ADC 与△BDF 全等,AD =BD ,△ABD 为等腰直角三角形.。
三角形全等的判定ASA
边角边相等(SAS)
如果两个三角形的两边长度相等,且 这两边所夹的角也相等,则这两个三 角形全等。
三角形全等的应用
解决几何问题
通过三角形全等关系,可以证明 线段相等、角相等、垂直关系等 ,从而解决各种几何问题。
制作精确图形
在几何作图或设计领域,三角形 全等关系可以用来制作精确的图 形或模型。
02
与平行线判定定理的联系
在三角形全等的判定中,常常需要利用平行线的性质来证明 两个三角形全等。例如,在ASA全等判定定理中,需要证明 两角及夹角的边相等,而夹角的边是通过平行线性质推导出 来的。
与勾股定理的联系
勾股定理是三角形全等判定中的重要工具。在证明两个直 等于斜边的平方。
02
全等关系具有传递性,即如果三 角形ABC与三角形DEF全等,那 么三角形DEF也与三角形ABC全 等。
三角形全等的条件
边边边相等(SSS)
角边角相等(ASA)
如果两个三角形的三边长度分别相等 ,则这两个三角形全等。
如果两个三角形有两个角分别相等, 且这两个角所夹的边也相等,则这两 个三角形全等。
ssa全等判定方法
总结词
两边及其夹角对应相等的两个三角形 全等。
详细描述
根据SSA全等判定定理,如果两个三 角形有两边长度相等且这两边所夹的 角相等,则这两个三角形全等。这个 定理在解决几何问题时非常有用。
aas全等判定方法
总结词
两角及其夹边对应相等的两个三角形 全等。
详细描述
根据ASA全等判定定理,如果两个三 角形有两个角相等且这两个角所夹的 边也相等,则这两个三角形全等。这 个定理是三角形全等判定的重要依据 之一。
asa全等定理的应用
总结词:广泛实用
全等三角形的判定ASA、AAS-练习题
14.4(2)全等三角形的判定ASA、AAS一、探究现在,我们讨论:如果两个三角形有两个角、一条边分别对应相等,那么这两个三角形能全等吗?这时同样应有两种不同的情况:如图所示,一种情况是两个角及这两角的夹边;另一种情况是两个角及其中一角的对边.ASA AAS二、检测反馈,学以致用1.如图,已知AO=DO,∠AOB与∠DOC是对顶角,还需补充条件______________=_______________,就可根据“ASA”说明△AOB≌△DOC;或者补充条件_______________=_______________,就可根据“AAS”,说明△AOB≌△DOC。
(若把“AO=DO”去掉,答案又会有怎样的变化呢?)2. 如图,OP是∠MON的角平分线,C是OP上一点,CA⊥OM,CB⊥ON,垂足分别为A、B,△AOC≌△BOC吗?为什么?3、如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.求证:AD=AE.三、巩固练习1、如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为______cm.第1题2、已知:如图 , ∠1=∠2 , ∠3=∠4求证:AC=AB.3.如图,AB⊥BC,AD⊥DC,∠BAC=∠CAD.试说明:AB=AD .4、已知:如图 , FB=CE , AB∥ED , AC∥FD.F、C在直线 BE上.求证:AB=DE , AC=DF.5、如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B,试说明:AB=AC+AD6、已知:如图,AB=DC,∠A=∠D.试说明:∠1=∠2.7.如图,ΔABC中,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G.⑴图中有全等三角形吗?请找出来,并证明你的结论.⑵若连结DE,则DE与AB有什么关系?并说明理由.。
全等三角形判定一(SAS、ASA、AAS)(基础)知识讲解
全等三角形判定一(SAS,ASA ,AAS )(基础)撰稿:常春芳【学习目标】1.理解和掌握全等三角形判定方法1——“边角边”,判定方法2——“角边角”,判定方法3——“角角边”;能运用它们判定两个三角形全等.2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等. 【要点梳理】要点一、全等三角形判定1——“边角边” 1. 全等三角形判定1——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.要点二、全等三角形判定2——“角边角” 全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点三、全等三角形判定3——“角角边” 1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.要点四、如何选择三角形证全等1.可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;2.可以从已知出发,看已知条件确定证哪两个三角形全等;3.由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;4.如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定1——“边角边”1、已知:如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.【思路点拨】由条件AB=AD,AC=AE,需要找夹角∠BAC与∠DAE,夹角可由等量代换证得相等.【答案与解析】证明:∵∠1=∠2∴∠1+∠CAD=∠2+∠CAD,即∠BAC=∠DAE在△ABC和△ADE中AB ADBAC DAEAC AE=⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△ADE(SAS)∴BC=DE(全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.2、如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.