新人教版八年级下册数学教学案- 全册
新人教版八年级数学下册《平行四边形》教案设计(10篇)
新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。
关于名师新人教版八年级数学下册教案5篇
关于名师新人教版八年级数学下册教案5篇关于名师新人教版八年级数学下册教案5篇数学的本质在于它的自由。
数学是打开科学大门的钥匙。
数学是各式各样的证明技巧。
挑选好一个确定得研究对象,锲而不舍。
你可能永远达不到终点,但是一路上准可以发现一些有趣的东西。
这里给大家分享一些关于名师新人教版八年级数学下册教案,供大家参考学习。
名师新人教版八年级数学下册教案(精选篇1)一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
1.平移2.平移的性质:⑴经过平移,对应点所连的线段平行且相等;⑵对应线段平行且相等,对应角相等。
⑶平移不改变图形的大小和形状(只改变图形的位置)。
(4)平移后的图形与原图形全等。
3.简单的平移作图①确定个图形平移后的位置的条件:⑴需要原图形的位置;⑵需要平移的方向;⑶需要平移的距离或一个对应点的位置。
②作平移后的图形的方法:⑴找出关键点;⑵作出这些点平移后的对应点;⑶将所作的对应点按原来方式顺次连接,所得的;二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。
1.旋转2.旋转的性质⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。
⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。
⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
⑷旋转前后的两个图形全等。
3.简单的旋转作图⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。
⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。
⑶已知原图,旋转中心和旋转角,求作旋转后的图形。
三、分析组合图案的形成①确定组合图案中的“基本图案”②发现该图案各组成部分之间的内在联系③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;⑸旋转变换与轴对称变换的⑹轴对称变换与平移变换的组合。
八年级数学下册电子版全册教案(新人教版)
第十六章二次根式16.1二次根式第1课时二次根式的概念和性质1.二次根式的概念和应用.2.二次根式的非负性.重点二次根式的概念.难点二次根式的非负性.一、情景导入师:(多媒体展示)请同学们看屏幕,这是东方明珠电视塔.电视节目信号的传播半径r/km与电视塔高h/km之间有近似关系r=2Rh(R为地球半径).如果两个电视塔的高分别为h1km,h2km,那么它们的传播半径之比为多少?同学们能化简这个式子吗?由学生计算、讨论后得出结果,并提问.生:半径之比为2Rh12Rh2,暂时我们还不会对它进行化简.师:那么怎么去化简它呢?这要用到二次根式的运算和化简.如何进行二次根式的运算?如何进行二次根式的化简?这将是本章所学的主要内容.二、新课教授活动1:知识迁移,归纳概念用含根号的式子填空.(1)17的算术平方根是________;(2)如图,要做一个两条直角边长分别为7 cm和4 cm的三角形,斜边长应为________cm;(3)一个长方形的围栏,长是宽的2倍,面积为130 m2,则它的宽为________m;(4)面积为3的正方形的边长为________,面积为a的正方形的边长为____________;(5)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,则t=________.【答案】(1)17(2)65(3)65(4)3 a (5)h 5活动2:二次根式的非负性(1)式子a表示的实际意义是什么?被开方数a满足什么条件时,式子a才有意义?(2)当a>0时,a________0;当a=0时,a________0;二次根式是一个________.【答案】(1)a的算术平方根,被开方数a必须是非负数(2)>=非负数老师结合学生的回答,强调二次根式的非负性.当a>0时,a表示a的算术平方根,因此a>0;当a=0时,a表示0的算术平方根,因此a=0.也就是说,当a≥0时,a≥0.三、例题讲解【例】当x是怎样的实数时,x-2在实数范围内有意义?解:由x -2≥0,得x ≥2.所以当x ≥2时,x -2在实数范围内有意义. 四、巩固练习1.已知a -2+b +12=0,求-a 2b 的值.【答案】a -2≥0,b +12≥0,又∵它们的和为0,∴a -2=0且b +12=0,解得a =2,b =-12.∴-a 2b =-22×(-12)=2.2.若x ,y 使x -1+1-x -y =3有意义,求2x +y 的值. 【答案】-1 五、课堂小结1.本节课主要学习了二次根式的概念.形如a(a ≥0)的式子叫做二次根式,“ ”称为二次根号.2.二次根式的被开方数必须是什么数才有意义?a(a ≥0)又是什么数?六.课后作业必做题: 选做题: 七.板书设计第2课时 二次根式的化简1.理解(a)2=a(a ≥0),并能利用它进行计算和化简.2.通过具体数据的解答,探究a 2=a(a ≥0),并利用这个结论解决具体问题.重点理解并掌握(a)2=a(a ≥0),a 2=a(a ≥0)以及它们的运用. 难点探究结论.一、复习导入教师复习口述上节课的重要内容,并板书:1.形如a(a≥0)的式子叫做二次根式.2.a(a≥0)是一个非负数.那么,当a≥0时,(a)2等于什么呢?下面我们一起来探究这个问题.二、新课教授活动1:根据算术平方根的意义填空:(4)2=____;(2)2=____;(13)2=____;(52)2=____;(0.01)2=____;(0)2=____.由学生计算、讨论得出结果,并提问部分过程,教师进行点评.老师点评:4是4的算术平方根,根据算术平方根的意义,4是一个平方等于4的非负数,因此(4)2=4.同理:(2)2=2;(13)2=13;(52)2=52;(0.01)2=0.01;(0)2=0.所以归纳出:(a)2=a(a≥0).【例1】教材第3页例2活动2:填空:22=___;0.12=___;(13)2=___;(37)2=___;(212)2=___;02=___.教师点评:根据算术平方根的意义,我们可以得到:22=2;0.12=0.1;(13)2=13;(37)2=37;(212)2=212;02=0.所以归纳出:a2=a(a≥0).【例2】教材第4页例3教师点评:当a≥0时,a2=a;当a≤0时,a2=-a.三、课堂小结本节课应理解并掌握(a)2=a(a≥0)和a2=a(a≥0)及其运用,同时应理解a2=-a(a≤0).四.课后作业必做题:选做题:五.板书设计16.2二次根式的乘除第1课时二次根式的乘法理解并掌握a·b=ab(a≥0,b≥0),a·b=a·b(a≥0,b≥0),会利用它们进行计算和化简.重点a·b=ab(a≥0,b≥0),a·b=a·b(a≥0,b≥0)及它们的运用.难点利用逆向思维,导出a·b=a·b(a≥0,b≥0).一、创设情境,导入新课活动1:发现探究填空:(1)4×9=_____,4×9=______;(2)25×16=_____,25×16=______;(3)19×36=____,19×36=_______;(4)100×0=_____,100×0=______.生:(1)4×9=6,4×9=6;(2)25×16=20,25×16=20;(3)19×36=2,19×36=2;(4)100×0=0,100×0=0.试一试,参考上面的结果,比较四组等式的大小关系.生:上面各组中两个算式的结果相等.二、新课教授活动2:总结规律结合刚才的计算,学生分组讨论,教师提问部分学生,最后教师综合学生的答案,加以点评,归纳出二次根式的乘法法则.教师点评:1.被开方数都是非负数.2.两个非负数算术平方根的积等于它们积的算术平方根.一般地,二次根式的乘法法则为:a·b=ab(a≥0,b≥0)由等式的对称性,反过来:ab=a·b(a≥0,b≥0)活动3:讲练结合教材第6~7页例题三、巩固练习完成课本第7页的练习.【答案】课本练习第1题:(1)10;(2)6;(3)23;(4)2.第2题:(1)77;(2)15;(3)2y;(4)4bc ac.第3题:4 5.四、课堂小结本节课应掌握:a·b=ab(a≥0,b≥0),ab=a·b(a≥0,b≥0)及其应用.五.课后作业必做题:选做题:六.板书设计第2课时二次根式的除法理解ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0),会利用它们进行计算和化简.重点理解并掌握ab=ab(a≥0,b>0),ab=ab(a≥0,b>0),利用它们进行计算和化简.难点归纳二次根式的除法法则.一、复习导入活动1:1.由学生回答二次根式的乘法法则及逆向等式.2.填空.(1)925=______,925=_____;(2)164=_____,164=_____;(3)8149=_____,8149=_____;(4)3664=_____,3664=_____.二、新课教授活动2:先由学生对上面的结果进行比较,观察每组两个算式结果的大小关系,并总结规律.教师点评:一个非负数的算术平方根除以一个正数的算术平方根,等于它们商的算术平方根.一般地,二次根式的除法法则是:ab=ab(a≥0,b>0)由等式的对称性,反过来:ab=ab(a≥0,b>0)【例】教材第8~9页例题三、巩固练习课本第10页练习第1题.【答案】(1)3(2)23(3)33(4)2a四、课堂小结本节课应掌握ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0)及其应用.五.课后作业必做题:选做题:六.板书设计第3课时 最简二次根式最简二次根式的概念、利用最简二次根式的概念和性质进行二次根式的化简和运算.重点最简二次根式的运用. 难点会判断这个二次根式是否是最简二次根式.一、复习导入(学习活动)请同学们完成下列各题.(请四位同学上台板书) 计算:(1)23;(2)2618;(3)82a ;(4)x 3x 2y.教师点评:(1)23=63;(2)2618=233;(3)82a =2a a ;(4)x 3x 2y=xy y .二、新课教授教师点评:上面这些式子的结果具有如下两个特点: 1.被开方数不含分母.2.被开方数中不含能开得尽方的因数或因式.师:我们把满足上述两个条件的二次根式,叫做最简二次根式.(教师板书) 教师强调:在二次根式的运算中,一般要把最后结果化为最简二次根式. 【例1】判断下列式子是不是最简二次根式,为什么?(1)3xy 12x ;(2)25a 3a 3;(3)1x;(4)0.2a.解:(1)被开方数中有因数12,因此它不是最简二次根式;(2)被开方数中有开得尽方的因式a 2,因此它不是最简二次根式;(3)被开方数中有分母,因此它不是最简二次根式;(4)被开方数中有因数0.2,它不是整数,所以它不是最简二次根式.【例2】化简:(1)278;(2)12x 2y 3(x ≥0);(3)a 2b 4+a 4b 2(ab ≥0).解:(1)278=27×28×2=916×6=346;(2)12x 2y 3=4x 2y 2·3y =2xy 3y ;(3)a 2b 4+a 4b 2=a 2b 2(b 2+a 2)=ab a 2+b 2. 【例3】教材第9页例7 三、课堂小结1.本节课应掌握最简二次根式的特点及其运用. 2.二次根式的运算结果要化为最简二次根式. 四.课后作业必做题:选做题:五.板书设计16.3二次根式的加减第1课时二次根式的加减理解并掌握二次根式加减的方法,并能用二次根式加减法法则进行二次根式的加减运算.重点理解并掌握二次根式加减计算的方法.难点二次根式的化简、合并被开方数相同的最简二次根式.一、复习导入(学生活动)1.计算:(1)x+2x;(2)3a-2a+4a;(3)2x2-3x2+5x2;(4)2a2-4a2+3a.2.教师点评:上面的运算实际上就是以前所学习的合并同类项,合并同类项就是字母连同指数不变,系数相加减.二、新课教授(学生活动)1.类比计算,说明理由.(1)2+22;(2)38-28+48;(3)32+8;(4)23-33+12.2.教师点评:(1)2+22=(1+2)2=32;(2)38-28+48=(3-2+4)8=58=102;(3)虽然表面上2与8的被开方数不同,不能当作被开方数相同,但8可化为22,32+8=32+22=(3+2)2=52;(4)同样12可化为23,23-33+12=23-33+23=(2-3+2)3= 3.