新人教版八年级数学上册导学案(全-有答案)

合集下载

人教版八年级上册数学导学案答案

人教版八年级上册数学导学案答案

人教版八年级上册数学导学案答案数学(八年级上册)填空题:1. 周长为 42cm 的长方形,它的长是宽的 3/2,那么它的面积是_______答案:84cm²2. 若正比例函数 y = 3x,那么当 x = 8 时,y = _______答案:243. 设图中的阴影面积是 16.8dm²,那么阴影部分的周长是______ 答案:12.2dm4. 一个面积是 48平方厘米的正方形,如果面积增加 16平方厘米,它的周长会增加_______厘米。

答案:85. 已知正比例函数 y = 2x - 1,求当 x = 6 时,y = _______答案:11选择题:1. 已知一函数 y = |x - 3| + 2,那么它的定义域为()A. RB. x ≤ 3C. x > 3D. x ≠ 3答案:D2. 下列四个函数中,是奇函数的是()A. y = -1/4x³B. y = 4 - 2xC. y = 8x² + 9D. y = 2|x|答案:A3. 分式 3x/(x - 2) + 1,当 x = 2 时,分母为_______。

A. -2B. 0C. 2D. 4答案:04. 在矩形 ABCD 中,AD = 8cm,AB = 6cm,\angle C = 90^\circ,则其对角线 BD 的长为()。

A. 6cmB. 8cmC. 10cmD. 12cm答案:10cm5. 若 x + y = 6,x - y = 2,则 (1/x) - (1/y) 的值为()A. (1/6)B. (1/2)C. (1/12)D. (2/3)答案:A计算题:1. 求得物体表面积占整个球表面积的比值,已知球的半径为 5cm。

答案:(3/4)2. 已知正三角形 ABC 的边长为 8cm。

求 \angle ABD 的度数。

答案:30°3. 在等腰直角三角形 ABC中,AB = AC = 1。

新人教版八年级数学上导学案(全册)-

新人教版八年级数学上导学案(全册)-

第1题第十一章 三角形11.1与三角形有关的线段 11.1.1 三角形的边学习目标:1、明确三角形的相关概念;能正确对三角形进行分类;2、能利用三角形三边关系进行有关计算。

新课导学:三角形的有关概念——阅读课本第1至3页,回答以下问题:(1)三角形概念:由不在同一直线上的 条线段 连接所组成的图形。

(2)三角形的表示法(如图1)三角形ABC 可表示为: ; (3)ΔABC 的顶点分别为A 、 、 ; (3)ΔABC 的内角分别为∠ABC , , ;(4)ΔABC 的三条边分别为AB , , ;或, 、 ;(5)顶点A 的对边是 ,顶点B 的对边分别是 ,顶点C 的对边分别是 。

三角形的分类:(1)下图中,每个三角形的内角各有什么特点?(2)下图中,每个三角形的三边各有什么特点?(3)结合以上图形你认为三角形可以如何分类?试一试①按角分类: ②按边分类:(4)在等腰三角形中, 叫做腰,另外一边叫做 ,两腰的夹角叫做 ,叫做底角。

(5)等边三角形是特殊的等腰三角形,即底边和腰 的等腰三角形。

3、三角形的三边关系问题1:如图,现有三块地,问从A 地到B 地有几种走法,哪一种走法的距离最近?请将你的设计方案填写在下表中: 路线距离比较(3)阅读课本第3页,填写:三角形两边的和(4)用式子表示:BC + AC AB (填上“> ”或“ < ” ) ① BC + AB AC (填上“> ”或“ < ” ) ②AB + AC BC (填上“> ”或“ < ” ) ③4、例题:用一条长为18cm 的细绳围成一个等腰三角形,如果腰长是底边的2倍,那么各边的长是多少? 解:设底边长为xcm ,则腰长是 cm 因为三角形的周长为 cm所以: 所以x= cm答:三角形的三边分别是 、 、课堂练习: A 组1.①图中有 个三角形,分别为 ②△ABC 的三个顶点是 、 、 ; 三个内角是 、 、 ; 三条边是 、 、 ;2、如图中有 个三角形,用符号表示 3.判断下列线段能否组成三角形:①4,5,6 ( )②1,2,3 ( ) ③2,2,6 ( )④8,8,2 ( )4、等腰三角形一腰长为6,底边长为7,则另一腰为 ,周长为 。

人教版八年级数学上册导学案(答案)

人教版八年级数学上册导学案(答案)

第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、 教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同? 学生思考、分组讨论、交流。

新人教版八年级数学上册导学案(全-有答案)

新人教版八年级数学上册导学案(全-有答案)

省实验中学资料第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的局部能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合〞是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状一样,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两局部,那么必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜测归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。

新人教版八年级数学上册导学案(全 有答案)之欧阳语创编

新人教版八年级数学上册导学案(全 有答案)之欧阳语创编

河南省实验中学资料第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。

人教版八年级数学上册导学案(答案)

人教版八年级数学上册导学案(答案)

第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗? 思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同? 学生思考、分组讨论、交流。