【答案】AE=CD,并且AE⊥CD证明:延长AE交CD于F,∵△ABC和△DBE是等腰直角三角形∴AB=BC,BD=BE在△ABE和△CBD中90AB BCABE CBDBE BD=⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△CBD(SAS)∴AE=CD,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC=90°∴AE⊥CD【总结升华】通过观察,我们也可以把△CBD看作是由△ABE绕着B点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,PC⊥AC,PB⊥AB,AP平分∠BAC,且AB=AC,点Q在PA上,求证:QC=QB【答案】证明:∵ AP平分∠BAC∴∠BAP=∠CAP在△ABQ与△ACQ中∵∴△ABQ≌△ACQ(SAS)∴ QC=QB类型二、全等三角形的判定2——“角边角”【高清课堂:379110 全等三角形判定二,例5】2、已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.【答案与解析】证明:∵AD∥CB∴∠A=∠C在△ADF与△CBE中A CAD CBD B∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF≌△CBE (ASA)∴AF =CE ,AF+EF=CE+EF故得:AE=CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.举一反三:【变式】如图,AB∥CD,AF∥DE,BE=CF.求证:AB=CD.【答案】证明:∵AB ∥CD ,∴∠B =∠C.∵AF ∥DE ,,∴∠AFB =∠DEC.又∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE. 在△ABF 和△DCE 中,B C BF CEAFB DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABF ≌△DCE (ASA )∴AB =CD (全等三角形对应边相等).类型三、全等三角形的判定3——“角角边”【高清课堂:379110 全等三角形的判定二,例6】3、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【思路点拨】要证AC=AD,就是证含有这两个线段的三角形△BAC≌△EAD.【答案与解析】证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°∴∠CAD+∠DAB=∠BAE+∠DAB ,即∠BAC=∠EAD在△BAC和△EAD中BAC EADB ECB=DE∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC≌△EAD(AAS)∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD是△ABC的中线,过C、B分别作AD及AD的延长线的垂线CF、BE.求证:BE=CF.【答案】证明:∵AD为△ABC的中线∴BD=CD∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BED和△CFD中BED CFDBDE CDFBD CD∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等)∴△BED≌△CFD(AAS)∴BE=CF4、已知:如图,AC与BD交于O点,AB∥DC,AB=DC.(1)求证:AC与BD互相平分;(2)若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.【思路点拨】(1)证△ABO≌△CDO,得AO=OC,BO=DO(2)证△AEO≌△CFO或△BEO≌△DFO【答案与解析】证明:∵AB∥DC∴∠A=∠C在△ABO与△CDO中A C(AOB COD∠∠⎧⎪∠∠⎨⎪⎩==对顶角相等)AB=CD∴△ABO≌△CDO(AAS)∴AO=CO ,BO=DO在△AEO和△CFO中A C(AOE COF∠∠⎧⎪⎨⎪∠∠⎩=AO=CO=对顶角相等)∴△AEO≌△CFO(ASA)∴OE=OF.【总结升华】证明线段相等,就是证明它们所在的两个三角形全等.利用平行线找角等是本题的关键.类型四、全等三角形判定的实际应用5、在一次战役中,我军阵地与敌军碉堡隔河相望,为了炸掉敌军的碉堡,要知道碉堡与我军阵地的距离.在不能过河测量又没有任何测量工具的情况下,一名战士想出了这样一个办法:他面向碉堡站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部.然后,他转身向后,保持刚才的姿态,这时视线落在了自己这岸的某一点上.接着,他用步测的办法量出了自己与该点的距离,这个距离就是他与碉堡的距离.这名战士的方法有道理吗?请画图并结合图形说明理由.【答案与解析】设战士的身高为AB,点C是碉堡的底部,点D是被观测到的我军阵地岸上的点,由在观察过程中视线与帽檐的夹角不变,可知∠BAD=∠BAC,∠ABD=∠ABC=90°.在△ABD和△ABC中,ABD ABCAB ABBAD BAC∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABD≌△ABC(ASA)∴BD=BC.这名战士的方法有道理.【总结升华】解决本题的关键是结合图形说明那名战士测出的距离就是阵地与碉堡的距离,可以先画出示意图,然后利用全等三角形进行说明.解决本题的关键是建立数学模型,将实际问题转化为数学问题并运用数学知识来分析和解决.。
人教版八年级上册12.2三角形全等的条件(ASA和AAS)课件(共23张PPT)
M
A
P
C
O
B
N
变式4: OP是∠ MON的平分线.
(3)若CA ∥ ON, CB∥OM,则△ AOC ≌ △ BOC吗?为什么?
MPAC源自OBN变式5: OP是∠ MON的平分线.
(4)若AC ⊥ OP于点C交OM于A,交ON于点 B,则△ AOC ≌ △ BOC吗?为什么?
E
F
解:带第Ⅱ块去。 Ⅱ
Ⅰ
活动三:想一想
如图,ABC与MNP中, ∠ A= ∠ M,∠ B= ∠ N, BC=NP, △ ABC ≌ △ MNP吗 ?为什么?
A
解: △ ABC ≌ △ MNP。
∵ ∠ A= ∠ M, ∠ B= ∠ N 。
B
C
M
∠ C= 180 ° -∠ A - ∠ B,
∠ P= 180 ° -∠ M - ∠ N。 ∴ ∠ C= ∠ P 。
(角角边AAS)
例1、如图OP是∠ MON的角平分线, C是OP上 的一点,CA⊥ OM, CB⊥ON,垂足分别为A、B, △ AOC ≌ △ BOC吗 ?为什么?