所以在用二次根式进行加减运算时,如果被开方数相同则可以进行合并,因此可将二次根式先化为最简二次根式,比较被开方数是否相同.因此可得:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.【例1】教材第13页例1 【例2】教材第13页例2 三、巩固练习教材第13页练习第1,2题.【答案】第1题:(1)不正确,两边不相等;(2)不正确,两边不相等;(3)正确.第2题:(1)-47;(2)35;(3)102-33;(4)36+142.四、课堂小结本节课应掌握进行二次根式加减运算时,先把不是最简二次根式的化成最简二次根式,再把相同被开方数的最简二次根式进行合并.五.课后作业必做题: 选做题: 六.板书设计第2课时 二次根式的加减乘除混合运算含有二次根式的式子进行加减乘除混合运算和含有二次根式的多项式乘法公式的应用.重点二次根式的加减乘除混合运算. 难点由整式运算知识迁移到含二次根式的运算. 一、复习导入(学生活动):请同学们完成下列各题. 计算:(1)(3x 2+2x +2)·4x ; (2)(4x 2-2xy)÷(-2xy); (3)(3a +2b)(3a -2b); (4)(2x +1)2+(2x -1)2. 二、新课教授由于整式运算中的x ,y ,a ,b 是字母,它的意义十分广泛,可以代表一切,当然也可以代表二次根式,因此整式中的运算规律也适用于二次根式,下面我们就使用这些规律来进行计算.【例1】计算: (1)(8+3)×6;(2)(42-36)÷2 2.分析:二次根式仍然满足整式的运算规律,所以可直接用整式的运算规律. 解:(1)(8+3)×6=8×6+3× 6 =48+18=43+32; (2)(42-36)÷2 2=42÷22-36÷22=2-323.【例2】计算:(1)(2+3)(2-5); (2)(5+3)(5-3); (3)(3-2)2.分析:第(1)题可类比多项式乘以多项式法则来计算,第(2)题把5当作a ,3当作b ,就可以类比(a +b)(a -b)=a 2-b 2,第(3)题可类比(a -b)2=a 2-2ab +b 2来计算.解:(1)(2+3)(2-5) =(2)2+32-52-15 =2+32-52-15 =-13-22;(2)(5+3)(5-3)=(5)2-(3)2=5-3=2; (3)(3-2)2=(3)2-2×3×2+(2)2 =5-2 6. 三、巩固练习教材第14页练习第1,2题.【答案】第1题:(1)6+10;(2)4+22;(3)11+55;(4)4.第2题:(1)9;(2)a -b ;(3)7+43;(4)22-410.四、课堂小结本节课应掌握利用整式运算的规律进行二次根式的乘除、乘方等运算.五.课后作业必做题: 选做题: 六.板书设计第十七章勾股定理17.1勾股定理第1课时勾股定理(1)了解勾股定理的发现过程,理解并掌握勾股定理的内容,会用面积法证明勾股定理,能应用勾股定理进行简单的计算.重点勾股定理的内容和证明及简单应用.难点勾股定理的证明.一、创设情境,引入新课让学生画一个直角边分别为3 cm和4 cm的直角△ABC,用刻度尺量出斜边的长.再画一个两直角边分别为5和12的直角△ABC,用刻度尺量出斜边的长.你是否发现了32+42与52的关系,52+122与132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直角三角形也有这个性质吗?由一学生朗读“毕达哥拉斯观察地面图案发现勾股定理”的传说,引导学生观察身边的地面图形,猜想毕达哥拉斯发现了什么?拼图实验,探求新知1.阅读教材第22~23页图17.1-2和图17.1-3,引导学生观察思考.2.组织学生小组合作学习.问题:每组的三个正方形之间有什么关系?试说一说你的想法.引导学生用拼图法初步体验结论.生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和.师:这只是猜想,一个数学命题的成立,还要经过我们的证明.归纳验证,得出定理(1)猜想:命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.(2)是不是所有的直角三角形都有这样的特点呢?这就需要对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明已有几百种之多,下面我们就看一看我国数学家赵爽是怎样证明这个定理的.小组合作探究:a.以直角三角形ABC的两条直角边a,b为边作两个正方形,你能通过剪、拼把它拼成弦图的样子吗?b.它们的面积分别怎样表示?它们有什么关系?c.利用学生自己准备的纸张拼一拼,摆一摆,体验古人赵爽的证法.想一想还有什么方法?师:通过拼摆,我们证实了命题1的正确性,命题1与直角三角形的边有关,我国把它称为勾股定理.即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.二、例题讲解【例1】填空题.(1)在Rt△ABC中,∠C=90°,a=8,b=15,则c=________;(2)在Rt△ABC中,∠B=90°,a=3,b=4,则c=________;(3)在Rt△ABC中,∠C=90°,c=10,a∶b=3∶4,则a=________,b=________;(4)一个直角三角形的三边为三个连续偶数,则它的三边长分别为________;(5)已知等边三角形的边长为2 cm,则它的高为________cm ,面积为________cm2.【答案】(1)17(2)7(3)68(4)6,8,10(5)3 3【例2】已知直角三角形的两边长分别为5和12,求第三边.分析:已知两边中,较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进行计算.让学生知道考虑问题要全面,体会分类讨论思想.【答案】119或13三、巩固练习填空题.在Rt△ABC中,∠C=90°.(1)如果a=7,c=25,则b=________;(2)如果∠A=30°,a=4,则b=________;(3)如果∠A=45°,a=3,则c=________;(4)如果c=10,a-b=2,则b=________;(5)如果a,b,c是连续整数,则a+b+c=________;(6)如果b=8,a∶c=3∶5,则c=________.【答案】(1)24(2)43(3)32(4)6(5)12(6)10四、课堂小结1.本节课学到了什么数学知识?2.你了解了勾股定理的发现和验证方法了吗?3.你还有什么困惑?五.课后作业必做题:选做题:六.板书设计第2课时勾股定理(2)能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点将实际问题转化为直角三角形模型.难点如何用解直角三角形的知识和勾股定理来解决实际问题.一、复习导入问题1:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?师生行为:学生分小组讨论,建立直角三角形的数学模型.教师深入到小组活动中,倾听学生的想法.生:根据题意,(如图)AC是建筑物,则AC=12 m,BC=5 m,AB是梯子的长度,所以在Rt△ABC中,AB2=AC2+BC2=122+52=132,则AB=13 m.所以至少需13 m长的梯子.师:很好!由勾股定理可知,已知两直角边的长分别为a,b,就可以求出斜边c的长.由勾股定理可得a2=c2-b2或b2=c2-a2,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长,也就是说,在直角三角形中,已知两边就可求出第三边的长.问题2:一个门框的尺寸如图所示,一块长3 m、宽2.2 m的长方形薄木板能否从门框内通过?为什么?学生分组讨论、交流,教师深入到学生的数学活动中,引导他们发现问题,寻找解决问题的途径.生1:从题意可以看出,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过.生2:在长方形ABCD中,对角线AC是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板是否能通过.师生共析:解:在Rt△ABC中,根据勾股定理AC2=AB2+BC2=12+22=5.因此AC=5≈2.236.因为AC>木板的宽,所以木板可以从门框内通过.二、例题讲解【例1】如图,山坡上两棵树之间的坡面距离是43米,则这两棵树之间的垂直距离是________米,水平距离是________米.分析:由∠CAB=30°易知垂直距离为23米,水平距离是6米.【答案】23 6【例2】教材第25页例2三、巩固练习1.如图,欲测量松花江的宽度,沿江岸取B,C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为________.【答案】503米2.某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B 200米,结果他在水中实际游了520米,求该河流的宽度.【答案】约480 m四、课堂小结1.谈谈自己在这节课的收获有哪些?会用勾股定理解决简单的应用题;会构造直角三角形.2.本节是从实验问题出发,转化为直角三角形问题,并用勾股定理完成解答.五.课后作业必做题:选做题:六.板书设计第3课时勾股定理(3)1.利用勾股定理证明:斜边和一条直角边对应相等的两个直角三角形全等.2.利用勾股定理,能在数轴上找到表示无理数的点.3.进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点在数轴上寻找表示2,3,5,…这样的表示无理数的点.难点利用勾股定理寻找直角三角形中长度为无理数的线段.一、复习导入复习勾股定理的内容.本节课探究勾股定理的综合应用.师:在八年级上册,我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.你们能用勾股定理证明这一结论吗?学生思考并独立完成,教师巡视指导,并总结.先画出图形,再写出已知、求证如下:已知:如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC=A′C′.求证:△ABC≌△A′B′C′.证明:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,根据勾股定理,得BC=AB2-AC2,B′C′=A′B′2-A′C′2.又AB=A′B′,AC=A′C′,∴BC=B′C′,∴△ABC≌△A′B′C′(SSS).师:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出13所对应的点吗?教师可指导学生寻找像长度为2,3,5,…这样的包含在直角三角形中的线段.师:由于要在数轴上表示点到原点的距离为2,3,5,…,所以只需画出长为2,3,5,…的线段即可,我们不妨先来画出长为2,3,5,…的线段.生:长为2的线段是直角边都为1的直角三角形的斜边,而长为5的线段是直角边为1和2的直角三角形的斜边.师:长为13的线段能否是直角边为正整数的直角三角形的斜边呢?生:设c=13,两直角边长分别为a,b,根据勾股定理a2+b2=c2,即a2+b2=13.若a,b 为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3,所以长为13的线段是直角边长分别为2,3的直角三角形的斜边.师:下面就请同学们在数轴上画出表示13的点.生:步骤如下:1.在数轴上找到点A,使OA=3.2.作直线l垂直于OA,在l上取一点B,使AB=2.3.以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示13的点.二、例题讲解【例1】飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?分析:根据题意,可以画出如图所示的图形,A点表示男孩头顶的位置,C,B点是两个时刻飞机的位置,∠C是直角,可以用勾股定理来解决这个问题.解:根据题意,得在Rt△ABC中,∠C=90°,AB=5000米,AC=4800米.由勾股定理,得AB2=AC2+BC2,即50002=BC2+48002,所以BC=1400米.飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400×6×60=504000(米)=504(千米),即飞机飞行的速度为504千米/时.【例2】在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少?