2019年秋新版人教版八年级上数学全册导学案
【范文】新人教版八年级上册数学全册导学案

新人教版八年级上册数学全册导学案本资料为woRD文档,请点击下载地址下载全文下载地址www.5ykj.com 13.1平方根(34课时)学习目标:、理解数的算术平方根的概念,并会用符号表示。
2、理解平方与开平方是互为逆运算。
3、会求一些非负数的算术平方根。
自学指导:认真学习课本68—71页的内容,完成下列要求:、中被开方数a的范围怎样。
0的算术平方根的意义。
2、完成例1,注意例1的书写格式。
3、学习例3的内容,注意与7是怎样比较的。
4、自学后完成展示内容,20分钟后进行展示。
展示内容:、∵=∴4的算术平方根是即∵=∴的算术平方根是即2、∵正数a的算术平方根是,∴2的算术平方根是∵4的算术平方根是2,∴=3、求下列各数的算术平方根:⑴0.0025⑵21⑶⑷⑸74、求下列各式的值:(1)(2)(3)5、计算下列各式:6、求下列各等式中的正数x (1)=169(2)4—121=07、比较下列各组数的大小。
(1)与12(2)与0.513.3平方根(35课时)一、学习目标、理解平方根的概念2、了解开平方的定义3、掌握平方根的性质二、自学指导认真阅读72-74页内容,完成下列要求:、说明:一个正数a的算术平方根有__个,平方根有__个,并且互为____,0的平方根是___。
2、负数有没有平方根,为什么?3、注意根号前的符号4、自学20分钟后,进行展示活动三、展示内容、填表:X8-8-210.362、计算下列各式的值:(1)(2)-(3)±(4)-3、平方根起源于正方形的面积,若一个正方形的面积为A,那么这个正方形的边长为多少?4、判断下列说法是否正确(1)5是25的算术平方根()(2)是的一个平方根()(3)的平方根是-4()(4)0的平方根与算术平方根都是0()5、下列各式是否有意义,为什么?(1)-(2)(3)(4)6、求下列各式的x的值:3.2立方根(36课时)学习目标:、理解并掌握立方根的概念,会用符号表示一个数的立方根。
新课标人教版八年级上册数学全册学案汇编

人教版初中数学八上全册导学案第十一章:全等三角形导学案11.1《全等三角形》导学案【使用说明与学法指导】1.课前完成预习案,牢记基础知识,掌握基本题型,时间不超过15分钟。
2 .组内探究、合作学习完成《课内探究》不超过20分钟。
3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。
4.人人参与,合作学习,人人都有收获,人人都有进步。
5.带﹡的题要多动脑筋,展示你的能力。
一、学习目标:1.理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。
2.掌握全等三角形的性质,并运用性质解决有关的问题。
3.会用符号表示全等三角形及他们的对应元素,培养大家的符号意识。
二、重点难点:运用全等三角形的性质解决相关的计算及证明等问题。
三、学习过程《课前预习案》(一)、自主预习课本2—3页内容,回答下列问题:1、能够______________的图形就是全等图形, 两个全等图形的_________和________完全相同。
2、一个图形经过______、______、_________后所得的图形与原图形。
3、把两个全等的三角形重合在一起,重合的顶点叫做,重合的边叫做,重合的角叫做。
“全等”用“”表示,读作。
4、如图所示,△OCA≌△OBD,对应顶点有:点___和点___,点___和点___,点___和点___;对应角有:____和____,_____和_____,_____和_____;对应边有:____和____,____和____,_____和_____.5、全等三角形的性质:全等三角形的相等,相等。
D BA CO(二)、练一练1.如图,△AB C ≌△CDA ,AB 和CD ,BC 和DA 是对应边。
写出其他对应边及对应角。
2如图,△ABN ≌△ACM ,∠B 和∠C 是对应角,AB与AC 是对应边。
写出其他对应边及对应角。
