新人教版八年级下册第二十章《数据的分析》单元测试题

合集下载

人教版八年级下册数学 第20章 数据的分析 单元测试卷(含答案)

人教版八年级下册数学 第20章 数据的分析 单元测试卷(含答案)

第20章 数据的分析 单元测试卷一、填空题(共14小题,每题2分,共28分)1.对于数据组3,3,2,3,6,3,6,3,2,4中,众数是_______;平均数是______;•极差是_______,中位数是______. 2.数据3,5,4,2,5,1,3,1的方差是________.3.某学生7门学科考试成绩的总分是560分,其中3门学科的总分是234分,则另外4门学科成绩的平均分是_________.4.已知一组数据1、2、y 的平均数为4,那么y 的值是 . 5.若样本x 1+1,x 2+1,…,x n +1的平均数为10,方差为2,则另一样本x 1+2,x 2+2,…,x n +2,的平均数为 ,方差为 .6.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,•通常新手的成绩不太稳定,那么根据图的信息,估计小张和小李两人中新手是________.7.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为______℃.8.一班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,原来参加春游的学生人数是 . 9.当五个整数从第6题1 2 3 5 6 7123456789 10调查序号零花钱(元)第10题小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是___ __.10.八年级某班为了引导学生树立正确的消费观,随机调查了10名同学某日除三餐以外的零花钱情况,其统计图如下,据图可知:零花钱在3元以上(包括3元)的学生所占比例为,该班学生每日零花钱的平均数大约是元.11.为了调查某一段路的汽车流量,记录了30天中每天同一时段通过该路口的汽车辆数,其中有4天是284辆,4天是290辆,12天是312辆,10天是314辆,那么这30天该路口同一时段通过的汽车平均数是.12.小芳测得连续5天日最低气温并整理后得出下表:那么空缺的两个数据是,.13.一养雨专业户为了估计池塘里鱼的条数,先随意捕上100条做上标记,然后放回湖里,过一段时间,待带标记的鱼完全混合于鱼群后,又捕捞了5次,记录如下表:由此估计池塘里大约有条鱼.14.现有A、B两个班级,每个班级各有45名学生参加一次测试,每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A班的成绩如下表所示,B班的成绩如右图所示.(1)由观察可知,______班的方差较大;(2)若两班合计共有60人及格,问参加者最少获______分才可以及格.二、选择题(共4小题,每题3分,共12分)15.某学校五个绿化小组一天植树的棵数如下:10,10,12,x,8,如果这组数据的平均数与众数相等,那么这组数据的中位数是()A.8 B.9 C.10 D.1216.某班50名学生的身高测量结果如下表:那么该班学生身高的众数和中位数分别是()A.1.60,1.56 B.1.59,1.58 C.1.60,1.58 D.1.60,1. 60 17.如果一组数据a1,a2,……,a n的方差是2,那么数据2a1,2a2,……,2a n 的方差是()A.2 B.4 C.6 D.818.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:(1)甲、乙两班学生成绩平均水平相等(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动比乙班大,上述结论正确的是()A.①②③B.①②C.①③D.②③三、解答题(共60分)19.(5分)某校规定学生期末数学总评成绩由三部分构成:期末统考卷面成绩(占70%)、•平时测验成绩(占20%)、上课表现成绩(占10%),若学生董方的三部分得分依次是92分、80分、•84分,则她这学期期末数学总评成绩是多少?20.(5(1(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%,你认为小明是哪个年龄组的选手?请说明理由.21.(5分)某校八年级(1)班50名学生参加2008年通州市数学质量监控考试,(1)该班学生考试成绩的众数是 . (2)该班学生考试成绩的中位数是 .(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.22.(6分)当今,青少年视力水平的下降已引起全社会的关注,为了了解某校3000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据,绘制出如下的直方图(长方形的高表示人数),根据图形,回答下列问题:(1)本次抽样调查共抽测了 名学生;(2)参加抽测学生的视力的众数在 内;(3)如果视力为4.9(包括4.9)以上为正常,估计该校学生视力正常的人数约为 .23.(6分)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图8),请结合图形解答下列问题.(1) 指出这个问题中的总体.2030405060(2)求竞赛成绩在79.5~89.5这一小组的频率.(3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.24.(6分)小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,可奶奶经营不善,经常有品种的牛奶滞销(没卖完)或脱销(量不够),造成了浪费或亏损,细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况,并绘制了下表:(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高? (2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定?(3)假如你是小红,你会对奶奶有哪些好的建议.25.(6分)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作49.5 79.5 89.5 69.5 6人数99.5 成绩人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:组别噪声声级分组频数频率1 44.5——59.5 4 0.12 59.5——74.5 a0.23 74.5——89.5 10 0.254 89.5——104.5 b c5 104.5——119.56 0.15合计40 1.00根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b=________,c =_________;(2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?26.(6分)今年3月5日,花溪中学组织全体学生参加了“走出校门,服务社会”的活动.九年级一班高伟同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图.请根据高伟同学所作的两个图形,解答:(1)九年级一班有多少名学生?(2)补全直方图的空缺部分.(3)若九年级有800名学生,估计该年级去敬老院的人数.参考答案一、填空题1.3,3.5,4,3 2.2.25 3.81.5分4.9 5.11,2 6.小李7.-2 8.8 9.2110.50%,2.8 11.306 12.4,2 13.1000 14.A,4二、选择题15.C 16.C 17.D 18.A三、解答题19.88.8分20.(1)众数是:14岁;中位数是:15岁;(2)16岁年龄组21.(1)88分;(2)86分;(3)略22.(1)150;(2)3.95-4.25;(3)600 23.(1)2000名学生参加环保知识竞赛的成绩;(2)0.25;(2)300人24.(1)x学生奶=3,x酸牛奶=80,x原味奶=40,金键酸牛奶销量高;(2)12.57,91.71,96.86,•金键学生奶销量最稳定;(3)建议学生奶平常尽量少进或不进,周末可进几瓶25.(1)8,12,0.3;(2)略;(3)60个26.(1)50人;(2)略;(3)160人。

第二十章 数据的分析 单元测试

第二十章 数据的分析 单元测试

2022年春人教版初中八年级数学下册第二十章数据的分析班级:________ 姓名:________ 分数:________一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况为:一班4.5 kg,二班4.4 kg,三班5.1 kg,四班3.3 kg,五班5.7 kg,则每个班级回收废纸的平均重量为( )A.5 kg B.4.8 kg C.4.6 kg D.4.5 kg2.某校为加强学生出行的安全意识,学校每月都要对学生进行安全A.95,95 B.95,96 C.96,96 D.96,973.八年级二班在一次体重测量中,小明体重54.5 kg,低于全班半数学生的体重,分析得到结论所用的统计量是()A.中位数 B.众数 C.平均数 D.方差4.现有一列数:6,3,3,4,5,4,3,增加一个数x后,这列数的中位数仍不变,则x可能是( )A.1 B.2 C.3 D.45.若一组数据:1,5,7,x的众数为5,则这组数据的平均数是( )A.6 B.5 C.4.5 D.3.56.甲、乙、丙、丁四人10次随堂测验的成绩如图所示,从图中可以看出这10次测验平均成绩较高且较稳定的是( )A.甲 B.乙 C.丙 D.丁7.一家公司招考某工作岗位,只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算,如果小明数学得分为80分,估计综合得分最少要达到84分才有希望,那么他的物理最少要考( ) A.86分 B.88分 C.90分 D.92分8.已知数据x1,x2,x3,x4,x5的平均数为k1;数据x6,x7,x8,x9,x10的平均数为k2;k1与k2的平均数是k;数据x1,x2,x3,…,x8,x9,x10的平均数为m,那么k与m的关系是( )A.k>m B.k=m C.k<m D.不能确定9.小明在计算一组数据的方差时,列出的算式如下:s2=1n[(7-x)2+(8-x)2+(8-x)2+(8-x)2+(9-x)2],根据算式信息,下列说法中错误的是( )A.数据个数是5 B.数据平均数是8C.数据众数是8 D.数据的方差是010.已知一组数据:2,5,x,7,9的平均数是6,则这组数据的众数是( )A.9 B.7 C.5 D.211.某楼四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据唯一的众数与平均数相等,则这组数据的中位数是( ) A.8 B.9 C.10 D.1212.近些年来,移动支付已成为人们的主要支付方式之一.某企业为了解员工某月A,B两种移动支付方式的使用情况,从企业2 000名员工中随机抽取了200人,发现样本中A,B两种支付方式都不使用的有10人,样本中仅使用A种支付方式和仅使用B种支付方式的使用A,B两种支付方式的为800人;②本次调查抽取的样本容量为200人;③样本中仅使用A种支付方式的员工,该月支付金额的中位数一定不超过1 000元;④样本中仅使用B种支付方式的员工,该月支付金额的众数一定为1 500元.其中正确的是( )A.①③ B.③④ C.①② D.②④二、填空题:每小题4分,共16分.13.某8种食品所含的热量值分别为120,134,120,119,126,120,118,124,则这组数据的众数为___.14.某公司招聘员工,对应聘者进行三项素质测试:创新能力、综合知识、语言表达,某应聘者三项得分分别为70分,80分,90分,如果将这三项成绩按照5∶3∶2计入总成绩,则他的总成绩为__ __分.15.小孔同学根据朗诵比赛中9位评委给出的分数,制作了一张表格(如图表所示).如果去掉一个最高分和一个最低分,则表中数据一16.个数,得到七个数据,并对数据进行整理和分析,得出如图表所示信据之和可能为42;④m的值可能为5.其中正确推断的序号是__ __.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分) 某工厂有220名员工,财务科要了解员工收入情况.现在抽测了10名员工的本月收入,结果如下:(单位:元)4 660,4 540,4 510,4 670,4 620,4 580,4 580,4 600,4 620,4 620.(1)全厂员工的月平均收入是__ __元;(2)平均每名员工的年薪是__ __元;(3)财务科本月应准备多少钱发工资?18.(本题满分10分)如图是交警在一个路口统计的某个时段来往的车速情况(单位:km/h).这些车的平均速度为52.28 km/h.(1)车速为54 km/h的车有____辆;(2)该样本数据的众数为__ _,中位数为__ __;(3)若某车以51.5 km/h的速度经过该路口,能否说该车的速度要比一半以上车的速度快?并说明判断理由.19.(本题满分10分) 某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如表.(单位:分)(1)甲、乙两人“三项测试”的平均成绩分别为________分、________分;(2)根据实际需要,公司将阅读能力、思维能力和表达能力三项测试成绩按3∶5∶2的比确定每位应聘者的成绩,请计算甲、乙两人的平20.(本题满分10分)有甲、乙两种新品种的水稻,在进行杂交配系时要选取产量高、稳定性较好的一种,种植后各抽取5块田获取数据,每亩产量分别如表:(单位:kg)(1)哪一品种平均亩产较高?(2)哪一品种稳定性较好?(3)21.(本题满分10分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,如图所示是其中的甲、乙两段台阶的示意图.请用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)分别求出两段台阶高度的中位数;(2)哪段台阶走起来更舒服?为什么?22.(本题满分10分)云南特产褚橙味甜皮薄,每年上市后供不应求.某超市水果销售部有营业员15人,某月该超市这15名营业员销(1)(2)为了调动大多数营业员的积极性,实行“每天定额售量,超出有奖”的措施.如果你是管理者,你选择确定“定额”的统计量为________(选填“中位数”或“众数”).23.(本题满分12分) 某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.(1)a=____,b=__ __;(2)从方差的角度看,__ __(选填“甲”或“乙”)种西瓜的得分较稳定;(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.24.(本题满分12分) 某市在实施居民用水定额管理前,对居民生活用水情况进行了调查.通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据与中位数的差异有什么看法?(2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?25.(本题满分12分) 八一中学为普及抗疫防疫知识,在七、八年级举行了一次防疫知识竞赛,为了解这两个年级学生的竞赛成绩,分别从两个年级各随机抽取了20名学生的成绩,进行整理、描述和分析,给出了如下信息.各年级成绩分布如表:(注:成绩在60分以下为不合格,80分及以上(1)表中,a=__ __,b=___;(2)小明的成绩在此次抽样之中,与他所在年级的抽样相比,小明的成绩高于平均数,却排在了后十名,则小明是__ __(选填“七”或“八”)年级的学生;(3)请推断出哪个年级的竞赛成绩更好,并说明理由(至少从三个不同的角度说明).参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况为:一班4.5 kg,二班4.4 kg,三班5.1 kg,四班3.3 kg,五班5.7 kg,则每个班级回收废纸的平均重量为( C)A.5 kg B.4.8 kg C.4.6 kg D.4.5 kg2.某校为加强学生出行的安全意识,学校每月都要对学生进行安全知识测评,随机选取15名学生在五月份的测评成绩如表:A.95,95 B.95,96 C.96,96 D.96,973.八年级二班在一次体重测量中,小明体重54.5 kg,低于全班半数学生的体重,分析得到结论所用的统计量是( A)A.中位数 B.众数 C.平均数 D.方差4.现有一列数:6,3,3,4,5,4,3,增加一个数x后,这列数的中位数仍不变,则x可能是( D)A.1 B.2 C.3 D.45.若一组数据:1,5,7,x的众数为5,则这组数据的平均数是( C)A.6 B.5 C.4.5 D.3.56.甲、乙、丙、丁四人10次随堂测验的成绩如图所示,从图中可以看出这10次测验平均成绩较高且较稳定的是( C)A.甲 B.乙 C.丙 D.丁7.一家公司招考某工作岗位,只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算,如果小明数学得分为80分,估计综合得分最少要达到84分才有希望,那么他的物理最少要考( C) A.86分 B.88分 C.90分 D.92分8.已知数据x1,x2,x3,x4,x5的平均数为k1;数据x6,x7,x8,x9,x10的平均数为k2;k1与k2的平均数是k;数据x1,x2,x3,…,x8,x9,x10的平均数为m,那么k与m的关系是( B)A.k>m B.k=m C.k<m D.不能确定9.小明在计算一组数据的方差时,列出的算式如下:s2=1n[(7-x)2+(8-x)2+(8-x)2+(8-x)2+(9-x)2],根据算式信息,下列说法中错误的是( D)A.数据个数是5 B.数据平均数是8C.数据众数是8 D.数据的方差是010.已知一组数据:2,5,x,7,9的平均数是6,则这组数据的众数是( B)A.9 B.7 C.5 D.211.某楼四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据唯一的众数与平均数相等,则这组数据的中位数是( C) A.8 B.9 C.10 D.1212.近些年来,移动支付已成为人们的主要支付方式之一.某企业为了解员工某月A,B两种移动支付方式的使用情况,从企业2 000名员工中随机抽取了200人,发现样本中A,B两种支付方式都不使用的有10人,样本中仅使用A种支付方式和仅使用B种支付方式的使用A,B两种支付方式的为800人;②本次调查抽取的样本容量为200人;③样本中仅使用A种支付方式的员工,该月支付金额的中位数一定不超过1 000元;④样本中仅使用B种支付方式的员工,该月支付金额的众数一定为1 500元.其中正确的是( A)A.①③ B.③④ C.①② D.②④二、填空题:每小题4分,共16分.13.某8种食品所含的热量值分别为120,134,120,119,126,120,118,124,则这组数据的众数为__120__.14.某公司招聘员工,对应聘者进行三项素质测试:创新能力、综合知识、语言表达,某应聘者三项得分分别为70分,80分,90分,如果将这三项成绩按照5∶3∶2计入总成绩,则他的总成绩为__77__分.15.小孔同学根据朗诵比赛中9位评委给出的分数,制作了一张表格(如图表所示).如果去掉一个最高分和一个最低分,则表中数据一16.个数,得到七个数据,并对数据进行整理和分析,得出如图表所示信息,已知小宇投中了4个,下列判断:据之和可能为42;④m的值可能为5.其中正确推断的序号是__①④__.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分) 某工厂有220名员工,财务科要了解员工收入情况.现在抽测了10名员工的本月收入,结果如下:(单位:元)4 660,4 540,4 510,4 670,4 620,4 580,4 580,4 600,4 620,4 620.(1)全厂员工的月平均收入是__4_600__元;(2)平均每名员工的年薪是__55_200__元;(3)财务科本月应准备多少钱发工资?解:(3)从(1)得到员工的月平均收入为4 600元,工厂共有220名员工,∴财务科本月应准备4 600×220=101.2(万元).18.(本题满分10分)如图是交警在一个路口统计的某个时段来往的车速情况(单位:km/h).这些车的平均速度为52.28 km/h.(1)车速为54 km/h的车有__4__辆;(2)该样本数据的众数为__52_km/h__,中位数为__52_km/h__;(3)若某车以51.5 km/h的速度经过该路口,能否说该车的速度要比一半以上车的速度快?并说明判断理由.解:(3)不能.理由:因为由(2)知样本的中位数为52,所以可以估计该路段的车辆大约有一半的车速要快于52 km/h,该车的速度是51.5 km/h,小于52 km/h,所以不能说该车的速度要比一半以上车的速度快.19.(本题满分10分) 某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如表.(单位:分)(1)甲、乙两人“三项测试”的平均成绩分别为________分、________分;(2)根据实际需要,公司将阅读能力、思维能力和表达能力三项测试成绩按3∶5∶2的比确定每位应聘者的成绩,请计算甲、乙两人的平解:(1)85;86.(2)甲的平均成绩为86.5分,乙的平均成绩为85.8分,∴应该录取甲.20.(本题满分10分)有甲、乙两种新品种的水稻,在进行杂交配系时要选取产量高、稳定性较好的一种,种植后各抽取5块田获取数据,每亩产量分别如表:(单位:kg)(1)哪一品种平均亩产较高?(2)哪一品种稳定性较好?(3)解:(1)x甲=乙(2)s2甲=2 kg2,s2乙=3.6 kg2,∵s2甲<s2乙,∴甲品种稳定性较好.(3)应选择甲品种做杂交配系.21.(本题满分10分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,如图所示是其中的甲、乙两段台阶的示意图.请用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)分别求出两段台阶高度的中位数;(2)哪段台阶走起来更舒服?为什么?解:(1)将甲路段台阶高度重新排列为14,14,15,15,16,16,乙路段台阶高度重新排列为10,11,15,17,18,19,所以甲路段高度的中位数为15+152=15, 乙路段高度的中位数为15+172=16. (2)甲路段台阶走起来更舒服一些,理由:由题意知,甲路段台阶的高度波动小于乙路段台阶高度波动,即甲路段的台阶高度方差小.22.(本题满分10分)云南特产褚橙味甜皮薄,每年上市后供不应求.某超市水果销售部有营业员15人,某月该超市这15名营业员销(1)(2)为了调动大多数营业员的积极性,实行“每天定额售量,超出有奖”的措施.如果你是管理者,你选择确定“定额”的统计量为________(选填“中位数”或“众数”).解:(1)这15名营业员该月销售量数据的平均数、中位数及众数分别为278件,180件,90件.(2)中位数.23.(本题满分12分) 某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.(1)a =__88__,b =__90__;(2)从方差的角度看,__乙__(选填“甲”或“乙”)种西瓜的得分较稳定;(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.解:(3)小明的理由为:甲种西瓜得分的众数比乙种的高.小军的理由为:乙种西瓜得分的中位数比甲种的高.24.(本题满分12分) 某市在实施居民用水定额管理前,对居民生活用水情况进行了调查.通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据与中位数的差异有什么看法?(2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?解:(1)中位数为(6.4+6.8)÷2=6.6;从平均数与中位数的差异可得大部分居民家庭去年的月均用水量小于平均数,有节约用水观念,少数家庭用水比较浪费.(2)∵100×75%=75,第75个家庭去年的月均用水量为11 t,所以为了鼓励节约用水,要使75%的家庭水费支出不受影响,即要使75户的家庭水费支出不受影响,故家庭月均用水量应该定为11 t.25.(本题满分12分) 八一中学为普及抗疫防疫知识,在七、八年级举行了一次防疫知识竞赛,为了解这两个年级学生的竞赛成绩,分别从两个年级各随机抽取了20名学生的成绩,进行整理、描述和分析,给出了如下信息.各年级成绩分布如表:(注:成绩在60分以下为不合格,80分及以上(1)表中,a=__68.5__,b=__35%__;(2)小明的成绩在此次抽样之中,与他所在年级的抽样相比,小明的成绩高于平均数,却排在了后十名,则小明是__七__(选填“七”或“八”)年级的学生;(3)请推断出哪个年级的竞赛成绩更好,并说明理由(至少从三个不同的角度说明).解:(3)七年级学生成绩较好,从平均数、中位数和合格率上看,七年级均较高,且七年级的竞赛成绩较稳定,因此七年级的竞赛成绩更好.。