新人教版八年级数学上册导学案(全 有答案)之欧阳育创编

新人教版八年级数学上册导学案(全 有答案)之欧阳育创编

河南省实验中学资料第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。

人教版八年级数学上册导学案(含答案)

人教版八年级数学上册导学案(含答案)

14.1.1同底数幂的乘法备课时间: 授课时间: 授课班级: 学习目标:1、知识与技能:在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用,发展推理能力和表达能力,提高计算能力.2、过程与方法:经历探索同底数幂的乘法运算性质的过程,感受幂的意义.3、情感态度与价值观:培养协作精神、探究精神,增强学习信心. 学习重点:同底数幂乘法运算性质的推导和应用. 学习难点:同底数幂的乘法的法则的应用. 学习过程: 一.自主学习:⒈⑴ “盘古开天壁地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,•你能计算出地球距离太阳大约有多远呢?⒉请同学们通过计算探索规律.(1)33×34=(3×3×3)×(2×2×2×2)=2( ); (2)63×64=_____________=5( );(3)(-4)7×(-4)6=___________________=(-4)( ); (4)()3×(110)=___________=(110)( ); (5)x 3·x 4=________________x ( ).⒊计算(1)32⨯42和72 ; (2)5233⨯和73(3)3a ⨯4a 和7a (代数式表示);观察计算结果,你能猜想出m a ⨯n a 的结果吗?问题:(1)这几道题目有什么共同特点?(2)请同学们看一看自己的计算结果,想一想这个结果有什么规律?⒋请同学们推算一下ma ⨯na 的结果? 同底数幂的乘法法则:二、合作探究、交流展示:1、计算 ①310⨯410 ② x ·x 3 ③53a a a ⋅⋅ ④x x x x ⋅+⋅222、计算 ①11010+⋅m n②-84·84 ③97m m m ⋅⋅ ④b 7·b 5⑤39×(-3)3 ⑥x 5·x 2·x 4·x ⑦ 32n ·32n +1三、拓展延伸: 1.计算:①10432b b b b ⋅⋅⋅ ②()()876x x x -⋅-③()()()562x y y ---- ④()()()3645p p p p ⋅-+-⋅-2.把下列各式化成()ny x +或()ny x -的形式.① ()()43y x y x ++ ②()()()x y y x y x ---23③()()12+++m my x y x3.已知8m nm n x x x +-=求m 的值.四、课堂检测:1.计算:(1)103×104; (2)a • a 3 (3)a • a 3•a 5 (4) x m ×x 3m +12.计算:(1)(-5) (-5)2 (-5)3 (2)(a +b )3 (a +b )5(3)-a ·(-a )3 (4)-a 3·(-a )2(5)(a-b)2·(a-b)3 (6)(a+1)2·(1+a)·(a+1)53. (1)已知a m=3,a n=8,求a m+n的值.(2)若3n+3=a,请用含a的式子表示3n的值.(3)已知2a=3,2b=6,2c=18,试问a、b、c之间有怎样的关系?请说明理由.五、学(教)后反思: 收获: 不足: 答案: 一.自主学习:⒈105×102=(10×10×10×10×10)×(10×10) =10×10×10×10×10×10×10 =107⒉请同学们通过计算探索规律. (1)7(2)7;643+(3)13;)4(67+-(4)4 (5)7;43+x⒊(1)32⨯42=432+=72=128和72=128 ;(2)5233⨯=523+=2187和73=2187(3)3a ⨯4a =43+a =7a ;m a ⨯na =n m a +问题:(1)这几题都是同底数幂的乘积的运算(2)由以上数据可得:同底数幂的乘积的结果是底数不变,指数是相加 ⒋同底数幂的乘法法则:同底数幂相乘,底数不变,底数不变,指数相加 二、合作探究、交流展示:1、 ①310⨯410 = 7431010=+ ②x ·x 3=431x x =+③53a a a ⋅⋅=9531a a =++ ④x x x x ⋅+⋅22=23x2、计算 ①11010+⋅m n =110++m n ②-84·84 =-84488-=+③97m m m ⋅⋅=17971m m =++ ④b 7·b 5=1257b b =+⑤ 39×(-3)3=-312 ⑥ x 5·x 2·x 4·x =x 12 ⑦ 32n ·32n +1 =34n +1 三、拓展延伸: 1.计算:①10432b b b b ⋅⋅⋅ =19b②()()876x x x -⋅- =15x③()()()562x y y ---- =58x y④()()()3645p p p p ⋅-+-⋅-=99p p +-=02. ① ()()43y x y x ++=7)(y x + ②()()()x y y x y x ---23=-6)(y x --③()()12+++m my x y x =13)(++m y x3.解:482828==∴=∴=⋅-+m m x x x x x m n m n m 解得:四、课堂检测: 1.计算:(1)103×104710=;(2)a • a 34a =(3)a • a 3•a 59a =(4) x m ×x 3m +114+=m x2.