解: △ AOC ≌ △ BOC。
M
∵ CA ⊥ OM, CB⊥ON。
A
P
C
┎
O
B
N
∴ ∠ CAO= ∠ CBO=90 ° 。 ∵ OP是∠ MON的平分线, ∴ ∠ AOC= ∠ BOC 。 又∵ OC= OC 。 根据“AAS”,可得。
Ⅰ
学习目标
1、掌握三角形全等的“角边角”、 “角角边”的条件。
2、利用“角边角”、“角角边” 判别两个三角形全等,解决一 些简单的实际问题。
12.2.3三角形全等的判定(三)AAS或ASA
湖北鸿鹄志文化传媒有限公司——助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
前 言 高考状元是一个特殊的群体,在许
多人的眼中,他们就如浩瀚宇宙里璀璨夺 目的星星那样遥不可及。但实际上他们和 我们每一个同学都一样平凡而普通,但他 们有是不平凡不普通的,他们的不平凡之 处就是在学习方面有一些独到的个性,又 有着一些共性,而这些对在校的同学尤其 是将参加高考的同学都有一定的借鉴意义。
湖北鸿鹄志文化传媒有限公司——助您成功
湖北鸿鹄志文化传媒有限公司——助您成功
青 春 风 采
湖北鸿鹄志文化传媒有限公司——助您成功
高考总分:
692分(含20分加分) 语文131分 数学145 分英语141分 文综 255分
毕业学校:北京二中 报考高校: 北京大学光华管理学 院 北京市文科状元 阳光女孩--何旋 湖北鸿鹄志文化传媒有限公司——助您成功
在图2中, 边BC是∠A的对 边, 我们称这种位置关系为两 角及其中一角的对边。
观察下图中的△ABC,画一个△A B C ′ ,使 A B ′′ =AB , ∠′ A′ = ∠A , ′ ∠B = ∠B ′
′ A B =AB; ′ 画法: 1. 画 ′′ ′′ ′′ 2.在A B 的同旁画∠DA B = ∠A ,∠EB A = ∠B, ′′ ′ ′ E D A D、B E交于点C C C′ B A′ 观察:△A B′ C′ 与 △ABC 全等吗?怎么验证? ′ 思考:这两个三角形全等是满足哪三个条件? 结论:两角及夹边对应相等的两个三角形全等(ASA). A
∠C=∠F A D
BC=EF B ∴△ABC≌△DEF(SAS)
C F E
一张教学用的三角形硬纸板不小心被撕坏 了,如图,你能制作一张与原来同样大小的新 教具?能恢复原来三角形的原貌吗?
12.2 三角形全等的判定(解析版)
12.2 三角形全等的判定1.理解和掌握边边边、边角边的方法判断三角形全等;2.理解和掌握角边角和角角边的方法判断三角形全等;3.理解和掌握直角三角形的判定方法。
一、判定方法一:边边边(SSS )1.边边边:三边对应相等的两个三角形全等(可以简写成“边边边“或“SSS “)。
2.书写格式①先写出所要判定的两个三角形。
②列出条件:用大括号将两个三角形中相等的边分别写出。
③得出结论:两个三角形全等。
如下图,在△ABC 和 △A ′B ′C ′中,∵AB =A ′B ′,BC =B ′C ′,AC =A ′C ′,∴△ABC≅△A ′B ′C ′(SSS ).书写判定两个三角形全等的条件:在书写全等的过程中,等号左边表示同一个三角形的量,等号右边表示另一个三角形的量。
如上图,等号左边表示△ABC 的量,等号右边表示 △A ′B ′C ′的量。
3.作一个角等于已知角已知:∠AOB 。
求作: ∠A ′O ′B ′,使 ∠A ′O ′B ′=∠AOB .作法:如上图所示,①以点O 为圆心、任意长为半径画弧,分别交 OA ,OB 于点 C ,D 。
②画一条射线( O ′A ′,以点 O ′为圆心、OC 长为半径画弧,交( O ′A ′于点 C ′.③以点C ′为圆心、CD 长为半径画弧,与上一步中所画的弧交于点 D ′.④过点。
D ′画射线 O ′B ′,则 ∠A ′O ′B ′=∠AOB .题型一 利用SSS 直接证明三角形全等如图,已知AC DB =,要用“SSS ”判定ABC DCB @V V ,则只需添加一个适当的条件是_____.【答案】AB DC=【分析】根据全等三角形的判定:三边对应相等的两个三角形全等,即可.【详解】∵全等三角形的判定“SSS ”:三边对应相等的两个三角形全等,∴当ABC V 和DCB △中,AC DB BC BC AB DC =ìï=íï=î,∴()SSS ABC DCB @V V ,故答案为:AB DC =.【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的判定()SSS :三边对应相等的两个三角形全等.1.如图,已知AC DB =,要使得ABC DCB @V V ,根据“SSS ”的判定方法,需要再添加的一个条件是_______.【答案】AB DC=【分析】要使ABC DCB @V V ,由于BC 是公共边,若补充一组边相等,则可用SSS 判定其全等.【详解】解:添加AB DC =.在ABC V 和DCB △中AB DC BC CB AC BD =ìï=íï=î,∴()ABC DCB SSS @△△,故答案为:AB DC =.