(最新)函数1(精品)

合集下载

人教版高中数学必修1《函数的表示法》高一上册PPT课件(第1.2.2-1课时)

人教版高中数学必修1《函数的表示法》高一上册PPT课件(第1.2.2-1课时)

PART 03
合作探究·攻重难
TO WORK TOGETHER TO FIND OUT WHAT'S GOING ON
高中数学精品系列课件
[合作探究· 攻重难]
函 数表 示 法的 选 择
例1某商场新进了10台彩电,每台售价3000元,试求售出台数x与收款数y之间的函数关系,分别用列表法、图
象法、解析法表示出来. [解] ①列表法如下:
高中数学精品系列课件
[解] (1)不能用解析法表示,用图象法表示为宜. 在同一个坐标系内画出这四个函数的图象如下:
人教版高中数学必修一精品课件
高中数学精品系列课件
(2)王伟同学的数学成绩始终高于班级平均水平, 学习情况比较稳定而且成绩优秀, 张城同学的数学成绩 不稳定,总是在班级平均水平上下波动,而且波动幅度较大.赵磊同学的数学成绩低于班级平均水平, 但他的成绩曲线呈上升趋势,表明他的数学成绩在稳步提高.
优点
缺点
①简明、全面地概括了变量间的关系;②可以通过解析式求出任意
解析法
不够形象、直观
一个自变量所对应的函数值
列表法 不通过计算就可以直接看出与自变量的值相对应的函数值
一般只能表示部分自变量的函数值
直观、形象地表示出函数的变化情况,有利于通过图形研究函数的 只能近似地求出自变量所对应的函数值,有时误
人教版高中数学必修一精品课件
高中数学精品系列课件
图象的画法及应用
例2作 出 下 列 函 数 的 图 象 并 求 出 其 值 域 . 2
(1)y= - x, x∈ {0,1, - 2,3}; (2)y=, x∈ [2, + ∞ ); (3)y= x2+ 2x, x∈ [- 2,2). x
[解] (1)列表

1【课件(人教版)】第1课时 函数的表示法

1【课件(人教版)】第1课时 函数的表示法

法二:(换元法) 令 x+1=t(t≥1),则 x=(t-1)2(t≥1), 所以 f(t)=(t-1)2+2 (t-1)2=t2-1(t≥1). 所以 f(x)=x2-1(x≥1). (3)f(x)+2f1x=x,令 x=1x, 得 f1x+2f(x)=1x.
于是得到关于 f(x)与 f1x的方程组
(3)消元法(或解方程组法):在已知式子中,含有关于两个不同变量的函数, 而这两个变量有着某种关系,这时就要依据两个变量的关系,建立一个新的 关于这两个变量的式子,由两个式子建立方程组,通过解方程组消去一个变 量,得到目标变量的解析式,这种方法叫做消元法(或解方程组法).
1.(2020·辽源检测)设函数 f11- +xx=x,则 f(x)的表达式为
解析:选 A.法一:令 2x+1=t,则 x=t-2 1.
所以 f(t)=6×t-2 1+5=3t+2,
所以 f(x)=3x+2.
法二:因为 f(2x+1)=3(2x+1)+2,
所以 f(x)=3x+2.
()
3.已知函数 f(x)=x-mx ,且此函数的图象过点(5,4),则实数 m 的值为 ________. 解析:因为函数 f(x)=x-mx 的图象过点(5,4), 所以 4=5-m5 ,解得 m=5. 答案:5
5.已知 f(x)是二次函数,且满足 f(0)=1,f(x+1)-f(x)=2x,求 f(x). 解:因为 f(x)是二次函数,设 f(x)=ax2+bx+c(a≠0), 由 f(0)=1,得 c=1. 由 f(x+1)-f(x)=2x, 得 a(x+1)2+b(x+1)+1-ax2-bx-1=2x.
4.下表表示函数 y=f(x),则 f(x)>x 的整数解的集合是________.