解:根据题意,得到上图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BC⊥AD,所以在Rt△ACB中,AB2=AC2+BC2,即(AC+3)2=AC2+62,AC2+6AC+9=AC2+36,∴6AC=27,AC =4.5,所以这里的水深为4.5分米.【例3】在数轴上作出表示17的点.解:以17为长的边可看作两直角边分别为4和1的直角三角形的斜边,因此,在数轴上画出表示17的点,如下图:师生行为:由学生独立思考完成,教师巡视指导.此活动中,教师应重点关注以下两个方面:①学生能否积极主动地思考问题;②能否找到斜边为17,另外两条直角边为整数的直角三角形.三、课堂小结1.进一步巩固、掌握并熟练运用勾股定理解决直角三角形问题.2.你对本节内容有哪些认识?会利用勾股定理得到一些无理数,并理解数轴上的点与实数一一对应.五.课后作业必做题:选做题:六.板书设计17.2勾股定理的逆定理第1课时勾股定理的逆定理(1)1.掌握直角三角形的判别条件.2.熟记一些勾股数.3.掌握勾股定理的逆定理的探究方法.重点探究勾股定理的逆定理,理解并掌握互逆命题、原命题、逆命题的有关概念及关系.难点归纳猜想出命题2的结论.一、复习导入活动探究(1)总结直角三角形有哪些性质;(2)一个三角形满足什么条件时才能是直角三角形?生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余;(3)两直角边的平方和等于斜边的平方;(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.师:那么一个三角形满足什么条件时,才能是直角三角形呢?生1:如果三角形有一个内角是90°,那么这个三角形就为直角三角形.生2:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b与斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人是如何做的?问题:据说古埃及人用下图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.这个问题意味着,如果围成的三角形的三边长分别为3,4,5,有下面的关系:32+42=52,那么围成的三角形是直角三角形.画画看,如果三角形的三边长分别为2.5 cm,6 cm,6.5 cm,有下面的关系:2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4 cm,7.5 cm,8.5 cm,再试一试.生1:我们不难发现上图中,第1个结到第4个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52,所以我们围成的三角形是直角三角形.生2:如果三角形的三边长分别是2.5 cm,6 cm,6.5 cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5 cm的边所对的角是直角,并且2.52+62=6.52.再换成三边长分别为4 cm,7.5 cm,8.5 cm的三角形,可以发现8.5 cm的边所对的角是直角,且有42+7.52=8.52.师:很好!我们通过实际操作,猜想结论.命题2如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.再看下面的命题:命题1如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.它们的题设和结论各有何关系?师:我们可以看到命题2与命题1的题设、结论正好相反,我们把像这样的两个命题叫做互逆命题.如果把其中的一个叫做原命题,那么另一个叫做它的逆命题.例如把命题1当成原命题,那么命题2是命题1的逆命题.二、例题讲解【例1】说出下列命题的逆命题,这些命题的逆命题成立吗?(1)同旁内角互补,两条直线平行;(2)如果两个实数的平方相等,那么这两个实数相等;(3)线段垂直平分线上的点到线段两端点的距离相等;(4)直角三角形中30°角所对的直角边等于斜边的一半.分析:(1)每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用;(2)理顺它们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.解略.三、巩固练习教材第33页练习第2题.四、课堂小结师:通过这节课的学习,你对本节内容有哪些认识?学生发言,教师点评.五.课后作业必做题:选做题:六.板书设计第2课时勾股定理的逆定理(2)1.理解并掌握证明勾股定理的逆定理的方法.2.理解逆定理、互逆定理的概念.重点勾股定理的逆定理的证明及互逆定理的概念.难点理解互逆定理的概念.一、复习导入师:我们学过的勾股定理的内容是什么?生:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.师:根据上节课学过的内容,我们得到了勾股定理逆命题的内容:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.师:命题2是命题1的逆命题,命题1我们已证明过它的正确性,命题2正确吗?如何证明呢?师生行为:让学生试着寻找解题思路,教师可引导学生理清证明的思路.师:△ABC的三边长a,b,c满足a2+b2=c2.如果△ABC是直角三角形,它应与直角边是a,b的直角三角形全等,实际情况是这样吗?我们画一个直角三角形A′B′C′,使B′C′=a,A′C′=b,∠C′=90°(如图),把画好的△A′B′C′剪下,放在△ABC上,它们重合吗?生:我们所画的Rt△A′B′C′,(A′B′)2=a2+b2,又因为c2=a2+b2,所以(A′B′)2=c2,即A′B′=c.△ABC和△A′B′C′三边对应相等,所以两个三角形全等,∠C=∠C′=90°,所以△ABC为直角三角形.即命题2是正确的.师:很好!我们证明了命题2是正确的,那么命题2就成为一个定理.由于命题1证明正确以后称为勾股定理,命题2又是命题1的逆命题,在此,我们就称定理2是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互逆定理.师:但是不是原命题成立,逆命题一定成立呢?生:不一定,如命题“对顶角相等”成立,它的逆命题“如果两个角相等,那么它们是对顶角”不成立.师:你还能举出类似的例子吗?生:例如原命题:如果两个实数相等,那么它们的绝对值也相等.逆命题:如果两个数的绝对值相等,那么这两个实数相等.显然原命题成立,而逆命题不一定成立.二、新课教授【例1】教材第32页例1。
人教版2022-2022年八下数学第20章《数据的分析》全章教学案(含解析)
第二十章数据的分析1.进一步理解平均数、中位数和众数等统计量的统计意义.2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势.3.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况.1.探索并掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,用样本估计总体,并解决生产、生活中的有关问题.2.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.1.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性.2.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想.3.通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质.本章属于“统计与概率”领域.对于“统计与概率”领域的内容,共有三章.这三章内容采用统计和概率分开编排的方式,前两章是统计,最后一章是概率.统计部分的两章内容按照数据处理的基本过程来安排.我们在7年级下册学习了“第10章数据的收集、整理与描述”,本章“数据的分析”主要学习分析数据的集中趋势和离散程度的常用方法.在前一章中,我们学习了收集、整理和描述数据的常用方法,将收集到的数据进行分组、列表、绘图等处理工作后,数据分布的一些面貌和特征可以通过统计图表等反映出来.为了进一步了解数据分布的特征和规律,还需要计算出一些代表数据一般水平(典型水平)或分布状况的特征量.对于统计数据的分布的特征,可以从三个方面来分析:一是分析数据分布的集中趋势,反映数据向其中心值(平均数)靠拢或聚集的程度;二是分析数据分布的离散程度,反映数据远离其中心值(平均数)的趋势;三是分析数据分布的偏态和峰度,反映数据分布的形状.这三个方面分别反映了数据分布特征的不同侧面.根据《标准》的要求,本章就从前两个方面研究数据的分布特征.【重点】平均数、众数、中位数、方差的定义及其应用.【难点】应用所学的统计知识解决实际问题.1.注意与前两个学段相关内容的衔接.本章在教学时,注意与前两个学段的衔接,将三个学段的相关内容,在分析数据的这个大背景下统一起来,在对学生已有的相关知识进行整理的基础上学习新的知识.例如,对于平均数、中位数、众数,本章就是在研究数据集中趋势的大背景下,在整理学生已有的关于这三种统计量的认识的基础上,学习加权平均数,研究如何根据统计量的特征选择适当的统计量描述数据的集中趋势等.这样的一种编写方式,将三个学段的学习连成一个相互联系、螺旋上升的整体.因此,教学中要注意对已有知识的复习,在复习的基础上学习新内容,使学生对于分析数据的知识和方法形成整体认识.2.准确把握教学要求.本章要求通过较多实例,从不同的方面进一步感受抽样的必要性,并初步感受样本的代表性,体会不同的抽样可能得到不同的结果,能够用样本的平均数、方差估计总体的平均数、方差等.因此,在本章教学时,要注意把握教学要求.3.合理使用计算器.信息技术的发展给统计学的研究带来很大变化,为统计工作的高效、准确提供了便捷的工具.对于计算器等现代信息技术对统计的作用,本章中,编写了使用计算器求一组数据的平均数和方差的内容作为必学内容,还编写了利用计算机求平均数、中位数、众数和方差等集中统计量的内容作为选学内容等.教学中要注意发挥计算器在处理数据中的作用,也要注意合理地使用计算器.20.1 数据的集中趋势20.1.1平均数(2课时) 20.1.2中位数和众数(2课时)4课时20.2 数据的波动程度1课时20.3 课题学习体质健康测试中的数据分析1课时单元概括整合1课时20.1数据的集中趋势1.进一步掌握算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.2.理解中位数和众数的定义和意义,会求一组数据的中位数和众数,能结合具体问题解释中位数和众数的实际意义.3.能分清平均数、中位数、众数三者的区别,根据实际问题情境选择适当的统计量表示数据的特征.经历应用加权平均数对数据处理和探索中位数、众数的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数、中位数和众数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情,感受统计在生活中的应用,增强统计意识,培养统计能力.【重点】算术平均数、加权平均数的概念及计算,会求一组数据的中位数和众数,能结合实际情境理解其实际意义.【难点】理解平均数、中位数和众数这三个统计量之间的联系与区别,能根据具体问题选择适当的统计量分析数据信息并作出决策.20.1.1平均数1.进一步掌握算术平均数、加权平均数的概念.2.会求一组数据的算术平均数和加权平均数.经历应用加权平均数对数据处理的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情.【重点】1.算术平均数、加权平均数的概念及计算.2.掌握加权平均数的实际应用.【难点】1.体会平均数在不同情境中的应用.2.应用加权平均数对数据做出合理判断.第课时1.使学生理解数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.1.通过加权平均数的学习,经历运用数据描述信息,作出推断的过程,形成和发展统计观念.2.通过加权平均数的学习,进一步认识数据的作用,体会统计的思想方法.渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显、寓纷繁于严谨的辩证统一的数学美.【重点】会求加权平均数.【难点】对“权”的正确理解.【教师准备】教学中出示的课件和例题.【学生准备】预习课本内容.导入一:刘木头开了一家小工厂,生产儿童玩具.工厂的管理人员由刘木头、他的弟弟及其他6个亲戚组成.工作人员由5个领工和10个工人组成.现在需要一个新工人,刘木头正在与一个叫小王的青年人谈招聘问题.刘木头说:“我们这里报酬不错,平均每个人的薪金是每周300元,但在学徒期间每周是75元,不过很快就可以加工资.”