最新人教版八年级上数学教学案

合集下载

八年级数学教案人教版(通用19篇)

八年级数学教案人教版(通用19篇)

八年级数学教案人教版(通用19篇)八年级数学教案 1教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的.应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3)x2-0.01y2.【知识迁移】2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2.【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.3.分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2.【学生活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.二、范例学习,应用所学【例1】把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(x+y)2-14(x+y)+49;(4)+n4.【例2】如果x2+axy+16y2是完全平方,求a的值.【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题.【探研时空】1.已知x+y=7,xy=10,求下列各式的值.(1)x2+y2;(2)(x-y)22.已知x+=-3,求x4+的值.四、课堂总结,发展潜能由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:a2-b2=(a+b)(a-b);a2±ab+b2=(a±b)2.在运用公式因式分解时,要注意:(1)每个公式的形式与特点,通过对多项式的项数、•次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)•在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,•然后再运用公式分解.五、布置作业,专题突破八年级数学教案 2一、内容和内容解析1.内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.2.内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。

2024年人教版八年级数学上册教案及教学反思第14章14.3.2 公式法(第2课时)

2024年人教版八年级数学上册教案及教学反思第14章14.3.2 公式法(第2课时)

第十四章整式的乘法与因式分解14.3 因式分解14.3.2 公式法第2课时一、教学目标【知识与技能】1.在掌握了因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解.【过程与方法】1.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.2.在运用公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.【情感、态度与价值观】1.培养学生逆向思维的意识,同时培养学生团队合作、互帮互助的精神.2.进一步体验“整体”的思想,培养“换元”的意识.二、课型新授课三、课时第2课时,共2课时。

四、教学重难点【教学重点】运用完全平方公式法进行因式分解.【教学难点】观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解.五、课前准备教师:课件、直尺、矩形图片等。