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.如图是嘉淇同学完成的作业,则他做错的题数是()A.0个B.1个C.2个D.3个2.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下:分数50 60 70 80 90 100人数 1 2 8 13 14 4 则该班学生成绩的中位数和众数分别是()A.70,80 B.70,90 C.80,90 D.80,1003.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为S甲2=0.51,S乙2=0.62,S丙2=0.48,S丁2=0.45,则四人中成绩最稳定的是( )A.甲B.乙C.丙D.丁4.为了解学校九年级学生某次知识问卷的得分情况,小红随机调查了50名九年级同学,结果如表:知识问卷得分(单位:分)65 70 75 80 85人数 1 15 15 16 3则这50名同学问卷得分的众数和中位数分别是()A.75,75 B.75,80 C.80,75 D.80,855.某校规定学生的学期数学成绩由研究性学习成绩与期末卷面成绩共同确定,其中研究性学习成绩占40%,期末卷面成绩占60%,小明研究性学习成绩为80分,期末卷面成绩为90分,则小明的学期数学成绩是()A.80分B.82分C.84分D.86分6.某课外小组的同学们在社会实践活动中调查了20户家庭莱月的用电量,如表所示则这20户家庭该月用电量的众数和中位数、平均数分别是()A.180,160,164 B.160,180;164 C.160,160,164 D.180,180,164 7.为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如下表:甲和乙两位同学6次测试成绩(每分钟输入汉字个数)及部分统计数据表第1次第2次第3次第4次第5次第6次平均数方差甲134 137 136 136 137 136 136 1.0乙135 136 136 137 136 136 136有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是()A.甲的方差小于乙的方差,所以甲的成绩比较稳定;B.乙的方差小于甲的方差,所以乙的成绩比较稳定;C.甲的方差大于乙的方差,所以甲的成绩比较稳定;D.乙的方差大于甲的方差,所以乙的成绩比较稳定;8.已知一组数据:46,44,x,50,48,42的众数是46,则这组数据的平均数和中位数分别()A.44,43 B.43,45C.46,46 D.45,449.某校八年级共有四个班,在一次英语测试中四个班的平均分与各班参加考试的人数如表:班级一班二班三班四班参加人数51 49 50 60班平均分/分83 89 82 79.5则该校八年级参加这次英语测试的所有学生的平均分约为(精确到0.1)()A.83.1分B.83.2分C.83.4分D.83.5分10.某班50名学生的一次安全知识竞赛成绩分布如表所示(满分10分)这次安全知识竞赛成绩的众数是( ) A .5分B .6分C .9分D .10分11.下列说法正确的是( )A .中位数就是一组数据中最中间的一个数B .8,9,9,10,10,11这组数据的众数是9C .如果x 1,x 2,x 3,…,x n 的平均数是x ,那么()()()12n x x x x x x 0-+-+⋅⋅⋅+-=D .一组数据的方差是这组数据的极差的平方12.九年级(1)班15名男同学进行引体向上测试,每人只测一次,测试结果统计如下:这15名男同学引体向上数的中位数是( ) A .2 B .3C .4D .5二、填空题13.已知1x ,2x ,3x ,...,20x 的平均数是5,方差是2,则132x +,232x +,332x +, (2032)x +的平均数是_____,方差是____.14.五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是______. 15.某公司销售部有五名销售员,2007年平均每人每月的销售额分别是6,8,11,9,8(万元),现公司需增加一名销售员,三人应聘试用三个月,平均每人每月的销售额分别为:甲是上述数据的平均数,乙是中位数,丙是众数,最后录用三人中平均月销售额最高的人是___. 16.某校合唱团成员的年龄分布如下表:对于不同的x,则表中数据的中位数是______.17.一组数据-4,-2,0,2,4的方差是.18.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲5kg种,乙种10kg,丙种10kg混在一起,则售价应定为每千克__________.19.某中学八年级开展“光盘行动”宣传活动,6个班级参加该活动的人数统计结果为:52,60,62,54,58,62,对于这组统计数据的众数是_____.20.如图,是某班50名同学的视力频数分布直方图,则这个班同学的视力众数为_______.三、解答题21.初二(1)班对数学期末总评成绩规定如下:总评成绩由考试成绩和平时成绩(满分120分)两部分组成,其中考试成绩占80%,平时成绩占20%,且总评成绩大于或等于100分时,该生综合评定为A等.(1)小敏的考试成绩为90分,它的综合评定有可能达到A等吗?为什么?(2)小浩的平时成绩为120分,综合评定若要达到A等,他的考试成绩至少要多少分?22.在学校组织的科学常识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在70分以上(包括70分)的人数为;(2)请你将表格补充完整:平均数(分)中位数(分)众数(分)一班77.6 80二班90(3)请从不同角度对这次竞赛成绩的结果进行分析.(至少两个角度)23.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.分数7分8分9分10分人数11 0 8(1)请将甲校成绩统计表和图2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.24.为了参加“中小学生诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班:85,86,82,91,86,八(2)班:80,85,85,92,88,通过数据分析,列表如下:(1)直接写出表中a,b,c,d的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?请说明理由.25.某校举办的八年级学生数学素养大赛共设3个项目:七巧板拼图,趣题巧解,数学应用,每个项目得分都按一定百分比折算后计入总分,总分高的获胜,下表为小米和小麦两位同学的得分情况(单位:分):七巧板拼图趣题巧解数学应用小米809088小麦908685()1若七巧板拼图,趣题巧解,数学应用三项得分分别40%,20%,40%按折算计入总分,最终谁能获胜?()2若七巧板拼图按20%折算,小麦(填“可能”或“不可能”)获胜.26.城南中学九年级共有12个班,每班48名学生,学校要对该年级学生数学学科学业水平测试成绩进行抽样分析,请按要求回答下列问题:收集数据(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有.①随机抽取一个班级的48名学生;②在全年级学生中随机抽取48名学生;③在全年级12个班中分别各随机抽取4名学生.整理数据(2)将抽取的48名学生的成绩进行分组,绘制出的频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为;;②估计全年级A、B类学生大约一共有名.成绩(单位:分)频数频率分析数据(3)教育主管部门为了解学校教学情况,将同层次的城南、城北两所中学的抽样数据进行对比,得下表:你认为哪所学校的教学效果较好?结合数据,请提出一个解释来支持你的观点.27.某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.温馨提示:确定一个适当的月销售目标是一个关键问题;如果目标定得太高,多数营业员完不成任务,会使营业员失去信心;如果目标定得太低,不能发挥营业员的潜力.28.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩88 86 90 92 90 96(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)如果用下图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)29.某企业生产部统计了15名工人某月加工的零件数:(1)写出这15人该月加工的零件数的平均数、中位数和众数;(2)若生产部领导把每位工人的月加工零件数定为260件,你认为是否合理,为什么?参考答案1.C2.C3.D4.C5.D6.A7.B8.C9.B11.C12.C13.17 1814.18915.甲16.1417.818.7.2元.19.6220.4.421.(1)设小敏的平时成绩为x分,根据题意得:90×80%+20%x≥100,解得:x≥140,∵满分是120分,∴小敏的综合评定不可能达到A等;(2)设小浩的考试成绩为x,根据题意得:80%x+20%×120≥100,解得:x≥95,∴他的考试成绩至少要95分.22.(1)一班参赛人数为:6+12+2+5=25(人),∵两班参赛人数相同,∴二班成绩在70分以上(包括70分)的人数为25×84%=21人;(2)二班成绩的平均数:90×44%+80×4%+70×36%+60×16%=77.6(分);二班成绩的中位数:70(分);一班成绩的众数:80(分).填表如下:平均数(分)中位数(分)众数(分)一班77.68080二班77.6 70 90(3)①平均数相同的情况下,二班的成绩更好一些.②请一班的同学加强基础知识训练,争取更好的成绩.23.(1)根据已知10分的有5人,所占扇形圆心角为90°,可以求出总人数为:5÷90360=20(人),即可得出8分的人数为:20-8-4-5=3(人),画出图形如图:甲校9分的人数是:20-11-8=1(人),(2)甲校的平均分为=120(7×11+8×0+9×1+10×8)=8.3分,分数从低到高,第10人与第11人的成绩都是7分,∴中位数=12(7+7)=7(分);平均分相同,乙的中位数较大,因而乙校的成绩较好.24.(1)86,86,85,8.4;(2)八(1)班前5名同学成绩较好25.(1)小麦获胜;(2)不可能26.(1)②、③;(2)432;(3)本题答案不唯一27.(1)平均数为278,中位数为180,众数为90;(2)中位数最适合作为月销售目标,理由见解析.28.(1)10分;(2)90分;(3)89分;(4)93.5分29.(1)平均数为260(件);中位数为240件;众数为240件;(2)不合理。

八年级数学(下)第二十章《数据的分析》测试题含答案

八年级数学(下)第二十章《数据的分析》测试题含答案

八年级数学(下)第二十章《数据的分析》测试题(测试时间:90分钟满分:120分)一、选择题(共10小题,每题3分,共30分)1.某班第一小组6名女生在测仰卧起坐时,记录下她们的成绩(单位:个/分):45,48,46,50,50,49.这组数据的平均数是()A.49 B.48 C.47 D.462.有一组数据如下:3,6,5,2,3,4,3,6.那么这组数据的中位数是()A.3或4 B.4 C.3 D.3.53.A居民区的月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均用电为()A.41度 B.42度 C.45.5度 D.46度4.某小组10个女生做仰卧起坐,仰卧起坐次数的测试数据如下表,则这组数据的众数和中位数分别是()次数35 38 40 41 42人数 1 1 3 3 2A.38.8和40 B.40和40 C.40和40.5 D.38.8和40.55.数据70、71、72、73、74的方差是()A.2 B.2 C.52D.546.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这七名同学成绩的()A.众数 B.平均数 C. 中位数 D.方差7.甲、乙两人在相同的条件下各射靶 10 次,射击成绩的平均数都是 8 环,甲射击成绩的方差是 1.2,乙射击成绩的方差是 1.8.下列说法中不一定正确的是()A.甲、乙射击成绩的众数相同B.甲射击成绩比乙稳定C.乙射击成绩的波动比甲较大D.甲、乙射中的总环数相同8.一次体检中,某班学生视力检查的结果如图所示,从图中看出全班视力数据的众数是()(A)55% (B)24% (C)1.0 (D)1.0以上9.如图是某射击选手5次设计成绩的折线图,根据图示信息,这5次成绩的众数、中位数分别是()A.7、8 B.7、9 C.8、9 D.8、1010.李大伯有一片果林,共80棵果树,某日,李大伯开始采摘今年第一批成熟的果子,他随机选取2棵果树共摘得果子,质量分别为(单位:kg):0.28,0.26,0.24,0.23,0.25,0.24,0.26,0.26,0.25,0.23,以此计算,李大伯收获的这批果子的单个质量和总质量分别约为()A.0.25kg,200kg B.2.5kg,100kg C.0.25kg,100kg D.2.5kg,200kg二.填空题(共10小题,每题3分,共30分)11.某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:时间(单位:小时) 4 3 2 1 0人数 2 4 2 1 1则这10名学生周末利用网络进行学习的平均时间是小时。

人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析(1)

人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析(1)