小王上了几天班以后,要求和厂长谈谈.小王说:“你骗我,我已经和其他工人核对过了,没有一个人的工资超过每周100元.每人平均工资怎么可能是一周300元呢?”刘木头皮笑肉不笑地回答:“小王,不要激动嘛!每人平均工资确实是300元,不信你自己算一算.”刘木头拿出一张表,说道:“这是我每周付出的薪金.我得2400元,我弟弟得1000元,我的6个亲戚每人得250元,5个领工每人得200元,10个工人每人得100元.总共是每周6900元,付给23个人,平均每人得300元,对吗?”“对,对,你是对的,每人的平均工资是每周300元.可你还是骗了我.”小王生气地说.刘木头拍着小王的肩膀说:“这我可不同意,你自己算的结果也表明我没骗你呀!小兄弟,你根本不懂得平均数的含义,怪不得别人哟!”同学们,你能当个小法官来判一下谁说的对吗?[设计意图]让学生明确数学问题来源于生活实践,同时数学又指导生活实践,从而达到激发学生思考问题、探究新知的强烈欲望及引入新课的目的.导入二:农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种各用10块试验田进行试验,得到各试验田每公顷的产量(见下表),根据这些数据,应为农科院选择甜玉米种子提出怎样的建议呢?品各试验田每公顷产量种(单位:吨)甲7.657.57.627.597.65 7.647.57.47.417.41乙7.557.567.537.447.49 7.527.587.467.537.49提问:如何考察一种玉米的产量和产量的稳定性?学生随意说出自己的一些想法后,教师说明本章学习的知识内容:(1)平均数、中位数、众数和方差等概念;(2)用样本的平均数和方差估计总体的平均数和方差;(3)课题学习,解决实际问题.[设计意图]问题的提出,学生难以用已学到的平均数的公式解决这个问题,需要研究新的方法,学习新的知识,让学生了解本章研究的基本知识内容,培养学生用样本估计总体的基本思想.[过渡语]前面我们学过算术平均数的计算,我们一起来探究加权平均数.1.加权平均数思路一问题:某市三个郊县的人数及人均耕地面积如下表:郊县人数/万人均耕地面积/公顷A15 0.15 B7 0.21 C10 0.18这个市郊县的人均耕地面积是多少?(精确到0.01公顷)问题1小明求得这个市郊县的人均耕地面积为:= =0.18(公顷).你认为小明的做法有道理吗?为什么?组织学生讨论,教师参与,并适时指导:(1)对“平均数”和“人均耕地面积”的准确理解;(2)三个郊县人数的多少对人均耕地面积有无影响,分析小明同学的计算错误.问题2这个市郊县的总耕地面积是多少?总人口是多少?你能算出这个市郊县的人均耕地面积是多少吗?引导学生列出正确算式,即这个市郊县的人均耕地面积为:≈0.17(公顷).问题3三个郊县的人数(单位:万)15,7,10在计算人均耕地面积时有何作用?教师指出:上面的平均数0.17称为三个数0.15,0.21,0.18的加权平均数.三个郊县的人数(单位:万)15,7,10分别为三个数据的权.追问:你能正确理解数据的权和三个数的加权平均数吗?在活动中教师应重点关注学生对数据的权及加权平均数的理解.问题4若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则这n个数的加权平均数是多少?教师引导学生从三个数据的加权平均数的计算方法中,归纳得出n 个数的加权平均数的计算公式.学生思考、总结归纳:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.[设计意图]通过讨论、分析、思考认识到用已学过的平均数的计算方法来计算这个市郊县的人均耕地面积是根本行不通的,使学生意识到需要学习新知识、新方法,激发学生去探究.通过大胆猜想,培养学生的探究意识,通过教师的有效引导,让学生体会数学的归纳思想方法,理解n个数的加权平均数的计算公式及其结构特征,认识数据的权的作用.思路二问题1一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试听说读写者甲85 83 78 75乙73 80 85 82提问:如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?录用依据是什么?学生提出评判依据,若学生提出以总分作为依据,教师要引导学生思考:已学过的哪个统计量可反映数据的集中趋势?学生计算平均数,解决问题.追问:这家公司在招聘英文翻译的过程中,对甲、乙两名应试者进行了哪几个方面的英语水平测试?成绩分别为多少?学生同桌讨论,计算后提出自己的意见.问题2如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?引导学生讨论:招聘口语能力或笔译能力较强的翻译时,听、说、读、写四项成绩的重要程度是否相同,公司侧重哪两个方面的成绩?从给出的比值是否体现这两方面更加“重要”?根据算术平均数的计算公式,让学生依据题目要求,分别计算出甲、乙两名应试者的成绩,教师引导写出解答过程.问题3在问题2中,各个数据的重要程度不同(权不同),这种计算平均数的方法能否推广到一般?追问:若n个数据x1,x2,…,x n的权分别为w1,w2,…,w n,这n个数据的平均数该如何计算?教师引导学生思考归纳得出n个数的加权平均数的计算公式:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.问题4如果这家公司想招一名口语能力较强的翻译,应该侧重哪些分项成绩?如果听、说、读、写成绩按照3∶3∶2∶2的比确定两人的测试成绩,那么谁将被录取?与问题2相比较,你能体会到权的作用吗?学生独立完成计算过程,体会权的改变对加权平均数的影响.追问:你认为问题1中各数据的权有什么关系?通过上述问题的解决,说说你对权的认识.师生活动:引导学生分析加权平均数公式,发现问题1中各数可看作是权相同的,教师指出两种平均数之间的联系.[设计意图]回顾学过的平均数的意义,为引入加权平均数作铺垫.通过讨论,让学生充分发表自己的见解,同时接纳和吸引别人的正确意见,相互交流、相互探讨,培养学生的合作意识.通过改变同一个问题背景中数据的权,得到不同的结果,从而进一步体会权的意义与作用.[知识拓展](1)当所给的数据在一常数a上下波动时,一般选用='+a.一组数据x1,x2,…,x n的各个数据比较大的时候,我们可以把各个数据同时减去一个适当的常数a,得x'1=x1-a,x'2=x2-a,…,x'n=x n-a.于是x1=x'1+a,x2=x'2+a,…,x n=x'n+a.因此=(x1+x2+…+x n)=(x1'+x2'+…+x n')+·na='+a;(2)平均数的大小与每个数据都有关系,它反映一组数据的集中趋势,是一组数据的“重心”,也是度量一组数据波动大小的基准;(3)加权平均数是算术平均数的特例.加权平均数的实质就是考虑不同权重的平均数,当加权平均数的各项权相等时,就变成了算术平均数.2.例题讲解一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:(单位:分)选手演讲内容演讲能力演讲效果A85 95 95B95 85 95请确定两人的名次.教师出示例题并指导学生阅读分析:这个问题可以看成是求两名选手三项成绩的加权平均数,50%,40%,10%说明演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度,是三项成绩的权.学生在阅读过程中明确下列问题:(1)演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度用什么数据说明?(2)要想决出两人的名次,必须求两人的总成绩,实质上是求这两名选手三项成绩的加权平均数.学生根据加权平均数的计算公式先分别计算出两名选手的总成绩,教师进一步引导写出解答过程.解:选手A的最后得分是=90,选手B的最后得分是=91.由上可知选手B获得第一名,选手A获得第二名.[设计意图]让学生掌握自学的方法,提高学生独立分析问题、解决问题的能力.通过问题的解决,让学生进一步体会数据的权的作用,体验参与数学活动的乐趣.(1)加权平均数的意义:在一组数据中,由于每个数据的权不同,所以计算平均数时,用加权平均数,才符合实际.(2)数据的权的意义:数据的权能够反映数据的相对“重要程度”.(3)加权平均数公式:=.1.晨光中学规定学生的学期体育成绩满分为100分,其中平时体育活动评估成绩占20%,期中成绩占30%,期末成绩占50%.则平时体育活动评估成绩、期中成绩、期末成绩的权分别为、和.解析:根据权的概念解决即可.答案:20%30%50%2.学校把学生学科的期中、期末两次成绩分别按40%,60%的比例计入学期学科总成绩.小明期中数学成绩是85分,期末数学成绩是90分,那么他的学期数学总成绩是()A.85分B.87.5分C.88分D.90分解析:根据学期数学成绩=期中数学成绩×所占的百分比+期末数学成绩×所占的百分比即可求得学期总成绩.故选C.3.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩的20%,面试占30%,实习成绩占50%,各项成绩如下表所示:(单位:分)应聘笔试面试实习者甲85 83 9080 85 92试判断谁会被公司录用,为什么?解:甲的平均成绩为=86.9,乙的平均成绩为=87.5.因此,乙会被公司录用.4.某单位欲招聘一名技术部门负责人,对甲、乙、丙三位候选人进行了三项能力测试,且各项测试成绩满分均为100分,根据结果择优录取,三位候选人的各项测试成绩如下表所示:(单位:分)测试项目测试成绩甲乙丙沟通能力85 73 73 科研能70 71 65组织能64 72 84力(1)如果根据三项测试的平均成绩,谁将被录用?说明理由.(2)根据实际需要,该单位将沟通能力、科研能力和组织能力三项测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用?说明理由.解:(1)甲的平均成绩为(85+70+64)÷3=73,乙的平均成绩为(73+71+72)÷3=72,丙的平均成绩为(73+65+84)÷3=74,因此,丙的平均成绩最高,丙将被录用.(2)甲的成绩为=76.3,乙的成绩为=72.2,丙的成绩为=72.8.因此,甲的成绩最高,甲将被录用.第1课时1.加权平均数2.例题讲解例题一、教材作业【必做题】教材第113页练习第1,2题;教材第121页习题20.1第1题.【选做题】教材第122页习题20.1第5题.二、课后作业【基础巩固】1.在中国好声音选秀节目中,四位参赛选手的各项得分如下表,如果将专业、形象、人气这三项得分按3∶2∶1的比例确定最终得分,最终得分最高的进入下一轮比赛,则进入下一轮比赛的是()(每项按10分制)测试内测试成绩容小赵小王小李小黄专业素6 7 8 8质形象表8 7 6 9现人气指8 10 9 6数A.小赵B.小王C.小李D.小黄2.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下:采访写计算机创意设作计小70分60分86分明小90分75分51分亮小60分84分72分丽现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权重比由3∶5∶2变成5∶3∶2,成绩变化情况是() A.小明增加最多 B.小亮增加最多C.小丽增加最多D.三人的成绩都增加3.希望中学一个学期的数学总平均分是按下图进行计算的.该校李飞同学这个学期的数学成绩如下:(单位:分)李飞平时作业期中考试期末考试90 8588则李飞这个学期数学总平均分为.4.某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为.【能力提升】5.学生的学科期末成绩由期考分数、作业分数、课堂参与分数三部分组成,按各占30%,30%,40%的比例确定.已知晓明的数学期考80分,作业90分,课堂参与85分,则他的数学期末成绩为分.6.小丽家上个月吃饭费用为500元,教育费用为200元,其他费用为500元.本月小丽家这三项费用分别增长了10%,30%和5%.小丽家本月的总费用比上个月增长的百分数是多少?7.小李同学七年级第二学期的数学成绩如下表所示:测验类别平时期中考试期末考试测验1测验2测验3测验4成绩88 92 94 90 92 89如果学期的总评成绩是根据如图所示的权重计算,那么小李同学该学期的总评成绩为多少分?(四舍五入精确到1分)8.老师在计算学期总平均分的时候按如下标准:作业占10%,测验占20%,期中考试占35%,期末考试占35%,小关和小兵的成绩如下表:学生作业测验期中考试期末考试小关80 75 71 88 小76 80 68 90分别算出小关和小兵的总平均分.【拓展探究】9.