学生:三角尺、练习本、铅笔、钢笔。

六、教学过程(一)导入新课我们知道,因式分解与整式乘法是反方向的变形,我们学习了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?(出示课件2)(二)探索新知1.创设情境,探究运用完全平方公式分解因式教师问1:什么叫因式分解?(出示课件4)学生回答:把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.教师问2:我们已经学过哪些因式分解的方法?学生回答:提公因式法、平方差公式:a2–b2=(a+b)(a–b)教师问3:把下列各式分解因式:(1)ax4-a;(2)16m4-n4.学生回答:(1)ax4-a=a(x2+1)(x+1)(x-1);(2)16m4-n4=(4m2+n)(2m+n)(2m-n).教师问4:结合上题思考因式分解要注意什么问题?学生回答:①一提二看三检查;②分解要彻底.教师问5:我们学过的乘法公式除了平方差公式之外,还有哪些公式?请写出来.学生回答:完全平方公式:(a±b)2=a2±2ab+b2教师讲解:这节课我们就来讨论如何运用完全平方公式把多项式因式分解.教师问6:你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?(出示课件5)学生讨论后拼出下图:教师问7:这个大正方形的面积可以怎么求?学生回答:(a+b)2=a2+2ab+b2教师问8:将上面的等式倒过来看,能得到什么呢?学生回答:a2+2ab+b2=(a+b)2(出示课件6)教师问:观察这两个多项式:a2+2ab+b2;a2–2ab+b2,请回答下列各题:(出示课件7)(1)每个多项式有几项?学生回答:三项(2)每个多项式的第一项和第三项有什么特征?学生回答:这两项都是数或式的平方,并且符号相同.(3)中间项和第一项,第三项有什么关系?学生回答:是第一项和第三项底数的积的±2倍.教师讲解:我们把a²+2ab+b²和a²–2ab+b²这样的式子叫做完全平方式.教师问9:把下列各式分解因式:(1)a2+2ab+b2;(2)a2-2ab+b2.学生回答:(1)a2+2ab+b2=(a+b)2;(2)a2-2ab+b2=(a-b)2.教师问10:将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.能不能用语言叙述呢?学生回答后,师生共同讨论后解答如下:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方.即a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.教师问11:下列各式是不是完全平方式?如果是,请分解因式.(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+14b2;(4)a2-ab+b2;(5)x2-6x-9;(6)a2+a+0.25.学生讨论后回答如下:(1)a2-4a+4;是,原式=(a-2)2 (2)x2+4x+4y2;不是(3)4a2+2ab+14b2;是,原式=(2a+12b)2(4)a2-ab+b2;不是(5)x2-6x-9;不是(6)a2+a+0.25.是,原式=(a+0.5)2教师问12:根据学习用平方差公式分解因式的经验和方法,分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?学生讨论后回答,师生共同归纳如下:①三项式;②两项为两个数的平方和的形式;③第三项为加(或减)这两个数的积的2倍.总结点拨:(出示课件8)完全平方式: a²±2ab+b²完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.简记口诀:首平方,尾平方,首尾两倍在中央.(出示课件9)凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例1:分解因式:(出示课件12)(1)16x2+24x+9;(2)–x2+4xy–4y2.师生共同解答如下:(1)分析:(1)中,16x2=(4x)2,9=3²,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2 + 24x +9= (4x)2+2·4x·3+ 32.解:(1)16x2+ 24x +9= (4x)2 + 2·4x·3 + 32= (4x + 3)2;(2)中首项有负号,一般先利用添括号法则,将其变形为–(x2–4xy+4y2),然后再利用公式分解因式.(2)–x2+ 4xy–4y2=–(x2–4xy+4y2)=–(x–2y)2.例2:如果x2–6x+N是一个完全平方式,那么N是( )(出示课件15)A . 11 B. 9 C. –11 D. –9师生共同解答如下:解析:根据完全平方式的特征,中间项–6x=2x×(–3),故可知N=(–3)2=9.答案:B总结点拨:(出示课件16)本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解.例3:把下列各式分解因式:(出示课件18)(1)3ax2+6axy+3ay2 ;(2)(a+b)2–12(a+b)+36.师生共同解答如下:分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;(2)中将a+b 看成一个整体,设a+b=m,则原式化为m2–12m+36.解: (1)原式=3a(x2+2xy+y2)=3a(x+y)2;(2)原式=(a+b)2–2·(a+b) ·6+62=(a+b–6)2.总结点拨:利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.(出示课件19)例4:把下列完全平方式分解因式:(出示课件21)(1)1002–2×100×99+99²;(2)342+34×32+162.师生共同解答如下:解:(1)原式=(100–99)²=1(2)原式=(34+16)2=2500.总结点拨:本题利用完全平方公式分解因式,可以简化计算.例5:已知:a 2+b 2+2a –4b+5=0,求2a 2+4b –3的值.(出示课件23) 师生共同解答如下:分析:从已知条件可以看出,a 2+b 2+2a –4b+5与完全平方式有很大的相似性(颜色相同的项),因此可通过“凑”成完全平方式的方法,将已知条件转化成非负数之和等于0的形式,从而利用非负数的性质来求解.(出示课件24)解:由已知可得(a 2+2a+1)+(b 2–4b+4)=0即(a+1)2+(b –2)2=0∴ 2a 2+4b –3=2×(–1)2+4×2–3=7总结点拨:遇到多项式的值等于0、求另一个多项式的值,常常通过变形为完全平方公式和(非负数的和)的形式,然后利用非负数性质来解答.(三)课堂练习(出示课件27-31)1.下列四个多项式中,能因式分解的是( )A .a 2+1B .a 2–6a +9C .x 2+5yD .x 2–5y2.把多项式4x 2y –4xy 2–x 3分解因式的结果是( )A .4xy(x –y)–x 3B .–x(x –2y)21020a b +=⎧∴⎨-=⎩12a b =-⎧∴⎨=⎩C.x(4xy–4y2–x2) D.–x(–4xy+4y2+x2)3.若m=2n+1,则m2–4mn+4n2的值是________.4.若关于x的多项式x2–8x+m2是完全平方式,则m的值为_________ .5. 把下列多项式因式分解.(1)x2–12x+36; (2)4(2a+b)2–4(2a+b)+1;(3) y2+2y+1–x2;6. 计算:(1) 38.92–2×38.9×48.9+48.92.(2)20142-2014×4026+201327. 分解因式:(1)4x2+4x+1;(2)1x2–2x+3.3小聪和小明的解答过程如下:小聪: 小明:他们做对了吗?若错误,请你帮忙纠正过来.8. (1)已知a–b=3,求a(a–2b)+b2的值;(2)已知ab=2,a+b=5,求a3b+2a2b2+ab3的值.参考答案:1.B2.B3.14. ±45. 解:(1)原式=x2–2·x·6+62=(x–6)2;(2)原式=[2(2a+b)]²–2·2(2a+b)·1+1²=(4a+2b–1)2;(3)原式=(y+1)²–x²=(y+1+x)(y+1–x).6. 解:(1)原式=(38.9–48.9)2=100.(2)原式=20142-2×2014×2013+20132=(2014-2013)2=17. 解: (1)原式=(2x)2+2•2x•1+1=(2x+1)2(2)原式=13(x2–6x+9)=13(x–3)28. 解:(1)原式=a2–2ab+b2=(a–b)2.当a–b=3时,原式=32=9.(2)原式=ab(a2+2ab+b2)=ab(a+b)2. 当ab=2,a+b=5时,原式=2×52=50.(四)课堂小结今天我们学了哪些内容:a2±2ab+b2=(a±b)2一提,二看,三检查。

