新人教版八年级下册一次函数教案

合集下载

初中数学人教八年级下册(2023年新编)第十九章 一次函数《一次函数》教案

初中数学人教八年级下册(2023年新编)第十九章 一次函数《一次函数》教案

第十九章一次函数一次函数一教学目标知识与技能:1 理解一次函数和正比例函数的图像是一条直线;2 熟练地作出一次函数和正比例函数的图象,掌握 k与b的取值对直线位置的影响。

过程与方法:1 经历一次函数的作图过程,探索某些一次函数图象的异同点;2 体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂。

情感态度与价值观:1 体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣。

2 在探索过程中体验成功的喜悦,树立学习的自信心。

二.教学重点和难点教学重点:理解掌握一次函数的图像的特征和相关的性质。

教学难点:理解一次函数的概念。

三教学用具多媒体课件,教学用直尺、三角板等。

四教学过程(一)复习引入:师:上节课我们学习了正比例函数,知道正比例函数也是一次函数,是特殊的一次函数,而且我们也知道正比例函数的图象是一条经过原点的直线,那么一次函数的图象是什么(二)情境创设师:前面我们学习了用描点法画函数图象的方法,下面请同学们根据画图象的步骤:列表、描点、连线,在同一平面直角坐标系中画出下列函数的图像。

画出函数y=-6x与y=-6x+5 y=6x与y=6x+5的图象请同学们观察并互相讨论,并回答:你所画出的图象是什么形状?和前面我们学过的正比例的函数图象相同吗?这就是我们这一节课要学到的内容:一次函数。

板书:第十九章一次函数一次函数(三)探索新知1 一次函数的概念师:观察上面四个函数的图象,发现它们都是直线。

你能说出哪些是正比例函数的图象吗若把另外两个叫做一次函数,你能类比正比例函数的定义给出一次函数的定义吗?学生独立思考后进行小组交流,探讨、然后小组汇报讨论结果。

师:参与学生的活动,了解各小组的讨论情况,了解同学质疑,并适时点拨,共同概括出一次函数的概念。

提示学生,类比一次方程、一次不等式等知识。

总结并板书:【板书】一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数。

人教版八年级数学下册第十九章一次函数(图象信息)优秀教学案例

人教版八年级数学下册第十九章一次函数(图象信息)优秀教学案例
(二)过程与方法
1.通过小组合作、讨论的方式,引导学生观察、分析一次函数图象的特点,培养学生的观察能力和逻辑思维能力。
2.引导学生运用数形结合的思想,将实际问题转化为数学模型,提高学生分析问题和解决问题的能力。
3.通过对一次函数图象的探究,培养学生归纳总结的能力,使学生能够从具体实例中提炼出一般性规律。
二、教学目标
(一)知识与技能
1.理解一次函数的定义,掌握一次函数的表示方法,能够准确地识别一次函数的图象。
2.学会运用一次函数图象分析实际问题,掌握一次函数图象与实际问题之间的联系,提高解决问题的能力。
3.能够运用一次函数的性质,解决线性方程和不等式问题,为后续学习打下基础。
4.学会使用现代教育技术手段,如图形计算器、电脑软件等,绘制一次函数图象,提高实际操作能力。
人教版八年级数学下册第十九章一次函数(图象信息)优秀教学案例
一、案例背景
在我国初中数学教学中,一次函数是学生接触到的第一个具体的函数概念,它对于培养学生的函数思想具有重要的意义。人教版八年级数学下册第十九章一次函数,特别是图象信息部分,旨在帮助学生通过图象直观地理解一次函数的性质,提高学生运用数学知识解决实际问题的能力。在教学实践中,我们发现,由于一次函数图象信息的抽象性,学生往往难以把握其与实际问题的联系。为此,本教学案例将结合实际生活情境,运用现代教育技术手段,引导学生探究一次函数图象的特点及其应用,从而提高学生的数学素养和实际操作能力。在教学过程中,注重培养学生观察、分析、归纳和运用数学语言表达的能力,使学生在轻松愉快的氛围中掌握一次函数图象信息的内涵和应用。
4.鼓励学生积极参与课堂活动,敢于提出问题、表达观点,培养学生的表达能力和沟通能力。
(三)情感态度与价值观

人教版初中数学八年级下册第十九章:一次函数(全章教案)

人教版初中数学八年级下册第十九章:一次函数(全章教案)