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.2.如图,AB DC =,若要用“SSS ”证明ABC DCB △△≌,需要补充一个条件,这个条件是__________.【答案】AC BD=【分析】由图形可知BC 为公共边,则可再加一组边相等,可求得答案.【详解】解:∵AB DC =,BC CB =,∴可补充AC DB =,在ABC V 和DCB V 中,AB DC BC CB AC DB =ìï=íï=î,∴ABC V ≌()SSS DCB V ;故答案为:AC DB =.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.题型二 全等三角形的性质与SSS 综合如图,点E 、点F 在BD 上,且AB CD =,BF DE =,AE CF =,求证:AB CD ∥.【分析】根据全等三角形的判定得出ABE CDF △≌△,推出B D Ð=Ð,利用平行线的判定解答即可.【详解】证明:∵BF DE =,∴BE DF =,在ABE V 和CDF V 中,AB DC AE CF BE DF =ìï=íï=î,∴()SSS ABE CDF V V ≌,∴B D Ð=Ð,∴AB CD ∥.【点睛】本题考查全等三角形的判定和性质,解题的关键是学会利用全等三角形解决问题,属于中考常考题型.1.已知:如图,RPQ D 中,RP RQ =,M 为PQ 的中点.求证:RM 平分PRQ Ð.【分析】先根据M 为PQ 的中点得出PM QM =,再由SSS 定理得出PRM QRM V V ≌,由全等三角形的性质即可得出结论.【详解】证明:M Q 为PQ 的中点(已知),PM QM \=,在RPM △和RQM V 中,RP RQ PM QM RM RM =ìï=íï=î,(SSS)RPM RQM \V V ≌,PRM QRM \Ð=Ð(两三角形全等,对应角相等)即RM 平分PRQ Ð.【点睛】本题考查的是全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解答此题的关键.2.已知如图,四边形ABCD 中,AB BC =,AD CD =,求证:A C Ð=Ð.【分析】连接BD ,已知两边对应相等,加之一个公共边BD ,则可利用SSS 判定ABD CBD ≌△△,根据全等三角形的对应角相等即可证得.【详解】证明:连接BD ,AB CB =Q ,BD BD =,AD CD =,SSS ABD CBD \≌()V V .A C \Ð=Ð.【点睛】此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS ,SAS ,ASA ,HL 等.题型三 作一个角等于已知角如图:(1)在A Ð的内部利用尺规作CED A Ð=Ð(不写作法,保留作图痕迹)(2)判断直线DE AB 与的位置关系【分析】(1)根据作一个角等于已知角的方法在;A Ð的内部作CED A Ð=Ð,即可求解.(2)根据图形及平行线的判定定理可直接得到答案.【详解】(1)解:如图所示,在A Ð的内部作CED A Ð=Ð, 则CED Ð即为所求;(2)∵CED A ÐÐ=,∴DE AB ∥.故答案为:DE AB ∥.【点睛】本题主要考查角的尺规作图及平行线的判定,熟练掌握基本作图以及平行线的判定定理是解题的关键.1.如图,已知Ðb 和线段a ,求作ABC V ,使B b Ð=Ð,2,AB a BC a==【分析】先画射线BP ,以B 为圆心,a 为半径画弧,与射线BP 交于点D ,再画DA a =,再以b 的顶点为圆心,a 为半径画弧,交b 的两边分别为E ,F ,再以D 为圆心,EF 为半径画弧,交前弧于C ,再连接AC ,从而可得答案.【详解】解:如图,ABC V 即为所求;【点睛】本题考查的是作三角形,作一个角等于已知角,作一条线段等于已知线段,熟练掌握基本作图是解本题的关键.2.已知a Ð.求作CAB a Ð=Ð.(尺规作图,保留作图痕迹,不写作法)【分析】按照作与已知角相等的角的尺规作图方法作图即可.【详解】解:如图,CAB Ð为所作.【点睛】本题主要考查了作与已知角相等的角的尺规作图,熟知相关作图方法是解题的关键.二、判定方法二:边角边(SAS )1.边角边:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边“或“SAS “)。
三角形全等的判定(ASA、AAS)
A D
∠A=∠D
AB=DE ∠B=∠E
B
C F E
∴ △ABC≌△DEF(ASA)
如图,应填什么就有 △AOC≌ △BOD:
B
∠A=∠B,(已知)
AO=BO (已知) ,
C
1 2
∠1=∠2(对顶角相等)
∴△AOC≌△BOD (ASA)
A
O
D
小明踢球时不慎把一块 三角形玻璃打碎为两块,他是 否可以只带其中的一块碎片 到商店去,就能配一块于原来 一样的三角形玻璃呢?