函数的概念与图象(第一课时)高一数学同步精品课件(苏教版2019必修第一册)

函数的概念与图象(第一课时)高一数学同步精品课件(苏教版2019必修第一册)

C.x|12≤x<1或x>1 D.x|-1≤x≤12或x>1 (2)已知函数 f(x+2)的定义域为(-2,0),则函数 f(2x-2)的定义域为( )
A.(0,2)
B.-12,12
C.(1,2)
D.-12,0
解析 (1)要使函数有意义,自变量 x 的取值必须满足2x2x--11≠≥00,,解得xx≥ ≠12±,1,即 x≥12且 x≠1,故选 C. (2)由题意知-2<x<0,∴0<x+2<2,即f(x)的定义域为(0,2),∴0<2x-2<2,解 得1<x<2.故f(2x-2)的定义域是(1,2). 答案 (1)C (2)C
【训练3】 求下列函数的值域: (1)f(x)=x2+2x+3,x∈{-1,0,1,2}; (2)f(x)=x2+2x+3. 解 (1)∵函数定义域为{-1,0,1,2}, f(x)=(x+1)2+2. ∴f(-1)=2,f(0)=3,f(1)=6,f(2)=11, ∴函数f(x)的值域为{2,3,6,11}. (2)f(x)=x2+2x+3=(x+1)2+2, ∵(x+1)2≥0,∴(x+1)2+2≥2,∴f(x)的值域为[2,+∞).
题型一 函数关系的判断 角度1 由定义判断是否为函数 【例1-1】 判断下列对应关系是否为集合A到集合B的函数.
(1)A=R,B={x|x>0},f:x→y=|x|; (2)A=Z,B=Z,f:x→y=x2; (3)A=Z,B=Z,f:x→y= x; (4)A={x|-1≤x≤1},B={0},f:x→y=0.
二、课堂检测 1.下表表示函数y=f(x)的x与y的所有对应值,则此函数的定义域为( )
X
-1
0

人教版数学八年级下册《19.2.2 一次函数 第1课时 一次函数的概念》精品课件(最新)

人教版数学八年级下册《19.2.2 一次函数 第1课时 一次函数的概念》精品课件(最新)
人教版数学八年级下册课件
第十九章 一次函数
19.2.2 一次函数
第1课时 一次函数的概念
问题引入 某登山队大本营所在地的气温为 5 ℃, 海拔每升高 1 km 气温下降 6 ℃. 登山队员由大本营 向上登高 x km 时,他们所在位置的气温是 y ℃.
(1)试用函数解析式表示 y 与 x 的关系; y = 5 - 6x
(1)次是函正数比的例概函念数进.行判断.
典例当精堂析练习
例1 已知函数 y = (m - 1)x + 1 - m2.
(1)当 m 为何值时,这个函数是一次函数? 解:由题意可得
m - 1 ≠ 0,解得 m ≠ 1. 即 m ≠ 1 时,这个函数是一次函数.
注意:利用定义求一次函数 y kx b 解析式时,
(1) 当月收入大于 3500 元而又小于 5000 元时,写出 应缴所得税 y (元)与收入 x (元)之间的函数解析式.
解:y = 0.03×( x - 3500) (3500 < x < 5000).
当堂练习
(2) 某人月收入为 4160 元,他应缴所得税多少元? 解:当 x = 4160 时,y = 0.03×(4160 - 3500) = 19.8(元). (3) 如果某人本月应缴所得税 19.2 元,那么此人本 月工资是多少元?
(2)正比例函数是一种特殊的一次函数.
练一当练堂练习
下列函数中哪些是一次函数,哪些是正比例函数?
(1)y=-8x ; (4)y=-0.5x-1
(2)y=
-8 x
; (5)y=
; x
(3)y=5x2 -1 ;
+6

(6)y=
2
-13

第1讲函数(复习) §1.1函数§1.2初等函数

第1讲函数(复习) §1.1函数§1.2初等函数
求出
x
x f 1 ( y )
交换x, y的位置
y f ( x)
1
数统教研室
广东科贸职业学院
4、反函数的图形
y
y f (x)
x f 1 ( y) y f 1 ( x)
yx
将函数 y = f (x) 的
反函数写成 x = f 1(y)
时,函数与其反函数
O
x
的图形相同.
反函数的图形
数统教研室
广东科贸职业学院
2.区间 (1) 闭区间 [a, b] = { x | a x b }
O
[
a
]
b
x
(2) 开区间
(a, b) = { x | a < x < b }
。 (
O
a
。 )
b
x
数统教研室
广东科贸职业学院
(3) 半开闭区间
(a, b] = { x | a < x b } (称为左开右闭区间) [a, b) = { x | a x < b }
4.函数的周期性
设函数 f(x) 的定义域为 D。如果存在一个正常数 T ,
使得对于任一 xD,有 (xT)D,且 f(x+T) = f(x),则
称 f(x) 为周期函数,T称为 f(x) 的周期。
周期函数的图形特点:
y y=f(x)
-2T
-T
O
T
2T
x
数统教研室
广东科贸职业学院
四、反函数
圆的面积与半径的关系是:
若 x Df , 有 f ( x ) = f ( x ) 成立,则称 f ( x ) 为偶函数。 若 x Df , 有 f ( x ) = f ( x )