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试成绩(单位:分)测试项甲乙丙目笔试75 80 90面试93 7068根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4∶3∶3的比例确定个人成绩,那么谁将被录用?【答案与解析】1.D(解析:将四个人的测试成绩按比例求出最终成绩,找出成绩最高的即可.)2.B(解析:根据加权平均数的概念分别计算出3人的各自成绩.先求出采访写作、计算机和创意设计这三项的权重比是3∶5∶2各自的成绩,再求出这三项的权重比是5∶3∶2各自的成绩,进行比较.)3.87.5(解析:先从统计图得到相应数据的权重,再利用加权平均数的计算方法求解.)4.11.5元/千克(解析:将三种糖果的总价算出,再除以60即可.)5.85(解析:根据加权平均数的计算公式计算即可.)6.解:500×10%+200×30%+500×5%=135(元),135÷(500+200+500)×100% =11.25%.7.解:平时平均成绩为=91(分),总评成绩为=90.1≈90(分).8.解:小关的学期总平均分为=80×10%+75×20%+71×35%+88×35%=78.65(分),小兵的学期总平均分为'=76×10%+80×20%+68×35%+90×35%=78.9(分).9.解:(1)甲、乙、丙三人的民主评议得分分别为:200×25%=50(分),200×40%=80(分),200×35%=70(分).(2)甲的平均成绩为≈72.67(分),乙的平均成绩为≈76.67(分),丙的平均成绩为=76.00(分).由于76.67>76>72.67,所以候选人乙将被录用.(3)甲的个人成绩为=72.9(分);乙的个人成绩为=77(分);丙的个人成绩为=77.4(分).由于丙的个人成绩最高,所以候选人丙将被录用.本节课把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.平均数是统计中的一个重要概念,新教材注重了学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念.基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值,努力做到由传统的数学课堂向实验课堂转变.在教学过程中,高估了学生理解加权平均数的能力,主要困难在于一些学生不能对权的含义理解透彻.适当增加学生熟知的一些实例,通过计算平均数,深刻理解权的含义及对平均数的影响.练习(教材第113页)1.解:(1)甲:=88(分),乙:=87.5(分),故甲将被录取.(2)甲:=87.6(分),乙:=88.4(分),故乙将被录取.2.解:=88.5(分).故小桐这学期的体育成绩是88.5分.学生在第二学段已学过平均数,初步了解了平均数的实际意义,这个课时将在此基础上,在研究数据集中趋势的大背景下,学习加权平。
人教版五四制初中八年级数学下册全套教案
勾股定理【教学目标】1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
【教学重难点】1.重点:勾股定理的内容及证明。
2.难点:勾股定理的证明。
【教学课时】1课时【教学过程】目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。
我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。
这个事实可以说明勾股定理的重大意义,尤其是在两千年前,是非常了不起的成就。
让学生画一个直角边为3cm 和4cm 的直角ABC △,用刻度尺量出AB 的长。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角ABC △,用刻度尺量AB 的长。
你是否发现2234+与25的关系,22512+和213的关系,即22234=5+,222512=13+,那么就有222+=勾股弦。
命题 1 如果直角三角形的两条直角边长分别为a 、b ,斜边长为c ,那么222a b c =+。
我们把它称之为勾股定理。
对于任意的直角三角形也有这个性质吗?例习题分析:例1(补充)已知:在ABC △中,90C ∠=︒,A B C ∠∠∠、、的对边为a 、b 、c 。
求证:222a b c =+。
AB分析:(1)让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。
(2)拼成如图所示,其等量关系为:4S S S +=△小正大正2214ab b-a =c 2⨯+(),化简可证。
人教版八年级数学下册教案
人教版八年级数学下册教案人教版八年级数学下册教案(精选篇1)1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
人教版八年级数学下册教案(精选篇2)一、分式※1.两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式;整式A除以整式B,可以表示成的形式.如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零.※2.进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变;※3.一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分;※4.分子与分母没有公因式的分式,叫做最简分式;二、分式的乘除法法则两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘(简记为:除以一个数等于乘以这个数的倒数)三、分式的加减法※1.分式与分数类似,也可以通分;根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;※2.分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减;(1)同分母的分式相加减,分母不变,把分子相加减;(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;※3.概念内涵:通分的关键是确定最简分母,其方法如下:(1)最简公分母的系数,取各分母系数的最小公倍数;(2)最简公分母的字母,取各分母所有字母的次幂的积;(3)如果分母是多项式,则首先对多项式进行因式分解;四、分式方程※1.解分式方程的一般步骤:①在方程的两边都乘以最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入原方程检验;※2.列分式方程解应用题的一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出(分式)方程;④解方程,并验根;⑤写出答案;人教版八年级数学下册教案(精选篇3)一、分解因式※1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
【人教版八年级下册数学教案全册】人教版八年级下册数学教案【优秀4篇】
【人教版八年级下册数学教案全册】人教版八年级下册数学教案【优秀4篇】人教版八年级下册数学教案篇一教学目标:一、知识与技能1、从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解。
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
二、过程与方法1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点。
2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识。
三、情感态度与价值观1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣。
2、通过分组讨论,培养学生合作交流意识和探索精神。
教学重点:理解和领会反比例函数的概念。
教学难点:领悟反比例的概念。
教学过程:一、创设情境,导入新课活动1问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1、68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化。
师生行为:先让学生进行小组合作交流,再进行全班性的问答或交流。
学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式。
教师组织学生讨论,提问学生,师生互动。
在此活动中老师应重点关注学生:①能否积极主动地合作交流。
②能否用语言说明两个变量间的关系。
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象。
分析及解答:其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;上面的函数关系式,都具有的形式,其中k是常数。
二、联系生活,丰富联想活动2下列问题中,变量间的对应关系可用这样的函数式表示?(1)一个游泳池的容积为20__m3,注满游泳池所用的时间随注水速度u 的变化而变化;(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化。
新部编人教版初中八年级下册数学全册教案
部编版·八年级下册数学全册教案(新教材)学校:____ _______教师:_________2020年1月16.1.1 二次根式教案序号:1 时间: 教学内容二次根式的概念及其运用 教学目标a ≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键1a ≥0)的式子叫做二次根式的概念;2a ≥0)”解决具体问题. 教学过程 一、复习引入(学生活动)请同学们独立完成下列三个课本P2的三个思考题: 二、探索新知a ≥0)•(学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少?3.当a<0 老师点评:(略)例11x(x>01x y+(x ≥0,y•≥0).分析0.x>0、x≥0,y≥01x、1x y+.例2.当x在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.解:由3x-1≥0,得:x≥13当x≥13三、巩固练习教材P5练习1、2、3.四、应用拓展例3.当x11x+在实数范围内有意义?分析11x+0和11x+中的x+1≠0.解:依题意,得23010xx+≥⎧⎨+≠⎩由①得:x≥-32由②得:x≠-1当x≥-32且x≠-1+11x+在实数范围内有意义.例4(1)已知,求xy的值.(答案:2)(2),求a2004+b2004的值.(答案:25)五、归纳小结(学生活动,老师点评)本节课要掌握:1a≥0”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P5 1,2,3,42.选用课时作业设计.第一课时作业设计一、选择题1.下列式子中,是二次根式的是()A.B C D.x 2.下列式子中,不是二次根式的是()A B C D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5 B C.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x2在实数范围内有意义?3+.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b=b+4,求a、b的值.第一课时作业设计答案:一、1.A 2.D 3.B二、1a≥0)23.没有三、1.设底面边长为x,则0.2x2=1,解答:2.依题意得:230xx+≥⎧⎨≠⎩,32xx⎧≥-⎪⎨⎪≠⎩∴当x>-32且x≠0+x2在实数范围内没有意义.3.1 34.B5.a=5,b=-416.1.2 二次根式(2)教案序号:2 时间:教学内容1a≥0)是一个非负数;22=a(a≥0).教学目标a≥02=a(a≥0),并利用它们进行计算和化简.a≥0)是一个非负数,用具体数据结合算术平方根2=a(a≥0);最后运用结论严谨解题.教学重难点关键1a≥02=a(a≥0)及其运用.2.难点、关键:a≥0)是一个非负数;•用探究的方法导出2=a(a≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0a<0老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)a≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:)2=_______2=_______2=______)2=_______;2=______)2=_______2=_______.