计算:(1)(-5) (-5)2 (-5)3 =665)5(=-(2)(a +b )3 (a +b )57)(b a +=(3)-a ·(-a )3 445)(=-=a(4)-a 3·(-a )2 75-(5)(a -b )2·(a -b )3 5)(b a -=(6)(a+1)2·(1+a)·(a+1)58)1(+=a3. (1)2483=⨯=⋅=+n m nm a a a解:a a a a n n n n 2713273333:)2(33==⨯=⨯=+解cb ac b a b a =+∴==⋅∴=⨯+222218633∵)解:(14.1.2 幂的乘方备课时间: 授课时间: 授课班级: 学习目标:1.知识与技能:理解幂的乘方的运算性质,并且掌握这个性质,发展合情推理能力和有条理的表达能力.2.过程与方法: 经历一系列探索过程,得出幂的乘方的运算性质,进一步体会和巩固幂的意义3.情感态度与价值观:培养合作交流、探索精神. 学习重点:幂的乘方法则.学习难点:幂的乘方法则的推导过程及灵活应用. 学习过程: 一.自主学习:1.填空①同底数幂相乘 不变,指数 ②b 2×b 3③()()=-⨯-6733 ④m ·m 2·m 3=⑤(33)2=3( ) ())(x x =54())(223100= 2.计算:①x 3·x 2 ②a 5+a 5 ③()63aa -⋅ ④()33x3.计算①(32)3和36 ②(34)3和312 ③)(3210和610问题:①上述几道题目有什么共同特点?②观察计算结果,你能发现什么规律?③你能推导一下)(nm a 的结果吗?请试一试二.合作探究、交流展示: 1.计算 : ①()3510 ②()3n x ③()77x -2.下面计算是否正确,如果有误请改正.① ()633x x = ②2446a a a =⋅3.选择题: ①计算()[])(=-52xA .7xB .7x -C .10xD .10x -②16a 可以写成( )A .88a a +B .28a a ⋅C .()88a D .()28a4.归纳: ()nm a= (m ,n 都是正整数)三、拓展延伸:1.下列各式正确的是( ) A .()52322= B .7772m m m =+ C .55x x x =⋅ D .824x x x =⋅2.计算 ①()47p = ②()732xx ⋅= ③()()4334a a -=④ n10101057⋅⋅= ⑤()[]32b a -= ⑤()[]622-= ⑥()[]{}543a -=3.已知:a m =3 ;b n =3 ,用a ,b 表示n m +3和n m 323+4.已知168123=⎪⎭⎫⎝⎛n求n 的值5.求下列各式中的x①624+=x x ②167143-=⎪⎭⎫⎝⎛x四、课堂检测: 1.计算(1)();1053 (2)()43b ; (3)()().3553a a • (4)()()()24432232x x x x •+•(5)()()()()335210254a a a a a -•-•--+(6) ()[]()[]4332y x y x +•+ (7)()()()[]22n n m m n n m -•--2.填空:()=34x ;()=•523x x ;若()==•y a a a y 则,1135 .3.13+m x可写成( )A .()13+m xB .()13+m xC .()x x m •3D .x x m •34.(m 2)3a 4 等于( ) A .m 9B .m 10C .m 12D . m 145.(1)已知,2832235x =⨯求x 的值. (2)已知,32=n x 求()23n x 的值.6.(1)若,210,310==y x 求代数式y x 4310+的值. (2)()n n 求,39162=的值.7.一个棱长为310的正方体,在某种条件下,其体积以每秒扩大为原来的210倍的速度膨胀,求10秒后该正方体的体积.五、学(教)后反思:收获:不足:答案:一.自主学习:1.填空①底数;相加②5b ;n m +10 ③133- ④6m⑤6;20;3002.计算:①5x ②52a ③()63a a -⋅ =9a ④()33x =9x3.计算①(32)3=36 ②(34)3=312 ③)(3210=610问题:①幂的乘方运算②由以上数据可得:幂的乘方,底数不变,指数相乘③)(n m a mn a =二.合作探究、交流展示:1.计算 : ①()3510=1510 ②()3n x =n x 3 ③()77x -=49x -2.①()633x x = 错误 9x ②2446a a a =⋅ 错误 10a3.选择题:① C ② D4.mn a三、拓展延伸:1. B2.计算 ①()47p =28p ②()732x x ⋅=13x ③()()4334a a -= 0④ n 10101057⋅⋅= n +1210 ⑤()[]32b a -=6)(b a - ⑤()[]622-=122⑥()[]{}543a -=60a32323232m m )3()3(3333333,3.3b a abba n m n m n m n m n n =⋅=⋅==⋅=∴==++∵解:4. 4)23()23(1681)23(4===n n n5.6622224)1(626=∴+=∴=∴=++x x x x x x x ∵ ②2)43()43(169)43(1671)43)(2(2=∴==-=x x x x 四、课堂检测:1.计算(1)1510 (2)()43b 12b = (3)30a (4)123x (5)20a (6)18)(y x + (7)32)(+-n n m2.2;;1112x x3.C4.B5.17222)2()2(2832)1(23423355235=∴=∴=⨯∴=⨯x x x x ∵273)3()3(3)2(332232===∴=n n n x ∵6. 