第十九章一次函数教材简析本章的主要内容有:(1)函数、一次函数与正比例函数的概念;(2)函数的表示方法;(3)一次函数的图象与性质;(4)一次函数的应用.函数是刻画各种运动变化的常用模型,其中最为简单的是一次函数,它可以解决现实生活中的许多问题,本章将主要向学生讲授一次函数的相关知识.本章是中考中的必考内容,主要考查用待定系数法求一次函数的表达式,结合函数图象对简单的实际问题进行信息分析,通过分析函数关系式对变量的变化规律进行预测等,题型多样.教学指导【本章重点】通过学习变量间的关系初步体会函数的概念,明确函数的三种表示方法,一次函数的图象、性质及其应用.【本章难点】函数的概念和一次函数的应用.【本章思想方法】1.分类讨论思想:在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得出结论.在本章中,有时确定一次函数的表达式时,要根据一次函数所对应的直线位置来求解,做到不重复、不遗漏.2.数形结合思想:本章在解决与一次函数有关的函数值大小比较时,利用数形结合解决这类问题最快最优.另外解决一次函数图象的综合题时,也常用数形结合法.3.函数与方程思想:将具体问题抽象为函数模型,根据函数之间的关系建立方程,通过方程解决问题的方法称为函数与方程思想.在本章中,经常根据实际问题抽象出一次函数模型,并根据函数图象的交点建立一元一次方程来求某些特殊值.课时计划19.1函数4课时19.2一次函数6课时19.3课题学习选择方案1课时19.1函数19.1.1变量与函数第1课时常量与变量教学目标一、基本目标【知识与技能】1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.【过程与方法】经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.【情感态度与价值观】培养学生积极参与数学活动,对数学产生好奇心和求知欲.二、重难点目标【教学重点】1.认识变量、常量.2.用式子表示变量间关系.【教学难点】用含有一个变量的式子表示另一个变量.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P71的内容,完成下面练习.【3 min反馈】1.在一个变化的过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.2.判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值是否发生变化.3.每张电影票售价为10元,如果早场售出150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?解:早场电影票房收入:150×10=1500(元),日场电影票房收入:205×10=2050(元),晚场电影票房收入:310×10=3100(元), 关系式:y =10x .4.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10 cm ,每1 kg 重物使弹簧伸长0.5 cm ,怎样用含有重物质量m 的式子表示受力后的弹簧长度?解:挂1 kg 重物时弹簧长度:1×0.5+10=10.5(cm), 挂2 kg 重物时弹簧长度:2×0.5+10=11(cm), 挂3 kg 重物时弹簧长度:3×0.5+10=11.5(cm), 关系式:L =0.5m +10. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】分析并指出下列关系中的变量与常量: (1)球的表面积S 与球的半径R 的关系式是S =4πR 2;(2)以固定的速度v 0米/秒向上抛一个小球,小球的高度h 米与小球运动的时间t 秒之间的关系式是h =v 0t -4.9t 2;(3)一物体自高处自由落下,这个物体运动的距离h (m)与它下落的时间t (s)的关系式是h =12gt 2(其中g 取9.8 m/s 2); (4)已知橙子每千克的售价是1.8元,则购买数量x 千克与所付款W 元之间的关系式是W =1.8x .【互动探索】(引发学生思考)在一个变化的过程中,常量和变量怎样区分? 【解答】(1)S =4πR 2,常量是4,π,变量是S ,R . (2)h =v 0t -4.9t 2,常量是v 0,4.9,变量是h ,t .(3)h =12gt 2(其中g 取9.8 m/s 2),常量是12,g ,变量是h ,t .(4)W =1.8x ,常量是1.8,变量是x ,W .【互动总结】(学生总结,老师点评)常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.活动2 巩固练习(学生独学)1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q (元)与他买这种笔记本的本数x 之间的关系是( C )A .Q =8xB .Q =8x -50C .Q =50-8xD .Q =8x +502.甲、乙两地相距s 千米,某人行完全程所用的时间t (时)与他的速度v (千米/时)满足v t =s ,在这个变化过程中,下列判断中错误的是 ( A )A .s 是变量B .t 是变量C .v 是变量D .s 是常量3.某种报纸的价格是每份0.4元,买x 份报纸的总价为y 元,先填写下表,再用含x 的式子表示y .x 与y =0.4x ,在这个变化过程中,常量是报纸的单价,变量是报纸的份数.4.先写出下列问题中的函数关系式,然后指出其中的变量和常量: (1)直角三角形中一个锐角α与另一个锐角β之间的关系;(2)一个铜球在0 ℃的体积为1000 cm 3,加热后温度每增加1 ℃,体积增加0.051 cm 3,t ℃时球的体积为V cm 3;(3)等腰三角形的顶角为x 度,试用x 表示底角y 的度数. 解:(1)α=90°-β.90°是常量,α、β是变量.(2)V =1000+0.051t .其中1000,0.051是常量,t 、V 是变量.(3)y =180-x 2 =90-x 2(0<x <180°).其中90,12 是常量,x 、y 是变量.活动3 拓展延伸(学生对学)【例2】如图,等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10 cm ,AC 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N 点重合.试写出重叠部分的面积y cm 2与MA 的长度x cm 之间的关系式,并指出其中的常量与变量.【互动探索】根据图形及题意所述可得出重叠部分是等腰直角三角形,从而根据MA 的长度可得出y 与x 的关系,再根据变量和常量的定义得出常量与变量.【解答】由题意知,开始时A 点与M 点重合,让△ABC 向右运动,两图形重合的长度为AM =x cm.∵∠BAC =45°,∴S 阴影=12·AM ·h =12AM 2=12x 2,则y =12x 2,0≤x ≤10.其中的常量为12,变量为重叠部分的面积y cm 2与MA 的长度x cm.【互动总结】(学生总结,老师点评)通过分析题干中的信息得到等量关系并用字母表示是解题的关键,区分其中常量与变量可根据其定义判别.环节3 课堂小结,当堂达标 (学生总结,老师点评)常量与变量⎩⎪⎨⎪⎧定义判断练习设计请完成本课时对应训练!第2课时函数教学目标一、基本目标【知识与技能】1.认识变量中的自变量与函数.2.进一步掌握确定函数关系式的方法.3.会确定自变量的取值范围.【过程与方法】1.经历回顾思考过程,提高归纳总结概括能力.2.通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式.【情感态度与价值观】积极参与活动,提高学习兴趣,并形成合作交流意识及独立思考的习惯.二、重难点目标【教学重点】1.进一步掌握确定函数关系的方法.2.确定自变量的取值范围.【教学难点】认识函数、领会函数的意义.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P72~P74的内容,完成下面练习.【3 min反馈】1.函数的概念:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.2.用关于自变量的数学式子表示函数与自变量之间的关系的式子叫做函数的解析式.3.对函数的理解,要抓住三点:(1)两个变量;(2)一个变量的数值随着另一个变量数值的变化而发生变化;(3)自变量的每一个确定的值,函数都有唯一的一个值与其对应.4.使得函数有意义的自变量的取值的全体叫做自变量的取值范围.确定自变量取值范围的条件:(1)使函数解析式有意义;(2)使函数所代表的实际问题有意义.5.对于自变量的取值范围内的一个确定的值,如当x=a时,y=b,函数有唯一的值b 与之对应,则这个对应值b叫做x=a时的函数值.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】下列变量间的关系不是函数关系的是( ) A .长方形的宽一定,其长与面积 B .正方形的周长与面积 C .等腰三角形的底边长与面积 D .圆的周长与半径【互动探索】(引发学生思考)如何判断两个变量是否是函数关系?【分析】长方形的宽一定,它是常量,而面积=长×宽,长与面积是两个变量,若长改变,则面积也改变,故A 选项是函数关系;正方形的面积=(正方形的周长)216,正方形的周长与面积是两个变量,16是常量,故B 选项是函数关系;等腰三角形的面积=12×高×底,底边长与面积虽然是两个变量,但面积公式中还有底边上的高,而这里高也是变量,有三个变量,故C 选项不是函数关系;圆的周长=2π×半径,圆的周长与其半径是函数关系,故D 选项是函数关系.【答案】C【互动总结】(学生总结,老师点评)判断两个变量是否是函数关系,就看是否存在两个变量,并且在这两个变量中,确定哪个是自变量,哪个是函数,然后再看看这两个变量是否是一一对应关系.【例2】根据如图所示程序计算函数值,若输入x 的值为52,则输出的函数值y 为( )A .32B .25C .425D .254【互动探索】(引发学生思考)已知函数解析式,怎样求函数值?自变量的取值范围不同,对应的函数关系式不同,又怎样求函数值呢?【分析】∵2<52<4,∴将x =52代入函数y =1x ,得y =25.【答案】B【互动总结】(学生总结,老师点评)根据所给的自变量的值结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.【例3】写出下列函数中自变量x 的取值范围: (1)y =2x -3; (2)y =31-x ; (3)y =4-x ; (4)y =x -1x -2. 【互动探索】(引发学生思考)怎样确定自变量的取值范围? 【解答】(1)全体实数. (2)分母1-x ≠0,即x ≠1. (3)被开方数4-x ≥0,即x ≤4.(4)由题意,得⎩⎪⎨⎪⎧x -1≥0,x -2≠0, 解得x ≥1且x ≠2.【互动总结】(学生总结,老师点评)本题考查了函数自变量的取值范围:有分母的要满足分母不能为0,有根号的要满足被开方数为非负数.活动2 巩固练习(学生独学)1.下列变量之间的关系是函数关系的是( C ) A .水稻的产量与用肥量 B .小明的身高与饮食 C .球的半径与体积 D .家庭收入与支出2.如图,△ABC 底边BC 上的高是6 cm ,当三角形的顶点C 沿底边所在直线向点B 运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量是BC ,因变量是 △ABC 的面积; (2)如果三角形的底边长为x (cm),三角形的面积y (cm 2)可以表示为y =3x ; (3)当底边长从12 cm 变到3 cm 时,三角形的面积从36cm 2变到9cm 2; (4)当点C 运动到什么位置时,三角形的面积缩小为原来的一半? 解:当点C 运动到中点时,三角形的面积缩小为原来的一半.3.下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.(1)一个弹簧秤最大能称不超过10 kg 的物体,它的原长为10 cm ,挂上重物后弹簧的长度y (cm)随所挂重物的质量x (kg)的变化而变化,每挂1 kg 物体,弹簧伸长0.5 cm ;(2)设一长方体盒子高为30 cm ,底面是正方形,底面边长a (cm)改变时,这个长方体的体积V (cm 3)也随之改变.解:(1)y =10+12x (0<x ≤10),其中x 是自变量,y 是自变量的函数.(2)V =30a 2(a >0),其中a 是自变量,V 是自变量的函数.4.一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表:(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是什么? (3)当t 每增加1秒时,v 的变化情况相同吗?在哪1秒时,v 的增加量最大?(4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?解:(1)上表反映了时间和速度之间的关系,时间是自变量,速度是因变量.(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是v随着t的增大而增大.(3)当t每增加1秒,v的变化情况不相同,在第9秒时,v的增加量最大.(4) 120×10003600=1003≈33.3(米/秒),由33.3-28.9=4.4,且28.9-24.2=4.7>4.4,所以估计大约还需1秒.活动3拓展延伸(学生对学)【例4】水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经t分钟时,水箱内存水y升.(1)求y关于t的函数关系式和自变量的取值范围;(2)7:55时,水箱内还有多少水?(3)何时水箱内的水恰好放完?【互动探索】(1)根据水箱内存有的水等于原有水减去放掉的水列式整理即可,再根据剩余水量不小于0列不等式求出t的取值范围;(2)当7:55时,t=55-30=25,将t=25代入(1)中的关系式即可;(3)令y=0,求出t的值即可.【解答】(1)∵水箱内存有的水=原有水-放掉的水,∴y=200-2t.∵y≥0,∴200-2t≥0,解得t≤100,∴0≤t≤100,∴y关于t的函数关系式为y=200-2t(0≤t≤100).(2)∵7:55-7:30=25(分钟),∴当t=25时,y=200-2t=200-50=150(升),∴7:55时,水箱内还有水150升.(3)令y=0,即200-2t=0,解得t=100.100分=1时40分,7时30分+1时40分=9时10分,故9:10水箱内的水恰好放完.【互动总结】(学生总结,老师点评)(1)已知函数解析式求函数值,就是将自变量x的值带入解析式,求代数式的值;(2)已知函数解析式并给出函数值,求相应的自变量x的值,实际上就是解方程.环节3课堂小结,当堂达标(学生总结,老师点评) 函数⎩⎪⎨⎪⎧概念自变量的取值范围函数值练习设计请完成本课时对应训练!19.1函数19.1.2函数的图象第1课时函数的图象教学目标一、基本目标【知识与技能】1.学会用列表、描点、连线画函数图象.2.学会观察、分析函数图象信息.【过程与方法】在研究函数图象的过程中体会数形结合思想,并利用它解决问题,提高解决问题的能力.【情感态度与价值观】1.体会数学方法的多样性,提高学习兴趣.2.认识数学在解决问题中的重要作用,从而加深对数学的认识.二、重难点目标【教学重点】1.函数图象的画法.2.观察分析图象信息.【教学难点】分析概括图象中的信息.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P75~P79的内容,完成下面练习.【3 min反馈】1.什么是函数图象?解:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.2.在学习函数图象时,可以通过以下两点帮助理解:(1)函数图象上的任意点P(x,y)中的x、y都满足其函数解析式;(2)满足函数解析式的任意一对x、y的值,所对应的点一定在函数图象上.3.用函数图象描述实际问题时,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.4.如何作函数图象?具体步骤有哪些?画函数的图象,一般运用描点法.用描点法画函数图象的一般步骤:(1)列表:表中给出一些自变量的值及其对应的函数值.自变量的取值不应使函数太大或太小,以便于描点,点数一般以5到7个为宜;(2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点;(3)连线:按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连结起来.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】3月20日,小彬全家开车前往铜梁看油菜花,车刚离开家时,由于车流量大,行进非常缓慢,十几分钟后,汽车终于行驶在高速公路上,大约三十分钟后,汽车顺利到达铜梁收费站,停车交费后,汽车驶入通畅的城市道路,二十多分钟后顺利到达了油菜花基地,在以上描述中,汽车行驶的路程s(千米)与所经过的时间t(分钟)之间的大致函数图象是()A BC D【互动探索】(引发学生思考)行进缓慢,路程增加较慢;在高速路上行驶,路程迅速增加;停车交费,路程不变;驶入通畅的城市道路,路程增加,但增加的比高速路上慢,故B 符合题意.【答案】B【互动总结】(学生总结,老师点评)此类题目,理解题意是解题关键,根据题干中提供的信息及生活实际,判断图象各阶段的变化情况和特征.【例2】作出函数y =-6x的图象.【互动探索】(引发学生思考)先列表取值,再描点,最后连线. 【解答】列表:【互动总结】(学生总结,老师点评)画函数图象要经过列表、描点、连线三个步骤,列表时自变量取值要有代表性(自变量不可以只取正数,也不可以只取负数).自变量不为0,表示图象不是连续的,在自变量为0时,图象断开,分为两段.活动2 巩固练习(学生独学)1.周末小石去博物馆参加综合实践活动,先骑行共享单车前往,0.5小时后到达公交车站,他在公交车站等了一段时间,遇到了叔叔,搭上了叔叔的电瓶车前往.已知小石离家的路程s (单位:千米)与时间t (单位:小时)的函数关系的图象大致如图.则小石叔叔电瓶车的平均速度为( C )A.30千米/小时B.18千米/小时C.15千米/小时D.9千米/小时2.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以点A,P,B为顶点的三角形的面积是y,则下列图象能大致反应y与x的函数关系的是(B)A B C D3.在所给的平面直角坐标系中画出函数y=-2x+2的图象,并根据图象回答问题:(1)当x=-1时,y的值;(2)当x为何值时,y>0?(3)若0≤x≤3,求y的取值范围.解:列表如下:(1)根据表格,当x=-1时y=4.(2)根据图象,观察可得,当x<1时,y>0.(3)根据图象,观察可得,若0≤x≤3,则-4≤y≤2.活动3拓展延伸(学生对学)【例3】小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与离家距离的关系示意图.根据图中提供的信息回答下列问题:(1)小明从家到学校的路程是多少米?(2)小明在书店停留了多久?(3)本次上学途中,小明一共骑行了多少米?一共用了多长时间?(4)我们认为骑单车的速度超过300米/分就超越了安全范围.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全范围内吗?【互动探索】根据图象,获取其中的信息,图象中横、纵坐标表示的是什么?函数值随自变量的变化趋势是怎么样的?【解答】(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米.(2)根据图象,从8分钟到12分钟这段时间内距离不变,故小明在书店停留了4分钟. (3)一共骑行的总路程为1200+(1200-600)+(1500-600)=1200+600+900=2700(米),共用了14分钟.(4)由图象可知:0~6分钟时,平均速度为12006=200(米/分);6~8分钟时,平均速度为1200-6008-6=300(米/分);12~14分钟时,平均速度为1500-60014-12=450(米/分).所以,12~14分钟时,小明骑车速度最快,不在安全范围内.【互动总结】(学生总结,老师点评)解读图象反映的信息,关键是理解横轴和纵轴表示的实际意义,解决问题的过程中体现了数形结合思想.环节3 课堂小结,当堂达标 (学生总结,老师点评) 函数的图象⎩⎪⎨⎪⎧作法意义应用练习设计请完成本课时对应训练!第2课时函数的三种表示方法教学目标一、基本目标【知识与技能】1.总结函数三种表示方法,并总结三种表示方法的优缺点.2.会根据具体情况选择适当方法.【过程与方法】经历回顾思考训练提高归纳总结能力.【情感态度与价值观】1.积极参与活动,提高学习兴趣.2.在数学活动过程中形成合作交流意识及独立思考习惯.二、重难点目标【教学重点】函数三种表示方法.【教学难点】会根据具体情况选择适当方法.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P79~P81的内容,完成下面练习.【3 min反馈】1.函数的三种表示方法分别是解析式法、列表法、图象法.2.用含自变量x的式子表示函数的方法叫做解析式法.3.把一系列自变量x的值与对应的函数值y列成一个表来表示函数关系的方法叫做列表法.4.用图象来表示函数关系的方法叫做图象法.5.函数的三种表示方法的优缺点有哪些?活动1小组讨论(师生互学)【例1】有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下面表格中的一些数据回答下列问题:(1)(2)当所挂重物为x(克)时,用h(厘米)表示总长度,请写出此时弹簧的总长度的函数表达式.(3)当弹簧的总长度为25厘米时,求此时所挂重物的质量.【互动探索】(引发学生思考)能从表格中直接读出挂重物体的质量与对应的弹簧总长度的值吗?如何根据表格写出所挂物体的质量与弹簧的总长度之间的函数关系?【解答】(1)5÷0.5×1=10(克),即要想使弹簧伸长5厘米,应挂重物10克.(2)h=10+0.5x(0≤x≤50).(3)令10+0.5x=25,解得x=30,即当弹簧的总长度为25厘米时,此时所挂重物的质量为30克.【互动总结】(学生总结,老师点评)列表法的优点是不需要计算就可以直接看出与自变量的值相对应的函数值,简洁明了.列表法在实际生产和生活中也有广泛应用,如成绩表、银行的利率表等.【例2】如图描述了一辆汽车在某一直路上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的关系,请根据图象回答下列问题:(1)汽车一共行驶的路程是多少? (2)汽车在行驶途中停留了多长时间? (3)汽车在每个行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回用了多长时间?【互动探索】(引发学生思考)从函数图象中我们得到哪些信息?这些信息与所求问题有何关系?【解答】(1)由纵坐标看出汽车最远行驶路程是120千米,往返共行驶的路程是120×2=240(千米).(2)由横坐标看出2-1.5=0.5(小时),故汽车在行驶途中停留了0.5小时.(3)①由纵坐标看出汽车到达B 点时的路程是80千米,由横坐标看出到达B 点所用的时间是1.5小时,由此算出平均速度80÷1.5=1603(千米/时);②由纵坐标看出汽车从B 到C 没动,此时速度为0千米/时;③由横坐标看出汽车从C 到D 用时3-2=1(小时),从纵坐标看出行驶了120-80=40(千米),故此时的平均速度为40÷1=40(千米/时);④由纵坐标看出汽车返回的路程是120千米,由横坐标看出用时4.5-3=1.5(小时),由此算出平均速度120÷1.5=80(千米/时).(4)由横坐标看出4.5-3=1.5(小时),返回用了1.5小时.【互动总结】(学生总结,老师点评)图象法的优点是直观形象地表示自变量与相应的函数值变化的趋势,有利于我们通过图象来研究函数的性质.图象法在生产和生活中有许多应用,如企业生产图,股票指数走势图等.【例3】一辆汽车油箱内有油48升,从某地出发,每行1千米,耗油0.6升,如果设剩余油量为y (升),行驶路程为x (千米).(1)写出y 与x 的关系式;(2)这辆汽车行驶35千米时,剩油多少升?汽车剩油12升时,行驶了多千米?(3)这辆车在中途不加油的情况下,最远能行驶多少千米?【互动探索】(引发学生思考)剩余油量为y(升)与行驶路程为x(千米)之间满足什么样的等量关系?根据自变量的取值怎样求函数值?由函数值怎样求出自变量的取值?【解答】(1)由题意,得y=-0.6x+48.(2)当x=35时,y=48-0.6×35=27,∴这辆车行驶35千米时,剩油27升.当y=12时,48-0.6x=12,解得x=60,∴汽车剩油12升时,行驶了60千米.(3)令y=0,即-0.6x+48=0,解得x=80,即这辆车在中途不加油的情况下,最远能行驶80 km.【互动总结】(学生总结,老师点评)解析式法有两个优点:一是简明、精确地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.活动2巩固练习(学生独学)1.下面说法中正确的是(C)A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的函数关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对2.某学习小组做了一个实验:从一幢100 m高的楼顶随手放下一个苹果,测得有关数据如下:A.苹果每秒下落的路程越来越长B.苹果每秒下落的路程不变C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5秒3.如图,直角边长为2的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为(B)。