《课内探究》1.如图△EFG ≌△NMH,∠F 和∠M 是对应角.在△EFG 中,FG 是最长边. 在△NMH 中,MH 是最长边.EF=2.1㎝,EH=1.1㎝,HN=3.3㎝. (1)写出其他对应边及对应角.(2)求线段MN 及线段HG 的长.2.如图,△ABC ≌△DEC,CA 和CD,CB 和CE 是对应边.∠ACD 和∠BCE 相等吗? 为什么?N M CB ADC B ANMG H F EC3.本节课小结(我的收获) (1)知识方面:(2)学习方法方面:《课后训练》1. 如图所示,若△OAD ≌△OBC,∠O=65°,∠C=20°,则∠OAD= .第1题图 第2题图2. 如图,若△ABC ≌△DEF ,回答下列问题:(1)若△ABC 的周长为17 cm ,BC=6 cm ,DE=5 cm ,则DF = cm (2)若∠A =50°,∠E=75°,则∠B=3. 如图,△AOB ≌△COD ,那么∠ABD 与∠CDB 相等吗?为什么?第3题图﹡4. 如图:Rt △ABC 中,∠ A=90°,若△ADB ≌△EDB ≌△EDC ,则∠C=B D O AC F EDCBADA ECADBO课题:《11.2三角形全等的判定》(SSS)导学案【使用说明与学法指导】:1.学生利用自习先预习课本第6、7页完成《课前预习案》(15分钟)。
新人教版八年级数学上册导学案全册

新人教版八年级数学上册导学案全册数学导学案课题11.1全等三角形的判定(一) (1)一、学习目标1、掌握全等形、全等三角形及相关概念和全等三角形性质。
2、理解“平移、翻折、旋转”前后的图形全等。
3、熟练确定全等三角形的对应元素。
二、自学指导自学课本P2-3页,完成下列要求:1、理解并背诵全等形及全等三角形的定义。
2、注意全等中对应点位置的书写。
3、理解并记忆全等三角形的性质。
4、自学后完成展示的内容,20分钟后,进行展示。
三、展示内容:1、________相同的图形放在一起能够____。
这样的两个图形叫做____。
2、能够_____的两个三角形叫做全等三角形。
3、一个图形经过__、__、__后位置变化了,但形状‘大小都没有改变,即平移、翻折‘旋转前后的图形____。
4、______叫做对应顶点。
_______叫做对应边。
_____叫做对应角。
5、全等三角形的对应边__。
____相等。
6、课本P4练习1、27、如图1,△ABC≌△DEF,对应顶点是__________,对应角是____________,对应边是___________________。
788、如图2,△ABC≌△CDA,AB和CD,BC和DA是对应边,写出其他对应边及对应角_____________________________9、如图3,△ABN≌△ACM,∠B=∠C,AC=AB,则BN=____,∠BAN=______,_____=AN,_____= ∠AMC.91010、如图,△ABC≌△DEC,CA和CD,CB和CE是对应边,∠ACD和∠BCE相等吗?为什么?11.2三角形全等的判定(2)一、学习目标1、掌握三角形全等的判定(SSS)2、初步体会尺规作图3、掌握简单的证明格式二、自学指导认真阅读课本P6-8页,完成下列要求:1、小组讨论探究1。
(1)满足一个或两个条件的两个三角形是否全等。
(2)满足3个条件时,两个三角形是否全等。
2019秋八年级数学上册12.2 三角形全等的判定 第3课时“角边角”“角角边”导学案(无答案)新人教版

第十二章 全等三角形12.2 全等三角形的判定第3课时 “角边角”和“角角边”学习目标:1.了解1.探索三角形全等的“角边角”和“角角边”的条件2.应用“角边角”和“角角边”证明两个三角形全等,进而证线段或角相等. 重点:已知两角一边的三角形全等探究. 难点:理解,掌握三角形全等的条件:“ASA ”“AAS ”.一、知识链接1.能够 的两个三角形叫做全等三角形.2.判定两个三角形全等方法有哪些?边边边: 对应相等的两个三角形全等.边角边: 和它们的 对应相等的两个三角形全等. 二、新知预习1. 在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探 究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两 种呢?2.现实情境一张教学用的三角板硬纸不小心被撕坏了, 如图:你能制作一张与原来同样大小的新道具吗? 