1、函数的定义、表示及三要素(最新 )

1、函数的定义、表示及三要素(最新 )

1. 函数的定义设A 、B 是两个非空数集,如果按照某种确定的对应关系f ,使得对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()x f 与之对应,那么就称B A f →:为从集合A 到集合B 的一个函数.记作:()x f y =,A x ∈.其中x 叫自变量,它的取值范围叫做函数的定义域;如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作()a f y =或a x y =,所有函数值构成的集合{}|(),y y f x x A =∈叫做这个函数的值域.☆ 函数的三要素:定义域、对应关系和值域;其中对应关系是核心,定义域是根本,当定义域和对应关系一确定,则值域也就确定了.2. 映射 设A ,B 是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在B 中有且仅有一个元素y 与x 对应,则称f 是集合A 到集合B 的映射.这时,称y 是x 在映射f 的作用下的象,记作()x f ,于是y =()x f ,x 称作y 的原象.映射f 也可以记为B A f →:,→x ()x f ,其中A 叫做映射f 的定义域(函数定义域的推广),由所有象()x f 构成的集合叫做映射f 的值域,通常记作()A f .3.一一映射:如果映射f 是集合A 到集合B 的映射,并且对于集合B 中的任意一个元素,在集合A 中都有且只有一个原象,这时我们说这两个集合的元素之间存在一一对应关系,并把这个映射叫做从集合A 到集合B 的一一映射.4.函数与映射:对定义域内每个自变量的值,根据确定的法则对应唯一的函数值,函数值也在一个数集内变化.于是函数也就是数集到数集的映射.映射是函数概念的推广,函数是一种特殊的映射.这里要注意:在映射中,要求元素的对应形式是“多对一”或“一对一”,一一映射中元素的对应形式必须是“一一对应关系”.5.函数的表示方法:表示函数常用的方法有列表法、解析法和图象法三种.列表法:通过列出自变量与对应函数值的表来表示函数关系的方法叫做列表法. 图象法:对于函数()x f y =(A x ∈)定义域内的每一个x 值,都有唯一的y 值与它对应.把这两个对应的数构成有序实数对()y x ,作为点P 的坐标,即P ()y x ,,则所有这些点的集合F 叫做函数()x f y =的图象,即{}(,)|(),F P x y y f x x A ==∈.这就是说,如果F 是函数()x f y =的图像,则图像上的任一点的坐标()y x ,都满足函数关系()x f y =;反之,满足函数关系()x f y =的点()y x ,都在图象F 上.这种用“图形”表示函数的方法叫做图象法.解析法:如果在函数()x f y =, A x ∈中,()x f 是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析法(也称为公式法).6.分段函数:在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数,如⎩⎨⎧≤+>-=0,230,12x x x x y 、423-+=x y 等.7.求函数定义域:在中学阶段,所研究的函数大都是能用解析式表示的,如果未加特殊说明,函数的定义域就是指能使函数解析式有意义的所有实数x 的集合,在实际问题中,还必须考虑自变量x 所代表的具体量的允许范围.①分母不为零;②偶次方根下非负;③对数函数真数大于零;④0x y =,0≠x . 研究函数时常会用到区间的概念:定义名称 符号数轴表示{}b x a x ≤≤ 闭区间 []b a ,{}b x a x << 开区间 ()b a ,{}b x a x <≤ 半开半闭区间 )[b a ,{}b x a x ≤<半开半闭区间](b a ,例题1:求下列函数的定义域(1)()43-=x xx f (2)()2x x f =(3)()2362+-=x x x f (4)()14--=x x x f☆ 如何判断两个函数是否为同一个函数:①看定义域是否相同,如果相同再看对应关系(解析式)是否一样.例题2:下列哪一组中的函数()x f 与()x g 相等?(1)()1-=x x f , ()12-=xx x g (2)()2x x f =, ()()4x x g =(3)()2x x f = , ()36x x g =例题3:画出下列函数的图象,并写出函数的定义域和值域.(1)x y 3= (2)xy 8=(3)54+-=x y (4)762+-=x x y例题4:已知函数()62-+=x x x f . (1)点(3,14)在()x f 的图象上吗? (2)当4=x 时,求()x f 的值; (3)当()2=x f 时,求x 的值.