43223)10()10(10210,310)1(434343=⨯=⨯=∴==+y x y x y x ∵4164333)9()2(164162=∴=∴=∴=n n n n ∵7.2929209102331010101010)10()10(:秒后正方体的体积为答:解=⨯=⨯14.1.3 积的乘方备课时间: 授课时间: 授课班级:学习目标:1.知识与技能:理解和掌握积的乘方的运算性质,发展推理能力和有条理的表达能力,培养综合能力.2.过程与方法:经历探索积的乘方的过程,进一步体会和巩固幂的意义.3.情感态度与价值观:培养团结协作的精神和探索精神.学习重点:积的乘方的运算.学习难点:积的乘方的推导过程的理解和灵活运用.学习过程:一.自主学习:⑴阅读教材P 97-98页⑵ 填空:幂的乘方,底数 ,指数① 计算: ()=55b ()=-m x 2② )()(5315==x ;)()(n m mn x ==⑶ 计算: (请观察比较)① ()332⨯和3332⨯ ;② ()253⨯和2253⨯ ;③ ()22ab 和()222b a ⨯④ 计算()432a ?说出根据是什么?⑤请想一想:()=n ab二.合作探究、交流展示:1.下列计算正确的是( ).A .()422ab ab =B .()42222a a -=-C .()333y x xy =-D .()333273y x xy =2.计算:①()232a ②()35b - ③ ()324y x ⋅④()43x -三、拓展延伸:1.计算:①325353⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛- ; ②()42xy - ; ③()n a 3 ;④ ()323ab- ; ⑤2.下列各式中错误的是( )A .()123422=B .()33273a a -=-C .()844813y x xy =D .()3382a a -=- 3.与()[]2323a -的值相等的是( )A .1218aB .12243aC .12243a -D .以上结果都不对4.计算:①()2243b a ②33221⎪⎭⎫ ⎝⎛y x③()33n - ④()a a a 234-+-20082008818⎪⎭⎫ ⎝⎛⨯⑤ ()()20092008425.0-⨯- ⑥()()1032222x x x x --⋅-⋅-5.一个正方体的棱长为2102⨯毫米,①它的表面积是多少?②它的体积是多少?6.已知:823=+n m 求:n m 48⋅的值(提示:823=,422=)四、课堂检测:1.计算:(1))125.0()(2012201281⨯ (2)52.055⨯(3)4)25.0(20112011⨯- (4))()()(23751514909090⨯⨯(5))1()()7(20092011201071--⨯⨯2.下列计算是否有错,错在那里?请改正.①()22xy xy = ②()442123y x xy = ③()623497x x =-③ ⑤2045x x x =⋅ ⑥()523x x =3.计算: ①33+⋅n x x ②3254⎪⎭⎫ ⎝⎛-y x ③ ()n c ab 233-④()()[]322223x x -- ⑤()()323223y x y x ⋅4.下列各式中错误的是( )A .32x x x =⋅-B .()623x x =-C .1055m m m =⋅D .()32p p p =⋅-5.3221⎪⎭⎫ ⎝⎛-y x 的计算结果是( ) A .3621y x -B .3661y x -C .3681y x -D .3681y x 33234327x x -=⎪⎭⎫ ⎝⎛-6.若811x x x m m =+-则m 的值为( )A.4B.2C.8D.107.计算:⑴432a a a a ⋅⋅ ⑵()()()256x x x -⋅-⋅- ⑶()[]32a --⑷()[]3223xy- (5)()[]3241x x -⋅-- (6)()()431212+⋅+x x8.一个正方形的边长增加了3厘米,它的面积就增加39平方厘米,求这个正方形的边长?9.阅读题:已知:52=m 求:m 32和m +32 解:()125522333===m m405822233=⨯=⨯=+m m10.已知:73=n 求:n 43和n +4311.找简便方法计算:⑴()1011005.02⨯ ⑵22532⨯⨯ ⑶424532⨯⨯12.已知:2=m a ,3=n b 求:n m b a 32+的值五、学(教)后反思:收获:不足:答案:一.自主学习:(1)略(2)不变;相乘①m x b 2256;;10- ②35,x x ;mn x x , (3)计算: (请观察比较)①()332⨯=216 和3332⨯=216 ; ②()253⨯=225和2253⨯ =225;③()22ab =42ba 和()222b a ⨯=42ba④计算()432a =1242a;根据:幂的乘方法则⑤请想一想:()=nab nn b a二.合作探究、交流展示: 1.D 2.①()232a =64a②()35b - =-1253b ③ ()324y x ⋅=612y x④()43x -= 481x三、拓展延伸: 1.计算:①5)53(- ②4416y x ③n n a 3 ④ 6327b a - ⑤12. C3. D4. 计算:①24169b a ②9681y x ③327n - ④35a - ⑤-4 ⑥103x - 5.解:(1))(2.0)(20010021022m mm ==⨯=⨯)(24.062.02.02m =⨯⨯ 答:它的表面积是0.24平方米。