能恢复原来三角形的原貌吗? (1) 以①为模板,画一画,能还原吗? (2) 以②为模板,画一画,能还原吗? (3) 以③为模板,画一画,能还原吗?(4) 第③块中,三角形的边角六个元素中,固定不变的元素是_____________. 猜想:两角及夹边对应相等的两个三角形_______.三、我的疑惑______________________________________________________________________________________________________________________________________________________自主学习教学备注学生在课前完成自主学习部分ABCFED一、要点探究探究点1:三角形全等的判定定理3--“角边角”活动:先任意画出一个△ABC.再画一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B.把画好的△A′B′C′剪下,放到△ABC 上,它们全等吗?你能得出什么结论?要点归纳:相等的两个三角形全等(简称“角边角”或“ASA ”). 几何语言:如图,在△ABC 和△DEF 中,∴△ABC ≌△DEF. 典例精析例1:如图,已知:∠ABC =∠DCB ,∠ACB = ∠DBC ,求证:△ABC ≌△DCB .例2:如图,点D 在AB 上,点E 在AC 上,AB=AC, ∠B=∠C,求证:AD=AE.方法总结:证明线段或角度相等,可先证两个三角形全等,利用对应边或对应角相等来解决. 针对训练如图,AD ∥BC ,BE ∥DF ,AE =CF ,求证:△ADF ≌△CBE .课堂探究教学备注 配套PPT 讲授1.情景引入 (见幻灯片3)2.探究点1新知讲授(见幻灯片4-9)A B CA BCFED探究点2:三角形全等的判定定理3的推论--“角角边”做一做:已知一个三角形的两个内角分别是60°和45°,且45°所对的边的边长为3cm ,你能画出这个三角形吗?追问:这里的条件与“角边角”中的条件有什么相同点与不同点?你能将它转化为“角边角”中的条件吗?要点归纳: 相等的两个三角形全等(简称“角角边”或“AAS ”).几何语言:如图,在△ABC 和△DEF 中,∴△ABC ≌△DEF.典例精析例3:在△ABC 和△DEF 中,∠A =∠D ,∠B = ∠E ,BC=EF. 求证:△ABC ≌△DEF .例4:如图,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:(1)△BDA ≌△AEC ;(2)DE =BD +CE .方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化. 针对训练如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC 全等的图形是( )教学备注3.探究点2新知讲授(见幻灯片10-15)二、课堂小结全等三角形判定定理3简称图示符号语言有两角及夹边(或一角的对边)对应相等的两个三角形全等“角边角”(ASA)或“角角边”(AAS)∴△ABC≌△A1B1C1(ASA).推论:“角角边”是利用三角形内角和定理转化成“角边角”来证明两个三角形全等.1.△ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF,则下列补充的条件中错误的是()A.AC=DF B.BC=EF C.∠A=∠D D.∠C=∠F2. 在△ABC与△A′B′C′中,已知∠A=44°,∠B=67°,∠C′=69° ,∠A′=44°,且AC=A′C′,那么这两个三角形()A.一定不全等 B.一定全等C.不一定全等 D.以上都不对3.如图,已知∠ACB=∠DBC,∠ABC=∠CDB,判别下面的两个三角形是否全等,并说明理由.4.如图∠ACB=∠DFE,BC=EF,那么应补充一个条件,才能使△ABC≌△DEF (写出一个即可),并说明理由.5.已知:如图, AB⊥BC,AD⊥DC,∠1=∠2, 求证:AB=AD.拓展提升6.已知:如图,△ABC ≌△A′B′C′ ,AD、A′ D′ 分别是△ABC 和△A′B′C′的试说明AD=A′D′ ,并用一句话说出你的发现.当堂检测教学备注配套PPT讲授4.课堂小结5.当堂检测(见幻灯片16-22)⎪⎩⎪⎨⎧∠=∠=∠=∠,,,1111BBBAABAA。