八年级数学上人教版《 实数》教案

八年级数学上人教版《 实数》教案

《实数》教案一、教学目标1.掌握实数的概念和分类,能够正确地表示出实数的平方根和立方根。

2.理解实数与数轴上的点一一对应的关系,能够利用这一关系进行实数的计算和比较。

3.掌握实数的四则运算规则和运算顺序,能够进行实数的加减乘除运算。

4.了解无理数和算术平方根的概念,能够进行无理数的计算和估算。

5.培养学生的数学思维能力和逻辑推理能力,提高学生运用数学知识解决实际问题的能力。

二、教学重点1.实数的概念和分类。

2.实数的平方根和立方根。

3.实数的四则运算规则和运算顺序。

4.无理数和算术平方根的概念。

三、教学难点1.理解实数与数轴上的点一一对应的关系。

2.进行实数的加减乘除运算时的注意事项。

3.进行无理数的计算和估算。

四、教学方法1.通过实例引入实数的概念和分类,让学生感受实数在日常生活中的应用。

2.通过探究活动让学生自主发现实数的平方根和立方根的计算方法。

3.通过小组合作的方式进行实数的四则运算练习,让学生掌握运算规则和运算顺序。

4.通过问题解决的方式让学生了解无理数和算术平方根的概念,并能够进行无理数的计算和估算。

5.通过课堂小测验及时检测学生的学习情况,以便教师进行针对性的教学调整。

五、教学过程1.导入新课:通过复习已学知识引入课题,如数的分类、有理数的概念等,从而引出实数的概念。

2.新课学习:通过实例讲解实数的概念和分类,让学生了解实数的特点;通过探究活动让学生自主发现实数的平方根和立方根的计算方法;通过小组合作的方式进行实数的四则运算练习,让学生掌握运算规则和运算顺序;通过问题解决的方式让学生了解无理数和算术平方根的概念,并能够进行无理数的计算和估算。

3.课堂小结:对本节课所学知识进行回顾和总结,强调重点和难点内容,让学生明确自己的学习成果和需要改进的地方。

4.作业布置:根据学生的学习情况和实际需要布置适量的作业,以巩固所学知识和提高解题能力。

八年级上册数学教案人教版【优秀8篇】

八年级上册数学教案人教版【优秀8篇】

八年级上册数学教案人教版【优秀8篇】篇一:人教版八年级上册数学教案篇一一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的突破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。

因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。

而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。

所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。

为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

三、例习题的意图分析1、教材P140探究栏目的意图。

(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。

2、教材P140的思考的意图。

(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。

八年级上册数学教案(优秀9篇)

八年级上册数学教案(优秀9篇)