人教版八年级数学上册全册导学案

人教版八年级数学上册全册导学案

人教版八年级数学上册全册导学案11.1.1 三角形的边11.1.2 三角的高、中线与角平分线11.1.3 三角形的稳定性11.2.1 三角形的内角11.2.2 三角形的外角11.3.1 多边形11.3.2 多边形的内角和12.1 全等三角形12.2 第1课时“边边边”12.2 第2课时“边角边”12.2 第3课时“角边角”“角角边”12.2 第4课时“斜边、直角边”12.3 第1课时角平分线的性质12.3 第2课时角平分线的判定13.1.1 轴对称13.1.2 第1课时线段的垂直平分线的性质和判定13.1.2 第2课时线段的垂直平分线的有关作图13.2 第1课时画轴对称图形13.2 第2课时用坐标表示轴对称13.3.1 第1课时等腰三角形的性质13.3.1 第2课时等腰三角形的判定13.3.2 第1课时等边三角形的性质与判定13.3.2第2课时含30°角的直角三角形的性质13.4 课题学习最短路径问题14.1.1 同底数幂的乘法14.1.2 幂的乘方14.1.3 积的乘方14.1.4第1课时单项式与单项式、多项式相乘14.1.4第2课时多项式与多项式相乘14.1.4第3课时整式的除法14.2.1 平方差公式14.2.2 完全平方公式14.3.1 提公因式法14.3.2 第1课时运用平方差公式因式分解14.3.2 第2课时运用完全平方公式因式分解15.1.1 从分数到分式15.1.2 分式的基本性质15.2.1 第1课时分式的乘除15.2.1 第2课时分式的乘方15.2.2 第1课时分式的加减15.2.2 第2课时分式的混合运算15.2.3 整数指数幂15.3 第1课时分式方程及其解法15.3 第2课时分式方程的应用11.1 与三角形有关的线段11.1.1 三角形的边学习目标:1、通过观察、操作、想象、推理、交流等活动,发掌空间观念、推理能力和有条理地表达能力;2、结合具体实例,进一步认识三角形的概念及其基本要素,掌握三角形三边之间的不等关系.学习重点:三角形三边之间的不等关系.学习难点:应用三角形的三边之间的不等关系判断三条线段能否组成三角形 教学过程: 一、学前准备1.三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?2.能从右图中找出4个不同的三角形吗?二、探究新知: 1、你所知道的三角形的定义是什么?问题:根据你的理解,下列的图形是三角形吗?三角形的定义: 2、三角形的有关概念:①边: 。

新人教版八年级数学上册全册导学案

新人教版八年级数学上册全册导学案

EDC BAED DCB ADCBAED CBAFE DCB A EDCBA11.1全等三角形一、导学自习看教材1-2页,并解决下列问题:(聚焦学习目标1)1.找出各图中形状、大小完全相同的图形.2.举出现实生活中能够完全重合的图形的例子? 3.什么是全等形?什么是全等三角形?看教材P 3第一个“思考”及下面的两段,并解决下列问题:(聚焦学习目标2)1.一个图形经过平移、翻转、旋转后,位置变化了,但 和 都没有改变。

即平移、翻转、旋转前后的图形 . 2.全等三角形的记法.如下图,△ABC 与△A 1B 1C 1全等,记作,“≌”读作 .3.指出上图中全等三角形的对应顶点、对应边和对应角.温馨提示:书写全等式时要求把对应顶点字母写在 的位置上. 看教材P 3第二个“思考”,并解决下列问题:(聚焦学习目标3) 全等三角形具有什么性质? 文字语言: 几何语言:二、研习展评(一)问题探究(一)(聚焦学习目标2) 1.在找全等三角形的对应元素时一般有什么规律?(二)问题探究(二)(聚焦学习目标3)2.如图,△ABC ≌△AED,AB 是△ABC 的最大边,AE 是△AED 的最大边, ∠BAC 与∠ EAD 对应角,且∠BAC=25°, ∠B=35°,AB=3cm,BC=1cm,求出∠E, ∠ ADE 的度数和线段DE,AE 的长度。

∠BAD 与∠EAC 相等吗?为什么?(三)学习体会(从知识、方法和思想等方面谈收获和体会)(四)检测反馈1.教材P 4练习1、2题.(做在书上)2.教材P 4习题11.1 1、2、3题(做在书上)3.如图△ABC ≌ △ADE,若∠D=∠B , ∠C= ∠AED ,则∠DAE= ; ∠DAB= . 4.判断题1)全等三角形的对应边相等,对应角相等.( ) 2)全等三角形的周长相等,面积也相等. ( ) 3)面积相等的三角形是全等三角形. ( )1B 1ABA 1DCBAEDCBAODCBA4.如图△ABD ≌ △EBC ,AB=3cm,BC=5cm,求DE 的长.11.2 三角形全等的判定 (1)一、导学自习1.复习:什么是全等三角形?全等三角形有些什么性质? 如图,△A BC ≌△A ′B ′C ′那么相等的边是: 相等的角是:2.(聚焦学习目标2)讨论三角形全等的条件(动手画一画并回答下列问题)(1)只给一个条件:一组对应边相等(或一组对应角相等),•画出的两个三角形一定全等吗? (2) 给出两个条件画三角形,有 种情形.按下面给出的两个条件,画出的两个三角形一定全等吗?①一组对应边相等和一组对应角相等 ②两组对应边相等 ③两组对应角相等(3) 给出三个条件画三角形,有 种情形。