人教版八年级上册数学导学案全套

人教版八年级上册数学导学案全套课题: §11.1.1 三角形的边 活动一 认识三角形及相关概念1. (1)什么叫三角形? 什么叫等腰三角形?什么叫等边三角形? (2)如图,三角形可记作 ,读作 ;图中线段 是三角形的边;点 是三角形的顶点; _____是三角形的内角,简称三角形的角.图中△ABC 的三边,也分别可用________表示.顶点A 的对边为 或_______,∠B 对边为 __ 或______;边AB 、AC 边的夹角为 ,∠A 、∠B 的夹边为 .2. 如右图,图中三角形的个数有 ( ) A.4个 B.5个 C.6个 D.8个活动二 三角形的三边关系1.能围成三角形的三条线段应满足什么条件?① .② . 2.应用以上结论完成下列问题①下列长度的三条线段中,能组成三角形的是( ).A.3cm ,5cm ,8cmB.8cm ,8cm ,18cmC.0.1cm ,0.1cm ,0.1cmD.3cm ,40cm ,8cm② 如果线段a ,b ,c 能组成三角形,那么,它们的长度比可能是( ). A 、1∶2∶4 B 、1∶3∶4 C 、3∶4∶7 D 、2∶3∶4 ③若等腰三角形的两边长分别为7和8,求其周长;若等腰三角形的两边长分别为3和6,求其周长.④三角形两边长分别为3和6,则第三边的取值范围是 .cbCa AB【检测反馈】1.如图,图中有个三角形,在△ABE中,边AE所对的角是,∠ABE所对的边是;边AD在△ADE中,是的对边,在△ADC中,边DC是的对边.2.如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为().A.5B.6C.7D.83.(1)已知等腰三角形的一边等于8cm,另一边等于6cm,求此三角形的周长;(2)已知等腰三角形的一边等于5cm,另一边等于2cm,求此三角形的周长.第1课时三角形的边1.下列各组线段中,首尾相接不能构成三角形的是()A.3㎝,8㎝,10㎝ B.5㎝,5㎝,a㎝(0<a<10)C.a+1,a+2,a+3(a>0) D.三条线段的比为2∶3∶52.有四根木条,长度分别为6cm,5cm,4cm,2cm,选其中三根首尾相接构成三角形,则可选择的种数有()A.4种 B.3种 C.2种 D.1种3.△ABC的三边a,b,c都是正整数,且满足a≤b≤c,且b=4,则这样的三角形的个数有()A.7个 B.8个 C.9个 D.10个4.在△ABC中,AB=9,BC=2,并且AC为整数,那么△ABC的周长为.5.等腰三角形两边长为5和11,则其周长为;若等腰三角形两边长为6和11,则其周长为.6.一个等腰三角形的周长为18㎝,一边长为5㎝,则另两边的长为.7.已知a,b,c是△ABC的三边长,化简∣a—b—c∣+∣b—c—a∣+∣c—a—b∣.8.已知等腰三角形的周长为20,其中两边的差为2,求腰和底边的长.9.在△ABC中,已知AB=30,AC=24.(1)若BC是最大边,求BC的取值范围;(2)若BC是最小边,且末位数字是0时,求BC的取值范围.10.已知一个三角形的三边长分别为x、2x-1、5x-3,其中有两边相等,求此三角形的周长.课题:§11.1.2 三角形的高、中线与角平分线活动一认识三角形的高线、角平分线、中线.三角形的高;角平分线;中线。
新人教版八年级数学上册导学案(全 有答案)

河南省实验中学资料第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。
2、能判断一个图形是否是轴对称图形。
3、理解两个图形关于某条直线成轴对称的意义。
4、正确区分轴对称图形与两个图形关于某条直线成轴对称。
5、理解并能应用轴对称的有关性质。
教学重点:1、能判断一个图形是否是轴对称图形。
2、轴对称的有关性质。
难点:1、判断一个图形是否是轴对称图形。
2、正确区分轴对称图形与两个图形关于某条直线成轴对称。
教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。