人教版八年级下册数学《第20章数据的分析》单元测试卷一、选择题(共9小题,满分36分)1.某商店5天的营业额如下(单位:元):14845,25706,18957,11672,16330,利用计算器求得这5天的平均营业额是()A.18116元B.17805元C.17502元D.16678元2.某工厂为了选拔1名车工参加加工直径为10mm的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S2甲、S2乙的大小()甲10.0510.029.979.9610乙1010.0110.029.9710A.S2甲>S2乙B.S2甲=S2乙C.S2甲<S2乙D.S2甲≤S23.一组数据5,3,3,2,5,7的中位数是()A.2B.2.5C.3D.44.2022年杭州亚运会以“中国新时代•杭州新亚运”为定位.“中国风范、浙江特色、杭州韵味、共建共享”为目标,秉持“绿色、智能、节俭、文明”的办会理念,坚持“以杭州为主,全省共享”的办赛原则,高质量推进亚运会筹办工作,某校对亚运知识进行了相关普及,学生会为了了解学生掌握情况,从中抽取50名学生成绩,列表如下:分数(分)9092949698100人数(人)241081511根据表格提供的信息可知,这组数据的众数与中位数分别是()A.100分,95分B.98分.95分C.98分,98分D.97分,98分5.在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9.对这组数据,下列说法正确的是()A.平均数是7B.众数是7C.极差是5D.中位数8.5 6.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩波动情况是()A.甲波动大B.乙波动大C.甲、乙波动一样D.无法比较7.一组数据x、0、1、﹣2、3的平均数是1,则x的值是()A.3B.1C.2.5D.08.某校评价项目化成果展示,对甲、乙、丙、丁展示成果进行量化评分,具体成绩(百分制)如表,如果按照创新性占55%,实用性占45%计算总成绩,并根据总成绩择优推广,那么应推广的作品是()项目作品甲乙丙丁创新性87939091实用性90919093A.甲B.乙C.丙D.丁9.某校九年级有9名同学参加“建党一百周年”知识竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这9名同学成绩的()A.中位数B.众数C.平均数D.方差二、填空题(共9小题,满分36分)10.一组数据1,6,3,﹣4,5的极差是.11.一鞋店试销一种新款式鞋,试销期间卖出情况如表:型号2222.52323.52424.525数量(双)351015832鞋店经理最关心哪种型号鞋畅销,则下列统计量对鞋店经理来说最有意义的是.(填“平均数”、“众数”或“中位数”)12.有甲、乙两组数据,如表所示:甲1012131416乙1212131414甲、乙两组数据的方差分别为s甲2,s乙2,则s甲2s乙2(填“>”、“<”或“=”).13.某车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是.14.在某学校开展的艺术作品征集活动中,五个班上交的作品数量(单位:件)分别为:46,45,49,42,50,则这组数据的中位数是.15.某同学用计算器求20个数据的平均数时,错将一个数据75输入为15,那么由此求出的平均数与实际平均数的差是.16.某电力公司需招聘一名电工技师,对应聘者李某从形象、实践操作、理论检测三个方面进行量化考核.李某各项得分如表:考查项目形象实践操作理论检测李技师85分90分80分该公司规定:形象、实践操作、理论检测得分分别按20%,50%,30%的比例计入总分,则应聘者李某的总分为分.17.已知数据a,b,c的平均数为8,那么数据a+1,b+1,c+1的平均数是.18.利用计算器求数据2,1,3,4,3,5的平均数是;方差;中位数.三、解答题(共6小题,满分78分)19.河南省对居民生活用电采用阶梯电价,鼓励居民节约用电,其中年用电量为2160千瓦时及以下执行基础电价0.56元/千瓦时;2160~3120千瓦时的部分按0.61元/千瓦时收费;超过3120千瓦时的部分按0.86元/千瓦时收费.为了解某小区居民生活用电情况.调查小组从该小区随机调查了200户居民的月平均用电量x(千瓦时),并将全部调查数据分组统计如下:组别60<x≤100100<x≤140140<x≤180180<x≤220220<x≤260260<x≤300频数(户数)2842a302010把这200个数据从小到大排列后,其中第96到第105(包含第96和第105这两个数据)个数据依次为:148148150152152154160161161162根据以上信息,回答下列问题:(1)本次调查中,该小区居民月平均用电量的中位数为,表中a=;(2)估计该小区能享受基础电价的居民占全小区的百分比;(3)国家在制订收费标准时,为了减轻居民用电负担,制订的收费标准能让85%的用户享受基础电价.请你根据以上信息对该小区居民的用电情况进行评价,并写出一条建议.20.2021年12月4日是我国第二十一个法制宣传日,也是第八个国家宪法日.为大力弘扬宪法精神,维护宪法权威,普及宪法知识,进一步增强学生的法制观念,某学校在全校七、八年级共2000名学生中开展“国家宪法日”知识竞赛,并从七、八年级学生中各抽取20名学生统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:七年级抽取的学生的竞赛成绩:2,4,5,6,7,7,7,7,7,7,8,8,9,9,9,9,9,10,10,10.八年级抽取的学生的竞赛成绩:4,5,5,5,6,6,7,7,7,8,8,8,8,8,9,9,10,10,10,10.七、八年级抽取的学生的竞赛成绩的统计表年级七年级八年级平均数7.57.5中位数7.5m众数n8根据以上信息,解答下列问题:(1)填空:m=,n=;(2)你觉得哪个年级学生的知识竞赛成绩更好?请说明理由(一条理由即可);(3)若该校七、八年级学生人数均为1000人,估计本次竞赛中成绩合格的人数.21.至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?22.21世纪已经进入了中国太空时代,2021年到2022年,我国会通过11次航天发射完成空间站建设,空间站由“天和”核心舱、“问天”和“梦天”两个实验舱,我国空间站的建成将为开展太空实验及更广泛的国际合作提供精彩舞台.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛演讲比赛版面创作甲859188乙90848723.某校为了了解九年级学生在寒假期间的数学学习情况,开学之际进行了一次数学小测验(满分100分),并从甲、乙两个班各抽取10名学生的测验成绩进行统计分析.收集数据:甲班:90,90,70,90,100,80,80,90,95,65乙班:95,70,80,90,70,80,95,80,100,90整理数据成绩x (分)60≤x≤7070<x≤8080<x≤9090<x≤100甲班2242乙班23a3分析数据数据平均数中位数众数甲班8590d乙班b c80解答下列问题:(1)直接写出a、b、c、d的值;(2)小明同学说:“这次测验我得了90分,在我们小组中属于中游偏上!”观察上面的表格判断,小明可能是班的学生;(3)若乙班共有50人参加测验,请估计乙班测验成绩超过90分的人数.24.2022年北京冬奥会的成功举办,掀起了广大群众的冰雪热情.某学校社团发起了对同学们的冰雪运动知识了解程度的调查,现从初中、高中各随机抽取了15名同学进行知识问答测试,测试成绩用x表示,共分成4组:A:70以下.B:70≤x<80.C;80≤x<90,D:90≤x<100,对成绩进行整理分析,给出了下面部分信息:初中同学的测试成绩在C组中的数据为:81,85,88.高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如表:校部平均数中位数最高分众数极差初中88a989832高中8888100b c (1)a=,b=,c=;(2)通过以上数据分析,你认为(填“初中”或“高中”)的学生对冰雪项目的知识掌握更好?请写出理由(给出一条理由即可);(3)若初中、高中共有2400名学生,请估计此次测试成绩达到90分及以上的学生共有多少人?参考答案一、选择题(共9小题,满分36分)1.C2.A3.D4.C5.D6.A7.A8.B9.A二、填空题(共9小题,满分36分)10.10.11.众数.12.>.13.5,6.14.46.15.﹣3.16.86.17.9.18.3,,3.三、解答题(共6小题,满分78分)19.解:(1)根据中位数的定义,中位数为按照从小到大排好顺序的数据的第100个和第101个数的平均值,∴中位数为:=153,∵28+42+a+30+20+10=200,∴a=70,故答案为:153,70;(2)年用电量为2160千瓦时及以下执行基础电价,∴每月平均电量为2160÷12=180(千瓦时),从表中可知,200户中,能享受基础电价的户数为:28+42+70=140,∴该小区能享受基础电价的居民占全小区的百分比为:×100%=70%;(3)∵70%<85%,∴不能达到让85%的用户享受基础电价的目标,故该小区用电量较多,应该节约用电,例如离开天气不是太热或太冷时少开空调.20.解:(1)由图表可得:m==8,n=8.故答案为:8,7;(2)八年级学生的知识竞赛成绩更好,理由:八年级的中位数和众数高于七年级的中位数和众数,∴八年级学生的知识竞赛成绩更好;(3)1000×2×=1650(人),答:本次竞赛中成绩合格的人数为1650人.21.解:(1)82﹣84.75=﹣2.75,答:小丽数学成绩的离均差为﹣2.75;(2)①最高分为84.75+31.25=116(分),最低分为84.75﹣32.75=52(分),答:最高分为116分,最低分为52分;②10.25﹣8.75+31.25+15.25﹣3.75﹣12.75﹣10.75﹣32.75=﹣12,﹣12÷8+84.75=83.25(分),答:这组同学的平均分是83.25分;③该组最低分是52分,若达到72分,则增加20分,(﹣12+20)÷8=1,1+83.25=84.25(分),84.75﹣84.25=0.5(分),答:该组数学成绩的平均分没有达到班平均分,低0.5分.22.解:(1)甲班的平均分为:(85+91+88)÷3=88(分),乙班的平均分为:(90+84+87)÷3=87(分),∵88>87,∴甲班将获胜;(2)由题意可得,甲班的平均分为:=87.4(分),乙班的平均分为:=87.6(分),∵87.4<87.6,∴乙班将获胜.23.解:(1)a=10﹣2﹣3﹣3=2,乙班的平均数b=(95+70+80+90+70+80+95+80+100+90)=85(分),乙班成绩按顺序排列后第5个数是80,第6个数是90,所以中位数c=(80+90)=85(分),甲班的众数d=90(分),答:a=2,b=85,c=85,d=90;(2)小明可能是乙班的学生,理由如下:因为甲班的中位数是90分,乙班的中位数是85分,所以小明可能在乙班,故答案为:乙;(3)50×=15(人),答:估计乙班测验成绩超过90分的有15人.24.解:(1)由直方图可知,初中同学的测试成绩15个数据按从小到大的顺序排列,第8个数落在C组的第二个,∵初中同学的测试成绩在C组中的数据为:81,85,88,∴中位数a=85,∵高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.∴按从小到大排列是:71,76,81,82,83,86,86,88,89,90,93,95,100,100,100,∴众数b=100,极差c=100﹣71=29,故答案为:85,100,29;(2)根据以上数据,我认为高中的同学对冰雪项目的知识掌握更好.理由:两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好.故答案为:高中,两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好(答案不唯一);(3)2400×=960(人).答:此次测试成绩达到90分及以上的学生共有960人.。

人教版八年级数学下册第二十章数据的分析单元检测卷 (3)

人教版八年级数学下册第二十章数据的分析单元检测卷 (3)

第二十章达标检测卷(150分 90分钟) 题号一二三总分得分一、选择题(每题4分,共40分)1.为了了解学生的考试成绩,数学老师将全班50名学生的期末数学考试成绩(满分100分)进行了统计分析,发现在60分以下的有3人,在60~70分的有8人,在70~80分的有13人,在80~90分的有11人,在90分以上(含90分)的有15人.则该统计过程中的数据11应属于的统计量是( )A.众数 B.中位数 C.频数 D.频率2.甲、乙两组数据的频数直方图如下,其中方差较大的一组是( )A.甲 B.乙 C.一样大 D.不能确定3.王老师对本班40名学生的血型进行了统计分析,列出如下的统计表,则本班A型血的人数是( )组别A型B型AB型O型频率0.40.35 0.10.15A.16人 B.14人 C.4人 D.6人4.某校组织了“讲文明、守秩序、迎南博”知识竞赛活动,从中抽取了7名同学的参赛成绩如下(单位:分):80,90,70,100,60,80,80.则这组数据的中位数和众数分别是( ) A.90,80 B.70,80C.80,80 D.100,805.今年,我省启动了“关爱留守儿童工程”.某村小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误..的是( )A.平均数是15 B.众数是10C.中位数是17 D.方差是44 36.小明在统计某市6月1日到10日每一天最高气温的变化情况时制作的折线图如图所示,则这10天最高气温的中位数和众数分别是( )A.33℃,33℃ B.33℃,32℃ C.34℃,33℃ D.35℃,33℃7.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”.上面两位同学的话能反映出的统计量是( )A.众数和平均数 B.平均数和中位数C.众数和方差 D.众数和中位数8.正整数4,5,5,x,y从小到大排列后,其中位数为4,如果这组数据唯一的众数是5,那么,所有满足条件的x,y中,x +y的最大值是( )A.3 B.4 C.5 D.69.如果一组数据a1,a2,a3,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n的方差是( )A.2 B.4 C.8 D.1610.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人数中位数方差平均数甲55 149 191 135乙55 151 110 135某同学分析上表后得出如下结论:①甲、乙两班学生汉字输入的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字的个数不少于150为优秀);③甲班成绩的波动比乙班大.上述结论正确的是( ) A.①②③ B.①② C.①③ D.②③二、填空题(每题5分,共20分)11.为测试两种电子表的走时误差,进行了如下统计:平均数方差[甲0.40.026 乙[来源:Z 。

人教新版八年级下册数学《第20章 数据的分析》单元测试卷及答案详解(PDF可打印)

人教新版八年级下册数学《第20章 数据的分析》单元测试卷及答案详解(PDF可打印)

人教新版八年级下册《第20章数据的分析》单元测试卷(2)一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.894.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9 9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是(精确到0.1),众数是,中位数是.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为.成绩/分345678910人数112289151214.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是(填“变大”“变小”或“不变”).三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.50.7高中队8.510(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.人教新版八年级下册《第20章数据的分析》单元测试卷(2)参考答案与试题解析一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差【考点】标准差;算术平均数;中位数;方差.【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差【考点】统计量的选择.【分析】依据平均数、中位数、众数、方差的定义和公式分别进行求解即可.【解答】解:A、原来数据的平均数是(2+3+5+5+5+6+9)=5,去掉一个数据5后平均数仍为5,故A与要求不符;B、原来数据的众数是5,去掉一个数据5后众数仍为5,故B与要求不符;C、原来数据的中位数是5,去掉一个数据5后中位数仍为5,故C与要求不符;D、原来数据的方差是:[(2﹣5)2+(3﹣5)2+3×(5﹣5)2+(6﹣5)2+(9﹣5)2]=,去掉一个数据5后,方差是[(2﹣5)2+(3﹣5)2+2×(5﹣5)2+(6﹣5)2+(9﹣5)2]=5,发生变化的是方差;故选:D.3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.89【考点】加权平均数.【分析】根据加权平均数的计算方法计算即可.【解答】解:她本学期的学业成绩为:20%×85+30%×90+50%×92=90(分).故选:B.4.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.【解答】解:在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.由于众数是数据中出现次数最多的数,故考虑的是各色女装的销售数量的众数.故选:C.5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数【考点】统计量的选择.【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【考点】方差;算术平均数;中位数;众数.【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:A、众数是90分,人数最多,正确;B、中位数是90分,错误;C、平均数是=91(分),错误;D、×[(85﹣91)2×2+(90﹣91)2×5+(100﹣91)2+2(95﹣91)2]=19(分2),错误;故选:A.7.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小【考点】方差;算术平均数.【分析】根据平均数、中位数的意义、方差的意义,可得答案.【解答】解:原数据的平均数为×(160+165+170+163+172)=166(cm)、方差为×[(160﹣166)2+(165﹣166)2+(170﹣166)2+(163﹣166)2+(172﹣166)2]=19.6(cm2),新数据的平均数为×(165+165+170+163+172)=167(cm),方差为×[2×(165﹣167)2+(170﹣167)2+(163﹣167)2+(172﹣167)2]=11.6(cm2),所以平均数变大,方差变小,故选:D.8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9【考点】条形统计图;加权平均数;中位数;众数;方差.【分析】利用加权平均数公式、方差公式以及众数、中位数的定义即可求解.【解答】解:A、平均数是:=9,故命题正确;B、众数是9,命题正确;C、中位数是9,命题正确;D、方差是:【2(7﹣9)2+12(8﹣9)2+20(9﹣9)2+10(10﹣9)2】=0.6,故命题错误.故选:D.9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差【考点】方差;加权平均数;中位数;众数.【分析】根据中位数、众数、平均数的定义以及方差的计算公式分别对每一项进行分析,即可得出答案.【解答】解:A、把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8环,故本选项正确;B、在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9,故本选项错误;C、甲的平均数是:(7+8+8+8+9)÷5=8(环),乙的平均数是:(6+6+9+9+10)÷5=8(环),则甲的平均数和乙的平均数相等,故本选项正确;D、甲的方差是:[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,乙的方差是:[2×(6﹣8)2+2×(9﹣8)2+(10﹣8)2]=2.8,则甲的方差小于乙的方差,故本选项正确;故选:B.10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大【考点】方差;算术平均数;中位数.【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:C.二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是7和8.【考点】众数;算术平均数.【分析】根据平均数先求出x,再确定众数.【解答】解:因为数据的平均数是7,所以x=42﹣8﹣9﹣7﹣8﹣3=7.根据众数的定义可知,众数为7和8.故答案为:7和8.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是 6.4(精确到0.1),众数是80和90,中位数是80.【考点】众数;加权平均数;中位数.【分析】根据平均数的定义,用总分除以总人数即可求出平均数,找出出现的次数最多数就是众数,把这47个数从小到大排列,最中间的数是第24个数,即可求出中位数.【解答】解;平均数是:300÷(4+11+11+8+5+8)=300÷47≈6.4,90分的有11人,80分的有11人,出现的次数最多,则众数是80和90,把这47个数从小到大排列,最中间的数是第24个数,是80,则中位数是80;故答案为;6.4,80和90,80.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为9.成绩/分345678910人数1122891512【考点】众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:本题中数据9出现了15次,出现的次数最多,所以本题的众数是9.故填9.14.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有9名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是90分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?【考点】众数;用样本估计总体;中位数.【分析】(1)由统计结果图即可得出结果;(2)①根据已知数据通过由小到大排列确定出众数与中位数即可;②求出8名男生成绩的平均数,然后用92与平均数进行比较即可;③求出成绩不低于90分占的百分比,乘以80即可得到结果.【解答】解:(1)由统计结果图得,参加“引体向上”测试的男生有9名;故答案为:9;(2)①九(1)班男生参加“耐久跑1000米”测试的部分成绩从高到低排列为:100,95,95,90,85,82,共有8名男生参加“耐久跑1000米”.若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,故答案为:90;则这8名男生中共有三名男生得分为90分,则参加“耐久跑1000米”测试的男生成绩的中位数是.则6÷8×120=90(人),∴该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有90人.15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是乙;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是变小(填“变大”“变小”或“不变”).【考点】条形统计图;方差.【分析】根据条形统计图中提供的数据分别计算甲、乙两组的平均数、方差,通过方差的大小比较,得出稳定性.【解答】解:甲的平均数是:=9(环),甲的方差是:×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=0.8,乙的平均数是:=9(环),乙的方差是:×[(8﹣9)2×3+(9﹣9)2×4+(10﹣9)2×3]=0.6,∵0.8>0.6,∴乙成绩稳定.甲又连续射击5次,环数均为9环,则平均数还为9,则方差为×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=<0.8,故方差变小.故答案为:乙;变小.三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.【考点】算术平均数.【分析】(1)根据平均数的计算公式列出算式,再进行计算即可得出答案;(2)根据这三个数的平均数是2,得出=2,然后求解即可得出答案.【解答】解:(1)﹣3,1这两个数的平均数为=﹣1;(2)∵这三个数的平均数是2,∴=2,∴m=8.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.【考点】方差;算术平均数;中位数;众数.【分析】(1)由条形图得出初中队和高中队成绩,再根据中位数、众数及方差的概念求解可得;(2)根据中位数的意义求解可得;(3)从平均数、中位数及方差的意义求解可得.【解答】解:(1)由图知初中队的成绩从小到大排列为:7.5、8、8.5、8.5、10,所以初中队成绩的中位数是8.5,众数是8.5;高中队成绩从小到大排列为:7、7.5、8、10、10,所以高中队成绩的中位数为8,方差为×[(7﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+2×(10﹣8.5)2]=1.6,补全表格如下:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明在初中队.理由如下:根据(1)可知,初中、高中队的中位数分别为8.5分和8分,∵8<8.5,∴小明在初中队.(3)初中队的成绩好些.因为两个队的平均数相同,初中队的中位数高,而且初中队的方差小于高中队的方差,所以在平均数相同的情况下中位数高、方差小的初中队成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.【考点】中位数;众数;条形统计图;算术平均数.【分析】本题关键是理解每种方案的计算方法:(1)方案1:平均数=总分数÷10.方案2:平均数=去掉一个最高分和一个最低分的总分数÷8.方案3:10个数据,中位数应是第5个和第6个数据的平均数.方案4:求出评委给分中,出现次数最多的分数.(2)考虑不受极值的影响,不能有两个得分等原因进行排除.【解答】解:(1)方案1最后得分:×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2最后得分:(7.0+7.8+3×8+3×8.4)=8;方案3最后得分:8;方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不适合作为这个同学演讲的最后得分,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有23人;(2)表中m的值为77.5;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【考点】频数(率)分布直方图;加权平均数;中位数;用样本估计总体.【分析】(1)根据条形图及成绩在70≤x<80这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得.【解答】解:(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为77、78,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数77.5分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).。