等。(可以简写成“边角边”或“SAS”)
用符号语言表达为:
A D
在△ABC与△DEF中 AC=DF
∠C=∠F BC=EF
B
C F E
∴△ABC≌△DEF(SAS)
继续探讨三角形全等的条件: 两角一边
思考:已知一个三角形的两个角和一条边,那么两个角 与这条边的位置上有几种可能性呢? A A
B
图1
C
B
练习:
三步走:
①要证什么;
②已有什么;
A
D
=
=
③还缺什么。
B
E C
F
大显身手
练习1:已知如图,AB⊥BC,AD⊥DC,垂足
分别为B、D,∠1=∠2,求证:AB=AD
证明:∵AB⊥BC,AD⊥DC ∴∠B=∠D=90° 在△ABC和△ADC中 ∠1=∠2 ∠B=∠D AC=AC ∴△ABC≌△ADC(AAS) B ∴AB=AD
C E ′ C D
A
B A ′
B′
观察:△A ′ B ′ C ′ 与 △ABC 全等吗?怎么验证? 思考:这两个三角形全等是满足哪三个条件?
全等三角形的判定(AAS-ASA)专题练习甄选
A B E F C 第1题 D全等三角形的判定(AAS-ASA)专题练习(优选.)龙江三中八年级数学分层教学专用练习题制卷人:田丽华审核人:刘海欣12.2三角形全等判定3-----AAS 或ASA 专题练习基础C 级1.如图,点B 、E 、F 、C 在同一直线上. 已知∠A =∠D ,∠B =∠C ,要使△ABF ≌△DCE ,需要补充的一个条件是(写出一个即可).2.如图,已知BD=CD ,∠B =∠C ,要根据“AAS ”判定△ABD ≌△ACD ,则还需添加的条件是3.如图,AD=BC ,∠D =∠C ,要根据“ASA ”判定△ABD ≌△BAC ,则还需添加的条件是4.如图,AC 、BD 相交于点0,∠A=∠B ,∠1=∠2,AD=BC.试说明△AOD ≌△BOC.证明:∵∠A=∠B ,∠1=∠2 (已知)∴∠ADC=∠BCD (三角形内角和)∴∠ADC-∠1=∠BCD- ∠2即∠________=∠_________在△AOD 和△BOD 中,∵∴△AOD ≌△BOD ( )5.如图,AC 与BD 相交于点O ,已知OA=OC ,∠A=∠C ,求证:△AOB ≌△COD证明:在△AOB 和△COD 中第2题 第5题第3题A F E D CB∵∴△AOB ≌△COD( )能力B 级1.如图,在△AFD 和△BEC 中,点A 、E 、F 、C 在同一直线上,AE=CF ,∠B=∠D ,AD ∥BC 。
试说明AD=CB 。
2.已知:如图 , ∠1=∠2 , ∠3=∠4求证:AC=AB .3. 已知:如图 , FB=CE , AB ∥ED , AC ∥FD.F 、C 在直线 BE 上.求证:AB=DE , AC=DF .综合A级1. 如图AC⊥CD于C , BD⊥CD于D , M是AB的中点 , 连结CM并延长交BD于点F。
求证:AC=BF.2. 如图在△ABC和△DBC中 , ∠1=∠2 , ∠3=∠4 ,P是BC上任意一点.求证:PA=PD.3.已知:如图 , AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.求证:AC=EF.4.已知:如图AC∥BD , AE和BE分别平分∠CAB∠DBA ,CD过点E.求证:AB=AC+BD赠人玫瑰,手留余香。
全等三角形的判定(AAS和ASA)
全等三角形的判定【知识梳理】1、三角形全等的条件(三):两角和它们的夹边对应相等的两个三角形全等。
2、三角形全等的条件(四):两个角和其中一个角的对边对应相等的两个三角形全等。
3、三个角对应相等的情形:三个角对应相等的两个三角形不一定全等。
4、三角形全等的条件的选用:要根据具体情况和题设条件确定,其基本思路见下表:已知条件可选择的判定方法一边一角对应相等SAS、AAS、ASA两角对应相等ASA、AAS两边对应相等SAS、SSS【例题精讲】【例1】如图⑴,AB=CD,AD=BC,O为AC的中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由。
若将过O点的直线旋转至图⑵、⑶的情况时,其他条件不变,那么图⑴中∠1与∠2的关系还成立吗?【变式1-1】如图,在△ABC中,AB⊥BC,AB=BC,D为AC上一点,AE⊥BE交BD的延长线于E,BE⊥CF 于F,求证:EF=CF-AE。
【变式1-2】如图,AD∥BC,AB∥DC,MN=PQ,求证:DE=BE。
【变式1-3】如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长线于E。
求证:BD=2CE。
【变式1-4】如图①所示,OP是∠MON的平分线,请利用该图形画一对以OP所在直线为对称轴的全等三角形。
请你参考这个作全等三角形的方法,解答下列问题:⑴如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。
请你判断并写出FE与FD之间的数量关系;⑵如图③,在△ABC中,如果∠ACB不是直角,而⑴中的其他条件不变,请在⑴中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