八年级上册数学教案(优秀9篇)人教版八年级数学上册教案篇一【教学目标】知识与技能会推导平方差公式,并且懂得运用平方差公式进行简单计算。

过程与方法经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。

情感、态度与价值观通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。

【教学重难点】重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。

难点:平方差公式的应用。

关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。

【教学过程】一、创设情境,故事引入【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。

【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?【学生回答】多项式乘以多项式。

【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。

【问题牵引】计算:(1)(x+2)(x—2);(2)(1+3a)(1—3a);(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。

【学生活动】分四人小组,合作学习,获得以下结果:(1)(x+2)(x—2)=x2—4;(2)(1+3a)(1—3a)=1—9a2;(3)(x+5y)(x—5y)=x2—25y2;(4)(y+3z)(y—3z)=y2—9z2。

【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。

【学生活动】讨论【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

最新新人教版八年级数学上册全册名师教案大全5篇

最新新人教版八年级数学上册全册名师教案大全5篇

最新新人教版八年级数学上册全册名师教案大全5篇新人教版八年级数学上册全册名师教案篇1一学习目标:1会推导两数差的平方公式,会用式子表示及用文字语言叙述;2会运用两数差的平方公式进行计算。

二学习过程:请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:(一)探索1计算: (a - b) =方法一:方法二:方法三:2两数差的平方用式子表示为_________________________;用文字语言叙述为___________________________ 。

3两数差的平方公式结构特征是什么?(二)现学现用利用两数差的平方公式计算:1(3 - a) 2 (2a -1) 3(3y-x)4(2x – 4y) 5( 3a - )(三)合作攻关灵活运用两数差的平方公式计算:1(999) 2( a – b – c )3(a + 1) -(a-1)(四)达标训练1选择:下列各式中,与(a - 2b)一定相等的是()Aa -2ab + 4b Ba -4bCa +4b D a - 4ab +4b2填空:(1)9x + + 16y = (4y - 3x )(2) ( ) = m - 8m + 162计算:( a - b) ( x -2y )3有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?(四)提升1本节课你学到了什么?2已知a – b = 1,a + b = 25,求ab 的值新人教版八年级数学上册全册名师教案篇2《正弦和余弦(二)》一素质教育目标(一)知识教学点使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系。

(二)能力训练点逐步培养学生观察比较分析综合抽象概括的逻辑思维能力。

(三)德育渗透点培养学生独立思考勇于创新的精神。

二教学重点难点1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用。

八年级上册数学教案人教版

八年级上册数学教案人教版

【导语】提⾼学习效率并⾮⼀朝⼀⼣之事,需要长期的探索和积累。

前⼈的经验是可以借鉴的,但必须充分结合⾃⼰的特点。

影响学习效率的因素,有学习之内的,但更多的因素在学习之外。

⾸先要养成良好的学习习惯,合理利⽤时间,另外还要注意"专⼼、⽤⼼、恒⼼"等基本素质的培养,对于⾃⾝的优势、缺陷等更要有深刻的认识。

本篇⽂章是为您整理的《⼋年级上册数学教案⼈教版》,供⼤家借鉴。

【篇⼀】⼋年级上册数学教案⼈教版 《矩形》教案 教学⽬标: 知识与技能⽬标: 1.掌握矩形的概念、性质和判别条件。

2.提⾼对矩形的性质和判别在实际⽣活中的应⽤能⼒。

过程与⽅法⽬标: 1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学⽣的合情推理能⼒,主观探索习惯,逐步掌握说理的基本⽅法。