人教版八年级数学下册《第二十章数据的分析》单元测试题(含答案)

人教版八年级数学下册《第二十章数据的分析》单元测试题(含答案)

第二十章数据的分析第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.若一组数据有8个数,它们的平均数为12,另一组数据有4个数,它们的平均数为18,则这12个数的平均数为( )A.12 B.13C.14 D.152.在学校演讲比赛中,10名选手成绩的折线统计图如图1所示,则这10名选手成绩的众数是( )图1A.95分 B.90分C.85分 D.80分3.在一次捐款活动中,某单位共有13人参加捐款,其中小王捐款数比13人捐款的平均数多2元,据此可知,下列说法错误的是( )A.小王的捐款数不可能最少B.小王的捐款数可能最多C.将捐款数按从少到多排列,小王的捐款数可能排在第十二位D.将捐款数按从少到多排列,小王的捐款数一定比第七名多4.图2是交警在一个路口统计的某个时段来往车辆的速度(单位:千米/时)情况,则这些车辆的车速的中位数(单位:千米/时)是( )图2A.51.5 B.52C.52.5 D.535.下列说法中,正确的有( )①在一组数据中,平均数越大,众数越大;②在一组数据中,众数越大,中位数越大;③在一组数据中,中位数越大,平均数越大;④在一组数据中,众数越大,平均数越大.A.0个 B.1个C.2个 D.3个6.在全国汉字听写大赛的热潮下,某学校进行了选拔赛,有15名学生进入了半决赛,他们的成绩各不相同,并且要按成绩取前8名进入决赛.小明只知道自己的成绩,他要判断自己能否进入决赛,可用下列哪个统计结果判断( )A.平均数 B.众数C.中位数 D.方差7.某学校教师分为四个植树小组参加植树节活动,其中三个小组植树的棵数分别为8,10,12,另一个小组的植树棵数与其他三组中的一组相同,且这四个数据的众数与平均数相等,则这四个数据的中位数是( )A.8 B.10C.12 D.10或128.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表.对于不同的x,下列关于年龄的统计量不会发生改变的是(年龄(岁)13141516频数515x 10-xA.平均数、中位数B.平均数、方差C.众数、中位数D.众数、方差9.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下表.现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权的比由2∶3∶5变成5∶3∶2,那么成绩变化情况是( )采访写作计算机创意设计小明70分60分86分小亮90分75分51分小丽60分84分72分A.小明增加最多B.小亮增加最多C.小丽增加最多D.三人的成绩增加相同10.已知一组数据x1,x2,x3,x4,x5的平均数为8,方差为2,那么另一组数据4x1+1,4x2+1,4x3+1,4x4+1,4x5+1的平均数和方差分别为( )A.33与2B.8与2C.33与32D.8与33请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.如图3是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是________.(填“甲”或“乙”)图312.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为________分.13.国庆节期间,小李调查了“福美小区”10户家庭一周内使用环保袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9.据此,估计该小区2000户家庭一周内使用环保袋的数量为________只.14.已知一组数据-3,x,-2,3,1,6的中位数为1,则其方差为________.15.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,某市四名中学生参加了男子100米自由泳训练,他们成绩的平均数x及方差s2如右表所示.如果选拔一名学生去参赛,应派________去.16.有5个从小到大排列的正整数,中位数是3,唯一的众数是6,则这5个数的和为________.三、解答题(共52分)(1)小谢家的小轿车每月(每月按30天计算)要行驶多少千米?(2)若每行驶100 km需汽油8 L,汽油每升3.45元,求出小谢家一年(按12个月计算)的汽油费用是多少元.18.(本小题6分)已知一组数据8,9,6,m的平均数与中位数相等,求m的值.19.(本小题6分)某商店3,4月份出售某一品牌各种规格的空调,销售台数如下表所示.根据表格回答问题:(1)商店出售的各种规格空调中,众数是多少?(2)假如你是经理,现要进货,6月份在有限的资金下将如何安排进货?20.(本小题6分)某公司欲聘请一位员工,三位应聘者A,B,C的原始评分(单位:分)如下表:(2)如果按仪表、工作经验、电脑操作、社交能力、工作效率的原始评分分别占10%,15%,20%,25%,30%综合评分,择优录取,应录取谁?为什么?21.(本小题6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:(1)该公司“高级技工”有________名;(2)所有员工月工资的平均数x为2500元,中位数为________元,众数为________元;(3)小张到这家公司应聘普通工作人员.请你回答图4中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.图422.(本小题7分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).图5甲、乙两人射箭成绩统计表小宇的作业:解:x 甲=15×(9+4+7+4+6)=6,s 甲2=15×[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]=15×(9+4+1+4+0)=3.6.(1)a =________,x 乙=________.(2)请完成图中表示乙成绩变化情况的折线.(3)①观察统计图,可看出________的成绩比较稳定(填“甲”或“乙”),参照小宇的计算方法,计算乙成绩的方差,并验证你的判断;②请你从平均数和方差的角度分析,谁将被选中.23.(本小题7分)某班男生分成甲、乙两组进行引体向上的专项训练,已知甲组有6名男生,并对两组男生训练前、后引体向上的个数进行统计分析,得到乙组男生训练前、后引体向上的平均个数分别是6个和10个,以及下面不完整的统计表和统计图.甲组男生训练前、后引体向上个数统计表(单位:个)(1)a =________,b =________,c =________;(2)甲组训练后引体向上的平均个数比训练前增长了________%; (3)你认为哪组训练效果较好?并提供一个支持你观点的理由; (4)小明说他发现了一个错误:“乙组训练后引体向上个数不变的人数占到该组人数的50%,所以乙组的平均个数不可能提高4个之多.”你同意他的观点吗?请说明理由.图624.(本小题8分)为了迎接体育中考,九年级7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如图7.(1) 平均数(分)方差 中位数(分)合格率 优秀率 男生 6.9 2.4 91.7% 16.7% 女生1.383.3%8.3%(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请你给出两条支持女生观点的理由;(3)体育老师说:“咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是全班优秀率达到50%.”如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?图7答案1.C 2.B 3.D 4.B 5.A 6.C 7.B 8.C 9.B 10.C 11.甲 12.135 13.14000 14.9 15.乙 16.1817.解:(1)由表中七天的数据可知,平均每天行驶的路程为:17×(46+39+36+50+54+91+34)=50(km),故小谢家的小轿车每月(每月按30天计算)要行驶50×30=1500(km). (2)小谢家一年的汽油费用为 1500×12100×8×3.45=4968(元). 18.解:①当m 为最大值时,排序为:m ,9,8,6, 根据题意,得m +9+8+64=9+82,解得m =11;②当m 为最小值时,排序为:9,8,6,m ,根据题意,得m +9+8+64=8+62,解得m =5;③当m 既不是最大值,也不是最小值时,排序为:9,8,m ,6或9,m ,8,6,根据题意,得m +9+8+64=8+m2,解得m =7. 综上可知,m 的值为5或7或11. 19.解:(1)众数为1.2匹.(2)通过观察可得:1.2匹的空调的销售量最大,所以要多进1.2匹的空调,由于资金有限,就要少进2匹的空调.20.解:(1)A 的平均分为15×(4+5+5+3+3)=4(分),B 的平均分为15×(4+3+3+5+4)=3.8(分),C 的平均分为15×(3+3+4+4+4)=3.6(分),因此应录取A.(2)应录取B.理由:根据题意,三人的综合评分如下: A 的综合评分为4×10%+5×15%+5×20%+3×25%+3×30%=3.8(分), B 的综合评分为4×10%+3×15%+3×20%+5×25%+4×30%=3.9(分), C 的综合评分为3×10%+3×15%+4×20%+4×25%+4×30%=3.75(分). 因此应录取B.21.解:(1)该公司“高级技工”的人数=50-1-3-2-3-24-1=16(名).故答案为16.(2)工资数从小到大排列,第25个和第26个分别是1600元和1800元,因而中位数是1700元; 在这些数中,1600元出现的次数最多,因而众数是1600元. 故答案为1700,1600.(3)这个经理的介绍不能反映该公司员工的月工资实际水平. 用1700元或1600元来介绍更合理些. (4)y =2500×50-21000-8400×346≈1713(元).y 能反映该公司员工的月工资实际水平.22.解:(1)4 6 (2)如图所示:(3)①观察统计图,可看出乙的成绩比较稳定;s 乙2=15×[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.因为s 乙2<s 甲2,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中. 23.解:(1)a =(8+9+6+6+7+6)÷6=7, b =4,c =(6+7)÷2=6.5. (2)(7-4)÷4×100%=75%.(3)(答案合理即可)甲组训练效果较好.理由:因为甲组训练后的平均个数比训练前增长75%,乙组训练后的平均个数比训练前增长约67%, 甲组训练前、后平均个数的增长率大于乙组训练前后平均个数的增长率,所以甲组训练效果较好.(4)不同意.理由:因为乙组训练后的平均个数增加了50%×0+20%×7+20%×8+10%×10=4(个),所以我不同意小明的观点.24平均数(分)方差 中位数(分)合格率 优秀率 男生 6.9 2.4 7 91.7% 16.7% 女生71.3783.3%8.3%(2)从平均数上看,女生平均数高于男生;从方差上看,女生成绩的方差低于男生,波动性小(答案合理即可). (3)设男生新增优秀人数为x 人, 则2+4+x +2x =48×50%, 解得x =6, 故6×2=12.答:男生新增优秀人数为6人,女生新增优秀人数为12人.。

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.已知一组数据:12,5,9,5,14,下列说法不正确的是( ) A .平均数是9B .中位数是9C .众数是5D .极差是52.在方差的计算公式s 2=110[(x 1-20)2+(x 2-20)2+……+(x 10-20)2]中,数字10和20分别表示的意义可以是( ) A .数据的个数和方差 B .平均数和数据的个数 C .数据的个数和平均数D .数据组的方差和平均数3.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有42名同学B .该班学生这次考试成绩的众数是8C .该班学生这次考试成绩的平均数是27D .该班学生这次考试成绩的中位数是27分4.若一组数据12345,,,,x x x x x 的方差是3,则1234523,23,23,23,23x x x x x -----的方差是( ) A .3B .6C .9D .125.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是( ) A .25、25B .28、28C .25、28D .28、316.中国六个城市某日的污染指数如下表:在这组数据中的中位数是( ) 城市 北京 合肥 南京 哈尔滨 成都 郑州 污染指数 342 163 165 45 227 163 A .105B .163C .164D .1657. 一组数据1,4,5,2,8,它们的数据分析正确的是( )A.平均数是5 B.中位数是4 C.方差是30 D.极差是68.九年级1班30位同学的体育素质测试成绩统计如表所示,其中有两个数据被遮盖成绩24 25 26 27 28 29 30人数▄▄ 2 3 6 7 9下列关于成绩的统计量中,与被遮盖的数据无关的是()A.平均数,方差B.中位数,方差C.中位数,众数D.平均数,众数9.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是010.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分11.数据2,2,6,2,3,4,3,2,6,5,4,5,4的众数是().A.2 B.3 C.4 D.612.小华续五次数学测验成绩与班级每次测试成绩平均分的差值分别为0,1,-1,3,2;与小华同班的小梅这五次数学测验成绩的方差为15,小华与小梅这五次数学测试的平均成绩恰好相等,则下列说法正确的是()A.小华的数学成绩更稳定B.小梅的数学成绩更稳定C.小华与小梅的数学成绩一样稳定D.无法判定谁的成绩更稳定二、填空题13.李老师为了了解学生的数学周考成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:则这10名学生的数学周考成绩的中位数是________分. 14.已知一组数据2,3,4,5,x 2的众数为4,则x=________. 15.某种蔬菜按品质分成三个等级销售,销售情况如表:则售出蔬菜的平均单价为________元/千克.16.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,55,25,这组数据的众数_____.17.一组数据-1、-2、x 、1、2其中x 是小于10的非负整数,且数据的方差是整数,则数据的标准差是_______________18.某中学随机调查了15名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:那么这15名学生这一周在校参加体育锻炼的时间的中位数是 小时.19.甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示:乙 70 80该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目. 20.甲乙两组数据的平均数相同,方差分别为2=0.26S 甲和2=0.18S 乙,甲乙两组数据那一组数据较为稳定 .(填甲或乙)三、解答题21.某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,表--是 成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,而冠军只能有一个,怎样才能确定冠军呢?此时有学生建议,可通过考查数据中的其他信息作为参考进行名次排列.请你完成下列解答:(1)根据表中提供的数据求出表二中a 1、b 1、c 1、a 2、b 2、c 2数据; (2)根据表二信息,你认为应该把冠军奖状发给哪一个班级?简述理由.22.为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生________ 2 8 7女生7.92 1.99 8 ________根据以上信息,解答下列问题:(1)这个班共有男生________人,共有女生________人;(2)补全初二1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由.23.某校围绕“扫黑除恶”专项斗争进行了普法宣传,然后在各班级分别随机抽取了5名同学进行了测试.规定:95分或以上为优秀。