一次函数 初中八年级下册数学教案教学设计课后反思 人教版

一次函数 初中八年级下册数学教案教学设计课后反思 人教版

《一次函数》教学设计一、教学目标(一)理解一次函数的概念以及它和正比例函数之间的关系;(二)确定一次函数解析式;(三)会画一次函数图像,并根据一次函数图像解决实际问题。

重点:理解一次函数的概念以及一次函数图像的性质。

难点:根据一次函数图像解决实际问题。

二、教材内容分析本课主要通过类比正比例函数来探究一次函数的概念,引导学生画出一次函数的图像并根据图像解决实际问题。

一次函数是一种最基本的初等函数,在现实生活中有着广泛的应用,而熟练掌握一次函数的性质和应用,是渗透“数形结合”的思想方法的重要途径,对今后进一步学习反函数以及二次函数具有启示作用。

三、教学方法(一)由实际问题引出一次函数解析式的过程,充分体现数学与生活之间的联系;(二)在画一次函数图像过程中体会“数形结合”的思想方法。

四、活动准备:(一)学生准备:课前认真复习正比例函数相关知识;(二)物质材料准备:课件《一次函数》。

五、活动过程:(一)课堂回顾1、引导学生利用绘制表格的方式回顾正比例函数的相关知识。

正比例函数的函数解析式为)0kxy,当0(≠=kk时,它的图像为。

(出示>课件)。

当0k时,正比例函数的图像经过一三象限,且y随x的增大而增大。

>当0k时,正比例函数的图像经过二四<k时,它的图像为。

(出示课件)当0<象限,且y随x的增大而减小。

(二)新课导入1、某登山队大本营所在地气温为5℃,海拔每升高1km下降6℃.登山队员由大本营向上登高xkm时,他们所在位置的气温是y℃,试用函数解析式表示y 与x的关系。

2、以下变量之间的对应关系是函数关系吗?(1)有人发现,在20℃~25℃时蟋蟀每分鸣叫次数c 与温度t(单位:℃)有关,即c 的值约是t 的7倍与35的差.(2)一种计算成年人标准体重G(单位:kg)的方法是:以厘米为单位量出身高值h ,再减常数105,所得差是G 的值.(3)某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话xmin 的计时费(按0.1元/min 收取).(4)把一个长10cm 、宽5cm 的长方形的长减少xcm ,宽不变,长方形的面积y(单位:cm2)随x 的变化而变化.通过列一次函数解析式归纳出一次函数的概念。

人教版八年级下册19.2.2一次函数教学设计

人教版八年级下册19.2.2一次函数教学设计

人教版八年级下册19.2.2一次函数教学设计一、教学目标通过本节课的学习,学生应该能够:1.理解一次函数的概念和基本形式;2.掌握一次函数的图像特征和变化规律;3.运用一次函数解决实际问题;4.提高数学思维能力和实际问题解决能力;二、教学内容1. 一次函数的概念和基本形式•一次函数的定义;•一次函数的基本形式:y=kx+b;•解析式与图像的关系。

2. 一次函数的图像特征和变化规律•平移;•伸缩;•翻折。

3. 运用一次函数解决实际问题•根据问题列出一次函数表达式;•根据实际情况确定函数的参数;•利用函数解决实际问题。

三、教学过程设计1. 导入新知识为了导入新知识并激发学生的兴趣,老师可以提出如下问题:•小明同学每天在校园里跑步,他想记录自己跑步时的速度和时间之间的关系。

你有什么方法来表示这种关系呢?通过引入这种实际的问题,帮助学生认识新知识的实际应用,激发学生的兴趣。

2. 学习新知识接下来,老师可以介绍一次函数的定义和基本形式,并利用图例展示一次函数的图像特征和变化规律。

然后,老师可以组织学生在课堂上完成一些简单的练习题,以检验他们理解的深度和广度。

3. 解决实际问题最后,老师可以解决一些实际的问题,例如:•小明同学每天在校园里跑步,他发现他的速度和时间之间的关系可以用一次函数表示,即y=2x+5。

如果小明同学跑步2小时,他跑了多远呢?•小李同学想用一条斜率为3,截距为−2的直线去近似表示下列表中的数值数据,写出这条直线的解析式并绘制出它的图像。

这些问题可以帮助学生结合实际问题来学习新知识,并提高他们的数学思维能力和实际问题解决能力。

四、教学评估在课堂结束时,老师可以通过以下方式对学生的学习情况进行评估:•随堂测试;•课堂练习;•课堂讨论。

五、教学后记在课堂结束后,老师应该根据学生的学习情况,调整后续教学计划和课程安排,及时对学生提出改进建议和意见,帮助他们提高学习成绩和素质。

八年级数学下册《一次函数》教案、教学设计

八年级数学下册《一次函数》教案、教学设计
4.能够运用一次函数解决实际问题,如线性方程组的求解、线性不等式的求解等。
(二)过程与方法
在本章节的学习过程中,教师将引导学生:
1.通过实际问题的引入,激发学生的学习兴趣,培养学生运用数学知识解决实际问题的能力。
2.利用数形结合的方法,引导学生观察、分析一次函数图像的特征,培养学生的观察能力和逻辑思维能力。
八年级数学下册《一次函数》教案、教学设计
一、教学目标
(一)知识与技能
1.理解一次函数的定义,掌握一次函数的一般形式y=kx+b,其中k、b为常数,且k≠0。
2.学会通过给定条件求解一次函数的解析式,并能根据解析式作出函数图像。
3.掌握一次函数图像的几何特征,如斜率k的正负、图像的截距b等,了解一次函数图像与系数之间的关系。
1.基础巩固题:
-根据一次函数的定义,求解以下方程组,并分析其图像特征:y = 2x + 3,y = -1/2x - 4。
-分别求出直线y = 3x + 2与x轴、y轴的交点坐标,并说明其斜率和截距。
2.提高应用题:
-某商店举行促销活动,购买数量x(件)与折扣y(折)之间的关系为y = 0.8 - 0.1x(0 ≤ x ≤ 10)。请根据函数关系,设计购买方案,使得顾客购买商品时获得最大优惠。
4.数学日记:
-请学生撰写一篇关于一次函数学习心得的数学日记,内容可以包括:学习过程中的困惑、解决方法、对一次函数的理解等。
作业要求:
1.学生需独立完成作业,保持解答过程的整洁、规范。
2.家长协助监督,确保学生按时完成作业,养成良好的学习习惯。
3.教师将根据作业完成情况,进行针对性的辅导和评价,以提高学生的学习效果。
4.课堂管理与评价:

最新人教版八年级数学下册 第十九章《一次函数》教案

最新人教版八年级数学下册 第十九章《一次函数》教案

最新人教版八年级数学下册第十九章《一次函数》教案教案:一次函数第一课时:一次函数概念新课标要求:1.知道一次函数的有关概念;2.知道正比例函数是特殊的一次函数。

教学重点:一次函数的概念。

教学难点:实际问题用一次函数解析式表示出来。

教学方法:教师提出问题、引导,学生观察、思考、阅读、讨论。

引入新课:教师活动:出示问题:某登山队大本营所在地的气温为5℃,海拔每升高1km气温降低6℃,登山队员由大本营向上登高x km时,他们所在位置的气温是y℃,试用解析式表示y与x的关系。

学生活动:认真思考问题,作出解答,并在小组内讨论交流。

教师活动:1.根据学生解答情况作适当点评;2.给出问题:下列问题中变量间的对应关系可用怎样的函数表示?1)有人发现,在20—25℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差;2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值;3)某城市的市内电话的月收费额y(单位:元)包括:月租费22元,拨打电话x分的计时费按1元/分收取;4)把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单2位:cm)随x的值而变化。

先作出来的同学将函数关系式写在黑板上,其他同学写在练本上。

学生活动:按要求做思考题。

教师活动:提出要求:仔细观察黑板上的解析式,归纳他们的共同点。

学生活动:认真观察总结。

教师活动:让学生阅读下面的“归纳”部分和以下内容,以掌握一次函数的概念。

根据“归纳”部分,我们可以发现,一次函数的形式都是自变量x的k(常数)倍与一个常数的和。

一般地,形如y=kx+b(k,b为常数,k≠0)的函数,叫做一次函数。

当b=0时,y=kx+b即y=kx,因此正比例函数是一种特殊的一次函数。

学生活动:学生应按要求阅读教材,理解并记忆一次函数的概念和一般形式。

第二课时一次函数图像新课标要求一)知识与技能1.知道一次函数的图像是直线,会用两点法画一次函数的图像。

人教版数学八年级下册19.2.2《一次函数》教学设计1

人教版数学八年级下册19.2.2《一次函数》教学设计1

人教版数学八年级下册19.2.2《一次函数》教学设计1一. 教材分析人教版数学八年级下册19.2.2《一次函数》是初中数学的重要内容,主要让学生了解一次函数的定义、性质及图象,能运用一次函数解决实际问题。

本节课的内容在学生学习了代数知识、平面直角坐标系的基础上进行,为后续学习二次函数、反比例函数等函数知识打下基础。

二. 学情分析八年级的学生已经掌握了代数基础知识,对平面直角坐标系有一定的了解。

但学生在学习过程中,可能对一次函数的图象与系数之间的关系理解不够深入,需要通过实例让学生感受一次函数的实际应用,提高学生的学习兴趣。

三. 教学目标1.理解一次函数的定义,掌握一次函数的性质及其图象特点。

2.学会用一次函数解决实际问题,提高学生的应用能力。

3.培养学生的团队协作精神,提高学生的表达能力和解决问题的能力。

四. 教学重难点1.一次函数的定义及其性质。

2.一次函数图象的特点。

3.一次函数在实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生探究一次函数的定义、性质及应用。

2.利用数形结合法,让学生直观地理解一次函数的图象与系数之间的关系。

3.运用实例分析法,培养学生解决实际问题的能力。

4.小组讨论,培养学生的团队协作精神。

六. 教学准备1.准备相关的一次函数教学素材,如PPT、例题、练习题等。

2.准备一次函数的图象展示工具,如黑板、白板笔等。

3.准备一次函数的实际应用案例,如购物、出行等问题。

七. 教学过程1.导入(5分钟)利用PPT展示一次函数的实际应用案例,引导学生思考一次函数的意义,激发学生的学习兴趣。

2.呈现(10分钟)介绍一次函数的定义、性质及图象特点,让学生初步了解一次函数的基本概念。

3.操练(10分钟)让学生自主探究一次函数的性质,通过PPT展示典型例题,引导学生运用所学知识解决问题。

4.巩固(10分钟)学生进行小组讨论,分享各自在探究过程中总结的一次函数的性质,加深学生对一次函数的理解。

人教版八年级下册第十九章一次函数课程设计

人教版八年级下册第十九章一次函数课程设计

人教版八年级下册第十九章一次函数课程设计课程设计目标1.掌握一次函数的定义及其特点;2.掌握一次函数的图像表示;3.培养学生的数学建模能力,在实际问题中运用一次函数的知识解决问题;4.引导学生学会与他人合作,共同解决问题;5.提高学生的数学思维能力,培养学生的自主学习能力。

教学过程步骤一:导入与概念讲解1.导入通过呈现一个关于速度和路程的实例,让学生认识到速度与路程的比例关系,从而引入一次函数的概念。

2.明确一次函数的定义及其特点通过讲解一次函数定义、解析式,以及直线图像的特点对其进行讲解,加深学生对一次函数的理解。

步骤二:运用一次函数解决实际问题1.教师给出一组数据,引导学生运用一次函数,求得规律,并在图像上进行表示。

2.学生自主寻找实际问题,并在小组内进行讨论,运用一次函数解决问题并在图像上进行表述。

3.小组之间进行竞赛,评选出最佳解决方案。

步骤三:总结与拓展1.整理笔记在讲解完一次函数的相关知识后,教师会让学生进行笔记整理。

学生在整理笔记的过程中可以加深对概念的认识,发现薄弱环节,并积极思考。

2. 拓展练习通过布置一些拓展题目,让学生巩固所学知识,拓展其思维;同时,也能让学生发现一次函数知识在日常生活中的应用。

教学效果评价评价方法本次课程的评价主要分为以下几个方面:课堂表现、作业提交、出勤情况、考试成绩、目标达成情况。

其中,课堂表现占比30%,作业提交占比20%,出勤情况占比20%,考试成绩占比25%,目标达成情况占比5%。

评价标准1.课堂表现:学生是否听课认真,及时提问,是否积极参与讨论等。

2.作业提交:学生是否按时提交作业,作业质量是否高。

3.出勤情况:学生是否按时到课,是否早退早到等。

4.考试成绩:学生是否理解掌握了一次函数知识,考试成绩能否达到预期等。

5.目标达成情况:学生是否达到了本次课程设计的目标。

总结本次课程设计着重培养学生的数学建模能力,引导学生在实际问题中运用一次函数知识解决问题。

人教版八年级数学下册19.2一次函数的图象和性质教学设计

人教版八年级数学下册19.2一次函数的图象和性质教学设计
-学生往往难以从图像中抽象出一次函数的性质,如斜率的正负与图像的增减性。
-在实际问题中,学生可能难以识别一次函数关系,需要培养他们的观察能力和抽象思维能力。
(二)教学设想
1.利用互动式教学,强化学生对一次函数概念的理解。
-设计课堂提问,引导学生思考一次函数的定义和特征。
-通过小组讨论,让学生在交流中加深对一次函数图像和性质的理解。
1.回顾已学的线性方程和不等式,引导学生思考这些知识在一次函数学习中的作用。
-提问:“我们之前学习的线性方程和不等式与今天要学习的一次函数有什么联系?”
-通过回顾,让学生意识到一次函数是线性方程和不等式的图像表现形式。
2.创设生活情境,提出问题,引发学生思考。
-情境:“小明乘公交车去动物园,公交车的速度是恒定的,请问小明离动物园的距离是如何随时间变化的?”
三、教学重难点和教学设想
(一)教学重难点
1.重点:一次函数的定义、图像与性质的理解和应用。
-准确理解一次函数的标准形式,掌握斜率和截距的概念。
-学会绘制一次函数的图像,并能通过图像分析一次函数的性质。
-能够将一次函数的性质应用于解决实际问题。
2.难点:一次函数图像与性质之间的关系,以及将实际问题抽象为一次函数模型。
-提高学生的学习策略,培养他们的自主学习能力。
3.对学生在课堂上的表现给予评价,激发他们的学习积极性。
-肯定学生的努力,鼓励他们在今后的学习中继续进步。
五、作业布置
为了巩固学生对一次函数的理解和应用,我将布置以下作业:
1.基础知识巩固题:请学生完成教材第19.2节后的练习题1-5,包括绘制一次函数图像、计算斜率和截距等。这些题目旨在帮助学生巩固一次函数的基本概念和性质。

人教版数学八年级下册19.2.2《一次函数》教学设计

人教版数学八年级下册19.2.2《一次函数》教学设计
(1)分组讨论:一次函数在实际生活中的应用,每组选一个主题,进行深入研究。
(2)小组汇报:每组制作一份PPT,展示研究成果,并分享学习心得。
5.预习作业:
预习下一节课的内容,了解一次函数与二次函数的区别与联系,为课堂学习做好准备。
作业要求:
1.认真完成作业,书写规范,保持卷面整洁。
2.提高题和拓展题可根据个人能力选择性完成,鼓励学有余力的同学挑战更高难度的题目。
(五)总结归纳
1.学生总结:请学生谈谈对本节课一次函数的学习体会,总结一次函数的定义、图像特点、性质等方面的知识。
2.教师点评:教师针对学生的总结进行点评,强调重点知识,指出学生在学习过程中存在的问题。
3.知识拓展:引导学生思考一次函数在实际生活中的应用,激发学生学习数学的兴趣。
4.课后作业:布置一些关于一次函数的练习题,巩固所学知识,提高学生的应用能力。
(二)教学设想
1.教学方法:
(1)采用启发式教学,引导学生通过观察、分析、概括,自主探究一次函数的定义和图像特点。
(2)运用多媒体辅助教学,以生动的图像、动画等形式展示一次函数的图像变化,帮助学生理解记忆。
(3)采用任务驱动法,设置实际问题,引导学生运用一次函数知识解决问题,提高学生的应用能力。
2.教学过程:
3.情境引入:通过展示一些生活中的图片,如直线上升的气温图、物品的价格与数量的关系图等,让学生感受到一次函数在生活中的广泛应用。
(二)讲授新知
1.定义:一次函数是指形如y=kx+b(k≠0,k、b为常数)的函数,其中k称为斜率,表示函数图像的倾斜程度;b称为截距,表示图像与y轴的交点。
2.图像特点:一次函数的图像是一条直线,当k>0时,图像呈现上升趋势;当k<0时,图像呈现下降趋势。