2.知道解决矩形问题的基本思想是化为三⾓形问题来解决,渗透转化归思想。

情感与态度⽬标: 1.在操作活动过程中,加深对矩形的的认识,并以此激发学⽣的探索精神。

2.通过对矩形的探索学习,体会它的内在美和应⽤美。

教学重点:矩形的性质和常⽤判别⽅法的理解和掌握。

教学难点:矩形的性质和常⽤判别⽅法的综合应⽤。

教学⽅法:分析启发法 教具准备:像框,平⾏四边形框架教具,多媒体课件。

教学过程设计: ⼀、情境导⼊: 演⽰平⾏四边形活动框架,引⼊课题。

⼆、讲授新课: 1.归纳矩形的定义: 问题:从上⾯的演⽰过程可以发现:平⾏四边形具备什么条件时,就成了矩形?(学⽣思考、回答。

) 结论:有⼀个内⾓是直⾓的平⾏四边形是矩形。

2.探究矩形的性质: (1)问题:像框除了“有⼀个内⾓是直⾓”外,还具有哪些⼀般平⾏四边形不具备的性质?(学⽣思考、回答.) 结论:矩形的四个⾓都是直⾓。

(2)探索矩形对⾓线的性质: 让学⽣进⾏如下操作后,思考以下问题:(幻灯⽚展⽰) 在⼀个平⾏四边形活动框架上,⽤两根橡⽪筋分别套在相对的两个顶点上,拉动⼀对不相邻的顶点,改变平⾏四边形的形状. ①随着∠α的变化,两条对⾓线的长度分别是怎样变化的? ②当∠α是锐⾓时,两条对⾓线的长度有什么关系?当∠α是钝⾓时呢? ③当∠α是直⾓时,平⾏四边形变成矩形,此时两条对⾓线的长度有什么关系? (学⽣操作,思考、交流、归纳。

人教版八年级上册数学教案及反思

人教版八年级上册数学教案及反思

人教版八年级上册数学教案及反思一、教学目标1.理解平方根的概念,掌握平方根的性质。

2.学会求解一个数的平方根,能够运用平方根解决实际问题。

3.培养学生的观察能力、逻辑思维能力和解决问题的能力。

二、教学重点与难点重点:平方根的概念和性质,求解平方根的方法。

难点:平方根的性质的理解和应用。

三、教学过程(一)导入新课1.教师通过多媒体展示一张图片,图片中有一系列的正方形,边长分别为1、2、3、4、5……2.提问:同学们,你们能找出这些正方形中哪些是正方形面积的平方根?(二)探究新知1.教师引导学生回顾平方的概念,让学生举例说明平方的意义。