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.初三•一班五个劳动竞赛小组一天植树的棵数是:10,10,12,x,8,如果这组数据的众数与平均数相等,那么这组数据的中位数是()A.12 B.10 C.9 D.82.在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的白菜价格进行调查.四个城市5个月白菜的平均值均为3.50元,方差分别为S甲2=18.3,S乙2=17.4,S丙2=20.1,S丁2=12.5.一至五月份白菜价格最稳定的城市是()A.甲B.乙C.丙D.丁3.某班派9名同学参加红五月歌咏比赛,他们的身高分别是(单位:厘米):167,159,161,159,163,157,170,159,165.这组数据的众数和中位数分别是()A.159,163 B.157,161 C.159,159 D.159,1614.为了预防新冠病毒,6名学生准备了口罩,口罩数量(单位:个)分别为:87、88、73、88、79、85,这组数据的众数是()A.79 B.87 C.88 D.855.2011年春季因干旱影响,政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是()A.中位数是6吨B.平均数是5.8吨C.众数是6吨D.极差是4吨6.数据5,2,3,0,5的众数是( )A.0 B.3 C.6 D.57.某同学在一次期末测试中,七科的成绩分别是92,100,96,93,96,98,95,则这位同学成绩的中位数和众数分别是().A.93,96 B.96,96 C.96,100 D.93,1008.从整体中抽取一个样本,计算出样本方差为1,可以估计总体方差()A.一定大于1 B.约等于1 C.一定小于1 D.与样本方差无关9.甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表:甲0 1 2 0 2乙 2 1 0 1 1关于以上数据的平均数、中位数、众数和方差,说法不正确...的是( )A.甲、乙的平均数相等B.甲、乙的众数相等C.甲、乙的中位数相等D.甲的方差大于乙的方差10.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是()A.13;13 B.14;10 C.14;13 D.13;1411.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小明和小刚进行米短道速滑训练,他们的五次成绩如下表所示:设两个人的五次成绩的平均数依次为、,方差依次为、,则下列判断正确的是()A.B.C.D.12.某中学为了解学生参加“青年大学习”网上班课的情况,对九年级6个班的学习人数进行了统计,得到各班参加班课的人数数据为5,10,10,12,14,9.对于这组数据,下列说法错误的是()A.平均数是10B.众数是10C.中位数是11D.方差是23 3二、填空题13.某衬衫店为了准确进货,对一周中商店各种尺码的衬衫的销售情况进行统计,结果如下:38码的5件、39码的3件、40码的6件、41码的4件、42码的2件、43码的1件.则该组数据中的中位数是码.14.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是______.15.在学校艺术节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差依次是1.5、2.5,那么身高更整齐的是______队(填“甲”或“乙”).16.某班10名学生校服尺寸与对应人数如图所示,那么这10名学生校服尺寸的中位数为_____cm.17.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是________.18.一组数据3,4,x,6,7的平均数为5.则这组数据的方差是______.19.数据组:26,28,25,24,28,26,28的众数是.20.若一组数据1,3,5,x,的众数是3,则这组数据的方差为______.三、解答题21.在“停课不停学”期间,某中学要求学生合理安排学习和生活,主动做一些力所能及的家务劳动,并建议同学们加强体育锻炼,坚持做“仰卧起坐”等运动项目.开学后,七年级甲、乙两班班主任想了解学生做“仰卧起坐”的情况,他们分别在各自班中随机抽取了5名女生和5名男生,测试了这些学生一分钟所做“仰卧起坐”的个数,测试结果统计如表:甲班组别个数x 人数A 25≤x<30 1B 30≤x<35 3C 35≤x<40 4D 40≤x<45 2请根据图中提供的信息,回答下列问题:(1)测得的甲班这10名学生所做“仰卧起坐”个数的中位数落在哪个组?(2)求测得的乙班这10名学生所做“仰卧起坐”个数的平均数;(3)请估计这两个班中哪个班的学生“仰卧起坐”做得更好一些?并说明理由.22.某中学为了培养学生的社会实践能力,今年“五一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).请你根据以上提供的信息,解答下列问题: (1)补全频数分布表和频数分布直方图;(2)这50个家庭收入的中位数落在 小组; (3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?23.某市开展“环境治理留住青山绿水,绿色发展赢得金山银山”活动,对其周边的环境污染进行综合治理.2018年对A 、B 两区的空气量进行监测,将当月每天的空气污染指数(简称:API )的平均值作为每个月的空气污染指数,并将2018年空气污染指数绘制如下表.据了解,空气污染指数50≤时,空气质量为优:50<空气污染指数100≤时,空气质量为良:100<空气污染指数150≤时,空气质量为轻微污染.月份地区12 3 4 5 6 7 8 9 10 11 12A 区115 108 85 100 95 5080 70 50 50 100 45 B 区1059590 80 90 60 9085 60709045(1)请求出A 、B 两区的空气污染指数的平均数;(2)请从平均数、众数、中位数、方差等统计量中选两个对A区、B区的空气质量进行有效对比,说明哪一个地区的环境状况较好.24.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.25.在“新冠肺炎防控”知识宣传活动中,某社区对居民掌握新冠肺炎防控知识的情况进行调查.其中A、B两区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:(信息一)A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);(信息二)图中,A小区从左往右第四组的成绩如下75 75 79 79 79 79 80 8081 82 82 83 83 84 84 84(信息三)A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.1 79 40%277B75.1 77 76 45%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数;(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握新冠防控知识的情况.26.某市甲、乙两个汽车销售公司,去年一至十月份每月销售同种品牌汽车的情况如图所示:(1)请你根据左图填写右表:销售公司平均数方差中位数众数甲9乙9 17.0 8(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司去年一至十月份的销售情况进行分析:①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售数量的趋势看(分析哪个汽车销售公司较有潜力).27.某中学由6名师生组成一个排球队.他们的年龄(单位:岁)如下:15 16 17 17 17 40 (1)这组数据的平均数为,中位数为,众数为.(2)用哪个值作为他们年龄的代表值较好?28.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.29.某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:(1)根据上述信息可知:甲命中环数的众数是环;(2)通过计算说明甲、乙两人的成绩谁比较稳定.(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会.(填“变大”、“变小” 或“不变”)参考答案1.B2.D3.D4.C5.D6.D7.B8.B9.B10.C11.B12.C13.40.14.715.甲16.17017.4.518.219.28.20.221.(1)∵甲班共有10名学生,处于中间位置的是第5、第6个数的平均数,∴测得的甲班这10名学生所做“仰卧起坐”个数的中位数落在C组;(2)乙班这10名学生所做“仰卧起坐”个数的平均数是:110(22+30×3+35×4+37+41)=33(个);(3)甲班的平均数是:110(27×1+32×3+37×4+42×2)=35.5(个),乙班的平均数是:110(22+30×3+35×4+37+41)=33(个),∵35.5>33,∴甲班的学生“仰卧起坐”的整体情况更好一些.22.(1)A区的空气污染指数的平均数是:112(115+108+85+100+95+50+80+70+50+50+100+45)=79;B区的空气污染指数的平均数是:112(105+95+90+80+90+60+90+85+60+70+90+45)=80;(2)∵A区的众数是50,B区的众数是90,∴A地区的环境状况较好.∵A区的平均数小于B区的平均数,∴A区的环境状况较好.24.(1)40;(2)30,50;(3)50500元25.(1)75;(2)240人;(3)从平均数看,两个小区居民对新冠肺炎防控知识掌握情况的平均水平相同;从方差看,B小区居民新冠肺炎防控知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.26.(1)(2)①甲、乙两个汽车销售公司去年一至十月份的销售平均数一样,都是9辆,但甲销售公司的方差较小,说明甲销售公司的销售情况更稳定。

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)1.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛,在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:请你根据表中数据选一人参加比赛,最合适的人选是( ) A .甲B .乙C .丙D .丁2.疫情无情人有情,爱心捐款传真情,新型冠状病毒感染的肺炎疫情期间,某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如表:则他们捐款金额的众数和中位数分别是( ) A .10,10B .10,20C .20,10D .20,203.若1478m ,,,,的平均数是5,则141078,,,, m 的平均数是( ) A .5B .6C .7D .84.对九(1)班甲、乙、丙、丁四位同学在九年级三次段考中的数学成绩进行分析,他们各自三次成绩的平均分x 与方差s 2如下表:若要选一位成绩突出且发挥更稳定的同学进行数学学习方法交流,则应该选( )A.甲B.乙C.丙D.丁5.一组数据为1,5,3,4,5,6,这组数据的极差、众数、中位数分别为()A.4,4,5 B.5,5,4.5 C.5,5,4 D.5,3,26.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30°B.30°,28°C.31°,30°D.30°,30°7.已知样本数据2,3,5,3,7,下列说法不正确的是()A.平均数是4 B.众数是3 C.中位数是5 D.方差是3.28.一组数据的算术平均数是40,将这组数据中的每一个数据都减去5后,所得的新的一组数据的平均数是()A.40 B.35 C.25 D.59.为筹备期末座谈会,班长对全班同学爱吃哪几种水果作了民意调查.根据调查数据决定最终买什么水果应参照的统计量是()A.众数B.中位数C.平均数D.方差10.某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数是()A.8 B.7 C.9 D.1011.班主任为了解学生星期六、日在家的学习情况,家访了班内的六位同学,了解到他们在家的学习时间如右表所示:那么这六位学生学习时间的众数和中位数分别是()A.4小时和4.5小时B.4.5小时和4小时;C.4小时和3.5小时D.3.5小时和4小时;12.某校九年级有19名同学参加语文阅读知识竞赛,预赛成绩各不相同,要取前10名参加决赛,小明已经知道了自己的成绩,他想知道自己能否进入决赛,还需要知道这19名同学成绩的()A.中位数B.众数C.平均数D.极差二、填空题13.炎热的夏天,小明对其中连续十天每天的最高气温进行统计,依次得到以下一组数据:34,35,36,34,36,37,37,36,37,37(单位°C).则这组数据的中位数是________,众数是________,极差是________.14.某小组5名同学的身高(单位:cm)分别为:147,156,151,159,152,则这组数据的中位数是_____cm.15.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是________.16.设有n个数据x1,…x n,各数据与它们的平均数的差的平方分别是(x1-x)2,(x2-x)2,…(xn -x)2,我们用它们的平均数,即用S2=1n[(x1-x)2+ …+(x2-x)2•________]•来衡量这组数据的波动________,并把它叫做这组数据的方差.方差越大,数据的波动_______;方差越小,数据的波动___________.17.某校初三(1)班40名同学的体育成绩如右表所示,则这40名同学成绩的中位数是__________.18.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分. 19.某同学用计算器求30个数据的平均数时,错将其中的一个数据105输入成15,则计算器求出的平均数与实际平均数的差是_____.20.下表是某地连续10天的最低气温统计表,该地这10天最低气温的平均数是_________.天数 4 3 2 1最低气温()C︒ 5 3 2 7三、解答题21.某学生会倡导的“爱心捐款”活动结束后,学生会干部对捐款情况作了抽样调查,并绘制了统计图,图中从左到右各长方形高度之比为3:4:5:8:2,又知此次调查中捐15元和20元的人数共39人.(1)他们一共抽查了多少人?(2)这组数据的众数、中位数分别是多少?(3)若该校共有2310名学生,请估算有多少人捐款数不少于20元?22.某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:项目服装普通话主题演讲技巧选手李明85 70 80 85张华90 75 75 80结合以上信息,回答下列问题:(1)求服装项目的权数及普通话项目对应扇形的圆心角大小;(2)求李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.23.某中学九年级举行跳绳比赛,要求每班选出5名学生参加,在规定时间内每人跳绳不低于150次为优秀,冠、亚军会在甲、乙两班中产生,下表是这两个班的5名学生的比赛数据(单位:次)1号2号3号4号5号平均次数方差甲班150 148 160 139 153 150 46.8乙班139 150 145 169 147 a 103.2根据以上信息,解答下列问题:(1)求出表中a的值和甲、乙两班比赛学生的优秀率;(2)求出两班的跳绳比赛数据的中位数;(3)请你结合表格和自己所算出的数据判断冠军应发给哪个班?简要说明理由.24.为了了解某校学生的身高状况,随机对该校男生、女生的身高进行抽样调查.已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制如图所示的统计图表.已知女生身高在A组的有8人,根据图表中提供的信息,回答下列问题:(1)补充图中的男生身高情况直方图,男生身高的中位数落在_______组(填组别字母序号);(2)在样本中,身高在150≤x<155之间的人数共有_______人,身高人数最多的在____组(填组别序号);(3)已知该校共有男生400人,女生420人,请估计身高不足160的学生约有多少人?25.学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.请回答下列问题:(1)甲成绩的中位数是______,乙成绩的众数是______;(2)经计算知83x=乙,2465s=乙.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.26.某单位招聘两名员工,采取笔试与面试相结合的方式进行,两项成绩的原始分满分均为100分,六名应聘者的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).现得知1号应聘者的综合成绩为88分.(1)求笔试成绩和面试成绩各自所占的百分比;(2)若2、3、4、5号应聘者的综合成绩分别是89.6分、85.2分、90分、81.6分,请求出6号应聘者的综合成绩,并按综合成绩排序确定前两名的人选.27.某校组织学生参加“安全知识竞赛”(满分为30分),测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图12所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有名男生,名女生;(2)张老师抽取的这部分学生中,女生成绩....的众数是;(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少.28.甲、乙两工人同时加工同种圆柱形零件,质检部门在他们所加工的零件中各随机抽取10个进行直径检测,测得数据(单位:mm)如下:甲4039.840.140.239.840.140.240.239.839.8乙404039.94039.940.24040.14039.9 ()1填写下表:平均数众数中位数方差甲4040.050.03乙400.008()2根据以上数据可以判断工人生产的零件的质量比较稳定.29.为了加强社区居民对新型冠状病毒肺炎防护知识的了解,某社区通过业主微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参加2020年新型冠状病毒肺炎防护知识考试(满分100分).社区管理员随机从甲、乙两个小区(已知甲、乙两小区各有500名业主参加考试)各抽取20名业主的成绩(单位:分)进行统计、分析,过程如下:(收集数据)甲小区:74 97 96 72 98 99 72 73 76 74 74 65 76 89 78 74 99 97 98 99 乙小区:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91 (整理数据)(分析数据)根据以上信息,回答下列问题:(1)填空:a=_________,b=_________;(2)若该社区给成绩不低于80分的业主颁发优胜奖,则乙小区参加考试的500名业主中获得优胜奖的约有_________人;(3)在这次考试中,甲小区业主A与乙小区业主B的成绩都是85分,你认为两名业主在各自小区的排名谁更靠前?_________小区业主_________的成绩更靠前.(4)你认为哪个小区的总体成绩比较好,请说明理由参考答案1.A2.B3.C4.A5.B6.D7.C8.B9.A10.C11.A12.A 13.36C ︒ 37C ︒ 3C ︒ 14.152 15.4.516.…+(x n -x )2 大小 越大 越小 17.28分 18.90 19.3- 20.421.(1)他们一共抽查了66人;(2)这组数据的众数是20,中位数是15;(3)有1050捐款数不少于20元.22.(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.23.(1)a=150,甲的优秀率为: 60%,乙的优秀率为40%;(2)甲的中位数是150,乙的中位数是147;(3)冠军奖应发给甲班24.(1)女生身高在A 组的有8人,所占的百分比为20%, 所以女生的总人数为:8÷20%=40人, 所以男生总人数也为40人,所以男生身高在B 组的有:40-2-12-14-8=4人, 补全条形图如图所示:∵男生总人数为40人,∴中位数是第20和第21人的平均数,∴男生身高的中位数落在D 组;(2)在样本中,身高在150≤x <155之间的人数共有4+12=16人,身高人数最多的在C 组, 故答案为:16、C ;(3)400×241240+++420×(20%+30%+30%)=516. 答:估计身高不足160的学生约有516人.25.(1)83,81;(2)26=甲s ,推荐甲去参加比赛.26.(1)笔试成绩和面试成绩所占百分比分别为40%、60%;(2)综合成绩排序确定前两名的人选是4号和2号.27.(1)40,40(2)27;(3)396(人)28.(1)甲的众数为39.8;乙的平均数为40;乙的中位数为;(2)乙29.(1)8a =;88.5b =;(2)350;(3)甲小区业主A ;(4)乙小区的总体成绩比较好.理由:所抽取的样本中,甲、乙两小区的平均成绩相同,乙小区成绩的中位数比甲小区成绩的中位数大,且乙小区成绩的方差较小,说明乙小区的成绩又好又整齐,成绩稳定。

人教版八年级数学下册第二十章《数据的分析》单元测试卷附答案

人教版八年级数学下册第二十章《数据的分析》单元测试卷附答案

第二十章《数据的分析》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.一组数据2,3,5,7,8的平均数是()A.2B.3C.4D.52.已知n个数据的和为108,平均数为12,则n为()A.7B.8C.9D.103.(跨学科融合)“青年大学习”是共青团中央为组织引导广大青少年,深入学习贯彻习近平新时代中国特色社会主义思想的青年学习行动.某校为了解同学们某季度学习“青年大学习”的情况,从中随机抽取5位同学,经统计他们的学习时间(单位:分钟)分别为78,80,85,90,80,则这组数据的众数为()A.78B.80C.85D.904.在以下一列数3,3,5,6,7,8中,中位数是()A.3B.5C.5.5D.65.现有相同个数的甲、乙两组数据,经计算得x甲=x乙,且s甲2=0.35,s乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定B.乙比较稳定C.甲、乙一样稳定D.无法确定6.八年级某同学6次数学小测验的成绩分别为80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分7.(跨学科融合)奥林匹克官方旗舰店统计了某一段时间内各款“冰墩墩”销售情况(如下表),厂家决定多生产20 cm高的“冰墩墩”,则依据的统计量是()A.平均数8.对于一组统计数据3,3,6,5,3,下列说法错误的是()A.众数是3B.平均数是4C.方差是1.6D.中位数是69.学校食堂午餐供应6元、8元和10元三种价格的盒饭,如图是食堂某月销售三种午餐盒饭数量的统计图,则该月食堂销售午餐盒饭的平均价格为()A.7.9元B.8元C.8.9元D.9.2元10.某市举行了一次数学竞赛,分段统计参赛同学的成绩,从中抽查了50名学生的成绩如下表:A.81分B.82分C.79分D.75.5分二、填空题(共5小题,每小题3分,共15分)11.冬天某地区一周最高气温的走势图如图所示,则这组数据的众数是℃.12.某班50人一次测验成绩(10分制)如下:10分4人,9分7人,8分14人,7分18人,6分5人,5分2人,则本次测验的中位数是分.13.学校组织“我的青春我做主”演讲比赛,小红演讲内容得100分,语言表达得80分,若按演讲内容占40%,语言表达占60%的比例计算总成绩,则她的总成绩是分.14.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的(从“平均数、中位数、众数、方差”中选择答案).15.(创新题)某学校随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图(如图),其中条形图被墨迹遮盖了一部分,则被调查的学生读课外书册数的中位数为.三、解答题(一)(共3小题,每小题8分,共24分)16.某饮料店为了解某一种罐装饮料上半年的销售情况,随机调查了6天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,24,31.求这6天的日销售量的众数和平均数.17.在一次大学生一年级新生训练射击比赛中,某小组10人的成绩如下表:(1)该小组射击数据的众数是,中位数是;(2)该小组的平均成绩为多少?18.在校体育集训队中,跳高运动员小军和小明的9次成绩如下(单位:m):小军:1.41,1.42,1.42,1.43,1.43,1.43,1.44,1.44,1.45;。

人教版八年级下册《第二十章数据的分析》单元练习题(含答案)

人教版八年级下册《第二十章数据的分析》单元练习题(含答案)