例题5:已知()12+=x x f ,则()()1-f f 的值等于( ) A.2 B.3 C.4 D.5例题6:已知函数()x f 的定义域为()0,1-,则函数()12+x f 的定义域为( )A.()1,1-B.⎪⎭⎫ ⎝⎛--21,1 C.()0,1- D.⎪⎭⎫⎝⎛1,21例题7:用区间表示下列数集: (1){}=≥1x x (2){}=≤<42x x (3){}=≠->21x x x 且 例题8:求下列函数的值域.(1)()1123≤≤-+=x x y ; (2)()x x f -+=42(3)x x y 422+--=例题9:已知函数()2211x x x f -+=.(1)求()x f 的定义域; (2)若()2=a f ,求a 的值;(3)求证:()x f x f -=⎪⎭⎫⎝⎛1求函数解析式(1) 配凑法求函数解析式:形如()[]x g f y =的函数解析式,一般也可以用换元法;例题1:已知函数()x x x f 21+=+,求()x f ;例题2:已知函数2211xx x x f +=⎪⎭⎫ ⎝⎛+,求()x f ;(2) 换元法求函数解析式:形如()[]x g f y =的函数解析式;例题3:已知()x x f 2sin cos 1=-,求()x f 的解析式.(3) 待定系数法求函数解析式:已知所求函数类型;例题4:已知()x f 是一次函数,且满足()()1721213+=--+x x f x f ,求()x f .(4) 方程组法求函数解析式:已知()x f 和⎪⎭⎫⎝⎛x f 1的关系式或者()x f 和()x f -的关系式.例题5:已知函数()x f 的定义域为()∞+,0,且()112-⎪⎭⎫⎝⎛=x x f x f ,求()x f ;函数的单调性与最值1、函数单调性定义:设函数()x f 在区间I 上有定义,如果对于这个区间上任意两个点和 ,当21x x <时,恒有()()21x f x f <,则称函数()x f 在区间I 上单调递增;如果对于这个区间上任意两个点和 ,当21x x <时,恒有()()21x f x f >,则称函数()x f 在区间I 上单调递减;单调递增函数和单调递减函数统称为单调函数.如果函数()x f y =在区间D 上是增函数或减函数,那么就说函数()x f y =在这一区间具有(严格的)单调性,区间D 叫做()x f y =的单调区间.2、最值:对于任意的I x ∈,都有()M x f ≤或者()N x f ≥,这个N M 和便是函数()x f 在区间I 上的最大值和最小值. 用定义法判断函数的单调性 例题1:已知函数()12-=x x f []()6,2∈x ,求函数的最大值和最小值.例题2:用定义法判断函数()12++=x x x f 在区间)(∞+-,1上的单调性.函数单调性的等价定义对于定义在D 上的函数()x f ,设1x ,D x ∈2,21x x <,则有: (1)()()()x f x x x f x f ⇔>--02121是D 上的单调递增函数; (2)()()[]()()x f x x x f x f ⇔>-⋅-02121是D 上的单调递增函数; (3)()()()x f x x x f x f ⇔<--02121是D 上的单调递减函数; (4)()()[]()()x f x x x f x f ⇔<-⋅-02121是D 上的单调递减函数.2x 1x 1x 2x函数的奇偶性一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么函数()x f 就叫做偶函数.(偶函数的图象一定是关于 对称)一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么函数()x f 就叫做奇函数.(奇函数的图象一定是关于 对称) 判断函数的奇偶性方法:1.不对称:函数()x f 为非奇非偶函数;2.对称例题8:判断下列函数的奇偶性.(1)()4x x f = (2)()5x x f = (3)()xx x f 1+= (4)()21xx f = (5)()1122-+-=x x x f (6)()2433xx x f -+-=()x f y =求出定义域判断定义域是否关于原点对称 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧①()()x f x f =-,则()x f 为偶函数 ②()()x f x f -=-,则()x f 为奇函数③若以上两个式子都不满足,则()x f 为非奇非偶函数④若以上两个式子都满足,则()x f 既是奇函数又是偶函数函数。