人教版数学八年级下册第19章一次函数(教案)

人教版数学八年级下册第19章一次函数(教案)
人教版数学八年级下册第19章一次函数(教案)
一、教学内容
本节课依据人教版数学八年级下册第19章“一次函数”进行设计。教学内容主要包括以下几部分:
1.一次函数的定义:介绍一次函数的概念,使学生理解一次函数的表达式y=kx+b(k≠0,k、b是常数)的含义。
2.一次函数的图像:探讨一次函数的图像特点,包括直线、斜率和截距,以及图像与k、b的关系。
4.培养学生的几何直观能力:通过一次函数图像的绘制和分析,提高学生对几何图形的认识,培养几何直观素养。
本节课将着重关注这些核心素养的培养,使学生能够在掌握一次函数知识的同时,提升综合运用数学知识解决问题的能力。
三、教学难点与重点
1.教学重点
-一次函数的定义:重点讲解一次函数表达式y=kx+b(k≠0,k、b是常数)的意义,使学生理解k、b分别代表斜率和截距。
五、教学反思
在这次一次函数的教学中,我注意到学生们对一次函数的定义和图像绘制掌握得相对较好,但在理解斜率和截距的实际意义以及一次函数在解决具体问题中的应用上,还存在一些困难。这让我意识到,在今后的教学中,我需要从以下几个方面进行改进和加强。
首先,针对斜率和截距的理解,我可以设计更多的直观演示和实际案例,让学生能够更直观地感受到斜率和截距在图像上的具体表现。比如,可以让学生们通过动手操作,改变斜率和截距的值,观察图像的变化,从而加深对这两个概念的理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数的基本概念。一次函数是形如y=kx+b的表达式,其中k和b种数学模型。
2.案例分析:接下来,我们来看一个具体的案例。假设苹果的价格是每千克2元,那么购买x千克的苹果需要支付y元,可以表示为一次函数y=2x。这个案例展示了如何利用一次函数解决实际问题。

人教版八年级下册19.2.2一次函数(教案)

人教版八年级下册19.2.2一次函数(教案)
4.一次函数的解析式:根据图像上的点或给定的斜率和截距,求一次函数的解析式;
5.一次函数的实际应用:解决实际问题,如行程问题、利润问题等。
二、核心素养目标
1.理解一次函数的定义、图像、性质,培养数学抽象、逻辑推理的核心素养;
2.学会根据一次函数的图像或实际问题求解解析式,提高问题解决和数学建模的核心素养;
在讲授一次函数图像时,我采用了图形和实际操作相结合的方式,让学生通过画图来观察斜率和截距对图像的影响。从学生的反馈来看,这种方法比较有效,他们能够通过动手实践来加深对知识点的理解。不过,我也注意到有些学生在图像的绘制上还不够精确,这需要在今后的教学中继续加强指导。
小组讨论环节,我鼓励学生们提出问题,并尝试自己解决问题。我观察到他们在讨论中能够相互启发,共同进步。但我也发现,有些小组在讨论时可能会偏离主题,需要我在旁边适时引导,确保讨论的方向和深度。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一次函数的基本概念、图像、性质以及它在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对一次函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

人教版八年级数学下册第19章一次函数(教案)

人教版八年级数学下册第19章一次函数(教案)
举例:给出实际情境,如计算两人相遇时间,引导学生建立一次函数模型,求解问题;
(4)一次函数与其他函数的关系:了解一次函数与正比例函数、反比例函数的联系与区别;
举例:对比y=kx和y=k/x的图像特点,阐述一次函数与正比例函数、反比例函数的关系。
2.教学难点
(1)一次函数图像的变换:理解平移、缩放等变换对一次函数图像的影响;
3.在探究一次函数性质的过程中,锻炼学生的数据分析、数学运算能力,提升数学核心素养;
4.深化学生对一次函数与其他函数关系的理解,培养他们数学知识的整合与应用能力,增强综合素质。
具体内容包括:
(1)让学生在实际问题中运用一次函数,学会从数学角度分析问题,提高数学抽象和逻辑推理能力;
(2)引导学生通过观察、分析一次函数图像,培养直观想象力和数学建模素养;
(4)一次函数与坐标轴的交点:求解一次函数与坐标轴的交点;
难点解析:学生可能在求解过程中忽视k=0的特殊情况,需要强调并举例说明;
举例:求解y=2x+1与x轴、y轴的交点,解释当k=0时,函数图像与y轴的交点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个人同时出发,速度不同,但最终在某一点相遇的情况?”这个问题与我们将要学习的一次函数密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数的奥秘。
另数模型。这说明我们在教授数学应用方面还需要加强。在接下来的教学中,我会着重培养同学们的数学建模能力,让他们学会从实际问题中抽象出数学模型,并用一次函数来解决。
此外,小组讨论环节也让我看到了同学们的积极参与和合作精神。他们在讨论一次函数在实际生活中的应用时,提出了很多有趣的观点和实例。这说明同学们已经能够将所学知识应用到实际情境中,这是值得鼓励的。但同时,我也注意到部分同学在讨论中较为被动,今后我会更加关注这部分同学,鼓励他们积极参与,提高他们的自信心。