第二十章《数据的分析》单元练习题一、选择题1.已知一组数据0,-1,1,2,3,则这组数据的方差为()A. 1B.-1C.D. 22.有甲、乙两班,甲班有m个人,乙班有n个人.在一次考试中甲班平均分是a分,乙班平均分是b分.则甲、乙两班在这次考试中的总平均分是()A.B.C.D.3.为了弘扬优秀传统文化,通州区30所中学参加了“名著·人生”戏剧展演比赛,最后有13所中学进入决赛,他们的决赛成绩各不相同.某中学已进入决赛且知道自己的成绩,但是否进入前7名,还必须知道这13所中学成绩的()A.中位数B.平均数C.众数D.方差4.“倡导全民阅读”、“推动国民素质和社会文明程度显著提高”已成为“十三五”时期的重要工作.教育主管部门对某学校青年学校青年教师2016年度阅读情况进行了问卷调查,并将收集的数据统计如表,根据表中的信息判断,下列结论错误的是()A.该学校中参与调查的青年教师人数为40人B.该学校中青年教师2016年平均每人阅读8本书C.该学校中青年教师2016年度看书数量的中位数为4本D.该学校中青年教师2016年度看书数量的众数为4本5.一组数据6、4、a、3、2的平均数是5,则a的值为()A. 10B. 5C. 8D. 126.某服装厂生产一批男衬衫,经过抽样调查60名中年男子,得知所需衬衫型号的人数如表所示.求出它的中位数是74,众数是76,平均数是74.6,下列说法正确的是()A.所需78号人数太少,78号的可以不生产B.这批衬衫可以一律按身长是74.6这个平均数生产C.因为众数是76,故76号的生产量要占第一位D.因为中位数是74,故74号的生产量要占第一位7.有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况如图所示:根据条形图提供的信息,下列说法中,正确的是()A.两次测试,最低分在第二次测试中B.第一次测试和第二次测试的平均分相同C.第一次分数的中位数在20~39分数段D.第二次分数的中位数在60~79分数段8.一组数据的方差为s2,将该组每一个数据都乘以4,所得到的一组新数据的方差是()A.B.s2C. 4s2D. 16s2二、填空题9.一组数据201、203、198、199、200、205的平均数为________.10.某次数学测验中,某班六位同学的成绩分别是:86,79,81,86,90,84,这组数据的中位数是________.11.在“争创美丽校园,争做文明学生”示范校评比活动中,10位评委给某校的评分情况如下表所示:则这10位评委评分的平均数是________分.12.为了调查某小区居民的用水情况,随机抽查了若干户家庭月用水量,结果如表:则关于这若干户家庭的月用水量,中位数是________吨,月平均用水________吨.13.某校规定学生的学期学业成绩由三部分组成:平时占20%,期中占30%,期末占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为90分,这个成绩是________平均数.(填“算术”或“加权”)14.如下表记录的是某班级女生在一次跳绳练习中跳绳的次数及相应的人数,则该班级女生本次练习中跳绳次数的平均数是________.15.某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,则这个小组的本次测试的平均成绩为________.16.某乒乓球训练队共有9名队员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,13,15,则他们年龄的众数为________.三、解答题17.我校50名学生在某一天调查了75户家庭丢弃塑料袋的情况,统计结果如下表:根据上表回答下列问题:(1)这天,一个家庭一天最多丢弃________个塑料袋.(2)这天,丢弃3个塑料袋的家庭户数占总户数的________.(3)该校所在的居民区共有居民0.8万户,则该区一天丢弃的塑料袋有多少个.18.我国淡水资源短缺问题十分突出,已成为我国经济和社会可持续发展的重要制约因素,节约用水是各地的一件大事.某校初三学生为了调查居民用水情况,随机抽查了某小区20户家庭的月用水量,结果如表所示:(1)求这20户家庭月用水量的平均数、众数及中位数.(2)政府为了鼓励节约用水,拟试行水价浮动政策.即设定每个家庭月基本用水量a(t),家庭月用水量不超过a(t)的部分按原价收费,超过a(t)的部分加倍收费.①你认为以平均数作为该小区的家庭月基本用水量a(t)合理吗?为什么?(简述理由)②你认为该小区的家庭月基本用水量a(t)为多少时较为合理?为什么?(简述理由)19.某次歌咏比赛,得分最高的三名选手的成绩统计如下表:若按算术平均分排出冠军、亚军、季军,则冠军、亚军、季军各是谁?20.某地区教育部门要了解初中学生阅读课外书籍的情况,随机调查了本地区500名初中学生一学期阅读课外书的本数,并绘制了如下的统计图,请根据统计图反映的信息回答问题.(1)这些课外书籍中,哪类书的阅读数量最大?(2)这500名学生一学期平均每人阅读课外书多少本?(精确到1本)(3)若该地区共有2万名初中学生,请估计他们一学期阅读课外书的总本数.21.小红在期末考试中,语文,数学,外语,政治,物理,化学,生理卫生7门学科的总成绩是664分,其中语文和数学两门学科的总成绩是187分,求小红的外语,政治,物理,化学,生理卫生5门学科的平均成绩.第二十章《数据的分析》单元练习题答案解析1.【答案】D【解析】根据平均数的计算公式先算出这组数据的平均数,再根据方差公式进行计算即可.这组数据的平均数是:(-1+1+2+3)÷5=1,则这组数据的方差为:[(0-1)2+(-1-1)2+(1-1)2+(2-1)2+(3-1)2]=2;故选D.2.【答案】D【解析】根据加权平均数的定义可得:数据a的权是m,数据b的权是n,所以甲、乙两班在这次考试中的总平均分是.故选D.3.【答案】A【解析】∵共有13所中学参加决赛,取前7名,∴把所有学校的成绩按大小顺序排列,第7名的成绩是这组数据的中位数,所以该学校知道这组数据的中位数,才能知道自己是否进入前7名,故选A.4.【答案】B【解析】根据统计表可得出每个月课外阅读书籍的数量,即可求得平均数;出现次数最多的数据是众数;将这些数据按大小顺序排列,中间两个数的平均数为中位数;依此即可求解.A.8+6+5+10+4+7=40(人),故该学校中参与调查的青年教师人数为40人是正确的,不符合题意;B.平均数为:×(15×8+11×6+8×5+4×10+3×4+2×7)=7.3,原来的说法错误,符合题意;C.中间两个数都是4,所以中位数为4,故该学校中青年教师2016年度看书数量的中位数为4本,是正确的,不符合题意;D.4出现的次数最多,是10次,众数为4,故该学校中青年教师2016年度看书数量的众数为4本,是正确的,不符合题意.故选B.5.【答案】A【解析】根据平均数的定义列出方程,解方程可得.∵数据6、4、a、3、2的平均数是5,∴=5,解得:a=10,故选A.6.【答案】C【解析】因为众数是76,说明此型号的衬衫需求最大,故76号的生产量要占第一位.7.【答案】C【解析】解决本题需要从统计图获取信息,由此关键是明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息.根据统计图各部分表示的意义,发现:A中,两次测试,最低分在第一次测试中,错误;B中,根据此条形统计图,显然第二次测试的分数明显高于第一次的分数,错误;C中,共有100名学生,所以中位数应是第50和51的平均数,显然第一次测试的中位数落在20~39段内,正确;D中,第二次测试的中位数应落在40~59段内,错误.故选C.8.【答案】D【解析】根据当数据都乘以一个数a时,方差变为原方差a2倍进行解答即可.∵一组数据的方差为s2,∴将该组每一个数据都乘以4,所得到的一组新数据的方差42×s2=16s2,故选D.9.【答案】201【解析】首先求出数据201、203、198、199、200、205的和是多少;然后用所有数据的和除以6,求出数据201、203、198、199、200、205的平均数为多少即可.(201+203+198+199+200+205)÷6=1206÷6=201,∴数据201、203、198、199、200、205的平均数为201.10.【答案】85【解析】把这组数据从小到大排列为79,81,84,86,86,90,共有6个数,中位数是第3,4个数的平均数,则中位数是(84+86)÷2=85.11.【答案】89【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现fk次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.所以,这10位评委评分的平均数是:(80+85×2+90×5+95×2)÷10=89(分).12.【答案】5,4.6【解析】将所有数据按照从小到大的顺序排列为:3,3,4,4,4,5,5,5,5,5,8,则中位数为:5,平均数为:≈4.6.故答案为:5,4.6.13.【答案】加权【解析】根据加权平均数的定义可得.∵85×20%+90×30%+92×50%=90,∴这个成绩是加权平均数.14.【答案】54【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现fk次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.所以,该班级女生本次练习中跳绳次数的平均数是==54. 15.【答案】89【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现fk次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.所以,这个小组的本次测试的平均成绩为:=89.16.【答案】13【解析】由于众数是一组数据中出现次数最多的数据,由此可以确定这组数据的众数.依题意得13在这组数据中出现四次,次数最多,则他们年龄的众数为13.17.【答案】解:(1)由表得:一个家庭一天最多丢弃5个塑料袋,故答案为5;(2)30÷75×100%=40%,故答案为40%;(3)×8000=28 800个.【解析】(1)由表直接写出结果;(2)由表看出,75户中丢弃3个塑料袋的家庭户数为30户,再求出所占总户数的百分比;(3)算出75户家庭丢弃塑料袋的总量,再求出该校所在的居民区共有居民0.8万户一天丢弃的塑料袋的总量.18.【答案】解:(1)平均数=(3×4+4×2+5×3+7×6+8×3+9×1+10×1)=6.这组数据是按从小到大排列的,第10,11位,都是7,则中位数为7.因为7出现的次数最多,则该组数据的众数为7,故众数和中位数均为7.(2)①以平均数6作为家庭月用水量a不合理.因为不能满足大多数家庭的月用水量.②以众数(中位数)7作为家庭月用水量a较为合理.因为这样可以满足大多数家庭的月用水量.【解析】平均数、中位数和众数都是刻画了数据的集中趋势,但是又各有特点,平均数受极端值的影响较大,中位数和众数不受极端值影响.19.【答案】解:王晓丽的平均分为:(98+80+80)÷3=86;李真的平均分为:(95+90+90)÷3=91;林飞扬的平均分为:(80+100+100)÷3=93.∵93>91>86,∴冠军是林飞扬,亚军是李真,季军是王晓丽.【解析】用每个选手的总分除以3,就是这名选手的平均分;求出平均分再比较它们的大小即可求解.20.【答案】解:(1)这些类型的课外书籍中,小说类课外书阅读数量最大.(2)(2.0+3.5+6.4+8.4+2.4+5.5)×100÷500=5.64≈6(本).答:这500名学生一学期平均每人阅读课外书6本.(3)2 0000×6=120 000(本)或2×6=12(万本)答:他们一学期阅读课外书的总数是12万本.【解析】由样本的情况可以估算出总体的情况,这在数学统计中是经常采用的一种方法.21.【答案】解:∵7门学科的总成绩是664分,其中语文和数学两门学科的总成绩是187分,∴5门的总分为664-187=477分,∴5门的平均分为477÷5=95.4分.答:小红这5门学科的平均成绩为95.4分.【解析】根据总分和另外两科的分数求得其他5科的总分,进而可以求得平均分.。

人教版八级数学下册第二十章数据的分析测试卷及参考答案

人教版八级数学下册第二十章数据的分析测试卷及参考答案

第4题图4元3元2元③②①八年级数学第二十章数据的分析测试题班级 姓名 得分一、 选择题(本大题共分12小题,每小题3分共30分)1.某班七个兴趣小组人数分别为:3,3,4,4,5,5,6,则这组数据的中位数是( ) A. 2 B. 4 C. 4.5 D. 52.数据2、4、4、5、5、3、3、4的众数是( )A. 2B. 3C. 4D. 53.已知样本x 1,x 2,x 3,x 4的平均数是2,则x 1+3,x 2+3,x 3+3,x 4+3的平均数是( ) A. 2 B. 2.75 C. 3 D. 54.学校食堂有2元,3元,4.如图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是( ) A. 2.95元,3元 B. 3元,3元C. 3元,4元D. 2.95元,4元5.如果a 、b 、c 的中位数与众数都是5,平均数是4,那么a可能是()A.2B. 3C. 4D. 56.已知甲、乙两组数据的平均数相等,若甲组数据的方差=0.055,乙组数据的方差=0.105,则()A.甲组数据比乙组数据波动大B. 乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大D. 甲、乙两组数据的数据波动不能比较7.样本数据3,6,a,4,2的平均数是4,则这个样本的方差是()A. 2B.C. 3D. 28.某同学5次上学途中所花的时间(单位:分钟)分别为x,y,10,11,9,已知这组数据的平均数为10,方差为2,则的值为()A. 1B. 2C. 3D. 49.若样本x1+1,x2+1,x3+1,…,x n+1的平均数为18,方差为2,则对于样本x1+2,x2+2,x3+2,…,x n+2,下列结论正确的是()A.平均数为18,方差为2B.平均数为19,方差为3C.平均数为19,方差为2D.平均数为20,方差为410.小波同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是()A.该组数据的众数是24分B.该组数据的平均数是25分C.该组数据的中位数是24分歧D.该组数据的极差是8分二、填空题(本大题共8小题,每小题3分,共24分)11.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是 .12.若x1,x2,x3的平均数为7,则x1+3,x2+5,x3+4的平均数为 .13.一组数据1,6,x,5,9的平均数是5,那么这组数据的中位数是 .14. 五个数1,2,4,5,a的平均数是3,则a=,这五个数的方差为 .15.若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是,极差是 .16.如图是某同学6次数学测验成绩统计表,则该同学6次成绩的中位数是17. 已知数据3x1,3x2,3x3,…,3x n的方差为3,则一组新数据6x1,6x2,…,6x n的方差是 .18.已知样本99,101,102,x,y(x≤y)的平均数为100,方差为2,则x=,y= .三、解答题(本大题共46分)19.计算题(每小题6分,共12分)(1)若1,2,3,a的平均数是3;4,5,a,b的平均数是5.求:0,1,2,3,4,a,b的方差是多少?(2)有七个数由小到大依次排列,其平均数是38,如果这组数的前四位数的平均数是33,后四个数的平均数是42.求它们的中位数.20.(本小题10分)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班学生每周锻炼时间的中位数是多少?()小时721.(本小题12⑵大多数队员的年龄是多少?⑶中间的队员的年龄是多少?22.(本小题12分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:⑴ 请你填写下表:⑵ 请从以下两个不 同的角度对三个年级 的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些)③如果在每个年级分别选出3人参加决赛,你认为哪个年级的实力更强一些?并说明理由.参考答案:一、1.B;2.C;3.D;4.A;5.A;6.B;7.A;8.D;9.C;10.B;二、11.14;12.10;13.5;14.3,2;15.30,40;16.75分;17.12;18.98,100;三、19. ⑴由=3 得 a=6;由=5 得 b=50,1,2,3,4,6,5的平均数为3,∴=4.⑶设七个数为 a,b,c,d,e,f,g, a<b<c<d<e<f<g依题意得=38 ①,=33 ②,=42 ③,由①、②得 e+f+g=7×38-33×4 ④,将④代入③得d=34.20.因为有40名学生,所以中位数应是从小到大排列后的第20、第21个数据的平均数.因为从图中可以看到锻炼时间是7小时的有3人;锻炼8小时的有16人,3+16=19人;锻炼9小时的有14人;所以,该班学生的每周锻炼时间中位数是9小时.21. ⑴这些队员平均年龄是:=15⑵大多数队员是15岁⑶中间的队员的年龄是15岁22.⑴七年级众数是80;八年级中位数是86;九年级的平均数为85.5,众数为78.⑵①从平均数和众数相结合看,八年级的成绩好些.②从平均数和中位数相结合看,七年级成绩好些.⑶九年级.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图第8题图8.(2016·呼和浩特中考)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________; (2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________; (3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 2 3 2 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。

人教版八年级数学下册第二十章数据的分析单元练习题(含答案)

人教版八年级数学下册第二十章数据的分析单元练习题(含答案)