是4的算术平方根,是一个平方等于4的非负数,因此有)2=4.2=22=9)2=32=13)2=722=0,所以例1 计算1)2 2.()2 324.(2)2分析2=a (a ≥0)的结论解题.)2 =32,(2 =322=32·5=45,2=56,(2)274=.三、巩固练习 计算下列各式的值:2 )2 (42 2 ()222-四、应用拓展 例2 计算12(x ≥0) 22 324)2分析:(1)因为x ≥0,所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)≥0; (4)4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2≥0.所以上面的42=a (a ≥0)的重要结论解题. 解:(1)因为x ≥0,所以x+1>02=x+1(2)∵a 2≥02=a 2(3)∵a 2+2a+1=(a+1)2又∵(a+1)2≥0,∴a 2+2a+1≥0 2+2a+1 (4)∵4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2 又∵(2x-3)2≥0∴4x 2-12x+9≥02=4x 2-12x+9 例3在实数范围内分解下列因式: (1)x 2-3 (2)x 4-4 (3) 2x 2-3分析:(略) 五、归纳小结 本节课应掌握:1a ≥0)是一个非负数;2.(2=a (a ≥0);反之:a=2(a ≥0). 六、布置作业1.教材P5 5,6,7,82.选用课时作业设计. 第二课时作业设计 一、选择题1 ).A .4B .3C .2D .12.数a 没有算术平方根,则a 的取值范围是( ). A .a>0 B .a ≥0 C .a<0 D .a=0 二、填空题1.()2=________.2_______数. 三、综合提高题 1.计算(12 (2)-)2 (3)(12)2 (4)()2(5) 2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3)16(4)x (x ≥0)3,求x y 的值. 4.在实数范围内分解下列因式: (1)x 2-2 (2)x 4-9 3x 2-5第二课时作业设计答案: 一、1.B 2.C 二、1.3 2.非负数三、1.(12=9 (2)-2=-3 (3)(12)2=14×6=32(4)()2=9×23=6 (5)-62.(1)5=)2 (2)3.4=2(3)16=2 (4)x=)2(x ≥0)3.103304x y x x y -+==⎧⎧⎨⎨-==⎩⎩ x y =34=814.(1)x 2-2=((2)x 4-9=(x 2+3)(x 2-3)=(x 2+3)()() (3)略16.1 二次根式(3)教案总序号:3 时间: 教学内容a (a ≥0)教学目标(a ≥0)并利用它进行计算和化简.(a ≥0),并利用这个结论解决具体问题. 教学重难点关键1a (a ≥0). 2.难点:探究结论.3.关键:讲清a ≥0a 才成立. 教学过程 一、复习引入老师口述并板收上两节课的重要内容;1a ≥0)的式子叫做二次根式;2a ≥0)是一个非负数;3.2=a (a ≥0).那么,我们猜想当a ≥0是否也成立呢?下面我们就来探究这个问题. 二、探究新知 (学生活动)填空:=_______;=________=________=_______. (老师点评):根据算术平方根的意义,我们可以得到:=2110=23=37.例1 化简(1(2(3(4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a≥0)•去化简.解:(1(2(3(4三、巩固练习教材P7练习2.四、应用拓展例2 填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?分析(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1,所以a≥0;(2,所以a≤0;(3)因为当a≥0,即使a>a所以a不存在;当a<0,即使-a>a,a<0综上,a<0例3当x>2分析:(略)五、归纳小结(a≥0)及其运用,同时理解当a<0a的应用拓展.六、布置作业1.教材P5习题16.1 3、4、6、8.2.选作课时作业设计.第三课时作业设计一、选择题1).A.0 B.23C.423D.以上都不对2.a≥0).A BC D.二、填空题1.=________.2m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求的值,甲乙两人的解答如下:甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│答案:一、1.C 2.A二、1.-0.02 2.5三、1.甲甲没有先判定1-a是正数还是负数2.由已知得a-•2000•≥0,•a•≥2000所以=a=1995,a-2000=19952,所以a-19952=2000.3. 10-x16.2 二次根式的乘除教案总序号:4 时间:教学内容a≥0,b≥0a≥0,b≥0)及其运用.教学目标a≥0,b≥0=a≥0,b≥0),并利用它们进行计算和化简(a≥0,b≥0)并运用它进行计算;•利用逆向思维,得出=a≥0,b≥0)并运用它进行解题和化简.教学重难点关键(a≥0,b≥0a≥0,b≥0)及它们的运用.a≥0,b≥0).a<0,b<0)×教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1=______;(2=_______=________.(3.参考上面的结果,用“>、<或=”填空.2.利用计算器计算填空(1,(2(34,(5.老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为反过来:例1.计算(1(2(3(4分析:a≥0,b≥0)计算即可.解:(1(2(3=(4例2 化简(1(2(3(4(5a≥0,b≥0)直接化简即可.解:(1×4=12(2×9=36(3×10=90(4==3xy(5三、巩固练习(1)计算(学生练习,老师点评)①②×(2) 化简: ; ;教材P11练习全部四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1=(2=4解:(1)不正确.=×3=6(2)不正确.==五、归纳小结本节课应掌握:(1(a≥0,b≥0a≥0,b≥0)及其运用.六、布置作业1.课本P111,4,5,6.(1)(2).2.选用课时作业设计.第一课时作业设计一、选择题1.化简).A B C.D.2=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1 3.下列各等式成立的是().A.×B.C.D.×二、填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm 铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:×==(2)验证:=同理可得:==,……通过上述探究你能猜测出:(a>0),并验证你的结论.答案:一、1.B 2.C 3.A 4.D二、1.2.12s三、1.设:底面正方形铁桶的底面边长为x,则x2×10=30×30×20,x2=30×30×2,.2.验证:==16.2 二次根式的乘除(2)教案总序号:5 时间:教学内容a≥0,b>0a≥0,b>0)及利用它们进行计算和化简.教学目标=a≥0,b>0)和a≥0,b>0)及利用它们进行运算.教学重难点关键1=a≥0,b>0a≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空(1;(2=________=________;;(3=________=________.(43.利用计算器计算填空:=_________,(2=_________,(3=______,(4=________.(1。
八年级数学下册《函数》教案 新人教版
课题: 114.1.2 函数分管领导课时 1 第 11周第二课时总第37课时教学目标:知识与技能:初步了解函数的概念,在具体情境中分清哪个变量是自变量,谁是谁的函数,回由自变量的值求出函数值过程与方法目标:经历从具体实例中抽象出函数的过程,发展抽象思维能力,感悟运动变化的观点情感与态度目标:通过具体情境中对函数关系式的建立,提高认识变化规律、预测发展趋势的能力重点(1)通过学习使学生掌握函数的概念,了解自变量、函数值的概念。
(2)可以从实际问题中列出函数关系式。
(3)会区分函数和函数值难点对函数函数概念的理解教学过程教师活动学生活动修改意见一观察发现问题1:小明到商店买练习簿,每本单价2.5元,设购买的总数为m本,总金额t元,填写下表:然后回答下列问题:(1)上述问题中,哪些是常量?哪些是变量?(2)能用m的代数式表示t的值吗?问题2:跳远运动员按一定的起跳姿势,其跳远的距离s(米)与助跑的速度v(米/秒)有关。
根据经验,跳远的距离s=0.085v2(0<v<10.5)然后回答下列问题:(1)在上述问题中哪些是常量?哪些是变量?(2)计算当v分别为7.5,8,8.5时,相应的跳远距离s是多少(结果保留3个有效数字)?(3)给定一个v的值,你能求出相应的s的值吗?小组讨论函数的概念:购买数量(m本)2 5 10 20 …费用(t元)学生思考,回答问题。
教师指出:在这个变化过程中,有两个变量x、y,对x的每一个确定的值,y都有唯一确定的值与它对应。
学生交流体会:在这个变化过程中,有两个变量v,s,对v的每一个确定的值,s都有唯一确定的值与它对应.二探究说理1)函数的概念在第一个环节的基础上,教师归纳得出函数的概念:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应。
那么我们就说x是自变量,y是x的函数。
例如,上面的问题1中,m是t的函数,t是自变量;教师板书函数概念强调注意事项:(1)在“同一个变化过程”问题2中,s是对v的的函数,v是自变量.2)函数的表示法:①解析法:问题1、2中,m=2.5t和2085.0vs 这两个函数用等式来表示,这种表示函数关系的等式,叫做函数解析式,简称函数式.用函数解析式表示函数的方法也叫解析法.②列表法:有时把自变量x的一系列值和函数y的对应值列成一个表.这种表示函数关系的方法是列表法.如下表:表示的是一年内某城市月份m与平均气温t(℃)的函数关系.月份 1 2 3 4平均气温3.8 5.1 9.3 155 6 7 8 9 …20.2 24.4 28.6 28 23③图象法:我们还可以用法来表示函数,例如图7-1中的图象就表示骑车时热量消耗W(焦)与身体质量x(千克)之间的函数关系.解析法、图象法和列表法是函数的三种常用的表示方法.3)函数值概念与自变量对应的值叫做函数值,它与自变量的取值有关,通常函数值随着自变量的变化而变化.若函数用解析法表示,只需把自变量的值代人函数式,就能得到相应的函数值.例如对于函数m=2.5t,当t=4时,把它代人函数解析式,得m=2.5×4=10(元).m=10叫做当自变量t=4时的函数值.若函数用列表法表示.我们可以通过查表得到.例如一年内某城市月份与平均气温的函数关系中,当m=2时,函数值T=5.1;当m=9,函数值T=23若函数用图象法表示.例如骑车时热量消耗W(焦)与身体质量x(千克)之间的函数关系中,对给定的自变量的值,怎样求它的函数值呢?如x=50,我们只要作一直线垂直于x轴,且垂足为点(50,0),这条直线与图象的交点P(50,399)的纵坐标就是就是当函数值x=50时的函数值,即W=399(焦)中“两个变量”(2)y的取值由x的取值确定。
八年级下册数学教案配新人教版
八年级下册数学教案配新人教版八年级下册数学教案配新人教版【篇1】一、教学目标:1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.2、会求一组数据的极差.二、重点、难点和难点的突破方法1、重点:会求一组数据的极差.2、难点:本节课内容较容易接受,不存在难点.三、课堂引入:下表显示的是上海2月下旬和同期的每日最高气温,如何对这两段时间的气温进行比较呢?从表中你能得到哪些信息?比较两段时间气温的高低,求平均气温是一种常用的方法.经计算可以看出,对于2月下旬的这段时间而言,和上海地区的平均气温相等,都是12度.这是不是说,两个时段的气温情况没有什么差异呢?根据两段时间的气温情况可绘成的折线图.观察一下,它们有区别吗?说说你观察得到的结果.用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range).四、例习题分析本节课在教材中没有相应的例题,教材P152习题分析问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。