【变式1-5】线段AC与BD相交于点O,连结AB、DC,E为OB的中点,F为OC的中点,连结EF(如图所示)。
⑴添加条件∠A=∠D,∠OEF=∠OFE。
三角形的全等判定(三)——(ASA或AAS)
网络教研———主备教案学科:数学年级:八年级主备人:韩闻研讨时间:9月24日课题:三角形的全等判定(三)——(ASA或AAS)学习目标:1.让学生掌握已知三角形两个内角和一条边的长度怎么画三角形;2.掌握三角形全等的证明方法:ASA和AAS;3.熟练掌握证明的标准步骤;重点:应用“角边角”、“角角边”判定三角形全等.难点:学会综合法解决几何推理问题教学设计(教学流程、知识呈现、问题设置、学习方式、练习检测等)学情研改一、回顾交流,巩固学习【知识回顾】情境思考:1.小菁做了一个如图1所示的风筝,其中∠EDH=∠FDH,ED=FD,•将上述条件注在图中,小明不用测量就能知道EH=FH吗?与同伴交流.(1) (2)[答案:能,因为根据“SAS”,可以得到△EDH≌△FDH,从而EH=FH]2.如图2,AB=AD,AC=AE,能添上一个条件证明出△ABC≌△ADE吗?[答案:BC=•DE(SSS)或∠BAC=∠DAE(SAS)]二、探索新知,导入课题探究1:一张教学用的三角形硬纸板不小心被撕坏了(如下图),你能制作一张与原来同样大小的新教具吗?能恢复原来三角形的原貌吗?探究1反映的规律是:两角和它们的夹边对应相等的两个三角形全等.(可以简写成“角边角”或“ASA”)用数学符号表示:探究2:如下图,在△ABC和△DEF中,∠A =∠D, ∠B=∠E, BC=EF, △ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?证明:在△ABC和△DEF中,∠A +∠B +∠C=1800,∠D +∠E +∠F =1800,∵∠A =∠D, ∠B=∠E,∴∠C=∠F,∴∠B=∠E,BC=EF,∠C=∠F∴△ABC ≌△DEF (ASA)探究2反映的规律是:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)用数学符号表示:三、例题精讲例1.已知:点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C. 求证:(1)AD=AE; (2)BD=CE例2.如图,O是AB的中点,∠A= ∠B,△AOC与△BOD全等吗?为什么?变式: 如图,O是AB的中点,∠C= ∠D,△AOC与△BOD全等吗?为什么?四、随堂练习,巩固深化课本P41练习第1,2题.课时练P31 达标检测五、课堂总结1.证明两个三角形全等有几种方法?如何正确选择和应用这些方法?2.全等三角形性质可以用来证明哪些问题?举例说明.六、布置作业教学反思相关学习资料(导学、效能作业、教学录像等)。
13.2 三角形全等的判定(第3课时 A.S.A.)
∠EB/A/ =∠B, A/ D,B/E交于点C/。
E C C′ D
A
B
A′
B′
通过实验你发现了什么规律?
探究反映的规律是: 有两角和它们夹边对应相等的两个三角形全等 (简写成“角边角”或“ASA”)。
用数学符号表示
在△ABC和△A`B`C`中 ∠A=∠A`
∵
A
B
AB=A`B`
C A`
∠B=∠B`
图 13-2-12
13.2.4.1 角边角
证明:∵△ABC≌△A′B′C′, ∴AB=A′B′,∠B=∠B′,∠BAC=∠B′A′C′. ∵AD,A′D′分别是△ABC 及△A′B′C′的角平分线, 1 1 ∴∠BAD= ∠BAC,∠B′A′D′= ∠B′A′C′, 2 2
倍 速 课 时 学 练
∴∠BAD=∠B′A′D′, ∴△BAD≌△B′A′D′(A.S.A.), ∴AD=A′D′.
∴AC=AB(全等三角形对应角相等)
13.2.4 .1 角边角
探究问题二 全等三角形对应角的平分线相等
例 2 求证全等三角形对应角的平分线相等 已知:如图 13-2-12,△ABC≌△A′B′C′,AD, A′D′分别是△ABC 及△A′B′C′的角平分线, 求△A′B′C′的条件是( D ) A.AB=A′B′,BC=B′C′,∠C=∠C′ B.∠B=135°,∠B′=135°,AB=B′C′,BC=C′A′ C.AB=BC=CA,A′B′=B′C′=C′A′,∠A=∠A′ D.AB=A′B′,BC=B′C′,∠B=∠B′=135°
试一试
∴ △ABC≌△A`B`C`(ASA) B` C`
练一练
例一、已知:点D在AB上,点E在AC上,BE 和CD相交于点O,AB=AC,∠B=∠C。 A 求证: △ABE≌△ACD
探索三角形全等的条件(ASA,AAS)