第二十章数据的分析一、选择题1.某单位3月上旬中的1日至6日每天用水量的变化如图所示,那么这6天用水量的中位数是()A. 31.5B. 32C. 32.5D. 332.商厦信誉楼女鞋专柜试销一种新款女鞋,一个月内销售情况如表所示:经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差3.我市从2017年1月1日起连续七天空气质量堪忧,PM2.5大于300时为严重污染,下表是这几天的PM2.5空气质量指数:C. 451,406D. 499,4164.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2016年4月份用电量的调查结果:那么关于这10户居民月用电量的说法错误的是()A.中位数是50B.众数是51C.平均数是46.8D.方差是425.2022年将在北京—张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市,某校开设了冰球选修课,12名同学被分成甲、乙两组进行训练,他们的身高(单位:cm)如表所示:设两队队员身高的平均数依次为甲,乙,方差依次为,,下列关系中正确的是()A.甲=乙,<B.甲=乙,>C.甲<乙,<D.甲>乙,>6.某学习小组13名学生的一次英语听力测试成绩分布如下表所示(满分20分):这13名学生听力测试成绩的中位数是()D. 19分7.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为()A. 4B. 8C. 12D. 208.在“爱我济宁”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8乙:7,9,6,9,9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小二、填空题9.某中学篮球队12名队员的年龄情况如下:则这个队中,队员年龄的平均数是________.10.在庆元旦文体活动中,小东参加了飞镖比赛,共投飞镖五次,投中的环数分别为:5,10,6,x,9.若这组数据的平均数为8,则这组数据的中位数是________.11.2016年5月15日,是世界第二十六个助残日,这天某校50名教师为本区的特殊教育中心捐款的情况如下表:(单位:元)12.某中学篮球队12名队员的年龄情况如下:则这个队中,队员年龄的平均数是________.13.实验中学规定学生学期的数学成绩满分为120分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,王玲的三项成绩依次是100分,90分,106分,那么王玲这学期的数学成绩为________分.14.一组数据按从小到大的顺序排列为1,2,3,x,4,5,若这组数据的平均数为3,则x的值是________.15.厦门市2014年中考体育考试中,某校九年级(3)班50人参加考试,具体的成绩与人数如下表,则该班的中考体育的平均成绩是________分.16.在植树节到来之际,某学校教师分为四个植树小组参加了“大美济宁”的植树节活动,其中三个小组植树的棵数分别为:8,10,12,另一个小组的植树棵数与它们中的一组相同,且这四个数据的众数与平均数相等,则这四个数据的中位数是________.三、解答题17.为了解2路公共汽车的运营情况,公交部门统计了某天2路公共汽车每个运行班次的载客量,得到如下表各项数据:(1)求出以上表格中a=________,b=________;(2)计算该2路公共汽车平均每班的载客量是多少?18.五位同学在一次考试中的得分分别是:18、73、78、90、100,考分为73的同学在平均分之上还是之下?你认为他在五人中属“中上”水平吗?19.某小区响应市政府号召,开展节约用水活动,效果显著.为了解某居民小区节约用水情况,随机对该小区居民户家庭用水情况作抽样调查,3月份较2月份的节水情况如下表所示(在每组的取值范围中,含最低值,不含最高值):(1)试估计该小区3月份较2月份节水量不低于1吨的户数占小区总户数的百分比;(2)已知该小区共有居民5 000户,若把每组中各个节水量值用该组的中间值(如0.2~0.6的中间值为0.4)来代替,请你估计该小区3月份较2月份共节水多少吨?20.抽样调查了是我市某校八年级学生为玉树灾区捐款情况其条形图和扇形统计图如下:(1)求该样本的容量;(2)在扇形统计图中,求该样本中捐款5元的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐款总数.21.有关部门准备对某居民小区的自来水管网系统进行改造,为此,需了解该小区的自来水用水的情况.该部门通过随机抽样,调查了其中的20户家庭,这20户家庭的月用水量见下表:求这20户家庭的户均月用水量.22.为掌握某轮渡码头今年内每天的客运量,在一周内作了详细统计如下表:(2)本周哪几天的客运量超过了平均客运量?答案解析1.【答案】A【解析】将6天的用水量排序后,找到位于中间的两数,求平均数即可求得中位数.解:观察条形统计图知6天的用水量分别为28,30,31,32,34,37,位于中间的两个数为31和32,故中位数为31.5升,故选A.2.【答案】B【解析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.鞋店经理最关心的是哪种型号的鞋销量最大,就是关心那种型号销的最多,故值得关注的是众数.由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选B.3.【答案】B【解析】把1至7号的空气指数从小到大排列为:105、402、434、446、456、499、500,所以中位数是446,平均数:==406;故选B.4.【答案】D【解析】根据表格中的数据,求出平均数,中位数,众数,方差,即可做出判断.10户居民2016年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,方差为[(30-46.8)2+2×(42-46.8)2+3×(50-46.8)2+4×(51-46.8)2]=42.96.故选D.5.【答案】A【解析】先根据平均数的定义分别计算出甲组和乙组的平均数,然后根据方程公式计算出甲组和乙组的方差即可对各选项进行判断.甲=(176+177+175+176+177+175)=176(cm),乙=(178+175+170+174+183+176)=176(cm),=[2×(176-176)2+2×(175-176)2+2×(177-176)2]=,=[(178-176)2+(175-176)2+(170-176)2+(174-176)2+(183-176)2+(176-176)2]=15,所以甲=乙,<.故选A.6.【答案】B【解析】可得按从小到大的顺序排列后,第7个数据都是17分,所以中位数为17分.故选B.7.【答案】B【解析】只要运用求平均数公式:=即可列出关于d的方程,解出d即可.∵a,b,c三数的平均数是4,∴a+b+c=12,又a+b+c+d=20,故d=8.故选B.8.【答案】C【解析】分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.A.甲==8,乙==8,故此选项正确;B.甲得分次数最多是8分,即众数为8分,乙得分最多的是9分,即众数为9分,故此选项正确;C.∵甲得分从小到大排列为:7、8、8、8、9,∴甲的中位数是8分;∵乙得分从小到大排列为:6、7、9、9、9,∴乙的中位数是9分;故此选项错误;D.∵=×[(8-8)2+(7-8)2+(9-8)2+(8-8)2+(8-8)2]=×2=0.4,=×[(7-8)2+(9-8)2+(6-8)2+(9-8)2+(9-8)2]=×8=1.6,∴<,故D正确;故选C.9.【答案】16【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现fk次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.所以,队员年龄的平均数是=16.10.【答案】9【解析】先根据平均数的概念求出x的值,然后根据中位数的概念求解.由题意得,=8,解得:x=10,这组数据按照从小到大的顺序排列为:5,6,9,10,10,则中位数为:9.11.【答案】182【解析】由题意知,该校教师平均每人捐款数为(50×5+100×15+150×9+200×11+300×6+500×4)÷50=182元.12.【答案】16【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现fk次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.所以,队员年龄的平均数是=16.13.【答案】100【解析】该生这学期的数学成绩是:=100.14.【答案】3【解析】根据算术平均数的定义列出算式求出x即可.根据题意可得=3,15.【答案】23.6【解析】加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+xn w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数.所以,该班的中考体育的平均成绩是(25×24+24×10+22×10+20×6)÷50=(600+240+220+120)÷50=1180÷50=23.6(分),故该班的中考体育的平均成绩是23.6分.16.【答案】10【解析】设另一个小组的植树棵数为x,根据这四个数据的众数与平均数相等列出方程x=(x+8+10+12),求出x的值,再根据中位数的定义求解即可.设另一个小组的植树棵数为x,由题意得x=(x+8+10+12),解得x=10;将这组数据从小到大的顺序排列8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10.17.【答案】解:(1)a=31,b=51,故答案为31;51;(2)=43(人)答:该2路公共汽车平均每班的载客量是43人.【解析】(1)利用组中值的定义写出第2、3组的组中值即可得a和b的值;(2)利用组中值表示各组的平均数,然后根据加权平均数的计算方法求解.18.【答案】解:本组数据分别为:18、73、78、90、100,平均分为=71.8.所以考分为73的同学在平均分以上,但是他的分数在五人中倒数第二,不能算是“中等”水平.【解析】根据平均数的概念先求得平均分,然后分析比较.19.【答案】解:(1)3月份较2月份节水量不低于1吨的用户数为35+30+10=75,又样本总量为5+20+75=100(户),故所求的百分比为=75%,答:3月份较2月份节水量不低于1吨的户数占小区总户数的百分比为75%;(2)节水量各组的中间值依次为0.4,0.8,1.2,1.6,2.0.故抽样的100户总节水量约为0.4×5+0.8×20+1.2×35+1.6×30+2.0×10=128(吨),所以全小区居民户的总节水量约为128×=6 400(吨),答:该小区居民户3月份较2月份共节水约6 400吨.【解析】(1)由题意可知:节水在1.0~1.4吨的用户为35户,节水在1.4~1.8吨的用户为30户,节水在1.8~2.2吨的用户为10户,则该小区3月份较2月份节水量不低于1吨的户数为30+35+10=75户,又样本总量为5+20+75=100(户),故该小区3月份较2月份节水量不低于1吨的户数占小区总户数的百分为=75%;(2)由题意可知:节水量各组的中间值依次为0.4,0.8,1.2,1.6,2.0.故抽样的100户总节水量约为0.4×5+0.8×20+1.2×35+1.6×30+2.0×10=128(吨),则每户的平均节水量为128÷100=1.28吨,则5000户共节水5 000×1.28=6 400吨.20.【答案】解:(1)15÷30%=50(人),答:该样本的容量是50;(2)30%×360°=108°;(3)×800=9.5×800=7 600元.【解析】(1)样本的容量为;(2)捐款5元的人数所占的圆心角度数=捐款5元的人数所占的百分比×360°;(3)先算出50人捐款的平均数,再算八年级捐款总数.21.【答案】解:这20户家庭的户均月用水量是:==15.5(m3).【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现fk次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.22.【答案】解:(1)平均数为≈13.5∴平均每天的客运量为13.5万人;(2)由(1)所求的平均数及表格可确定星期一、六、日的客运量超过了平均客运量.答:平均每天的客运量为13.5万人;本周星期一、六、日的客运量超过了平均客运量.【解析】(1)根据平均客运量=,可求出平均客运量.(2)由(1)及表格可直接得出.。

人教版八年级下《第二十章数据的分析》单元检测试题(有答案)

人教版八年级下《第二十章数据的分析》单元检测试题(有答案)

第二十章检测试题一、选择题(每小题4分,共48分)1.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别( )(A)10和7 (B)5和7 (C)6和7 (D)5和62.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.张明的三项成绩(百分制)依次为95,90,88,则张明这学期的体育成绩为( )(A)89 (B)90 (C)92 (D)933.要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的( )(A)平均数(B)中位数(C)众数(D)方差4.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,为进一步普及环保和健康知识,某校举行了“关注环境保护”的知识竞赛,某班学生的成绩统计如下:则该班学生成绩的众数和中位数分别是( )(A)70分,80分(B)80分,80分(C)90分,80分(D)80分,90分5.一组数据2,3,2,3,5的方差是( )(A)6 (B)3 (C)1.2 (D)26.八年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多.”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是( )(A)平均数和众数(B)众数和极差(C)众数和方差(D)中位数和极差7.某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两班成绩的方差不等,那么能够正确评价他们的数学学习情况的是( )(A)学习水平一样(B)成绩虽然一样,但方差大的班里学生学习潜力大(C)虽然平均成绩一样,但方差小的班学习成绩稳定(D)方差较小的班学习成绩不稳定,忽高忽低8.7名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前4名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的( )(A)平均数(B)中位数(C)众数(D)方差9.某市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如表,则该周PM2.5指数的众数和中位数分别是( )(A)150,150 (B)150,155 (C)155,150 (D)150,152.510.在一次统计调查中,小明得到以下一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为( )(A)3.5,3 (B)3,4 (C)3,3.5 (D)4,311.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是( )(A)2, (B)2,1 (C)4, (D)4,312.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是( )(A)7,7 (B)8,7.5 (C)7,7.5 (D)8,6.5二、填空题(每小题4分,共20分)13.某班中考数学成绩如下:7人得100分,14人得90分,17人得80分,8人得70分,3人得60分,1人得50分,那么中考全班数学成绩的平均分为,中位数为,众数为.14.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分、90分和85分,则他本学期数学学期综合成绩是分.15.张老师对同学们的打字能力进行测试,他将全班同学分成五组.经统计,这五个小组平均每分钟打字个数如下:100,80,x,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是.16.某校五个绿化小组一天的植树棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是.17.小亮调查本班同学的身高后,将数据绘制成如图所示的频数分布直方图(每小组数据包含最小值,但不包含最大值.比如,第二小组数据x满足:145≤x<150,其他小组的数据类似).设班上学生身高的平均数为,则的取值范围是.三、解答题(共82分,解答时写出必要的解答过程)18.(6分)某公司共25名员工,下表是他们月收入的资料.(1)该公司员工月收入的中位数是元,众数是元;(2)根据上表,可以算得该公司员工月收入的平均数为6 276元.你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.19.(6分)某文具商店共有单价分别为10元、15元和20元的3种文具盒出售,该商店统计了2017年3月份这3种文具盒的销售情况,并绘制统计图如图所示.(1)请把条形统计图补充完整;(2)小亮认为该商店3月份这3种文具盒总的平均销售价格为(10+15+20)÷3=15元,你认为小亮的计算方法正确吗?如果不正确,请计算总的平均销售价格.20.(8分)为了宣传节约用水,小明随机调查了某小区家庭5月份的用水情况,并将收集的数据整理成如图所示的统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭5月份用水量的平均数;(3)若该小区有400户居民,请你估计这个小区5月份的用水量.21.(8分)甲、乙两台机床同时生产同一种零件,在10天中两台机床每天生产的次品数如下:甲:0,1,0,2,2,0,3,1,2,4;乙:2,3,1,1,0,2,1,1,0,1.(1)分别计算两组数据的平均数和方差;(2)从结果看,在10天中哪台机床出现次品的波动较小?(3)由此推测哪台机床的性能较好22.(8分)(2018云南)某同学参加了学校举行的“五好小公民·红旗飘飘”演讲比赛,7位评委给该同学的打分(单位:分)情况如下表:(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数.23.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案①:所有评委所给分的平均数.方案②:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案③:所有评委所给分的中位数.方案④:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.如图是这个同学的得分统计图.(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.24.(10分)(2018包头)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).他们的各项成绩如下表所示:(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.25.(12分)某中学七、八年级各选派10名选手参加学校举办的知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下所示,其中七年级代表队得6分、10分的选手人数为a,b.(1)请依据图表中的数据,求a,b的值;(2)直接写出表中的m,n的值;(3)有人说七年级队的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.26.(14分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级(3)班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少人?(2)在条形统计图中,请把空缺的部分补充完整;(3)在扇形统计图中,请计算185型校服所对应扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.第二十章检测试题参考答案1.D2.B3.D4.B5.C6.B7.C8.B9.B 10.A 11.D12.C13.82.2 80 80 14.8815.9016.1.6 17.154.5≤<159.518.解:(1)共有25名员工,中位数是第13个数,则中位数是3 400元;3 000出现了11次,出现的次数最多,则众数是3 000元.(2)用中位数或众数来描述更为恰当.理由:平均数受极端值45 000元的影响,只有3个人的工资达到了6 276元,不恰当.19.解:(1)由题意知,单价为10元的文具盒的销售数量为90÷15%×25%=150(个),补全条形统计图,如图所示.(2)小亮的计算方法不正确.法一总的平均销售价格为20×15%+10×25%+15×60%=14.5(元).法二总的平均销售价格为(10×150+15×360+20×90)÷(150+360+90)=8 700÷600=14.5(元).20.解:(1)1+1+3+6+4+2+2+1=20(户).答:小明一共调查了20户家庭.(2)所调查家庭5月份用水量的平均数为(1×1+2×1+3×3+ 4×6+5×4+6×2+7×2+8×1)÷20=4.5(吨),答:所调查家庭5月份用水量的平均数为 4.5 吨.(3)400×4.5=1 800(吨).答:估计这个小区5月份的用水量为1 800吨.21.解:(1)甲的平均数是=×(0+1+0+2+2+0+3+1+2+4)=1.5;乙的平均数是=×(2+3+1+1+0+2+1+1+0+1)=1.2.甲的方差是=[(0-1.5)2+(1-1.5)2+(0-1.5)2+…+(4-1.5)2]=1.65;乙的方差是=[(2-1.2)2+(3-1.2)2+(1-1.2)2+…+(1-1.2)2]=0.76.(2)因为=1.65,=0.76,所以>,所以乙机床出现次品的波动较小.(3)乙的平均数比甲的平均数小,且>,所以乙机床的性能较好.22.解:(1)众数为8分,中位数为7分.(2)=×(6+8+7+8+5+7+8)=7(分).答:该同学所得分数的平均数为7分.23.解:(1)方案①最后得分:×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案②最后得分:(7.0+7.8+3×8+3×8.4)=8;方案③最后得分:中位数是8;方案④最后得分:众数是8或8.4.(2)因为方案①中的平均数受极端数值的影响,不适合作为这个同学演讲的最后得分,方案④中的众数有两个,众数失去了实际意义,不适合作为最后得分的方案.所以方案①和方案④不适合作为这个同学演讲的最后得分.24.解:(1)这四名候选人面试成绩的中位数为=89(分).(2)由题意得,x×60%+90×40%=87.6,解得,x=86.答:表中x的值为86.(3)甲候选人的综合成绩为90×60%+88×40%=89.2(分),乙候选人的综合成绩为84×60%+92×40%=87.2(分),丁候选人的综合成绩为88×60%+86×40%=87.2(分),∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.25.解:(1)由题意,得解得(2)m=6,n=20%.(3)①八年级队平均分高于七年级队;②八年级队的成绩比七年级队的稳定;③八年级队的成绩集中在中上游.答案不唯一,以上三条中任选两条即可.26.解:(1)该班的学生总人数为15÷30%=50(名),穿175型校服的学生人数为50×20%=10(名).答:该班共有50名学生,其中穿175型校服的学生有10名.(2)穿185型校服的学生人数为50-3-15-15-10-5=50-48=2(名),补全条形统计图,如图所示.(3)185型校服所对应的扇形圆心角为×360°=14.4°.答:185型校服所对应的圆心角的大小为14.4°.(4)165型和170型出现的次数最多,都是15次,所以众数是165和170.共有50个数据,第25,26个数据都是170,所以中位数是170.答:该班学生所穿校服型号的众数是165和170,中位数是170.。

人教版八年级数学下册第20章《数据的分析》单元测试题(含答案)

人教版八年级数学下册第20章《数据的分析》单元测试题(含答案)