新人教版八年级数学上册导学案(全 有答案)之欧阳文创编

新人教版八年级数学上册导学案(全 有答案)之欧阳文创编

河南省实验中学资料第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。

新人教版八年级数学上导学案(全册)

新人教版八年级数学上导学案(全册)

(2)下图中,每个三角形的三边各有什么特点? 连接所组第十一章三角形11.1与三角形有关的线段11.1.1三角形的边学习目标:1、明确三角形的相关概念;能正确对三角形进行分类;2、能利用三角形三边关系进行有关计算。

新课导学: 三角形的有关概念一一阅读课本第1至3页,回答以下问题:(1)______________________________________ 三角形概念:由不在同一直线上的____________________________________________ 条线段________________成的图形。

(2)________________________________________________________ 三角形的表示法(如图1)三角形ABC可表示为: ___________________________________ ;(3)_____________________________ A ABC的顶点分别为A、、 ;(3) A ABC的内角分别为/ABC , _________ , ________ ;(4) A ABC的三条边分别为AB , _, _ ;或, ____________________ 、 ______ ;(5) _____________________ 顶点A的对边是 _________________ ,顶点B的对边分别是 ______________________________ ,顶点C的对边分别是三角形的分类: 图1路线AC DB距离比较(3)结合以上图形你认为三角形可以如何分类?试一试① 按角分类: ___________________________________________________________________ ② 按边分类: ___________________________________________________________________ (4) __________________________________ 在等腰三角形中, _______________ 叫做腰,另外一边叫做 ____________________________ ,两腰的夹角叫做 _________ , _____________________________ 叫做底角。

新人教版八年级数学上册导学案(全 有答案)之欧阳德创编

新人教版八年级数学上册导学案(全 有答案)之欧阳德创编

河南省实验中学资料第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。

八年级数学上导学案全册(新人教版)

八年级数学上导学案全册(新人教版)

EDCBADCB ADCBAED CBAFE DCB A EDCBA11.1全等三角形一、导学自习看教材1-2页,并解决下列问题:(聚焦学习目标1)1.找出各图中形状、大小完全相同的图形.2.举出现实生活中能够完全重合的图形的例子? 3.什么是全等形?什么是全等三角形?看教材P 3第一个“思考”及下面的两段,并解决下列问题:(聚焦学习目标2)1.一个图形经过平移、翻转、旋转后,位置变化了,但 和 都没有改变。

即平移、翻转、旋转前后的图形 .2.全等三角形的记法.如下图,△ABC 与△A 1B 1C 1全等,记作,“≌”读作 .3.指出上图中全等三角形的对应顶点、对应边和对应角.温馨提示:书写全等式时要求把对应顶点字母写在 的位置上. 看教材P 3第二个“思考”,并解决下列问题:(聚焦学习目标3) 全等三角形具有什么性质? 文字语言: 几何语言:二、研习展评(一)问题探究(一)(聚焦学习目标2) 1.在找全等三角形的对应元素时一般有什么规律?(二)问题探究(二)(聚焦学习目标3)2.如图,△ABC ≌△AED,AB 是△ABC 的最大边,AE 是△AED 的最大边, ∠BAC 与∠ EAD 对应角,且∠BAC=25°, ∠B=35°,AB=3cm,BC=1cm,求出∠E, ∠ ADE 的度数和线段DE,AE 的长度。

∠BAD 与∠EAC 相等吗?为什么?(三)学习体会(从知识、方法和思想等方面谈收获和体会)(四)检测反馈1.教材P 4练习1、2题.(做在书上)2.教材P 4习题11.1 1、2、3题(做在书上)3.如图△ABC ≌ △ADE,若∠D=∠B , ∠C= ∠AED ,则∠DAE= ; ∠DAB= . 4.判断题1B 1ABA 1ED CBADCBAEDCBA1)全等三角形的对应边相等,对应角相等.( ) 2)全等三角形的周长相等,面积也相等. ( ) 3)面积相等的三角形是全等三角形. ( ) 4)周长相等的三角形是全等三角形. ( ) 4.如图△ABD ≌ △EBC ,AB=3cm,BC=5cm,求DE 的长. 11.2 三角形全等的判定 (1) 一、导学自习1.复习:什么是全等三角形?全等三角形有些什么性质? 如图,△ABC ≌△A ′B ′C ′那么相等的边是: 相等的角是:2.(聚焦学习目标2)讨论三角形全等的条件(动手画一画并回答下列问题)(1)只给一个条件:一组对应边相等(或一组对应角相等),•画出的两个三角形一定全等吗? (2) 给出两个条件画三角形,有 种情形.按下面给出的两个条件,画出的两个三角形一定全等吗?①一组对应边相等和一组对应角相等 ②两组对应边相等 ③两组对应角相等(3) 给出三个条件画三角形,有 种情形。