学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。
教师巡回指导、点评。
2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。
3、教师给出轴对称图形的定义。
问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。
⑴指形状相同,大小相等。
⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。
⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。
4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。
5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。
8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。
新人教版八年级数学上册导学案全册

八年级第一学期数学全册导学案11.1.1 三角形的边一、知新通过预习教材P63-P65的内容,完成下面各题。
1、由不在()上的三条线段()所组成的图形叫做三角形。
可用符号(“”)表示。
2、三角形有三条边,三个内角,三个顶点,组成三角形的()叫做三角形的边,相邻两边所组成的角叫做三角形的内角,相邻两边的()是三角形的顶点。
3、如图,我们也可以小写字母表示三角形的边, A∠A的对边是BC,也可以用a表示;∠B的对边是(),可以用()表示; c b∠C的对边是 ( ),可以用( )表示。
B a C4、三角形的任意两边之和()第三边;任意两边之差()第三边。
5、三角形的分类(1)按角分类直角三角形三角形( )斜三角形( )(2)按边分类不等边三角形三角形底边和腰不等的三角形等腰三角形()二、小试身手(1)右图中有()个三角形,分别是(). B C D(2)三角形按角分类,可分为()A等腰锐角三角形、等腰直角三角形、等腰钝角三角形B等腰三角形、不等边三角形、等边三角形C锐角三角形、直角三角形、钝角三角形D等腰三角形、不等边三角形教学点1 三角形的有关概念A例1 如图所示,图中共有( )个三角形,其中以BC为边的三角形是( ), E G F∠BEC是( )的内角。
例2 在右图中三角形的个数为()个,分别是()BC教学点2三角形三边关系的运用例1下列长度的三条线段中,能组成三角形的是()A.3cm, 5cm, 8cmB.8cm, 8cm, 18cmC.0.1cm, 0.1cm, 0.1cmD.3cm, 40cm,8cm例2如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9cm B.12cm C.15cm 和12cm D.15cm例3以下列长度的三条线段为边,能构成三角形的有哪些?(1)6cm,8cm,10cm(2)5cm,8cm,2cm;(3)三条线段之比为4:5:6;(4)a+1,a+2,a+3(a>0)当堂检测1.下列各组中的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.5,6,10D.4,4,82.现有两根木棒,它们的长分别为40cm和50cm,若要钉成一个三角形木架,则在下列四根木棒中就选取()A.10cm的木棒B. 50cm的木棒C .100cm的木棒 D.110cm的木棒3.如果一个等腰三角形的两边长分别为2cm和5cm,那么它的周长是()A.9cmB.12cmC.9cm 或12cmD.以上答案都不对小明的爷爷要做一个三角形的木架养鱼用,现有两根长度为3m和5m的木棒,还需要到某木材市场上购买一根。
最新人教版数学八年级上册全册课堂同步导学案