第二十章《数据的分析》单元测试题(检测时间:120分钟满分:120分)班级:________ 姓名:_________ 得分:_______一、选择题(3分×10分=30分)1.为了了解参加某运动会的200名运动员的年龄情况,从中抽查了20名运动员的年龄,就这个问题来说,下面说法正确的是()A.200名运动员是总体 B.每个运动员是总体C.20名运动员是所抽取的一个样本 D.样本容量是202.一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:树苗平均高度(单位:m)标准差甲苗圃 1.8 0.2 乙苗圃 1.8 0.6 丙苗圃 2.0 0.6 丁苗圃2.0 0.2请你帮采购小组出谋划策,应选购()A.甲苗圃的树苗 B.乙苗圃的树苗; C.丙苗圃的树苗 D.丁苗圃的树苗3.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,•则原来那组数据的平均数是()A.50 B.52 C.48 D.24.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,95.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,8月份节约用水的情况如下表:每户节水量(单位:吨) 1 1.2 1.5 节水户数 52 30 18 那么,8月份这100户平均节约用水的吨数为(精确到0.01t)()A.1.5t B.1.20t C.1.05t D.1t6.已知一组数据-2,-2,3,-2,-x,-1的平均数是-0.5,•那么这组数据的众数与中位数分别是()A.-2和3 B.-2和0.5 C.-2和-1 D.-2和-1.57.方差为2的是()A.1,2,3,4,5 B.0,1,2,3,5C.2,2,2,2,2 D.2,2,2,3,38.甲、乙两班举行电脑汉字输入速度比赛,•参赛学生每分钟输入汉字的个数经统计计算后结果如下表:班级参加人数中位数方差平均数甲 55 149 191 135 乙 55 151 110 135 某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小上述结论中正确的是()A.(1)(2)(3) B.(1)(2) C.(1)(3) D.(2)(3)9.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()纸笔测试实践能力成长记录甲 90 83 95 乙 98 90 95 丙 80 88 90A.甲 B.乙丙 C.甲乙 D.甲丙10.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题(3分×10=30分)11.(2005,深圳)下图是根据某地近两年6•月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是_____年.12.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_________.13.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若去掉一个最高分和一个最低分后的平均分为得分,则这名歌手最后得分约为________.14.一个样本,各个数据的和为515,如果这个样本的平均数为5,那么这个样本的容量是_________.15.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,•则估计湖里约有鱼_______条.16.一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7.•则这名学生射击环数的方差是_________.17.某人开车旅行100km,在前60km内,时速为90km,在后40km内,时速为120km,则此人的平均速度为_________.18.小明家去年的旅游、教育、饮食支出分别出3600元,1200元,7200元,今年这三项支出依次比去年增长10%,20%,30%,则小时家今年的总支出比去年增长的百分数是_________.19.将5个整数从大到小排列,中位数是4;如果这个样本中的惟一众数是6,•则这5个整数可能的最大的和是_____.20.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分,已知三项得分分别为88,72,50,•则这位候选人的招聘得分为________.三、解答题(60分)21.(6分)某校规定学生期末数学总评成绩由三部分构成:卷面成绩、•课外论文成绩、平日表现成绩(三部分所占比例如图),若方方的三部分得分依次是92、80、•84,则她这学期期末数学总评成绩是多少?22.(8分)为了了解某小区居民的用水情况,随机抽查了该小区10•户家庭的月用水量,结果如下:月用水量(吨) 10 13 14 17 18 户数 2 2 3 2 1 (1)计算这10户家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?23.(8分)下表是某校八年级(1)班20名学生某次数学测验的成绩统计表成绩(分) 60 70 80 90 100 人数(人) 1 5 x y 2 (1)若这20名学生成绩的平均分数为82分,求x和y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a,b的值.24.(8分)某乡镇企业生产部有技术工人15人,•生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:每人加工件数 540 450 300 240 210 120 人数 1 1 2 6 3 2 (1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),•你认为这个定额是否合理,为什么?25.(8分)题中给出的条形图是截止到2002年44位费尔兹奖得主获奖时的年龄统计图.经计算费尔兹奖得主获奖时的平均年龄是35岁.根据条形图回答问题:(1)费尔兹奖得主获奖时的年龄超过中位数的有多少人?(2)费尔兹奖得主获奖时年龄的众数是多少?(3)•费尔兹奖得主获奖时的年龄高于平均年龄的人数占获奖人数的百分比是多少?26.(10分)某学校对初中毕业班经过初步比较后,决定从九年级(1)、(4)、(8)•班这三个班中推荐一个班为市级先进班集体的候选班,•现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表:(以分为单位,每项满分为10分)班级行为规范学习成绩校运动会艺术获奖劳动卫生九年级(1)班 10 10 6 10 7 九年级(4)班 10 8 8 9 8 九年级(8)班 9 10 9 6 9 (1)请问各班五项考评分的平均数、•中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们的得分进行排序.(2)根据你对表中五个项目的重要程度的认识,•设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),•按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高的班作为市级先进班集体的候选班.27.(12分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,•下图是其中的甲、乙两段台阶的示意图.请你用所学过的有关统计的知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(•单位:cm).并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=).答案:1.D 2.D 3.B 4.B 5.A 6.D 7.A 8.B 9.C 10.A11.2005 12.-2 ℃ 13.9.4分 14.103 15.1500 16.3 17.100km/h18.27.3% 19.21 20.65.•75分21.解:=88.8(分)22.(1)=14(吨);(2)7000吨.23.(1)x=5,y=7;(2)a=90,b=80.24.(1)平均数:260(件)中位数:240(件)众数:240(件);(2)不合理,•因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,•尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.25.解:(1)中位数为35.5岁,•年龄超过中位数的有22人.(2)众数是38岁.(3)高于平均年龄的人数为22人,22÷44=50%.26.(1)平均数不能反映三个班的考评结果的差异,用中位数或众数可以反映.(2)行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:3:2:1:1.1=1.78,4=•1.74,8=1.8 ∴8>1>4,所以推荐九年级(8)班作为市场先进班集体的候选班级合适.27.(1)相同点:两段台阶路台阶高度的平均数相同.不同点:•两段台阶路台阶高度的中位数、方差和极差均不相同.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数)使得方差为0.。

人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析

人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析

人教版八年级下册数学《第20章数据的分析》单元测试卷一、选择题(共8小题,满分24分,每小题3分)1.比赛中“去掉一个最高分,去掉一个最低分”后,一定不会发生变化的统计量是()A.平均数B.众数C.中位数D.极差2.一组数据5、2、8、2、4,这组数据的中位数和众数分别是()A.2,2B.3,2C.2,4D.4,23.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选()甲乙丙丁平均分90959590方差50425042A.甲B.乙C.丙D.丁4.某班同学抛携实心球的成绩统计表如下,则该成绩的众数是()成绩(分)678910频数16131416 A.10B.16C.9D.145.一组数据40,37,x,64的平均数是53,则x的值是()A.67B.69C.71D.726.甲、乙两人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为:S甲22=0.52,则成绩最稳定的是()=0.58,S乙A.甲B.乙C.甲和乙一样D.无法判定7.在方差计算公式s2=[(x1﹣15)2+(x2﹣15)2+…+(x20﹣15)2]中,可以看出15表示这组数据的()A.众数B.平均数C.中位数D.方差8.某公司计划招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86929083笔试90838392公司决定将面试与笔试成绩按6:4的比例计算个人总分,总分最高者将被录用,则公司将录用()A.甲B.乙C.丙D.丁二、填空题(共7小题,满分28分,每小题4分)9.在统计学中,样本的方差可以近似地反映总体的.(填写“集中趋势”、“波动大小”、“最大值”、“平均值”)10.已知某实验区甲、乙品种水稻的平均产量相等.且甲、乙品种水稻产量的方差分别为S甲2=79.6,S乙2=68.5.由此可知:在该地区种水稻更具有推广价值.11.已知一组数据2,2,8,x,7,4的中位数为5,则x的值是.12.一组数据3,5,3,x的众数只有一个,则x的值不能为.13.已知一组数据从小到大排列为:﹣1,0,4,x,6,15,且这组数据的中位数是5,那么这组数据的众数是.14.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是.15.小华统计了自己过去五个学期期末考试数学成绩,分别为87,84,90,89,95,这组数据的方差分别为.三、解答题(共6小题,满分48分)16.(6分)甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数方差甲880.4乙9 3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差.(填“变大”、“变小”或“不变”).17.(6分)从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)甲:9、10、11、12、7、13、10、8、12、8;乙:8、13、12、11、10、12、7、7、9、11;问:(1)哪种农作物的苗长得比较高?(2)哪种农作物的苗长得比较整齐?18.(6分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩计算了甲成绩的平均数和方差(见小宇的作业).第1次第2次第3次第4次第5次甲成绩94746乙成绩757a7;(1)求a和乙的方差S乙(2)请你从平均数和方差的角度分析,谁将被选中.19.(10分)至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?20.(10分)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,据统计,所有学生一分钟的跳绳数不少于100次,现随机抽取了部分学生一分钟跳绳的次数进行调查统计,并根据成绩分布情况,将抽取的全部成绩分成A、B、C、D四组,并绘制了如下统计图表:等级次数频数A100≤x<1204B120≤x<14012C140≤x<16014D x≥160m请结合上述信息完成下列问题:(1)m=,n=;(2)上述样本数据的中位数落在组;(3)若A组学生一分钟跳绳的平均次数为110次,B组学生一分钟跳绳的平均次数为130次,C组学生一分钟跳绳的平均次数为150次,D组学生一分钟跳绳的平均次数为190次,请你估计该校学生一分钟跳绳的平均次数是多少?21.(10分)表格是小明一学期数学成绩的记录,根据表格提供的信息回答下面的问题.考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩889290869096(1)小明6次成绩的众数是分;中位数是分;(2)计算小明平时成绩的方差;(3)按照学校规定,本学期的综合成绩的权重如图所示,请你求出小明本学期的综合成绩,要写出解题过程.(注意:①平时成绩用四次成绩的平均数;②每次考试满分都是100分).参考答案一、选择题(共8小题,满分24分,每小题3分)1.C2.D3.B4.A5.C6.B7.B8.B二、填空题(共7小题,满分28分,每小题4分)9.波动大小.10.乙11.5.5.12.5.13.6.14.4.15.13.2.三、解答题(共6小题,满分48分)16.解:(1)∵8出现了3次,出现的次数最多,∴甲的众数为8,乙的平均数=(5+9+7+10+9)=8,把这些数从小到大排列,则乙的中位数为9.故填表如下:平均数众数中位数方差甲8880.4乙899 3.2故答案为:8,8,9;(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,平均数不变,根据方差公式可得乙的射击成绩的方差变小;故答案为:变小.17.解:(1)=(9+10+11+12+7+13+10+8+12+8)=10cm,=(8+13+12+11+10+12+7+7+9+11)=10cm.可见,两种农作物一样高均为10cm;2=[(9﹣10)2+(10﹣10)2+(11﹣10)2+(12﹣10)2+(7﹣10)2+(13(2)∵S甲﹣10)2+(10﹣10)2+(8﹣10)2+(12﹣10)2+(8﹣10)2]=3.6cm2;S乙2=[(8﹣10)2+(13﹣10)2+(12﹣10)2+(11﹣10)2+(10﹣10)2+(12﹣10)2+(7﹣10)2+(7﹣10)2+(9﹣10)2+(11﹣10)2]=4.2cm2.∴甲的方差为3.6cm2,乙的方差为4.2cm2.所以甲更整齐.18.解:(1)∵乙=,∴a=4,S乙==1.6;(2)因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.19.解:(1)82﹣84.75=﹣2.75,答:小丽数学成绩的离均差为﹣2.75;(2)①最高分为84.75+31.25=116(分),最低分为84.75﹣32.75=52(分),答:最高分为116分,最低分为52分;②10.25﹣8.75+31.25+15.25﹣3.75﹣12.75﹣10.75﹣32.75=﹣12,﹣12÷8+84.75=83.25(分),答:这组同学的平均分是83.25分;③该组最低分是52分,若达到72分,则增加20分,(﹣12+20)÷8=1,1+83.25=84.25(分),84.75﹣84.25=0.5(分),答:该组数学成绩的平均分没有达到班平均分,低0.5分.20.解:(1)调查总人数为:4÷10%=40(人),∴m=40﹣4﹣12﹣14=10(人),n=1﹣10%﹣25%﹣35%=30%,故答案为:10;30%;(2)由题意可知,样本数据的中位数落在C组,故答案为:C;(3)×(4×110+12×130+14×150+10×190)=×6000=150(次),答:估计该校学生一分钟跳绳的平均次数是150次.21.解:(1)∵90出现了2次,其余分数只有1次,∴6次成绩的众数为90分;排列如下:86,88,90,90,92,96,∵(90+90)÷2=90,∴6次成绩的中位数为90分;故答案为:90,90;(2)∵=(86+88+90+92)=89(分),∴S2=[(86﹣89)2+(88﹣89)2+(90﹣89)2+(92﹣89)2]=×(9+1+1+9)=5(分2);(3)根据题意得:89×10%+90×30%+96×60%=8.9+27+57.6=93.5(分),则小明本学期的综合成绩为93.5分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十章《数据的分析》单元测试题(1)
姓名:_________分数:_________
一、认认真真选,沉着应战!(每小题3分,共30分.)
1. 一组数据由a 个1x ,b 个2x ,c 个3x 组成,那么这组数据的平均数是( )
33
21x x x A
++
3
c b a B
++
3
3
21cx bx ax C
++
c
b a cx bx ax D
++++3
21
2. 一次考试考生约2万名,从中抽取500名考生的成绩进行分析,这个问题的样本是( )
A .500
B .500名
C .500名考生
D .500名考生的成绩
3.某校在一次歌咏比赛中,7位评委给各班演出的节目评分,在每班的7个评分中,去掉一个最高分,再去掉一个最低分,求得的平均数作为该班节目的实际得分.7位评委对该班的演出评分如下:9.65,9.70,9.68,9.75,9.72,9.65,9.78那么该班节目的实际得分是( )
(A )9.704 (B )9.713 (C )9.700 (D )9.697
4.已知一组数据为:4、5、5、5、6.其中平均数、中位数和众数的大小关系是( )
A.平均数>中位数>众数
B. 中位数<众数<平均数
C. 众数=中位数=平均数
D. 平均数<中位数<众数
5.对五·一黄金周7天假期去某地景区旅游的人数进行统计,每天到景区旅游的人数统计如下表:
其中众数和中位数分别是( )
A .1.2,2
B .2,2.5
C .2,2
D .1.2,2.5 6.刘翔在出征雅典奥运会前刻苦进行110米跨栏训练,教练对他10次的训练成绩进行统计分析,判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的( ) A.众数 B.方差 C.平均数 D.频数
7. 一台机床在十天内生产的产品中,每天出现的次品个数依次为(单位:个)0,2,0,2,
3,0,2,3,1,2.那么,这十天中次品个数的( )
A .平均数是2
B .众数是3
C .中位数是1.5
D .方差是1.25
8.某工厂为了选拔1名车工参加加工直径为10mm 的精密零件的技术比赛,随机抽取甲、乙
两 车工加工的5个零件,现测得的结果如下表,请你用计算器比较2
2
S S 乙甲、的大小( )
A .22S S >乙甲
B .22S S =乙甲
C .22S S <乙甲
D .22
S S 乙甲≤
9. 已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这组数据的( )
A .平均数但不是中位数 B. 平均数也是中位数 C .众数 D. 中位数但不是平均数
10.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )
A .甲
B .乙、丙
C .甲、乙
D .甲、丙
二、仔仔细细填,记录自信!(每小题3分,共30分.)
11.甲、乙两人进行射击比赛,在相同条件下各射击10次.他们的平均成绩均为7环,10
次射击成绩的方差分别是: 2甲S =3,2
乙S =1.2.成绩较为稳定的是 .
12.在数据-1,0,4,5,8中插入一数据x ,使得该数据组的中位数为3,则x =____ . 13. 已知数据,,a b c 的平均数为8,那么数据1,2,3a b c +++的平均数是______ _. 14. 某班50名学生右眼视力的检查结果如下表所示:
该班学生的右眼视力的众数和中位数分别是 . 15. 已知一样本的方差是S 2
=
10
1[(x 1-20)2+(x 2-20)2+…+(x n -20)2
],则数字10和20分别表示样本中数据的______ __和______ ___.
16.已知样本中各数据与样本平均数的差的平方和是21)(x x -+2
2)(x x -+…
+210)(x x -=40,则样本方差S 2
= .
17. 甲、乙两人进行飞镖比赛,两人所得平均环数相同,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较为稳定的是 .(填"甲"或"乙")
18. 小张和小李去练习射击,第
一轮10枪打完后两人的成绩如图
所示,通常新手的成绩不太稳定,
那么根据图中的信息,估计小张
小张
小李
4
和小李两人中新手是 .
19. 某学校四个绿化小组,在植树节这天种下白杨树的棵数如下:10,10,x ,8,已知这组数据的众数和平均数相等,那么这组数据的中位数是 .
20.10位学生分别购买如下尺码的鞋子:20,20,21,22,22,22,22,23,23,24(单
位:cm ).这组数据的平均数、中位数、众数三个指标中鞋店老板最喜欢的是____ __.
三、平心静气做,展示智慧!(每小题12、14、14分,共40分.)
21.某同学进行社会调查,随机抽查了某个地区的20个家庭的收入情况,并绘制了统计图.请你根据统计图给出的信息回答:
这20个家庭的年平均收入为_____ _万元;
(2) 样本中的中位数是_____ _万元,众数是____ __万元;
(3) 在平均数、中位数两数中,_____ _更能反映这个地区家庭的年收入水平.
22. 为了从甲、乙两名学生中选拔一人参加今年六月份的
全县中学生数学竞赛,每个月对他们的学习水平进行一 次测验,如图是两人赛前5次测验成绩的折线统计图. (1)别求出甲、乙两名学生 5次测验成绩的平均数及方差. (2)如果你是他们的辅导教师,应选派哪一名学生参加这 次数学竞赛.请结合所学统计知识说明理由.
75
70
65
60
95
90 80 85 一月 二月 五月 三月 四月 月份
0.6 0.9 1.0 25% 20% 15% 10 ) 所占户数比
23. 某公司销售部有营销人员15人销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:
(1)求这15位营销人员该月销售量的平均数、中位数和众数;
(2)想一想,假设销售部负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说名理由.
参考答案
一、1—5:DDCCC 6—10:BDABC
二、11.乙
12.2
13.10
14.1.2,0.8
15.个数平均数
16.4
17. 甲
18.小李
19. 10
20.平均数,众数
三、21.(1)
1.6万元;
(2)中位数是1.2万元,众数是1.3万元;
(3)中位数.
22. (1)x甲=80,2x乙=80,S2甲=70, S2乙=50;
(2)选甲参加
23. (1)320件,210件,210件
(2)不合理,因为15人中有13人的销售额达不到320件(320虽是所给一组数据的平均数,它却不能反映营销人员的一般水平);销售额定为210件合适一些,因为210既是中位数,又是众数,是大部分能达到的定额.。

相关文档
最新文档