新人教版八年级数学上册导学案(全 有答案)之欧阳家百创编

新人教版八年级数学上册导学案(全 有答案)之欧阳家百创编

河南省实验中学资料欧阳家百(2021.03.07)第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗? 思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同? 学生思考、分组讨论、交流。

教师引导小结。

三、巩固反馈1、26个英文大写字母中,是轴对称图形的是________________________。

2、中华民族是一个有着五千年文明历史的古老民族,在她灿烂的文化中,汉字是其中一朵瑰丽的奇葩,请写出几个是轴对称的汉字______________________。

3、关于奥运会五环图案有下列各说法:①它不是轴对称图形;②它是轴对称图形,只有一条对称轴③它是轴对称图形,有无数条对称轴,其中正确的是______。

从轴对称的角度,你觉得哪些图形比较独特?简要说明你的理由。

5、画出一个只有三条对称轴的轴对称图形。

6、上面哪一个选项的右边图形与左边图形成轴对称? 四、课堂小结学完本节,你有什么收获? 五、作业设计1、必做题:教科书第6页练习题1-4题。

2EF 处,折痕为KH ,则与梯形CDGH 成轴对称的图形是( )。

A 、梯形ABHGB 、梯形ABKGC 、梯形EFGHD 、梯形EFKHA D1.2 线段的垂直平分线教学目标:1、通过折叠的方式认识线段的轴对称性。

2、理解并能运用线段垂直平分线的性质。

教学重点:引导学生了解有关线段垂直平分线的知识。

难点:运用线段垂直平分线的性质解决问题。

教学过程:一、自主探索在纸上画一条线段AB,通过对折使点A与点B重合,独立解决以下问题:1、将纸展开后铺平,记折痕所在的直线为MN,直线MN与线段AB的交点为O,线段AO与BO的长度有什么关系?________________________________________2、直线MN与线段AB有怎样的位置关系?_______________________________________3、由以上1、2,直线MN叫做线段AB的______________。

4、线段AB是轴对称图形吗?如果是,对称轴是什么?______________________________________________5、在直线MN上任取一点P,连接PA与PB,如果把这张纸沿直线MN对折,PA与PB重合吗?__________________________________________________6、在直线MN上再取另一点Q,连接QA与QB,把这张纸沿直线MN对折,QA与QB重合吗?________________________________________________7、由以上5、6,你有什么结论?_______________________________________8、尝试用尺规作图的方法作出线段AB的垂直平分线。

________________________________________________二、小组合作任意画一个三角形,用圆规和直尺作出它的三条边的垂直平分线,有什么发现?_________________________________________________________________三、学以致用1、点P 、C 、D 是线段AB 的垂直平分线上的三点,分别连接PA 、PB ,AC 、BC ,AD 、BD ,指出图中所有相等的线段。

2、任意画一条线段,用直尺和圆规把它四等分。

3、A B 要在A 、B 、C 三个村庄之间修一座变电站,使它到三个村 庄的距离相等, 你能在图中找出点O 的位置吗? C四、达标反馈,当堂训练1、如上左图,直线MN 和DE 分别是线段AB 、BC 的垂直平分线,它们交于点P ,请问:PA 和PC 相等吗?2、如上右图,AB=AC ,MN 垂直平分AB,若AB=6,BC=4,求△DBC 的周长。

3、如上左图,在直线上求作一点P ,使PA=PB.4、如上右图,∠BAC=120°, ∠C=30°,DE 是线段AC 的垂直平分线,求∠BAD 的度数。

五、课堂小结本节课主要学习了:1、线段垂直平分线的知识。

2、线段的垂直平分线的点到线段两短点的距离相等。

3、利用线段的垂直平分线的点到线段两短点的距离相等解决实际问题。

六、作业设计3、必做题:教科书第10页习题A 组1-2题,B1-2题。

4、选做题:BC 的垂直平分线; 1.3 角的平分线教学目标:1、通过折叠的方式认识角的轴对称性。

2、理解并能运用角的平分线的性质。

3、会画已知角的平分线。

教学重点:引导学生了解有关线角平分线的知识。

难点:运用角平分线的性质解决问题。

: 教学过程: 一、自主探索在纸上画∠BAC ,把它剪下来并对折,使角的两边重合,然后把纸铺平,独立解决以下问题: 1、角是轴对称图形吗?如果是,对称轴是什么? _______________________________________________ 2、尝试用尺规作图的方法作出∠BAC 的平分线AD 。