【课件】函数的概念及其表示+课件高一上学期数学人教A版(2019)必修第一册

【课件】函数的概念及其表示+课件高一上学期数学人教A版(2019)必修第一册

闭区间
开区间
左开右闭区间
左闭右开区间
≤<
常见区间的含义及表示方法如下表所示:
例1
判断下列各题中的两个函数是否表示同一个函数
(1) = + 1, =
2 −1
;(2)
−1
(3) = , = 2 ;
= , =
3
3;
(4) = 1, = 0
函数,其中叫做中间变量, = 叫做内层函数, = 叫做
外层函数.Leabharlann 注意:①定义域永远是的范围;
②同一个下,括号内作用对象范围相同.
*抽象函数或复合函数的定义域
例3
1.已知函数()的定义域为 1,4 ,求函数 3 + 1 的定义域.
2.已知函数( 2 )的定义域为 1,4 ,求函数 的定义域.
食物支出金额
× 100%)反
总支出金额
映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越
高.表3.1-1是我国某省城镇居民恩格尔系数变化情况,从中可以看
出,该省城镇居民的生活质量越来越高.
问题4:国际上常用恩格尔系数( =
①年份 的变化范围是什么?恩格尔系数的变化范围是什么?
②恩格尔系数是年份的函数吗?
=
.
2.已知函数 =

.
−1
3
的定义域为,则实数的取值范围
2 +4+3

求下列函数的值域
例1 = + 1, ∈ 1,2,3,4,5 .
例2(1) = 2 − 2 + 3, ∈ 0,3 ;(2) =
− 2 + + 2;

3.1.1 函数的概念(教材完美复刻)课件 人教A版2019版必修一 原创精品

3.1.1 函数的概念(教材完美复刻)课件 人教A版2019版必修一 原创精品
在函数定义中, 我们用符号y f ( x)表示函数, 其中f ( x)表示x对应的 函数值,而不是f 乘x.
例2已知函数f ( x) x 3 1 , x2
(1) 求函数的定义域;
(2) 求f (3),
f
2 3
的值;
(3) 当a 0时,求f (a), f (a 1)的值.
(1) 使根式 x 3有意义的实数x的集合是{ x | x ≥ 3},
吗?如果是,你会用怎样的语言来刻画这个函数?
这里, y的取值范围是数集A4 {2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015};根据恩格尔系数的定义可知, r的取值范围是数集 B4 {r | 0 r ≤1}. 对于数集A4中的任意一个年份y, 根据表3.1 1所给定 的对应关系, 在数集B4中都有唯一确定的恩格尔系数r与之对应. 所以, r是y的函数.
且炮弹据地面的高度h(单位:m)与时间t(单位:s)的关系为:
h 130t 5t 2

求①所表示的函数的定义域与值域, 并用函数定义描述
定义域为A {t | 0 ≤ t ≤ 26}, 值域为B {h | 0 ≤ h ≤ 845},
从问题的实际意义可知, 对于数集A中的任意一个时间t, 按照对应关系,
你能根据图3.1-1找到中午12时的AQI的值吗?
问题4 国际上常用恩格尔系数r
r
食物支出金额 总支出金额
反映一个地区人民
生活质量的高低, 恩格尔系数越低, 生活质量越高. 表3.1 1是我国某省
城镇居民恩格尔系数变化情况, 从中可以看出, 该省城镇居民的生活质
量越来越高.
表3.1-1 我国某省城镇居民恩格尔系数变化情况