2.提问:那么平方根是什么意思呢?请大家举例说明。

4.教师展示平方根的性质,让学生通过小组讨论,探究平方根的性质。

(1)正数的平方根有两个,且互为相反数。

(2)0的平方根是0。

(3)负数没有平方根。

(三)巩固练习1.教师给出一些数的平方根,让学生求解。

2.学生求解后,教师提问:你们是如何求解这些数的平方根的?(四)实际应用1.教师给出一个实际问题:一个正方形的面积是16平方厘米,求这个正方形的边长。

(五)课堂小结1.教师提问:本节课我们学习了什么内容?四、作业布置1.请同学们课后完成教材上的练习题。

2.家长签字确认,确保同学们完成作业。

五、教学反思1.本节课通过图片导入,激发学生的兴趣,引导学生积极参与课堂讨论。

2.在探究平方根性质时,采用小组讨论的方式,培养学生的合作能力和探究精神。

3.通过巩固练习和实际应用,让学生学会运用平方根解决实际问题。

4.课堂小结环节,帮助学生梳理本节课的知识点,巩固所学内容。

不足之处:1.在讲解平方根性质时,可能有些同学对“负数没有平方根”的理解不够深刻,需要进一步讲解和举例。

2.课堂时间安排不够合理,导致作业布置较少,可能影响学生对知识点的巩固。

改进措施:1.在讲解平方根性质时,增加实例,让学生更好地理解。

2.调整课堂时间安排,确保作业布置充足,提高学生对知识点的掌握程度。

人教版八年级数学教案优秀5篇

人教版八年级数学教案优秀5篇

教学难点是灵活应用分式的基本性质将分式变形。

突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。

应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。

一起看看新人教版八年级数学教案!欢迎查阅!下面是白话文整理的人教版八年级数学教案优秀5篇,希望能够帮助到大家。

1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子B叫做分式。

2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。

其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。

3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。

4、分式的值为0的条件:当分式的分子等于0,而分母不等于0时,分式的值为0。

即,使B=0的条件是:A=0,B≠0。

5、有理式整式和分式统称为有理式。

整式分为单项式和多项式。

分类:有理式单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。

新人教版八年级数学教案篇二一、教学目标:熟练地进行分式乘除法的混合运算。

二、重点、难点1、重点:熟练地进行分式乘除法的混合运算。

2、难点:熟练地进行分式乘除法的混合运算。

3、认知难点与突破方法:紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的。

课堂练习以学生自己讨论为主,教师可组织学生对所做的题目作自我评价,关键是点拨运算符号问题、变号法则。

三、例、习题的意图分析1、P17页例4是分式乘除法的混合运算。

分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

__________________________________________________ __________________________________________________ 第一课时 三角形的边

一、新课导入 1、三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗? 2、对于三角形,你了解了哪些方面的知识?你能画一个三角形吗? 二、学习目标 1、三角形的三边关系。 2、用三边关系判断三条线段能否组成三角形。 三 、研读课本 认真阅读课本的内容,完成以下练习。 (一)划出你认为重点的语句。 (二)完成下面练习,并体验知识点的形成过程。 研读一、认真阅读课本(P63至P64“探究”前,时间:5分钟) 要求:知道三角形的定义;会用符号表示三角形,了解按边角关系对三角形进行分类。一边阅读一边完成检测一。 研读二、认真阅读课本( P64“探究”,时间:3分钟) 要求:思考“探究”中的问题,理解三角形两边的和大于第三边; 游戏:用棍子摆三角形。 检测练习二、6、在三角形ABC中, AB+BC AC AC+BC AB __________________________________________________ __________________________________________________ AB+AC BC

7、假设一只小虫从点B出发,沿三角形的边爬到点C, 有 路线。路线 最近,根据是: ,于是有:(得出的结论) 。 8、下列下列长度的三条线段能否构成三角形,为什么? (1)3、4、8 (2)5、6、11 (3)5、6、10 研读三、认真阅读课本认真看课本( P64例题,时间:5分钟) 要求:(1)、注意例题的格式和步骤,思考(2)中为什么要分情况讨论。 (2)、对这例题的解法你还有哪些不理解的? (3)、一边阅读例题一边完成检测练习三。 检测练习三、 9、一个等腰三角形的周长为28cm.①已知腰长是底边长的3倍,求各边的长; ②已知其中一边的长为6cm,求其它两边的长.(要有完整的过程啊!) 解: (三)在研读的过程中,你认为有哪些不懂的问题? 四、归纳小结 (一)这节课我们学到了什么? (二)你认为应该注意什么问题? __________________________________________________ __________________________________________________ 五、强化训练

【A】组 1、下列说法正确的是 (1) 等边三角形是等腰三角形 (2) 三角形按边分类课分为等腰三角形、等边三角形、不

等边三角形

(3) 三角形的两边之差大于第三边 (4) 三角形按角分类应分锐角三角形、直角三角形、钝角

三角形 其中正确的是( ) A、1个 B、2个 C、3个 D、4个 2、一个不等边三角形有两边分别是3、5另一边可能是( ) A、1 B、2 C、3 D、4 3、下列长度的各边能组成三角形的是( ) A、3cm、12cm、8cm B、6cm、8cm、15cm 、3cm、5cm D、6.3cm、6.3cm、12cm 【B】组 4、已知等腰三角形的一边长等于4,另一边长等于9,求这个三角形的周长。 5、已知三角形的一边长为5cm,另一边长为3cm.则第三边的长取值范围是多少? 【C】组(共小1-2题) __________________________________________________ __________________________________________________ 6、已知三角形的一边长为5cm,另一边长为3cm.则第三边

的长取值范围是 。 小方有两根长度分别为5cm、8cm的游戏棒,他想再找一根,使这三根游戏棒首尾相连能搭成一个三角形. (1)你能帮小方想出第三根游戏棒的长度吗?(长度为正整数) (2)想一想:如果已知两边,则构成三角形的第三边的条件是什么? (3)如果第三边的长为偶数,那么第三条又有几种情况? 第二课时 三角形的高、中线与角平分线(1) 一、新课导入 你还记得 “过直线外一点画已知直线的垂线”怎么画吗? 二、学习目标 1、了解三角形的高的概念; 2、会用工具准确画出三角形的高。 三 、研读课本 认真阅读课本的内容,完成以下练习。 (一)划出你认为重点的语句。 (二)完成下面练习,并体验知识点的形成过程。 1、 定义:从三角形的一个 向它的 所在的直线作 , 和 之间的线段,叫做三角形的高。