___________________________________________________3、在AD 上任取一点P ,作出点P 到∠BAC 两边的垂线段PM 与PN ,垂足分别为点M 和点N ,如果把∠BAC 沿AD 折叠,线段PM 与PN 重合吗?由此,你能得出什么结论? ___________________________________________________________4、在AD 上另取另一点Q ,重复上述操作,你还能得出同样的结论吗?___________________________________________________________ 二、小组合作1、任意作一个锐角三角形,用直尺和圆规作出它的三条角平分线,你有什么发现? ___________________________________________________________2、任意作一个直角三角形,用直尺和圆规作出它的三条角平分线,你有什么发现___________________________________________________________3、任意作一个钝 角三角形,用直尺和圆规作出它的三条角平分线,你有什么发现?猜想结论:___________________________________________________________ 三、学以致用天泉农副产品集散地M 位于三个村庄A 、B 、C 之间,其位置到三条公路AB 、AC 、BC 的距离相等,你能找到M 的位置吗?四、达标反馈,当堂训练a) 如上左图,在直角坐标系中,AD 是R t △OAB 的角平分线,点D 到AB 的距离是2,求点D 的坐标。

b) 如上右图,若点M 在∠ANB 的角平分线上,∠A =∠B=90°,那么你有怎样的结论?________________________________________________若点N 在∠AMB 的角平分线上,∠A =∠B=90°,那么你有怎样的结论? _____________________________________________________3、如上左图,△ABC 中, ∠A =∠ABC,AD=3cm,BC=10cm, 求△BDC 的面积。

4、如上右图,已知∠AOB 和C 、D 两点,是否能找到一点P ,使得点P 到OA 、OB 的距离相等,而且P 点到C 、D 两点的距离相等。

五、课堂小结这节课你有哪些收获?___________________________________________________________ 六、 作业设置1、必做题:教科书第12页A 组、B 组。

2、选做题:§1.4 等腰三角形导学案 (泰山版八年级上册)一、 学习目标1、 经历探索等腰三角形的性质的过程,掌握等腰三角形的轴对称性、等腰三角形“三线合一”、等腰三角形的两个底角相等等性质。

2、 经历探索等边三角形的轴对称性和内角性质的过程,掌握这个性质,并会作出合理的说明。

3、 掌握已知底边和底边上的高用尺规作等腰三角形的方法。

二、 学习重点、难点重点:等腰三角形与等边三角形的性质 难点:等腰三角形的性质的运用三、 学习过程 (一) 情境导入瓦工师傅盖房时,看房梁是否水平,有时就用一块等腰三角板放在梁上,从顶点系一重物,如果系重物的绳子正好经过三角板底边的中点,房梁就是水平的。

为什么?你想知道其中的奥秘吗?学了本节后你将恍然大悟。

(二) 自主学习自学课本P 13——P 16“挑战自我”,解答下列问题: 1. 我们知道等腰三角形是轴对称图形,它底边上的高线所在的直线式它的对称轴,那么沿着对称轴将等腰三角形对折,对称轴两旁的部分能重合,如下图,仔细观察,你能得到哪些结论?说说你的想法.2. 等边三角形是轴对称图形吗?它有几条对称轴?等边三角形是等腰三角形吗?它与等腰三角形相比有何特别之处?3. 如图,∠B=∠C,AB=3.6cm ,则AC=————————.(三) 合作探究探究点一:等腰三角形的性质例1 等腰三角形中有一个角为80º.求另外两个角的度数. 总结:探究点二:等边三角形的性质例2 试说明“等边三角形的每个内角都等于60º” 小组合作:用一张正方形的纸折出一个等边三角形. 探究点三:尺规作等腰三角形例3 已知一个等腰三角形的底边和腰,你能作出这个三角形吗?如果一直底边和底边上的高呢?(四) 练习达标1. 等腰三角形的两边长分别是6cm 、3cm ,则该等腰三角形的周长是( ) A. 9 cm B. 12 cm C. 12 cm 或15 cm D. 15 cm2. 等腰三角形的一个角为30º,则它的底角为( ) A. 30º B. 75º C. 30º或75º D. 15º3如图,在ΔABC 中,D 、E 是BC 边上的两点,且AD=BD=DE=AE=CE ,求∠B 、∠BAC 的度数.AB CA(五)课堂小结这一节你学会了什么?(六)拓展提升1.如图所示,∠B=∠C ,AD平分∠BAC交BC于D,ΔABC的周长为36cm,ΔADCcm.的周长为30cm,那么AD的长为——————Array2、如图,ΔABCΔDEF四. 作业§1.5 成轴对称图形的性质导学案(泰山版八年级上册)一、学习目标1、经历探索轴对称图形的性质的过程,理解连接对应点的线被对称轴平分、对应线段相等、对应角相等的性质. 2、会画出与已知图形关于某条直线对称的图形. 二、学习重点、难点重点:轴对称图形的性质难点:利用轴对称图形的性质作对称图形 三、学习过程(一)情景导入同学们,今年的10月1日是我们伟大的祖国60周岁的生日,全国上下正洋溢在一片欢歌笑语的海洋里,都在为母亲的生日积极地做准备,你做了什么准备呢?不如我们现在来叠五角星吧。

相关文档
最新文档