八年级下册数学教案配新人教版【篇2】教学目标:1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。
2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。
教学重点:本节课重点是掌握已知对称轴L和一个点,要画出点A关于L 的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。
教学方法:动手实践、讨论。
教学工具:课件教学过程:一、先复习轴对称图形的定义,以及轴对称的相关的性质:1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________2.轴对称的三个重要性质___________________________________________________________________________________________________________________二、提出问题:二、探索练习:1. 提出问题:如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。
2020年最新人教版八年级下册数学全册教案及答案
八年级下册数学教学工作计划一、指导思想在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。
3班、 4班比较,3班优生稍多一些,学生非常活跃,有少数学生不上进,思维不紧跟老师。
4班学生单纯,有部分同学基础较差,问题较严重。
要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、教材分析本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:《义务教育教科书·数学》八年级下册包括二次根式,勾股定理,平行四边形,一次函数,数据的分析等五章内容,学习内容涉及到了《义务教育数学课程标准(2011年版)》(以下简称《课程标准》)中“数与代数”“图形与几何”“统计与概率”“综合与实践”全部四个领域。
其中对于“综合与实践”领域的内容,本册书在第十九章、第二十章分别安排了一个课题学习,并在每一章的最后安排了两个数学活动,通过这些课题学习和数学活动落实“综合与实践”的要求。
第16章“二次根式”主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。
通过本章学习,学生将建立起比较完善的代数式及其运算的知识结构,并为勾股定理、一元二次方程、二次函数等内容的学习做好准备。
第17章“勾股定理”主要研究勾股定理和勾股定理的逆定理,包括它们的发现、证明和应用。
第18章“平行四边形”主要研究一般平行四边形的概念、性质和判定,还研究了矩形、菱形和正方形等几种特殊的平行四边形。
第19章是“一次函数”,其主要内容包括:常量与变量的意义,函数的概念,函数的三种表示法,一次函数的概念、图象、性质和应用举例,一次函数与二元一次方程等内容的关系,以及以建立一次函数模型来选择最优方案为素材的课题学习。
人教版八年级数学下册教案(3篇)
人教版八年级数学下册教案(3篇)人教版八年级数学下册教案篇一1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?通过讨论得到矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)例1(补充)下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的。
四边形是矩形;(×)(2)有四个角是直角的四边形是矩形;(√)(3)四个角都相等的四边形是矩形;(√)(4)对角线相等的四边形是矩形;(×)(5)对角线相等且互相垂直的四边形是矩形;(×)(6)对角线互相平分且相等的四边形是矩形;(√)(7)对角线相等,且有一个角是直角的四边形是矩形;(×)(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)(9)两组对边分别平行,且对角线相等的四边形是矩形.(√)指出:(l)所给四边形添加的条件不满足三个的肯定不是矩形;(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.例2(补充)已知abcd的对角线ac、bd相交于点o,△aob 是等边三角形,ab=4cm,求这个平行四边形的面积.分析:首先根据△aob是等边三角形及平行四边形对角线互相平分的性质判定出abcd是矩形,再利用勾股定理计算边长,从而得到面积值.解:∵ 四边形abcd是平行四边形,∴ao=ac,bo=bd.∵ ao=bo,∴ ac=bd.∴ abcd是矩形(对角线相等的平行四边形是矩形).在rt△abc中,∵ ab=4cm,ac=2ao=8cm,∴bc=(cm).例3(补充)已知:如图(1),abcd的四个内角的平分线分别相交于点e,f,g,h.求证:四边形efgh是矩形.分析:要证四边形efgh是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明人教版八年级数学下册教案篇二1.理解掌握分式的四则混合运算的顺序。
新人教版八年级数学下册27.2.1 第3课时 两边成比例且夹角相等的两个三角形相似(优秀教学设计)
27.2.1 相似三角形的判定第3课时 两边成比例且夹角相等的两个三角形相似1.理解“两边成比例且夹角相等的两个三角形相似”的含义,能分清条件和结论,并能用文字、图形和符号语言表示;(重点)2.会运用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似,并解决简单的问题.(难点)一、情境导入利用刻度尺和量角器画两个三角形,使它们的两条对应边成比例,并且夹角相等.量一量第三条对应边的长,计算它们的比与前两条对应边的比是否相等.另两个角是否对应相等?你能得出什么结论?二、合作探究探究点:两边成比例且夹角相等的两个三角形相似 【类型一】 直接利用判定定理判定两个三角形相似已知:如图,在△ABC 中,∠C =90°,点D 、E 分别是AB 、CB 延长线上的点,CE =9,AD =15,连接DE .若BC =6,AC =8,求证:△ABC ∽△DBE .解析:首先利用勾股定理可求出AB 的长,再由已知条件可求出DB ,进而可得到DB ∶AB 的值,再计算出EB ∶BC 的值,继而可判定△ABC ∽△DBE .证明:∵在Rt △ABC 中,∠C =90°,BC =6,AC =8,∴AB =BC 2+AC 2=10,∴DB =AD -AB =15-10=5,∴DB ∶AB =1∶2.又∵EB =CE -BC =9-6=3,∴EB ∶BC =1∶2,∴EB ∶BC =DB ∶AB ,又∵∠DBE =∠ABC =90°,∴△ABC ∽△DBE .方法总结:解本题时一定要注意必须是两边对应的夹角才行,还要注意一些隐含条件,如公共角、对顶角等.变式训练:见《学练优》本课时练习“课堂达标训练” 第2题【类型二】 添加条件使三角形相似如图,已知△ABC 中,D 为边AC 上一点,P 为边AB 上一点,AB =12,AC =8,AD =6,当AP 的长度为________时,△ADP 和△ABC 相似.解析:当△ADP ∽△ACB 时,AP AB =AD AC ,∴AP 12=68,解得AP =9.当△ADP ∽△ABC 时,AD AB =AP AC ,∴612=AP 8,解得AP =4,∴当AP 的长度为4或9时,△ADP 和△ABC 相似.故答案为4或9.方法总结:添加条件时,先明确已知的条件,再根据判定定理寻找需要的条件,对应本题可先假设两个三角形相似,再利用倒推法以及分类讨论解答.变式训练:见《学练优》本课时练习“课堂达标训练” 第5题【类型三】 利用三角形相似证明等积式如图,CD 是Rt △ABC 斜边AB 上的高,E 为BC 的中点,ED 的延长线交CA 的延长线于F .求证:AC ·CF =BC ·DF .解析:先证明△ADC ∽△CDB 可得AD CD =AC BC ,再结合条件证明△FDC ∽△F AD ,可得AD CD=DF CF,则可证得结论. 证明:∵∠ACB =90°,CD ⊥AB ,∴∠DAC +∠B =∠B +∠DCB =90°,∴∠DAC =∠DCB ,且∠ADC =∠CDB ,∴△ADC ∽△CDB ,∴AD CD =AC BC.∵E 为BC 的中点,CD ⊥AB ,∴DE =CE ,∴∠EDC =∠DCE ,∵∠EDC +∠FDA =∠ECD +∠ACD ,∴∠FCD =∠FDA ,又∠F =∠F ,∴△FDC ∽△F AD ,∴DF CF =AD DC ,∴AC BC =DF CF,∴AC ·CF =BC ·DF . 方法总结:证明等积式或比例式的方法:把等积式或比例式中的四条线段分别看成两个三角形的对应边,然后证明两个三角形相似,得到要证明的等积式或比例式.【类型四】 利用相似三角形的判定进行计算如图所示,BC ⊥CD 于点C ,BE ⊥DE 于点E ,BE 与CD 相交于点A ,若AC =3,BC =4,AE =2,求CD 的长.解析:因为AC =3,所以只需求出AD 即可求出CD .可证明△ABC 与△ADE 相似,再利用相似三角形对应边成比例即可求出AD .解:在Rt △ABC 中,由勾股定理可得AB =BC 2+AC 2=42+32=5.∵BC ⊥CD ,BE⊥DE ,∴∠C =∠E ,又∵∠CAB =∠EAD ,∴△ABC ∽△ADE ,∴AB AD =AC AE ,即5AD =32,解得AD =103,∴CD =AD +AC =103+3=193. 方法总结:利用相似三角形的判定进行边角计算时,应先利用条件证明三角形相似或通过作辅助线构造相似三角形,然后利用相似三角形对应角相等和对应边成比例进行求解.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型五】 利用相似三角形的判定解决动点问题如图,在△ABC中,∠C=90°,BC=8cm,5AC-3AB=0,点P从B出发,沿BC方向以2cm/s的速度移动,与此同时点Q从C出发,沿CA方向以1cm/s的速度移动,经过多长时间△ABC和△PQC相似?解析:由AC与AB的关系,设出AC=3x cm,AB=5x cm,在直角三角形ABC中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,进而得到AB与AC的长.然后设出动点运动的时间为t s,根据相应的速度分别表示出PC与CQ的长,由△ABC和△PQC相似,根据对应顶点不同分两种情况列出比例式,把各边的长代入即可得到关于t的方程,求出方程的解即可得到t的值,从而得到所有满足题意的时间t的值.解:由5AC-3AB=0,得到5AC=3AB,设AB为5x cm,则AC=3x cm,在Rt△ABC 中,由BC=8cm,根据勾股定理得25x2=9x2+64,解得x=2或x=-2(舍去),∴AB=5x =10cm,AC=3x=6cm.设经过t秒△ABC和△PQC相似,则有BP=2t cm,PC=(8-2t)cm,CQ=t cm,分两种情况:①当△ABC∽△PQC时,有BCQC=ACPC,即8t=68-2t,解得t=3211;②当△ABC∽△QPC时,有ACQC=BCPC,即6t=88-2t,解得t=125.综上可知,经过125或3211秒△ABC和△PQC相似.方法总结:本题的关键是根据三角形相似的对应顶点不同,分两种情况△ABC∽△PQC 与△ABC∽△QPC分别列出比例式来解决问题.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计1.三角形相似的判定定理:两边成比例且夹角相等的两个三角形相似;2.应用判定定理解决简单的问题.本节课采用探究发现式教学法和参与式教学法为主,利用多煤体引导学生始终参与到学习活动的全过程中,处于主动学习的状态.采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程.在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想.(赠品,不喜欢可以删除)数学这个家伙即是科学界的“段子手”,又是“心灵导师”一枚。
人教版数学八年级下册19.2第1课时正比例函数优秀教学案例