【课件】函数的概念课件高一上学期数学人教A版(2019)必修第一册

【课件】函数的概念课件高一上学期数学人教A版(2019)必修第一册
对于数集 A3中的任一时刻t,在数集 B3中都有唯一确定的AQI的值I与之对应.因此,这里I是 t 的函数.
问题4:国际上常用恩格尔系数r(r=食物支出金额/总支出金额)反映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越高,表中是我国某省城镇居民恩格尔系数变化情况,从中可以看出,该省城镇居民的生活质量越来越高.恩格尔系数r是年份y的函数吗?如果是,你会用怎样的语言来刻画这个函数?
问题1 某“复兴号”高速列车加速到350km/h后保持匀速运行半小时。这段时间内,列车行进的路程S(单位:km)与运行时间t(单位:h)的关系可以表示为
S=350t
这个是函数吗?
思考:有人说“根据对应关系S=350t,这趟列车加速到350km/h后,运行1小时就前进了350km”.你认为这个说法正确吗?
(3)函数定义中强调“三性”:任意性、存在性、唯一性,即对于非空数集A中的任意一个(任意性)元素x,在非空数集B中都有(存在性)唯一(唯一性)的元素y与之对应.这三性只要有一个不满足,便不能构成函数.(4)y=f(x)仅仅是函数符号,不是表示“y等于f与x的乘积”,f(x)也不一定就是解析式;(5)除f(x)外,有时还用g(x)、u(x)、F(x)、G(x)等符号来表示函数.(6) 函数关系必定是一对一或多对一,一对多不是函数
……………………
Hale Waihona Puke 函数的定义设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作 y=f(x),x∈A.其中,x叫做自变量,与x值相对应的y值叫做函数值.
2.x >4,记作:__________;

高中数学(人教B版)必修第一册:函数及其表示方法【精品课件】

高中数学(人教B版)必修第一册:函数及其表示方法【精品课件】

常见错误:
把函数化为 g x
x x 1
再求定义域
例2.已知函数 f x x2 2x 3 .
⑴求f(0), f(1), f(3)的值; ⑵当x∈[0,3]时,求f(x)的值域. 解:⑴由已知可得
f 0 02 2 0 3 3, f 1 12 21 3 2, f 3 32 23 3 6.
例4.定义运算
a
b
a, b,
a a
b, b.
若函数
f
(x)=x²*(2x+3).
⑴ f (-2)= 4 , f (1)= 5 ;
⑵ f (x)的值域为
.
解:由定义
f
x
x2 , x2 2x
2 x
3,
x2
3 2x
= 3
x2 , x 1或x 3, 2x 3, 1 x 3.
f (x)=x²*(2x+3) y
如果用t表示测量的时间,v表示测量的指标值,则v是t的函数吗? 如果是,这个函数可以用一个解析式表示吗?
二、函数概念: 一般地,给定两个非空实数集A与B,以及对应关系f,如果对于
集合A中的每一个实数x,在集合B中都有唯一确定的实数y与x对 应,则称f为定义在集合A上的一个函数.
其中对应关系f具有不同的数学形式,有的是一个解析式,有的 是一个表格,有的是一个图像.
说明:在表示函数时,如果不会产生歧义,函数的定义域通常省 略不写,此时约定:函数的定义域就是使得这个函数有意义的所 有实数组成的集合. 如函数f(x)=2x+1, 其定义域就是R.
四、例题选讲 例1.求下列函数的定义域:
⑴ f x 1 x 20;
x 1
解:因为函数有意义当且仅当

函数的概念(1)

函数的概念(1)
求f[f(x)],f[g(x)],g[f(x)],g[g(x)].
二、讲解新课
(一)函数的概念 定义: 非空的数集, 定义:设A、B是非空的数集,如果按照某种确定的对 应关系f,使对于集合A中的任意一个数 在集合B f,使对于集合 任意一个数x 应关系f,使对于集合A中的任意一个数x,在集合B中 都有唯一确定的数f(x)和它对应 唯一确定的数f(x)和它对应, 都有唯一确定的数f(x)和它对应,那么就称 A→B为从集合 到集合B的一个函数(function), 为从集合A f: A→B为从集合A到集合B的一个函数(function), 记作y=f (x),x∈A。 记作y=f (x),x∈A。 定义域(domain): 的取值范围A叫做函数的定义域 定义域; 定义域(domain):x的取值范围A叫做函数的定义域; (domain) 值相对应的y值叫做函数值 函数值。 与x值相对应的y值叫做函数值。 值域(range) (range): 值域(range):函数值的集合 f ( x ) x ∈ A B 叫做函数的值域 值域。 叫做函数的值域。
初中学过的函数有哪些? 初中学过的函数有哪些?
正比例函数、反比例函数、一次函数、二次函数等。 正比例函数、反比例函数、一次函数、二次函数等。
示例1一枚炮弹发射后,经过 落到地面击中 示例 一枚炮弹发射后,经过26s落到地面击中 一枚炮弹发射后 目标。炮弹的射高为845m,且炮弹距地面的高度 目标。炮弹的射高为 ,且炮弹距地面的高度h 单位: )随时间t(单位: ) (单位:m)随时间 (单位:s)变化的规律是
函 数 图
一次函数
y = kx + b(k ≠ 0)
K>0 K<0
二次函数 y = ax + bx + c (a ≠ 0)