新 人教版初中八年级数学下册《一次函数》教案

新 人教版初中八年级数学下册《一次函数》教案

一次函数第一课时教学目标1.理解一次函数和正比例函数的概念;2.根据实际问题列出简单的一次函数的表达式.3.经历由实际问题引出一次函数解析式的过程,体会数学与现实生活的联系;4.探求一次函数解析式的求法,发展学生的数学应用能力.教学过程一、创设情境问题1小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.分析我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是s=570-95t.说明找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.问题2小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份之间的函数关系式.分析我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.问题3以上问题1和问题2表示的这两个函数有什么共同点?二、探究归纳上述两个问题中的函数解析式都是用自变量的一次整式表示的.函数的解析式都是用自变量的一次整式表示的,我们称它们为一次函数(linear function).一次函数通常可以表示为y=kx+b的形式,其中k、b是常数,k≠0.特别地,当b=0时,一次函数y=kx(常数k≠0)出叫正比例函数(direct proportional function).正比例函数也是一次函数,它是一次函数的特例.三、实践应用例1下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);(2)长为8(cm)的平行四边形的周长L (cm)与宽b (cm);(3)食堂原有煤120吨,每天要用去5吨,x 天后还剩下煤y 吨;(4)汽车每小时行40千米,行驶的路程s (千米)和时间t (小时). 分析 确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y =kx +b (k ≠0)或y =kx (k ≠0)形式,所以此题必须先写出函数解析式后解答.解 (1)ha 20=,不是一次函数. (2)L =2b +16,L 是b 的一次函数.(3)y =150-5x ,y 是x 的一次函数.(4)s =40t ,s 既是t 的一次函数又是正比例函数.例2 已知函数y =(k -2)x +2k +1,若它是正比例函数,求k 的值.若它是一次函数,求k 的值.分析 根据一次函数和正比例函数的定义,易求得k 的值. 解 若y =(k -2)x +2k +1是正比例函数,则2k +1=0,即k =21-. 若y =(k -2)x +2k +1是一次函数,则k -2≠0,即k ≠2.例3 已知y 与x -3成正比例,当x =4时,y =3.(1)写出y 与x 之间的函数关系式;(2)y 与x 之间是什么函数关系;(3)求x =2.5时,y 的值.解 (1)因为 y 与x -3成正比例,所以y =k (x -3).又因为x=4时,y=3,所以3=k(4-3),解得k=3,所以y=3(x-3)=3x-9.(2) y是x的一次函数.(3)当x=2.5时,y=3×2.5=7.5.例4已知A、B两地相距30千米,B、C两地相距48千米.某人骑自行车以每小时12千米的速度从A地出发,经过B地到达C地.设此人骑行时间为x(时),离B地距离为y(千米).(1)当此人在A、B两地之间时,求y与x的函数关系及自变量x 取值范围.(2)当此人在B、C两地之间时,求y与x的函数关系及自变量x 的取值范围.分析 (1)当此人在A、B两地之间时,离B地距离y为A、B两地的距离与某人所走的路程的差.(2)当此人在B、C两地之间时,离B地距离y为某人所走的路程与A、B两地的距离的差.解(1) y=30-12x.(0≤x≤2.5)(2) y=12x-30.(2.5≤x≤6.5)例5某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.分析因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.解在第一阶段:y=3x(0≤x≤8);在第二阶段:y=16+x(8≤x≤16);在第三阶段:y=-2x+88(24≤x≤44).第二课时教学目标1.理解一次函数和正比例函数的图象是一条直线;2.熟练地作出一次函数和正比例函数的图象,掌握k与b的取值对直线位置的影响.3.经历一次函数的作图过程,探索某些一次函数图象的异同点;4.体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂.教学过程一、创设情境前面我们学习了用描点法画函数的图象的方法,下面请同学们根据画图象的步骤:列表、描点、连线,在同一平面直角坐标系中画出下列函数的图象. (1)x y 21=; (2)221+=x y ;(3) y =3x ; (4) y =3x +2.同学们观察并互相讨论,并回答:你所画出的图象是什么形状.二、探究归纳观察上面四个函数的图象,发现它们都是直线.请同学举例对你们的发现作出验证.一次函数y =kx +b (k ≠0)的图象是一条直线,这条直线通常又称为直线y=kx+b(k≠0).特别地,正比例函数y=kx(k≠0)是经过原点的一条直线.问几点可以确定一条直线?答两点.结论那么今后画一次函数图象时只要取两点,过两点画一条直线就可以了.请同学们在同一平面直角坐标系中画出下列函数的图象.(1)y=-x、y=-x+1与y=-x-2;(2)y=2x、y=2x+1与y=2x-2.通过观察发现:(1)第一组三条直线互相平行,第二组的三条直线也互相平行.为什么呢?因为每一组的三条直线的k 相同;还可以看出,直线y =-x +1与y =-x -2是由直线y =-x 分别向上移动1个单位和向下移动2个单位得到的;而直线y =2x +1与y =2x -2是由直线y =2x 分别向上移动1个单位和向下移动2个单位得到的.(2)y =-x 与 y =2x 、y =-x +1与y =2x +1、y =-x -2与y =2x -2的交点在同一点,为什么呢?因为每两条直线的b 相同;而直线与y 轴的交点纵坐标取决于b .所以,两个一次函数,当k 一样,b 不一样时(如y =-x 、y =-x +1与y =-x -2;y =2x 、y =2x +1与y =2x -2),有共同点:直线平行,都是由直线y =kx (k ≠0)向上或向下移动得到; 不同点:它们与y 轴的交点不同.而当两个一次函数,b 一样,k 不一样时(如y =-x 与 y =2x 、y =-x +1与y =2x +1、y =-x -2与y =2x -2),有共同点:它们与y 轴交于同一点(0,b );不同点:直线不平行.三、实践应用例1 在同一平面直角坐标系中画出下列每组函数的图象.(1)y =2x 与y =2x +3;(2)y =3x +1与121+=x y .解注画出图象后,同学间互相讨论、交流,看看是否与上面的结果一样.想一想 (1)上面每组中的两条直线有什么关系?(2)你取的是哪几个点,互相交流,看谁取的点比较简便.通过比较,老师点拨,得出结论:一般情况下,要取直线与x轴、y轴的交点比较简便.例2 直线521,321--=+-=x y x y 分别是由直线x y 21-=经过怎样的移动得到的.分析 只要k 相同,直线就平行,一次函数y =kx +b (k ≠0)是由正比例函数的图象y =kx (k ≠0)经过向上或向下平移b 个单位得到的.b >0,直线向上移;b <0,直线向下移.解 321+-=x y 是由直线x y 21-=向上平移3个单位得到的;而521--=x y 是由直线x y 21-=向下平移5个单位得到的.例3 说出直线y =3x +2与221+=x y ;y =5x -1与y =5x -4的相同之处.分析 k 相同,直线就平行.b 相同,直线与y 轴交于同一点,且交点坐标为(0,b ).解 直线y =3x +2与221+=x y 的b 相同,所以这两条直线与y 轴交于同一点,且交点坐标为(0,2);直线y =5x -1与y =5x -4的k 都是5,所以这两条直线互相平行.例4 画出直线y =-2x +3,借助图象找出:(1)直线上横坐标是2的点;(2)直线上纵坐标是-3的点;(3)直线上到y 轴距离等于1的点.解(1)直线上横坐标是2的点是A(2,-1);(2)直线上纵坐标是-3的点B(3,-3);(3)直线上到y轴距离等于1的点C(1,1)和D(-1,5).第三课时教学目标1.使学生熟练地作出一次函数的图象,会求一次函数与坐标轴的交点坐标;2.会作出实际问题中的一次函数的图象.3.通过画一次函数图象和实际问题中的一次函数图象,感受数学来源于生活又应用于生活;4.探索一次函数图象的特点体会用“数形结合”思想解决数学问题.教学过程一、创设情境1.一次函数的图象是什么,如何简便地画出一次函数的图象?(一次函数y =kx +b (k ≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象).2.正比例函数y =kx (k ≠0)的图象是经过哪一点的直线?(正比例函数y =kx (k ≠0)的图象是经过原点(0,0)的一条直线).3.平面直角坐标系中,x 轴、y 轴上的点的坐标有什么特征?4.在平面直角坐标系中,画出函数121-=x y 的图象.我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?二、探究归纳1.在画函数121-=x y 的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y 轴上,点(2,0)在x 轴上,我们把这两个点依次叫做直线与y 轴与x 轴的交点.2.求直线y =-2x -3与x 轴和y 轴的交点,并画出这条直线.分析 x 轴上点的纵坐标是0,y 轴上点的横坐标0.由此可求x 轴上点的横坐标值和y 轴上点的纵坐标值.解 因为x 轴上点的纵坐标是0,y 轴上点的横坐标0,所以当y =0时,x =-1.5,点(-1.5,0)就是直线与x 轴的交点;当x =0时,y =-3,点(0,-3)就是直线与y 轴的交点.过点(-1.5,0)和(0,-3)所作的直线就是直线y =-2x -3.所以一次函数y =kx +b ,当x =0时,y =b ;当y =0时,kb x -=.所以直线y =kx +b 与y 轴的交点坐标是(0,b ),与x 轴的交点坐标是⎪⎭⎫ ⎝⎛-0,k b . 三、实践应用例1 若直线y =-kx +b 与直线y =-x 平行,且与y 轴交点的纵坐标为-2;求直线的表达式.分析 直线y =-kx +b 与直线y =-x 平行,可求出k 的值,与y 轴交点的纵坐标为-2,可求出b 的值.解 因为直线y =-kx +b 与直线y =-x 平行,所以k =-1,又因为直线与y 轴交点的纵坐标为-2,所以b =-2,因此所求的直线的表达式为y =-x -2.例2 求函数323-=x y 与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.分析 求直线323-=x y 与x 轴、y 轴的交点坐标,根据x 轴、y 轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标;结合图象,易知直线323-=x y 与x 轴、y 轴围成的三角形是直角三角形,两条直角边就是直线323-=x y 与x 轴、y 轴的交点与原点的距离.解 当y =0时,x =2,所以直线与x 轴的交点坐标是A (2,0);当x =0时,y =-3,所以直线与y 轴的交点坐标是B (0,-3).3322121=⨯⨯=⨯=∆OB OA S OAB .例3 画出第一节课中问题(1)中小明距北京的路程s (千米)与在高速公路上行驶的时间t (时)之间函数s =570-95t 的图象. 分析 这是一题与实际生活相关的函数应用题,函数关系式s =570-95t 中,自变量t 是小明在高速公路上行驶的时间,所以0≤t ≤6,画出的图象是直线的一部分.再者,本题中t 和s 取值悬殊很大,故横轴和纵轴所选取的单位长不一致.讨论 1.上述函数是否是一次函数?这个函数的图象是什么?2.在实际问题中,一次函数的图象除了直线和本题的图形外,还有没有其他的情形?你能不能找出几个例子加以说明.例4 旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费y (元)可以看成他们携带的行李质量x (千克)的一次函数为561-=x y .画出这个函数的图象,并求旅客最多可以免费携带多少千克的行李?分析 求旅客最多可以免费携带多少千克的行李数,即行李费为0元时的行李数.为此只需求一次函数与x 轴的交点横坐标的值.即当y =0时,x =30.由此可知这个函数的自变量的取值范围是x ≥30. 解 函数561-=x y (x ≥30)图象为:当y =0时,x =30.所以旅客最多可以免费携带30千克的行李.例5 今年入夏以来,全国大部分地区发生严重干旱.某市自来水公司为了鼓励市民节约用水,采取分段收费标准,若某户居民每月应交水费y(元)是用水量x(吨)的函数,当0≤x≤5时,y=0.72x,当x>5时,y=0.9x-0.9.(1)画出函数的图象;(2)观察图象,利用函数解析式,回答自来水公司采取的收费标准. 分析画函数图象时,应就自变量0≤x≤5和x>5分别画出图象,当0≤x≤5时,是正比例函数,当x>5是一次函数,所以这个函数的图象是一条折线.解(1)函数的图象是:(2)自来水公司的收费标准是:当用水量在5吨以内时,每吨0.72元;当用水量在5吨以上时,每吨0.90元.第四课时教学目标1.掌握一次函数y=kx+b(k≠0)的性质.2.能根据k与b的值说出函数的有关性质.3.经历探索一次函数图象性质的过程,感受一次函数中k与b的值对函数性质的影响;4.观察图象,体会一次函数k、b的取值和直线位置的关系,提高学生数形结合能力.教学过程一、创设情境1.一次函数的图象是一条直线,一般情况下我们画一次函数的图象,取哪两个点比较简便?2.在同一直角坐标系中,画出函数132+=x y 和y =3x -2的图象. 问 在你所画的一次函数图象中,直线经过几个象限.二、探究归纳1.在所画的一次函数图象中,直线经过了三个象限.2.观察图象发现在直线132+=x y 上,当一个点在直线上从左向右移动时,(即自变量x 从小到大时),点的位置也在逐步从低到高变化(函数y 的值也从小变到大).即:函数值y 随自变量x 的增大而增大.请同学们讨论:函数y =3x -2是否也有这种现象?既然,一次函数的图象经过三个象限,观察上述两个函数的图象,从它经过的象限看,它必经过哪两个象限(可以再画几条直线分析)?发现上述两条直线都经过一、三象限.又由于直线与y 轴的交点坐标是(0,b )所以,当b >0时,直线与x 轴的交点在y 轴的正半轴,也称在x 轴的上方;当b <0时,直线与x 轴的交点在y 轴的负半轴,也称在x 轴的下方.所以当k >0,b ≠0时,直线经过一、三、二象限或一、三、四象限.3.在同一坐标系中,画出函数y =-x +2和123--=x y 的图象(图略).根据上面分析的过程,请同学们研究这两个函数图象是否也有相应的性质?你能发现什么规律.观察函数y =-x +2和123--=x y 的图象发现:当一个点在直线上从左向右移动时(即自变量x 从小到大时),点的位置逐步从高到低变化(函数y 的值也从大变到小).即:函数值y 随自变量x 的增大而减小.又发现上述两条直线都经过二、四象限,且当b >0时,直线与x 轴的交点在y 轴的正半轴,或在x 轴的上方;当b <0时,直线与x 轴的交点在y 轴的负半轴,或在x 轴的下方.所以当k <0,b ≠0时,直线经过二、四、一象限或经过二、四、三象限.一次函数y =kx +b 有下列性质:(1)当k >0时,y 随x 的增大而增大,这时函数的图象从左到右上升;(2)当k <0时,y 随x 的增大而减小,这时函数的图象从左到右下降.特别地,当b =0时,正比例函数也有上述性质.当b >0,直线与y 轴交于正半轴;当b <0时,直线与y 轴交于正半轴. 下面,我们把一次函数中k 与b 的正、负与它的图象经过的象限归纳列表为:4.利用上面的性质,我们来看问题1和问题2反映了怎样的实际意义?问题1 随着时间的增长,小明离北京越来越近.问题2 随着时间的增长,小张的存款越来越多.三、实践应用例1 已知一次函数y =(2m -1)x +m +5,当m 是什么数时,函数值y 随x 的增大而减小?分析 一次函数y =kx +b (k ≠0),若k <0,则y 随x 的增大而减小. 解 因为一次函数y =(2m -1)x +m +5,函数值y 随x 的增大而减小. 所以,2m -1<0,即21 m .例2 已知一次函数y =(1-2m )x +m -1,若函数y 随x 的增大而减小,并且函数的图象经过二、三、四象限,求m 的取值范围.分析 一次函数y =kx +b (k ≠0),若函数y 随x 的增大而减小,则k <0,若函数的图象经过二、三、四象限,则k <0,b <0.解 由题意得:⎩⎨⎧<-<-01021m m , 解得,121<<m例3 已知一次函数y =(3m -8)x +1-m 图象与y 轴交点在x 轴下方,且y 随x 的增大而减小,其中m 为整数.(1)求m 的值;(2)当x 取何值时,0<y <4?分析 一次函数y =kx +b (k ≠0)与y 轴的交点坐标是(0,b ),而交点在x 轴下方,则b <0,而y 随x 的增大而减小,则k <0.解 (1)由题意得:⎩⎨⎧<-<-01083m m , 解之得,381<<m ,又因为m 为整数,所以m =2.(2)当m =2时,y =-2x -1.又由于0<y <4.所以0<-2x -1<4. 解得:2125<<-m .例4 画出函数y =-2x +2的图象,结合图象回答下列问题:(1)这个函数中,随着x 的增大,y 将增大还是减小?它的图象从左到右怎样变化?(2)当x 取何值时,y =0?(3)当x取何值时,y>0?分析 (1)由于k=-2<0,y随着x的增大而减小.(2) y=0,即图象上纵坐标为0的点,所以这个点在x轴上.(3) y>0,即图象上纵坐标为正的点,这些点在x轴的上方.解(1)由于k=-2<0,所以随着x的增大,y将减小. 当一个点在直线上从左向右移动时,点的位置也在逐步从高到低变化,即图象从左到右呈下降趋势.(2)当x=1时, y=0 .(3)当x<1时, y>0.第五课时教学目标1.使学生理解待定系数法;2.能用待定系数法求一次函数,用一次函数表达式解决有关现实问题.3.感受待定系数法是求函数解析式的基本方法, 体会用“数”和“形”结合的方法求函数式;4.结合图象寻求一次函数解析式的求法,感受求函数解析式和解方程组间的转化.教学过程一、创设情境一次函数关系式y =kx +b (k ≠0),如果知道了k 与b 的值,函数解析式就确定了,那么有怎样的条件才能求出k 和b 呢?问题1 已知一个一次函数当自变量x =-2时,函数值y =-1,当x =3时,y =-3.能否写出这个一次函数的解析式呢?根据一次函数的定义,可以设这个一次函数为:y =kx +b (k ≠0),问题就归结为如何求出k 与b 的值.由已知条件x =-2时,y =-1,得 -1=-2k +b .由已知条件x =3时,y =-3, 得 -3=3k +b .两个条件都要满足,即解关于x 的二元一次方程⎩⎨⎧+=-+-=-.33,21b k b k 解得⎪⎪⎩⎪⎪⎨⎧-=-=5952b k 所以,一次函数解析式为5952--=x y .问题2 已知弹簧的长度y (厘米)在一定的限度内是所挂物质量x (千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米,求这个一次函数的关系式. 考虑 这个问题中的不挂物体时弹簧的长度6厘米和挂4千克质量的重物时,弹簧的长度7.2厘米,与一次函数关系式中的两个x 、y 有什么关系?二、探究归纳上题可作如下分析:已知y 是x 的函数关系式是一次函数,则关系式必是y =kx +b 的形式,所以要求的就是系数k 和b 的值.而两个已知条件就是x 和y 的两组对应值,也就是当x =0时,y =6;当x =4时,y =7.2.可以分别将它们代入函数式,转化为求k 与b 的二元一次方程组,进而求得k 与b 的值.解 设所求函数的关系式是y =kx +b (k ≠0),由题意,得⎩⎨⎧+==.42.7,6b k b 解这个方程组,得⎩⎨⎧==.6,3.0b k 所以所求函数的关系式是y =0.3x +6.(其中自变量有一定的范围)讨论 1.本题中把两对函数值代入解析式后,求解k 和b 的过程,转化为关于k 和b 的二元一次方程组的问题.2.这个问题是与实际问题有关的函数,自变量往往有一定的范围.问题3 若一次函数y =mx -(m -2)过点(0,3),求m 的值.分析 考虑到直线y =mx -(m -2)过点(0,3),说明点(0,3)在直线上,这里虽然已知条件中没有直接给出x 和y 的对应值,但由于图象上每一点的坐标(x ,y )代表了函数的一对对应值,它的横坐标x 表示自变量的某一个值,纵坐标y 表示与它对应的函数值.所以此题转化为已知x =0时,y =3,求m .即求关于m 的一元一次方程.解 当x =0时,y =3.即:3=-(m -2).解得m =-1.这种先设待求函数关系式(其中含有未知的常数系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法(method of undetermined coefficient ).三、实践应用例1 已知一次函数y =kx +b 的图象经过点(-1,1)和点(1,-5),求当x =5时,函数y 的值.分析 1.图象经过点(-1,1)和点(1,-5),即已知当x =-1时,y =1;x =1时,y =-5.代入函数解析式中,求出k 与b .2.虽然题意并没有要求写出函数的关系式,但因为要求x =5时,函数y 的值,仍需从求函数解析式着手.解 由题意,得⎩⎨⎧+=-+-=.5,1b k b k 解这个方程组,得 ⎝⎛-=-=.2,3b k 这个函数解析式为y =-3x -2.当x =5时,y =-3×5-2=-17.例2 已知一次函数的图象如下图,写出它的关系式.分析 从“形” 看,图象经过x 轴上横坐标为2的点,y 轴上纵坐标是-3的点.从“数”看,坐标(2,0),(0,-3)满足解析式. 解 设:所求的一次函数的解析式为y =kx +b (k ≠0).直线经过点(2,0),(0,-3),把这两点坐标代入解析式,得⎩⎨⎧=-+=.3,20b b k 解得 ⎪⎩⎪⎨⎧-==.3,23b k 所以所求的一次函数的关系式是223-=x y .例3 求直线y =2x 和y =x +3的交点坐标.分析 两个函数图象的交点处,自变量和对应的函数值同时满足两个函数关系式.而两个函数关系式就是方程组中的两个方程.所以交点坐标就是方程组的解.解 两个函数关系式组成的方程组为⎩⎨⎧+==.3,2x y x y 解这个方程组,得⎩⎨⎧==.6,3y x 所以直线y =2x 和y =x +3的交点坐标为(3,6).例4 已知两条直线y 1=2x -3和y 2=5-x .(1)在同一坐标系内作出它们的图象;(2)求出它们的交点A 坐标;(3)求出这两条直线与x 轴围成的三角形ABC 的面积;(4)k 为何值时,直线2k +1=5x +4y 与k =2x +3y 的交点在每四象限. 分析 (1)这两个都是一次函数,所以它们的图象是直线,通过列表,取两点,即可画出这两条直线.(2)两条直线的交点坐标是两个解析式组成的方程组的解.(3)求出这两条直线与x 轴的交点坐标B 、C ,结合图形易求出三角形ABC 的面积.(4)先求出交点坐标,根据第四象限内的点的横坐标为正,纵坐标为负,可求出k 的取值范围.解 (1)(2)⎩⎨⎧-=-=.5,3221x y x y 解得⎪⎪⎩⎪⎪⎨⎧==.37,38y x 所以两条直线的交点坐标A 为⎪⎭⎫ ⎝⎛37,38. (3)当y 1=0时,x =23所以直线y 1=2x -3与x 轴的交点坐标为B (23,0),当y 2=0时,x =5,所以直线y 2=5-x 与x 轴的交点坐标为C (5,0).过点A 作AE ⊥x 轴于点E ,则124937272121=⨯⨯=⨯=∆AE BC S ABC . (4)两个解析式组成的方程组为⎩⎨⎧+=+=+.32,4512y x k y x k解这个关于x 、y 的方程组,得⎪⎪⎩⎪⎪⎨⎧-=+=.72,732k y k x 由于交点在第四象限,所以x >0,y <0. 即⎪⎪⎩⎪⎪⎨⎧<->+.072,0732k k 解得223<<-k .。