一、案例背景
在我国初中数学教育中,正比例函数是学生接触到的第一个具有明显线性特征的函数类型,对于培养他们的数学思维与解决实际问题的能力具有重要意义。本教学案例以人教版数学八年级下册19.2第1课时正比例函数为主题,通过设计丰富多样的教学活动,旨在帮助学生理解正比例函数的概念、图像及性质,并能将其应用于解决生活中的实际问题。
在教学正比例函数这一课时,我将通过创设贴近学生生活的情景,激发他们的学习兴趣。例如,可以引入购买商品时的单价与总价关系、速度与时间关系等实例,让学生在具体情境中感知正比例函数的存在。这样既能帮助学生理解正比例函数的定义,又能使他们体会到数学知识在实际生活中的应用。
(二)问题导向
以问题为导向的教学策略,可以引导学生主动探究、积极思考。在教学中,我将设计一系列具有启发性和挑战性的问题,如“如何表示两个变量的正比例关系?”“正比例函数的图像有什么特点?”等。通过这些问题,让学生在解答过程中掌握正比例函数的知识点,培养他们分析问题和解决问题的能力。
4.反思与评价的有机结合
本案例注重学生的反思与评价,引导他们在学习过程中及时总结经验教训,调整学习策略。同时,教师采用多元化的评价方式,关注学生的全面发展。这种反思与评价的有机结合,有助于提高学生的学习效率,增强他们的自信心。
5.丰富的教学内容与过程设计
本案例在教学内容与过程设计方面,充分考虑了学生的认知规律和教学目标。从导入新课、讲授新知、小组讨论、总结归纳到作业小结,各个环节紧密相连,层层递进。这种设计有助于学生系统、全面地掌握正比例函数的知识,提高他们的数学素养。
3.引导学生运用数形结合的思想,将正比例函数的图像与性质相结合,提高他们解决问题的直观想象和逻辑推理能力。
新人教版数学初中八年级下册19.1.2《函数的图像》教案
《19.1.2函数的图象》◆ 教材分析本课是在学习函数概念的基础上,进一步讨论函数的图象,学习从函数图象上获取信息,初步讨论函数的变化规律和变化趋势.学习用描点法画函数的图象.体会函数的三种表示方法的特点,学习综合运用三种表示方法表示函数关系.◆教学目标1.了解函数图象的意义;2.会观察函数图象获取信息,根据图象初步分析函数的对应关系和变化规律;3.经历画函数图象的过程,体会函数图象建立数形联系的关键是分别用点的横、纵坐标表示自变量和对应的函数值.4.会用描点法画出函数图象,能说出画函数图象的步骤;5.会判断一个点是否在函数的图象上;6.了解函数的三种表示法及其优缺点;7.能用适当的方式表示简单实际问题中的变量之间的函数关系;8.能对函数关系进行分析,对变量的变化情况进行初步分析.◆教学重难点◆1.函数图象的意义,从图象中获取信息.2.描点法画出函数图象.3.综合运用三种表示法表示函数关系,研究运动变化过程.◆课前准备◆多媒体:PPT课件、电子白板第一课时一、情景导入引起兴趣:你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝水,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中(如图19-1-),瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度了,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为y,下面能大致表示上面故事情节的图象是( B )[说明与建议] 说明:利用学生非常熟悉的故事创设问题情境,引发学生兴趣的同时也引起学生的思考,从而考虑解决问题的方法.建议:通过探究函数图象的一系列问题,使学生充分认识图象,从图象中获取信息,理解图象的实际含义,直观感受到数形结合解决这类问题的价值,从学法上给学生以指导,为后面学生自主解决函数图象问题作好铺垫.二、初步认识学会画图1.观察北京某天的气温图,这个图反应了哪两个变量之间的函数关系?你知道是如何画出来的吗?[设计意图]这个图在前面已研究过,学生回答第一个问题并不难,紧接着提出第二个问题,引出本节课知识点——画函数图像.2.思考:一个正方形的边长为x,面积用S表示.(1)请写出面积S与边长x之间的函数关系式?自变量x的取值范围是什么?解:S=x²(x>0)(2)计算并填写下表:x S 00.50.2111.52.2242.56.2393.512.241 55556(3)在直角坐标系中,画出上面表格中各对数值所对应的点,然后用光滑曲线连接这些点.解:3.定义:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.三、认真观察学会识图:1.思考:下图是自动测温仪记录的图象,它反映了北京的春季某天气温T如何随时间t的变化而变化.你从图象中得到了哪些信息?解:气温T是时间t的函数,上图是函数图象,此函数不能用解析式表示.由图象可知:(1)这一天中凌晨4时气温最低(-3℃),14时气温最高(8℃);(2)从0时至4时气温呈下降状态(即温度随时间的增长而下降),从4时到14 时气温呈上升状态,从14时至24时气温又呈下降状态.(3)从图象可以看出这一天中任一时刻的气温大约是多少.2.例2如图所示,小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家,反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象回答下列问题:(1)食堂离小明家多远?小明从家到食堂用了多少时间?(2)小明吃早餐用了多少时间?(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间?(4)小明读报用了多少时间?(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少?分析:小明离家的距离y是时间x的函数.由图象中有两段平行于x轴的线段可知,小明离家后有两段时间先后停留在食堂与图书馆里.解:(1)从纵坐标看出,食堂离小明家0.6km;由横坐标看出,小明从家到食堂用了8min.(2)从横坐标看出,25-8=17,小明吃早餐用了17min.(3)从纵坐标看出,0.8-0.6=0.2,食堂离图书馆0.2km;从横坐标看出,28-25=3,小明从食堂到图书馆用了3min;(4)从横坐标看出,58-28=30,小明读报用了30min;(5)从纵坐标看出,图书馆离小明家0.8km;由横坐标看出,68-58=10,小明从图书馆回家用了10min,由此算出平均速度是0.08km/min.3.练习:(1)汽车在行驶的过程中,速度往往是变化的,下图表示一辆汽车的速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多长时间?它的最高速度是多少?(2)汽车在哪些时间段保持匀速行驶?时速分别是多少?(3)出发后8分钟到10分钟之间可能发生了什么情况?(4)请你描述汽车行驶的整个过程.解:(1)汽车从出发到最后停止共经历了24分钟,它的最高速度是90千米/时.(2)在2 分钟到6 分钟,18分钟到22 分钟之间汽车匀速行驶,速度分别是30千米/时和90千米/时.(3)此时汽车处于静止状态,可能是遇到红灯等情况(回答只要合理即可).(4)汽车在0~2分钟开始发动加速行驶;2~6分钟以30千米/时的速度匀速行驶;6~8 分钟,由于某些状况,开始减速慢行;8~10 分钟,汽车静止;10~18分钟,又开始加速行驶;18~22 分钟以90千米/时的速度匀速行驶;22~24 分钟减速行驶到达目的地.(2)下面的图像反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.根据图像回答下列问题:(1)体育场离张强家多远?张强从家到体育场用了多少时间?(2)体育场离文具店多远?(3)张强在文具店停留了多少时间?(4)张强从文具店回家的平均速度是多少?答案:(1)体育场离张强家2.5 km,张强从家到体育场用了15 min;(2)体育场离文具店:2.5-1.5=1(km);(3)张强在文具店逗留了:65-45=20(min);(4)回家速度:1.5÷四、课堂小结:100-6518=(km/h).60第二课时一、例题讲解:例3在下列式子中,对于x 的每一个确定的值,y有唯一的对应值,即y是x 的函数.画出这些函数的图象.(1)y=x+0.5;解:(1)列表:(2)y= (x>0).7描点,连线.(2)列表:X y……0.512161.54232.52.4323.5 41.551.261……描点,连线.二、方法归纳:描点法画函数图象一般步骤如下:(1)列表——表中给出一些自变量的值及其对应的函数值;(2)描点——在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点;(3)连线——按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来.三、巩固练习:1.(1)画出函数y=2x-1的图像;(2)判断点A(-2.5,-4),B(1,3),C(2.5,4)是否在函数y=2x-1的图像上.解:(1)如图所示;(2)A(-2.5,-4),B(1,3)不在函数y=2x-1的图像上,C(2.5,4)在函数y=2x-1的图像上.22.(1)画出函数y=x 的图像.(2)从图像中观察,当x<0时,y随x的增大而增大,还是y随x的增大而减小?当x>0时呢?解:(1)如图所示;(2)当x<0时,y随x增大而减小;当x>0时,y随x的增大而增大.四、课堂小结:(1)函数图象上的点的横纵坐标分别表示什么?(2)画函数图象时,怎样体现函数的自变量取值范围?(3)用描点法画函数图象按照哪些步骤进行?(4)怎样从图象上看出当自变量增大时,对应的函数值是增大还是减小?第三课时一、问题引入:问题:如图19-1-,要做一个面积为12 m长为y m.2的小花坛,该花坛的一边长为x m,周(1)变量y是变量x的函数吗?如果是,写出自变量的取值范围;(2)能求出这个问题的函数解析式吗?(3)当x的值分别为1,2,3,4,5,6时,请列表表示变量之间的对应关系;(4)能画出函数的图象吗?解:(1)y是x的函数,自变量x的取值范围是x>0.12(2)y=2(x+).(3)x/m y/m 1262163144145 614.8 16(4)【小结】在上题中我们亲自动手用列表格、写式子和画图象的方法表示了一个函数.这三种表示函数的方法分别称为列表法、解析式法和图象法.思考一下,从这个例子看,你认为三种表示函数的方法各有什么优缺点?在遇到具体问题时,该如何选择适当的表示方法呢?这就是我们这节课要研究的内容.二、例题探究:例4一水库的水位在最近5小时内持续上涨,下表记录了这5小时内6个时间点的水位高度,其中t表示时间,y表示水位高度.xt/时y/米……313.323.633.944.254.5(1)在平面直角坐标系中描出表中数据对应的点,这些点是否在一条直线上?由此你们能发现水位变化有什么规律吗?(2)水位高度y 是否为时间t 的函数?如果是,试写出一个符合表中数据的函数解析式,并画出这个函数的图象.这个函数能表示水位变化规律吗?(3)据估计这种上涨还会持续2小时,预测再过2小时水位高度将达到多少米.分析:记录表中已经通过6 组数值反映了时间t与水位y 之间的对应关系.我们现在需要从这些数值中找出这两个量之间的一般规律,由它写出函数解析式,再画出函数图象,从而预测水位.解:(1)如下图,描出表中数据对应的点.可以看出这6 个点在一条直线上.在结合数据,可以发现每小时水位上升0.3m.(2)由于水位在最近5h内持续上涨,对于时间t的每一个确定的值,水位高度y 都有唯一的值与其对应,所以y是t的函数.开始的水位高度为3m,以后每小时水位上升0.3m.故函数y=0.3t+3(0≤t≤5)他表示经过th水位上升0.3t m,即水位y为(0.3t+3) m,其图象为点A(0,3)和点B(5,4.5)之间的线段AB.(3)如果水位的变化规律不变,当t=5+2=7(h)时,水位高度y=0.3×7+3=5.1(m).三、课堂小结:1.合作探究:说说函数的三种表示方法各有什么优点和不足,分小组讨论一下.【引导探究】列表法比较直观、准确地表示出函数中两个变量的关系.解析式法则比较准确、全面地表示出了函数中两个变量的关系.图象法形象、直观地表示出函数中两个变量的关系.相比较而言,列表法不如解析式法全面,也不如图象法形象;而解析式法却不如列表法直观,不如图象法形象;图象法也不如列表法直观准确,不如解析式法全面.从全面性、直观性、准确性及形象性四个方面来总结归纳函数三种表示方法的优缺点.表示方法列表法解析式法图象法全面性×√×准确性√√×直观性√×√形象性××√从所填表中可清楚看到三种表示方法各有优缺点.在遇到实际问题时,要根据具体情况、具体要求选择适当的表示方法,有时为了全面地认识问题,需要几种方法同时使用.◆教学反思略。