函数图像课件 (1)

函数图像课件 (1)

A.④①②③ C.③④②①
B.①④③② D.①④②③
解析答案
考向三 借助动点变化探究函数图象 例 5:(2015· 全国卷Ⅱ)如图,长方形 ABCD 的边 AB=2,BC=1,O 是 AB 的 中点, 点 P 沿着边 BC, CD 与 DA 运动, 记∠BOP=x,将动点 P 到 A,B 两点距 离之和表示为 x 的函数 f(x),则 y=f(x)的图象大致为( )
函数图像及应用
知识梳理 1.掌握基本初等函数的图象特征,能熟练运用基本初 等函数的图象解决问题. 2.掌握图象的作法:描点法和图象变换. 3.会运用函数的图象理解和研究函数的性质.
利用描点法作函数图象
其基本步骤是列表、描点、连线,首先:①确定函数的 定 义 域 ; ② 化 简 函 数 ________ ; ③ 讨 论 函 数 的 性 质 (___________);其次:列表(尤其注意特殊点、零点、最大 值点、最小值点、与坐标轴的交点);最后:描点,连线.
x R ,满足f (4) f (1) 0, 题3:偶函数 f ( x ) , 且在区间[0,3]和 (3, ) 上分别递减和递增, (, 4) (1, 0) (1,. 4) 则不等式xf ( x) 0 的解集为
变题:“偶函数”变为“奇函数”,改 0,3 为 0,3 ,则不等式 xf ( x) 0 的解集 为 .
识图
函数图象的识别是高考的一个热点内容, 主要考查以下 几个问题:(1)知式选图;(2)知图选式;(3)借助动点变化探 究函数图象. 考向 1 知式选图
【例 3】 (2015· 浙江卷)函数 ≤π 且 x≠0)的图象可能为( )
1 f(x)=x-x cosx(-π
≤x
【解析】

函数的概念(1)课件-高一上学期数学人教A版(2019)必修第一册

函数的概念(1)课件-高一上学期数学人教A版(2019)必修第一册
350km/h后,运行了1h就前进了350km”你认为这个说法正确吗?
3)你认为如何表述s与t的对应关系才能更精确?
问题二:某电气维修公司要求工人每周工作至少1天,至多不
超过6天。如果公司确定的工资标准是每人每天350元,而且每
周付一次工资
(1)你认为该怎样确定一个工人的每周所得?
工作时间/天 1
2
3
4
5
6
所得工资/元 350
700
1050
1400
1750
2100
(2)一个工人的工资w是他工作天数d的函数吗?
(3)你能仿照问题1中对S与t的对应关系的精确表示,给出
这个问题中w与d的对应关系的精确表示吗?
(4)问题1和2中函数的对应关系相同,你认为他们是同一个
函数吗?为什么?
150
问题三:右图是北京市2016
57}
B4 = r 0<r ≤ 1
上述问题的共同特征有:
(1)都包含两个非空数集,用A,B来表示;
(2)都有一个对应关系;
(3)尽管对应关系的表示方法不同,但是他们都有如下特
征:对于数集A中的任意一个数x,按照对应关系,在数集B中
都有唯一确定的数y和它对应。
w=350d
一般地,设A、B是非空的实数集,如果对于集合A中的任意
一个数x,按照某种确定的对应关系f,在集合B中都有唯一
确定的数y和它对应,那么就称f:A→B为从集合A到集合B
中的一个函数
记作y = f x ,x ∈ A
其中x叫作自变量,x的取值范围A叫作函数的定义域;与x
相对应的y值叫作函数值,函数值的集合ሼf x 丨x ∈ A}叫作
函数的值域
下列集合A到集合B的对应哪些是函数:

正比例函数(1)课件最新版

正比例函数(1)课件最新版
思考: 在(2)中,此人若每月收入6 000 元,则一年收入 是多少?若一年收入是84 000 元,则每月收入又是多少?
课堂小结
(1)谈谈你今天学了哪些内容? (2)正比例函数与正比例关系有什么联系? (3)请举一个生活中正比例函数的实例.
课后作业
作业:教科书第87页练习第1 题.
现代人每天生活在纷繁、复杂的社会当中,紧张、高速的节奏让人难得有休闲和放松的时光。人们在奋斗事业的搏斗中深感身心的疲惫。然而,如果你细心观察,你会发现作 为现代人,其实人们每天都在尽可能的放松自己,调整生活节奏,追求充实快乐的人生。看似纷繁的社会里,人们的生活方式其实也不复杂。大家在忙忙碌碌中体味着平凡的 人生乐趣。由此我悟出一个道理,那就是----生活简单就是幸福。生活简单就是幸福。一首优美的音乐、一支喜爱的歌曲,会让你心境开朗。你可以静静地欣赏你喜爱的音乐, 可以在流荡的旋律中回忆些什么,或者什么都不去想;你可以一个人在房间里大声的放着摇滚,也可以在网上用耳麦与远方的朋友静静地共享;你还可以一边放送着音乐,一 边做着家务....生活简单就是幸福。一杯清茶,或一杯咖啡,放在你的桌边,你的心情格外的怡然。你可以浏览当天的报纸,了解最新的国内外动态,哪怕是街头趣闻;或者捧 一本自己喜欢的杂志、小说,从字里行间获得那种特别的轻松和愉悦....生活简单就是幸福。经过精心的烹制,一桌可心的菜肴就在你的面前,你招呼家人快来品尝,再备上最 喜欢的美酒,这是多么难得的享受!生活简单就是幸福。春暖花开的季节,或是清风送爽的金秋,你和家人一起,或是朋友结伴,走出户外,来一次假日的郊游,享受大自然 带给你的美丽、芬芳。吸一口新鲜的空气,忘却都市的喧嚣,身心仿佛受到一番洗涤,这是一种什么样的轻松感受!生活简单就是幸福。你参加朋友们的一次聚会,那久违的 感觉带给你温馨和激动,在觥酬交错之间你享受与回味真挚的友情。朋友,是那样的弥足珍贵....生活简单就是幸福。周末的夜晚,一家老小围坐在电视机旁,尽享团圆的欢乐 现代人越来越会生活,越来越会用各种不同的方式来放松自己。垂钓、上网、打牌、玩球、唱卡拉OK、下棋.....不一而足。人们根据自己的兴趣爱好寻找放松身心的最佳方式, 在相对固定的社交圈子里怡然的生活,而且不断的扩大交往的圈子,结交新的朋友有时,你会为新添置的一套漂亮时装而快乐无比;有时,你会为孩子的一次小考成绩优异而 倍感欣慰;有时,你会为刚参加的一项比赛拿了名次而喜不自胜;有时,你会为完成了上司交给的一个任务而信心大增生活简单就是幸福!生活简单就是幸福,不意味着我们 放弃了对目标的追逐,是在忙碌中的停歇,是身心的恢复和调整,是下一步冲刺的前奏,是以饱满的精力和旺盛的热情去投入新的“战斗”的一个“驿站”;生活简单就是幸 福,不意味着我们放弃了对生活的热爱,是于点点滴滴中去积累人生,在平平淡淡中寻求充实和快乐。放下沉重的负累,敞开明丽的心扉,去过好你的每一天。生活简单就是 幸福!我的心徜徉于春风又绿的江南岸,纯粹,清透,雀跃,欣喜。原来,真正的愉悦感莫过于触摸到一颗不染的初心。人到中年,初心依然,纯真依然,情怀依然,幸甚至 哉。生而为人,芳华刹那,真的不必太多要求,一盏茶,一本书,一颗笃静的心,三两心灵知己,兴趣爱好一二,足矣。亦舒说:“什么叫做理想生活?不用吃得太好穿得太 好住得太好,但必需自由自在,不感到任何压力,不做工作的奴隶,不受名利的支配,有志同道合的伴侣,活泼可爱的孩子,丰衣足食,已经算是理想。”时间如此猝不及防, 生命如此仓促,忠于自己的内心才是真正的勇敢,以不张扬的姿态,将自己活成一道独一无二的风景,才是最大的成功。试问,你有多久没有靠在门槛上看月亮了,你有多久 没有在家门口的那棵大树下乘凉了,你有多久没有因为一个人一件事而心生感动了,你又有多久没有审视自己的内心了?与命运的较量中,我们被迫前行,却忘记了来时的方
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档