人教版八年级数学下册第十九章一次函数教学设计

人教版八年级数学下册第十九章一次函数教学设计
5.个性化作业:针对不同学生的学习需求,布置难易适度的个性化作业,使每个学生都能在适合自己的层面上得到锻炼和提高。
6.反思总结:要求学生撰写学习心得,对自己在本节课的学习过程中的收获、困惑和感悟进行总结,以便教师了解学生的学习状况,为下一步教学提供参考。
7.预习任务:布置下一节课的相关预习内容,让学生提前了解新课的知识点,为课堂学习做好准备。
2.提出问题:让学生思考,如何用数学模型来描述这些实例中的数量关系?从而引出一次函数的定义。
3.引导学生回顾已学的相关知识:线性方程、不等式等,为新课的学习做好铺垫。
(二)讲授新知
1.一次函数的定义:讲解一次函数的一般形式y=kx+b,解释k、b的含义,以及它们对函数图像的影响。
2.一次函数图像的绘制:介绍如何根据一次函数的解析式绘制其图像,讲解斜率k、截距b与图像的关系。
3.汇报交流:各小组汇报讨论成果,分享学习心得,互相学习,共同提高。
(四)课堂练习
1.设计具有代表性的习题,让学生独立完成,巩固所学知识。
2.针对不同学生的学习水平,设置难易适度的练习题,让每个学生都能得到锻炼。
3.及时反馈:教师对学生的练习情况进行反馈,指出错误,指导解题方法。
(五)总结归纳
1.回顾本节课所学内容,让学生用自己的话总结一次函数的定义、图像、性质和应用。
-对于优秀学生,提供拓展性的学习资源,激发他们的潜能,培养他们的创新能力。
5.教学反思:
-在教学过程中,教师应不断反思自己的教学方法和策略,根据学生的反馈进行调整。
-教师应关注学生的学习需求,以提高教学效果,促进学生全面发展。
四、教学内容与过程
(一)导入新课
1.从生活实例导入:以生活中的一次函数实例,如手机话费套餐、出租车计费等,引出一次函数的概念,让学生感受到数学与现实生活的紧密联系。