人教版数学八年级上册全册课堂同步导学案11.1 与三角形有关的线段11.1.1 三角形的边学习目标:1、通过观察、操作、想象、推理、交流等活动,发掌空间观念、推理能力和有条理地表达能力;2、结合具体实例,进一步认识三角形的概念及其基本要素,掌握三角形三边之间的不等关系.学习重点:三角形三边之间的不等关系.学习难点:应用三角形的三边之间的不等关系判断三条线段能否组成三角形 教学过程: 一、学前准备1.三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?2.能从右图中找出4个不同的三角形吗?二、探究新知:1、你所知道的三角形的定义是什么?问题:根据你的理解,下列的图形是三角形吗?三角形的定义:ABCDEFGAB Ca bc2、三角形的有关概念:①边: 。
②角: 。
③顶点: 。
问题:右图中三角形的三个顶点分别是 ,三条边分别是 , 三个内角分别是 。
3、三角形的表示:如右图,以A 、B 、C 为顶点的三角形记作 ,读作 。
4、 边都相等的三角形叫做等边三角形;有 条边相等的三角形叫做等腰三角形。
问题:那么等边三角形是否属于等腰三角形呢? 三角形的分类:①按三个内角的大小分类: 、 和 。
②按边进行分类。
5、自主探究(1)任意画一个△ABC ,从点B 出发,沿边到点C ,有几条路线?(2)各条路线的长有什么关系?说明理由.结论:三角形任意两边之和;三角形任意两边之差。
6.例题讲解例:有一条长为18cm的细绳围成一个等腰三角形(1)如果腰长是底边长的2倍,那么各边的长是多少?(2)能围成有一边的长为4cm的等腰三角形吗?为什么?三、练习内容1、课本练习2、等腰三角形的两边长分别为3cm,5cm.(1) 求这个三角形的周长。
(2)若两边分别为2cm,5cm呢?四、小结:本节课的收获:你还有什么疑惑?五、当堂清1.用木棒钉成一个三角架,两根小棒分别是7cm和10cm,第三根小棒可取()A、20cmB、 3cmC、11cmD、2cm2.下列三条线段,不能组成三角形的是()A、 3 4 6 B 、8 9 15 C 、20 18 5 D、16 30 143.已知等腰三角形一边等于5cm,一边等于10cm,另一边应等于()A、5cmB、 10cmC、5或10cmD、 12cm4.一个三角形的两边分别是5cm和11cm,第三边的长是一个偶数,则第三边的长是()A、2cmB、 4cmC、6cmD、8cm5、已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一课时三角形的边一、新课导入1、三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?2、对于三角形,你了解了哪些方面的知识?你能画一个三角形吗?二、学习目标1、三角形的三边关系。
2、用三边关系判断三条线段能否组成三角形。
三、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
研读一、认真阅读课本(P63至P64“探究”前,时间:5分钟)要求:知道三角形的定义;会用符号表示三角形,了解按边角关系对三角形进行分类。
一边阅读一边完成检测一。
研读二、认真阅读课本( P64“探究”,时间:3分钟)要求:思考“探究”中的问题,理解三角形两边的和大于第三边;游戏:用棍子摆三角形。
检测练习二、6、在三角形ABC中,AB+BC AC AC+BC AB AB+AC BC7、假设一只小虫从点B出发,沿三角形的边爬到点C,有路线。
路线最近,根据是:,于是有:(得出的结论)。
8、下列下列长度的三条线段能否构成三角形,为什么?(1)3、4、8 (2)5、6、11 (3)5、6、10研读三、认真阅读课本认真看课本( P64例题,时间:5分钟)要求:(1)、注意例题的格式和步骤,思考(2)中为什么要分情况讨论。
(2)、对这例题的解法你还有哪些不理解的?(3)、一边阅读例题一边完成检测练习三。
检测练习三、9、一个等腰三角形的周长为28cm.①已知腰长是底边长的3倍,求各边的长;②已知其中一边的长为6cm,求其它两边的长.(要有完整的过程啊!)解:(三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结(一)这节课我们学到了什么?(二)你认为应该注意什么问题?五、强化训练【A】组1、下列说法正确的是(1)等边三角形是等腰三角形(2)三角形按边分类课分为等腰三角形、等边三角形、不等边三角形(3)三角形的两边之差大于第三边(4)三角形按角分类应分锐角三角形、直角三角形、钝角三角形其中正确的是( )A 、1个B 、2个C 、3个D 、4个2、一个不等边三角形有两边分别是3、5另一边可能是( )A 、1B 、2C 、3D 、43、下列长度的各边能组成三角形的是( )A 、3cm 、12cm 、8cmB 、6cm 、8cm 、15cm 、3cm 、5cm D 、6.3cm 、6.3cm 、12cm 【B 】组4、已知等腰三角形的一边长等于4,另一边长等于9,求这个三角形的周长。