Aa__________________________________________________

__________________________________________________ 2、几何语言(图1) AD是△ABC的高

ADBC于点D(或 = =90º) 逆向: ADBC于点D(或 = =90º) AD是△ABC中BC边上的高 3、请画出下列三角形的高 A A A

B C B C B C

(三)在研读的过程中,你认为有哪些不懂的问题? 四、归纳小结 (一)这节课我们学到了什么? (二)你认为应该注意什么问题?

第三课时 三角形的高、中线与角平分线(2) 一、新课导入 请画出线段AB的中点。

二、学习目标 1、了解三角形的中线的概念; 2、会用工具准确画出三角形的中线。 三 、研读课本 认真阅读课本的内容,完成以下练习。 (一)划出你认为重点的语句。

(二)完成下面练习,并体验知识点的形成过程。 (1)定义:连结三角形一个 和它对边 的线段,叫做三角形的中线。

(2)几何语言(右图) AD是△ABC的中线  =

(1) (2) (3) 图ABCD

AB A B C D __________________________________________________ __________________________________________________ 逆向:

 = AD是△ABC的中线

(3)画出下列三角形的中线

(三)在研读的过程中,你认为有哪些不懂的问题? 四、归纳小结 (一)这节课我们学到了什么? (二)你认为应该注意什么问题?

第四课时 三角形的高、中线与角平分线(3) 一、新课导入 请画出∠AOB的角平分线。

二、学习目标 1、了解三角形的角平分线的概念; 2、会用工具准确画出三角形的角平分线。

三 、研读课本 认真阅读课本的内容,完成以下练习。 (一)划出你认为重点的语句。 (二)完成下面练习,并体验知识点的形成过程。 (1)定义:三角形一个内角的 与它的 相交,这个角 与 之间的线段,叫做三角形的角平分线。 (2)几何语言(右图): AD是△ABC的角平分线  =

逆向:  =

AD是△ABC的角平分线

(3)画出下列三角形的角平分线

思考:三角形的角平分线与一个角的角平分线有何异同? (三)在研读的过程中,你认为有哪些不懂的问题? (1) (2) (3) AOB(1) (2) (3)

图3 A B C D

1 2 __________________________________________________

__________________________________________________ 四、归纳小结

(一)这节课我们学到了什么? (二)你认为应该注意什么问题?

第五课时 三角形的稳定性(角) 一、新课导入 盖房子时,在窗框未安装好之前,木工师傅 常常先在窗框上斜钉一根木条(如右图),为什么 这样做呢? 二、学习目标 1、了解三角形的稳定性,四边形没有稳定性, 2、理解稳定性与没有稳定性在生产、生活中广泛应用。 三 、研读课本 认真阅读课本的内容,完成以下练习。 (一)划出你认为重点的语句。

(二)完成下面练习,并体验知识点的形成过程。 活动1、自主探究 1、如图(1),用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗? 2、如图(2),用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗? 3、如图(3),在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然 后扭动它,它的形状会改变吗?

活动2、议一议 从上面实验过程你能得出什么结论?与同伴交流。 三角形木架形状 改变,四边形木架形状 改变,这就是说,三角形具有 性,四边形不具有 性。 斜钉一根木条的四边形木架的形状 改变,原因是四边形变成了两个三角形,这样就利用了三角形的 。 活动3、看一看,想一想 三角形的稳定性和四角形的不稳定性在生活中都有广泛应用。 你知道课本图7.1-8和图7.1-9中的例子哪些是利用三角形的稳定性?哪些是利用四角形的不稳定性?你能再举一些例子吗? (三)在研读的过程中,你认为有哪些不懂的问题? 四、归纳小结 (一)这节课我们学到了什么? (二)你认为应该注意什么问题?

相关文档
最新文档