人教版数学八年级下册一次函数(一)教案

人教版数学八年级下册一次函数(一)教案

一次函数(一)教案教学目标(一)教学知识点1.掌握一次函数解析式的特点及意义.2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函数图象.(二)能力训练要求1.通过类比的方法学习一次函数,体会数学研究方法多样性.2.进一步提高分析概括、总结归纳能力.3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.教学重点1.一次函数解析式特点.2.一次函数图象特征与解析式联系规律.3.一次函数图象的画法.教学难点1.一次函数与正比例函数关系.2.一次函数图象特征与解析式的联系规律.课时安排:两个课时教学过程Ⅰ.提出问题,创设情境问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x (x≥0)当然,这个函数也可表示为:y=-6x+15 (x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.Ⅱ.导入新课我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(℃)有关,即C•的值约是t的7倍与35的差.2.一种计算成年人标准体重G(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值.3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x 分的计时费(按0.01元/分收取).4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.这些问题的函数解析式分别为:1.C=7t-35.2.G=h-105.3.y=0.01x+22.4.y=-5x+50.它们的形式与y=-6x+15一样,函数的形式都是自变量x的k倍与一个常数的和.如果我们用b来表示这个常数的话.•这些函数形式就可以写成:y=kx+b(k≠0)一般地,形如y=kx+b(k、b是常数,k≠0•)的函数,•叫做一次函数(•linearfunction).当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数.练习:1.下列函数中哪些是一次函数,哪些又是正比例函数?(1)y=-8x.(2)y=8x.(3)y=5x2+6.(3)y=-0.5x-1.2.一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米.(1)一个小球速度v随时间t变化的函数关系.它是一次函数吗?(2)求第2.5秒时小球的速度.3.汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(升)随行驶时间x(时)变化的函数关系式,并写出自变量x的取值范围.y 是x的一次函数吗?解答:1.(1)(4)是一次函数;(1)又是正比例函数.2.(1)v=2t,它是一次函数.(2)当t=2.5时,v=2×2.5=5所以第2.5秒时小球速度为5米/秒.3.函数解析式:y=50-5x自变量取值范围:0≤x≤10y是x的一次函数.[活动一]活动内容设计:画出函数y=-6x与y=-6x+5的图象.并比较两个函数图象,探究它们的联系及解释原因.引导学生从图象形状,倾斜程度及与y轴交点坐标上比较两个图象,•从而认识两个图象的平移关系,进而了解解析式中k、b在图象中的意义,体会数形结合在实际中的表现.比较上面两个函数的图象的相同点与不同点。

新人教版八年级下册初中数学 课时1 一次函数 教案(教学设计)

新人教版八年级下册初中数学 课时1 一次函数 教案(教学设计)

第十九章 一次函数19.2 一次函数19.2.2 一次函数课时1 一次函数【知识与技能】1. 进一步体验现实生活与一次函数的关系.2. 能解决确定一次函数中常数值的实际问题.3. 会处理涉及不等关系的实际问题.4. 继续培养学生的交流与合作能力.【过程与方法】经历观察、分析讨论法,交流的过程,逐步提高从实际问题中变量之间的关系,建立反比例函数模型的过程,认识反比例函数性质的应用方法.【情感态度与价值观】1.从现实情境中提出问题,提高“用数学”的意识.2.体验反比例函数是有效地描述现实世界的重要手段,体验数学的实用性,提高学数学的兴趣.运用一次函数的意义和性质解决实际问题.如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题.【问题1】某登山队大本营所在地的气温C 05,海拔每升高1km 气温下降C 06,登山队员由大本营向上登高xkm 时,他们所在位置的气温是C y 0,试用解析式表示y 与x 的关系.【分析】1.大本营的温度是________.海拔每升高1km 气温下降C 06,从大本营向上登高xkm 时,气温从C 05减少________.2. 因此y 与x 的关系式是_______.【问题2】在下列问题中的变量间的对应关系可用怎样的函数表示?这些函数有什么共同点?(1)有人发现,在2050℃时蟋蟀每分鸣叫的次数c 与温度t (单位:℃)有关,即c 的值约是t 的7倍与35的差;(2)一种计算成年人标准体重G (单位:千克)的方法是,以厘米为单位量出身高值h ,再减去常数105,所得差是G 的值;(3)某城市的市内电话的月收费额y (单位:元)包括:月租费22元,拔打电话x 分的计时费(按0.1元/分收取);(4)把一个长10cm 、宽5cm 的长方形的长减少xcm ,宽不变,长方形的面积y (单位:2cm )随x 的值而变化.【问题3】请你认真观察我们得到的这几个函数解析式,看看它们有什么共同的特点?【分析】这是一个由具体抽象成一般的过程.要找出它们共同的特点.即都是________________.【问题4】阅读课文114页,结合以上问题,理解一次函数的定义.【问题5】一次函数b k b kx y ),0(≠+=能等于零吗?b =0时,解析式变成了什么?【分析】当b =0时,y =kx +b 就变成了y =kx ,所以说_____函数是一种特殊的一次函数.教师巡视指导学习困难的学生写出函数解析式,教师和同学共同评价.(1)C =7t -35;(2)G =h -105;(3)y =0.1x +22;(4)y =-5x +50.根据式子的特点找出它们在形式上的共同点,完成问题3.教师鼓励学生积极发言.学生阅读课文,结合以上分析,引导学生总结出一次函数的定义,完成问题4:教师要求学生独立思考,然后在小组内部讨论解决问题5,教师选择一个小组展示1.根据以上探索,请你说出一次函数的解析式.并说出解析式中自变量、函数,常数.2.说一说一次函数与正比例函数的关系.3.根据一次函数的定义,请你举出生活中具有一次函数关系的实例来.1. 下列函数哪些是一次函数,哪些又是正比例函数?(1)y =-8x (2)xy 8-= (3)y =5x 2+2(4)y =-0.5x -1 2.汽车油箱中原有汽油50升,如果行驶中每小时用油5升,求油箱中的汽油y (单位:升)随行驶时间x (单位:时)变化的函数关系式,并写出自变量x 的取值范围.y 是x 的一次函数吗?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元名
一次函数

单元教
学目标
单元知
识结构
教学重点:对于一次函数与正比例函数概念的理解.
重点、难点
教学难点:根据具体条件求一次函数与正比例函数的解析式
课时划

教学
过程




首先回顾一下上节活动一中的两个问题.思考它们每个问题中是否有两个变量,变量间存在什么联系.
上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值与它对应.
(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y•表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?
一般地,在一个变化过程中,如果有两个变量
x与y,并且对于x•的每个确定的值,y•都有唯一
确定的值与其对应,•那么我们就说x•是自变量,y
是x的函数.如果当x=a时,y=b,那么b•叫做当
自变量的值为a时的函数值..
[活动一]
1.在计算器上按照下面的程序进行操作:
填表:
x 1 3 -4 0 101
y
[活动二]
例1 一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.
1.写出表示y与x的函数关系式.2.指出自变量x的取值范围.
3.汽车行驶200km时,油桶中还有多少汽油?
例1.求下列函数中自变量x的取值范围
(1)y=3x-l (2)y=2x2+7 (3)y=
1
x+2
(4)y=x-2
小结
本节课我们通过回顾思考、观察讨论,认识了自变量、函数及函数值的概念,并通过两个活动加深了对函数意义的理解,学会了确立函数关系式、自变量取值范围的方法,会求函数值,提高了用函数解决实际问题的能力.
年份人口数/亿
1984 10.34
1989 11.06
1994 11.76
1999 12.52
学生
活动
[活动一] 、[活动二]例一,小结学法
指导
合作,对比,交流,反思
板书
设计
课后
反思
课题§14.1.3 函数图象(1)
教材和学情分析
函数图象"是第十四章的重要内容.这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,可以让学生加深对函数概念的理解并学会通过函数的图象来求解函数,真正理会"数形结合"这一重要数学思想,并结合实际生活的例子,培养学生各种能力和发散性思维,为日后反比例函数,二次函数及其图象的教学做好准备,起到
承上启下的重要作用.
教学目标和教学内容
教学目标:1.学会用列表、描点、连线画函数图象.2.学会观察、分析函数图象信息. 3.提高识图能力、分析函数图象信息能力. 4.体会数形结合思想,并利用它解决问题,提高解决问题能力.
教学重点:1.函数图象的画法.2.观察分析图象信息.
教学难点:分析概括图象中的信息.
教学
方法
分组学习,引导式探究,学生自主探索、合作交流的教学方式
教学过程导



我们在前面学习了函数意义,并掌握了函数关系式的确立.但有些函数问题很难用函数关系式表示出来,然而可以通过图来直观反映.例如用心电图表示心脏生物电流与时间的关系.我们这节课就来解决如何画函数图象的问题及解读函数图象信息.




问题1、如
图,这是
2004年3
月23日上
证指数走
势图,你是
如何从图
上找到各个时刻的上证指数的?
一般来说,函数的图象是由直角坐标系中的一系列点组成的图形.图象上每一点的坐标(x,y)代表了函数的一对对应值,它的横坐标x表示自变量的某一个值,纵坐标y表示与它对应的函数值.
[活动一]
上图是自动
测温仪记录的图象,•
它反映了北京的春季
某天气温T如何随时
间t的变化而变化.你
从图象中得到了哪些
信息?
[活动二]
上图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.•其中x表示时间,y表示小明离他家的距离.
新课设计
Ⅱ.导入新课
首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?
1.圆的周长L随半径r的大小变化而变化.
2.铁的密度为7.8g/cm3.铁块的质量m(g)随它的体积V(cm3)的大小变化而变化.
3.每个练习本的厚度为0.5cm.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化.
4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度T(℃)随冷冻时间t(分)的变化而变化.
一般地,•形如y=•kx•(k•是常数,•k•≠0•)的函数,•叫做正比例函数(proportional func-tion),其中k叫做比例系数.
我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?
[活动一]
画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化
规律.
1.y=2x 2.y=-2x
2.y=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:
x -3 -2 -1 0 1 2 3
y 6 4 2 0 -2 -4 -6
画出图象如图(2).
3.两个图象的共同点:都是经过原点的直线.
不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限.函数y=-2x的图象从左向右呈下降状态,即随x增大y反而减小;•经过第二、四象限.
练习:
在同一坐标系中,画出下列函数的图象,并对它们进行比较.(课本上)1.y=
1
2
x 2.y=-
1
2
x
让学生在完成上述练习的基础上总结归纳出正比例函数解析式与图象特征之间的规律.
[活动二]
经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,•怎样画最简单?为什么?
让学生利用总结的正比例函数图象特征与
解析式的关系,完成由图象到关系式的转化,
进一步理解数形结合思想的意义,并掌握正比
例函数图象的简单画法及原理.
结论:
经过原点与点(1,k)的直线是函数y=kx
的图象.
画正比例函数图象时,只需在原点外再确
x -3 -2 -1 0 1 2 3
y -6 -4 -2 0 2 4 6
21。

相关文档
最新文档