5、已知三角形的一边长为5cm,另一边长为3cm.则第三边的长取值范围是多少? 【C 】组(共小1-2题)6、已知三角形的一边长为5cm,另一边长为3cm.则第三边的长取值范围是 。
小方有两根长度分别为5cm 、8cm 的游戏棒,他想再找一根,使这三根游戏棒首尾相连能搭成一个三角形.(1)你能帮小方想出第三根游戏棒的长度吗?(长度为正整数)(2)想一想:如果已知两边,则构成三角形的第三边的条件是什么? (3)如果第三边的长为偶数,那么第三条又有几种情况?第二课时 三角形的高、中线与角平分线(1)一、新课导入你还记得 “过直线外一点画已知直线的垂线”怎么画吗?二、学习目标1、了解三角形的高的概念;2、会用工具准确画出三角形的高。
三 、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
1、 定义:从三角形的一个 向它的 所在的直线作 , 和之间的线段,叫做三角形的高。
2、几何语言(图1) AD 是△ABC 的高 ∴AD ⊥BC 于点D (或∠ =∠ =90º) 逆向:AD ⊥BC 于点D (或∠ =∠ =90º) ∴AD 是△ABC 中BC 边上的高3、请画出下列三角形的高 A A AB C B C B C(1)(2)(3)图1 A B C D Aa(三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结(一)这节课我们学到了什么? (二)你认为应该注意什么问题?第三课时 三角形的高、中线与角平分线(2)一、新课导入请画出线段AB 的中点。
二、学习目标1、了解三角形的中线的概念;2、会用工具准确画出三角形的中线。
三 、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
(1)定义:连结三角形一个 和它对边 的线段,叫做三角形的中线。
(2)几何语言(右图)AD 是△ABC 的中线 ∴ =逆向:= ∴AD 是△ABC 的中线(3)画出下列三角形的中线(三)在研读的过程中,你认为有哪些不懂的问题? 四、归纳小结(一)这节课我们学到了什么? (二)你认为应该注意什么问题?第四课时 三角形的高、中线与角平分线(3)一、新课导入请画出∠AOB 的角平分线。
A BA B C D(1)(2)(3)AOB二、学习目标1、了解三角形的角平分线的概念;2、会用工具准确画出三角形的角平分线。
三 、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
(1)定义:三角形一个内角的 与它的 相交,这个角 与之间的线段,叫做三角形的角平分线。
(2)几何语言(右图):AD 是△ABC 的角平分线 ∴∠ =∠逆向:∠ =∠ ∴AD 是△ABC 的角平分线(3)画出下列三角形的角平分线思考:三角形的角平分线与一个角的角平分线有何异同?(三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结(一)这节课我们学到了什么? (二)你认为应该注意什么问题?第五课时三角形的稳定性(角)一、新课导入盖房子时,在窗框未安装好之前,木工师傅 常常先在窗框上斜钉一根木条(如右图),为什么 这样做呢?二、学习目标1、了解三角形的稳定性,四边形没有稳定性,2、理解稳定性与没有稳定性在生产、生活中广泛应用。
三 、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
活动1、自主探究 1、如图(1),用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗? 2、如图(2),用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?(1) (2) (3)图3 A B C D 1 23、如图(3),在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?活动2、议一议从上面实验过程你能得出什么结论?与同伴交流。