姓名密封区考试类型考试【】考查【 】命题人审批绝密★启用前探索三角形全等的条件(ASA,AAS)测试时间:25分钟一、选择题1.如图,已知CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么△AEC≌△BFD的理由是( )A.SSSB.AASC.SASD.ASA2.如图,已知∠A=∠D,∠B=∠DEF,AB=DE.若BF=6,EC=1,则BC的长为( )A.4B.3.5C.3D.2.53.如图,∠ACB=90°,AC=BC,BE⊥CE于E点,AD⊥CE于D点,AD=2.5 cm,DE=1.7 cm,则BE的长为( )A.0.8 cmB.1 cmC.1.5 cmD.4.2 cm二、填空题4.如图,嘉琪不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带第块去配,依据是定理(可以用字母简写).5.如图,AC、BD相交于点O,∠ABC=∠DCB,根据“ASA”得△ABC≌△DCB,需补充的条件是,根据“AAS”得△ABC≌△DCB,需补充的条件是.6.(2016山东济宁中考)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H.请你添加一个适当条件: ,使△AEH≌△CEB.三、解答题7.如图,已知点D是△ABC的边AB上一点,AB∥FC,DF交AC于点E,DE=EF.试说明:△ADE≌△CFE.8.(2018浙江温州中考)如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.试说明:△AED≌△EBC.横线以内不许答题参考答案 一、选择题1.答案 B ∵CE⊥AB,DF⊥AB,∴∠AEC=∠BFD=90°.∵AC∥DB,∴∠A=∠B. 在△AEC 和△BFD 中,{∠AEC =∠BFD ,∠A =∠B ,AC =BD ,∴△AEC≌△BFD(AAS),故选B.2.答案 B ∵在△ABC 与△DEF 中,{∠A =∠D ,AB =DE ,∠B =∠DEF ,∴△ABC≌△DEF(ASA),∴BC=EF,则BE=CF,∴BF=2BE+EC,又BF=6,EC=1,∴BE=2.5, ∴BC=BE+EC=3.5,故选B.3.答案 A ∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°, ∴∠EBC+∠BCE=90°.∵∠BCE+∠DCA=90°, ∴∠EBC=∠DCA. 在△CEB 和△ADC 中,{∠E =∠ADC ,∠EBC =∠DCA ,BC =CA ,∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD=2.5 cm. ∵DC=CE -DE,DE=1.7 cm,∴DC=2.5-1.7=0.8 cm,∴BE=0.8 cm,故选A.二、填空题4.答案 ③;ASA解析 因为第③块中有完整的两个角以及它们的夹边,利用ASA 易证三角形全等,故应带第③块去配. 5.答案 ∠ACB=∠DBC;∠A=∠D解析 由∠ABC=∠DCB,BC=CB,∠ACB=∠DBC 可得△ABC≌△DCB(ASA); 由∠ABC=∠DCB,∠A=∠D,BC=CB 可得△ABC≌△DCB(AAS). 6.答案 AE=CE(或HE=BE 或AH=CB 或∠BAC=45°)解析 ∵AD⊥BC,CE⊥AB,∴∠AEH=∠CEB=∠ADB=90°,∴∠B+∠EAH=∠B+∠ECB=90°, ∴∠EAH=∠ECB.∴添加条件AE=CE 或∠BAC=45°,可根据“ASA”判定△AEH≌△CEB, 添加条件AH=CB 或HE=BE,可根据“AAS”判定△AEH≌△CEB.三、解答题7.解析 解法一:∵AB∥FC,∴∠F=∠ADE. 在△ADE 和△CFE 中,有{∠ADE =∠F ,DE =FE ,∠AED =∠CEF ,∴△ADE≌△CFE(ASA). 解法二:∵AB∥FC,∴∠A=∠ECF, 在△ADE 和△CFE 中,有{∠A =∠ECF ,∠AED =∠CEF ,DE =FE ,∴△ADE≌△CFE(AAS).8.解析 ∵AD∥EC,∴∠A=∠BEC.∵E 是AB 的中点,∴AE=EB.∵∠AED=∠B,∴△AED≌△EBC(ASA).。
12.2 第3课时 三角形全等的判定(ASA,AAS)
分层作 业
1.[2018·成都]如图 12-2-30,已知∠ABC=∠DCB,添加以下条件,不能判定
△ABC≌△DCB 的是( C )
A.∠A=∠D
B.∠ACB=∠DBC
C.AC=DB
D.AB=DC
图 12-2-30
2.如图 12-2-31,点 D,E 分别在线段 AB,AC 上,AE=AD,不添加新的线 段和字母,要使△ABE≌△ACD,需添加的一个条件是 ∠ADC=∠AEB或 ∠CEB=∠BDC或∠C=∠B或AB=AC或B(D只=写C一E个条件即可).
线上,可以说明△EDC≌△ABC,从而可得 ED=AB,因此测得 ED 的长就是 AB
的长,判定△EDC≌△ABC 最恰当的理由是( B )
A.边角边
B.角边角
C.边边边
D.边边角
图 12-2-28
4.[2017·黔东南州]如图 12-2-29,点 B,F,C,E 在同一条直线上,已知 FB =CE,AC∥DF,请你添加一个适当的条件:(答案不唯一)如AC=FD或∠B,= 使得△ABC≌△DEF.
5.[2018·昆明]如图 12-2-34,在△ABC 和△ADE 中,AB=AD,∠B=∠D, ∠1=∠2.
求证:BC=DE.
图 12-2-34
证明:∵∠1=∠2, ∴∠1+∠DAC=∠2+∠DAC, 即∠BAC=∠DAE. 在△ABC 和△ADE 中,
∠ABB==A∠DD,, ∠BAC=∠DAE,
求证:BC=AE.