三角形木架形状改变,四边形木架形状改变,这就是说,三角形具有性,四边形不具有性。
斜钉一根木条的四边形木架的形状改变,原因是四边形变成了两个三角形,这样就利用了三角形的。
活动3、看一看,想一想三角形的稳定性和四角形的不稳定性在生活中都有广泛应用。
你知道课本图7.1-8和图7.1-9中的例子哪些是利用三角形的稳定性?哪些是利用四角形的不稳定性?你能再举一些例子吗?(三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结(一)这节课我们学到了什么?(二)你认为应该注意什么问题?第六课时三角形的内角一、新课导入1、平行线有哪些性质?2、1平角= °;3、三角形的内角和等于°二、学习目标1、了解三角形的稳定性,四边形没有稳定性,2、理解稳定性与没有稳定性在生产、生活中广泛应用。
三、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
活动1、自主探究在事先准备的三角形硬纸片上标出三个内角的编码(如图1),并将它的内角剪下拼合在一起,看看得到什么结果。
(图1)(图2)活动2、议一议从上面的操作过程你能得出什么结论?与同伴交流。
把一个三角形其中的两个角剪下拼在第三个角的顶点处(如图2、图3),形成了一个 角。
说明在ABC ∆中, 。
从中得出:三角形内角和定理 。
活动3、想一想1、 如果我们不用剪、拼办法,可不可以用推理论证的方法来说明三角形内角和定理的正确性呢?2、 已知: . 求证: .证明:如右图,过点A 作直线DE ,使DE //BC因为DE //BC ,所以∠B =∠ ( ) 同理∠C=∠因为∠BAC 、∠DAB 、∠EAC 组成 角,所以∠BAC+∠DAB+∠EAC= ( ) 所以∠BAC + ∠B + ∠C= ( )说明:为了证明的需要,在原来图形上添画的线叫做辅助线,在平面几何里,辅助线通常用虚线表示。
3、思考:在图2中,CM 与ABC ∆的边AB 有什么关系?你能从中想出其他证明三角形内角和定理的方法吗? 活动4、例题如右下图,C 岛在A 岛的北偏东50方向, B 岛在A 岛的北偏东80方向,C 岛在B 岛的北偏西40方向,从C 岛看A 、B 两岛的视角ACB ∠是多少度? (先独立解决,再小组合作,教师点评)解:∠CBA= - = 80°- 50°=30°由AD//BE,可得: + =180° 所以∠ABE=180°- =180°-80°=100°∠ABC= - =100°-40°=60°在⊿ABC 中,∠ABC=180°- - =180°- 60°- 30°=90° 答: 。
想一想:你还有其他解法吗?(三)在研读的过程中,你认为有哪些不懂的问题? 四、归纳小结(一)这节课我们学到了什么? (二)你认为应该注意什么问题?第七课时 三角形的外角一、新课导入1、三角形的内角和定理:2、填空:(1) 在△ABC 中,∠A=300,∠B=500, 则∠C = 。
(2) 在直角△ABC 中,其中一个锐角是500, 则另一个锐角等于 。
二、学习目标1、探索并了解三角形的外角的两条性质2、利用学过的定理论证这些性质3、能利用三角形的外角性质解决实际问题 三 、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
活动1、做一做,把ABC ∆的一边AB 延长到D ,得ACD ∠,它不是三角形的内角,那它是三角形的什么角? 。
定义:三角形的一边与 组成的角,叫做三角形的外角。
想一想:三角形的外角有几个? .每个顶点处有 个外角,但它们是 。
活动2、议一议在图1中,ACD ∠与ABC ∆的内角有什么关系? (1)∠ACD = + ;(2)∠ACD ∠A , ∠ACD ∠B (填“<”、“=”“>”)。
再画ABC ∆的其他的外角试一试,还会得到这些结论吗?同学用几何语言叙述这个结论:三角形的一个外角等于 两个内角的 ;三角形的一个外角大于 任何一个内角。