图 12-2-25
证明:∵DE∥AB,∴∠CAB=∠EDA. 在△ABC 和△DAE 中,
∠CAB=∠EDA, AB=DA, ∠B=∠DAE,
∴△ABC≌△DAE(ASA), ∴BC=AE.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.2 三角形全等的条件(ASA或AAS)
【知能点分类训练】
知能点1 “角边角”定理与“角角边”定理
1.已知AB=A′B′,∠A=∠A′,∠B=∠B′,则△ABC≌△A′B′C′的根据是(). A.SAS B.SSS C.AAS D.ASA
2.如图,李明同学把一块三角形玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,他最省事的办法是().
A.带①去 B.带②去 C.带③去 D.带①和②去
3.在△ABC和△A′B′C′中,①AB=A′B′,②BC=B′C′,③AC=A′C′,④∠A=•∠A′,⑤∠B=∠B′,⑥∠C=∠C′,则下列条件中不能保证△ABC≌△A′B′C′的是().
A.①②③ B.①②⑤ C.①⑤⑥ D.①②④
4.如图,D是△ABC的边BC的中点,CE∥AB,E在AD的延长线上.
试证明△ABD•≌△ECD.
5.如图,已知AB∥CD,AF=CE,∠B=∠D,证明BE和DF的关系.
知能点2 “ASA及AAS”定理的应用
6.如图,要测量河宽AB.
(1)请你运用所学的“三角形全等”的有关知识设计一种测量方案.
(2)说明你设计的方案的正确性.
【综合运用提高】
7.如图,AB∥A′B′,AC∥A′C′,且BB′=CC′,你能说明AC=A′C′的理由吗?
8.如图,已知△ABC≌△A′B′C′,AD,A′D′分别是△ABC和△A′B′C′的高.试证明AD=A′D′,并用一句话说明你的结论.
【开放探索创新】
9.如图,过△ABC的顶点A作AF⊥AB,且AF=AB,再作AH⊥AC,且AH=AC,BH交AC•于E,CF交AB于D,BH与CF相交于点O.
求证:(1)HB=CF;(2)HB⊥CF.
10.如图,在△AFD和△BED中,点A,E,F,C在同一直线上,有下面四个论断:(1)AD=CD;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.
请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出解答过程.
答案:
1.D 2.C
3.D 点拨:两边和其中一边的对角对应相等的两个三角形不一定全等.4.证明:∵CE∥AB,∴∠ABD=∠ECD.
在△ABD和△ECD中,
,()
,()
,() ABD ECD
BD CD
ADB EDC
∠=∠
⎧
⎪
=
⎨
⎪∠=∠
⎩
已证
中点定义
对顶角
∴△ABD≌△ECD(ASA).
5.证明:∵AB∥CD,BE=DF,∴∠A=∠C.又∵AF=CE,∴AF+FE=CE+FE.
即AE=CF.
在△ABE和△CDF中,
,()
,()
,(
A C
B D
AE CF
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
已证
已知
已证)
∴△ABE≌△CDF(AAS),∴BE=DF.
6.(1)测量如下:
如图,在河岸的一侧取C,D两点,使BC=CD,再过D作河岸的垂线DF,在DF 上找一点E,使A,C,E三点在一条直线上,则测得DE的长就是河宽AB.
(2)因为A,C,E三点在一条直线上,所以∠ACB=∠DCE,又因为AB和DE•都与河岸垂直,所以∠ABC=∠CDE=90°,由测量方案BC=CD,可由(ASA)全等识别法证明△ABC≌△EDC,所以DE=AB,即测量DE的长就可知河宽AB.
7.∵AB∥A′B′,AC∥A′C′,
∴∠ABC=∠A′B′C′,∠ACB=∠A′C′B′.
又∵AB′=CC′,∴BB′+BC′=CC′+BC′,
即B′C′=BC, ()
∴△ABC≌△A′B′C′(ASA),∴AC=A′C′.
8.此题证明方法不唯一,如:
∵△ABC≌△A′B′C′,∴AB=A′B′,∠B=∠B′.
∵AD,A′D′分别是△ABC,△A′B′C′的高.
∴∠ADB=∠A′D′B′=90°.
在△ABD和△A′B′D′中,∠B=∠B′,∠ADB=∠A′D′B′,AB=A′B′.∴△ABD≌△A′B′D′,∴AD=A′D′.
一句话是:全等三角形对应边上的高相等.
9.(1)∵AF⊥AB,AH⊥AC,∴∠HAC=∠BAF=90°,
∴∠HAC+∠BAC=∠BAF+∠BAC,
即∠BAH=∠CAF.
在△HAB和△CAF中,
,
,
,
AB AF
BAH CAF AH AC
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△HAB≌△CAF(SAS),∴HB=CF,∠B=∠F.
(2)在△AFD和△BOD中,∠B=∠F,∠ODB=∠ADF,∴∠DOB=∠FAD,即HB⊥CF.
10.已知AE=CF,∠B=∠D,AD∥BC,求证:AD=BC.
证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE.
又∵AD∥BC,∴∠A=∠C.
又∵∠B=∠D
在△ADF和△CBE中,
,()
,()
,()
A C
B D
AD BC
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
已证
已知
已证
∴△ADF≌△CBE(AAS),∴AD=BC.。