数据结构算法排序比较

合集下载

数据结构最基础的十大算法

数据结构最基础的十大算法

数据结构最基础的十大算法数据结构是计算机科学中的重要分支,它研究如何组织和存储数据以便于访问和修改。

在数据结构中,算法是解决问题的关键。

下面将介绍数据结构中最基础的十大算法。

1. 线性搜索算法线性搜索算法是最简单的算法之一,它的作用是在一个列表中查找一个特定的元素。

该算法的时间复杂度为O(n),其中n是列表中元素的数量。

2. 二分搜索算法二分搜索算法是一种更高效的搜索算法,它的时间复杂度为O(log n)。

该算法要求列表必须是有序的,它通过将列表分成两半来查找元素,直到找到目标元素为止。

3. 冒泡排序算法冒泡排序算法是一种简单的排序算法,它的时间复杂度为O(n^2)。

该算法通过比较相邻的元素并交换它们的位置来排序列表。

4. 快速排序算法快速排序算法是一种更高效的排序算法,它的时间复杂度为O(nlog n)。

该算法通过选择一个基准元素并将列表分成两部分来排序列表。

5. 插入排序算法插入排序算法是一种简单的排序算法,它的时间复杂度为O(n^2)。

该算法通过将每个元素插入到已排序的列表中来排序列表。

6. 选择排序算法选择排序算法是一种简单的排序算法,它的时间复杂度为O(n^2)。

该算法通过选择最小的元素并将其放在列表的开头来排序列表。

7. 堆排序算法堆排序算法是一种更高效的排序算法,它的时间复杂度为O(n log n)。

该算法通过将列表转换为堆并进行排序来排序列表。

8. 归并排序算法归并排序算法是一种更高效的排序算法,它的时间复杂度为O(n log n)。

该算法通过将列表分成两部分并将它们合并来排序列表。

9. 哈希表算法哈希表算法是一种高效的数据结构,它的时间复杂度为O(1)。

该算法通过将键映射到哈希表中的位置来存储和访问值。

10. 树算法树算法是一种重要的数据结构,它的时间复杂度取决于树的深度。

树算法包括二叉树、AVL树、红黑树等。

以上是数据结构中最基础的十大算法,它们在计算机科学中有着广泛的应用。

【数据结构】常见排序算法复杂度

【数据结构】常见排序算法复杂度

【数据结构】常见排序算法复杂度相关概念1、稳定排序(stable sort)和⾮稳定排序稳定排序是指所有相等的数经过某种排序算法操作后仍然能保持它们在排序之前的相对次序。

反之就是⾮稳定排序。

2、内排序(internal sorting)和外排序(external sorting)在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调⼊内存,并借助内存调整数在外存中的存放顺序排序⽅法称为外排序。

排序算法【冒泡排序】(Bubble Sort)冒泡排序⽅法是最简单的排序⽅法。

这种⽅法的基本思想是,将待排序的元素看作是竖着排列的“⽓泡”,较⼩的元素⽐较轻,从⽽要往上浮。

在冒泡排序算法中我们要对这个“⽓泡”序列处理若⼲遍。

所谓⼀遍处理,就是⾃底向上检查⼀遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。

如果发现两个相邻元素的顺序不对,即“轻”的元素在下⾯,就交换它们的位置。

显然,处理⼀遍之后,“最轻”的元素就浮到了最⾼位置;处理⼆遍之后,“次轻”的元素就浮到了次⾼位置。

在作第⼆遍处理时,由于最⾼位置上的元素已是“最轻”元素,所以不必检查。

⼀般地,第i遍处理时,不必检查第i⾼位置以上的元素,因为经过前⾯i-1遍的处理,它们已正确地排好序。

冒泡排序是稳定的。

算法时间复杂度是O(n2)。

【选择排序】(Selection Sort)选择排序的基本思想是对待排序的记录序列进⾏n-1遍的处理,第 i 遍处理是将[i..n]中最⼩者与位置 i 交换位置。

这样,经过 i 遍处理之后,前 i 个记录的位置已经是正确的了。

选择排序是不稳定的。

算法复杂度是O(n2 )。

【插⼊排序】(Insertion Sort)插⼊排序的基本思想是,经过i-1遍处理后,L[1..i-1]⼰排好序。

第i遍处理仅将L插⼊L[1..i-1]的适当位置,使得L[1..i]⼜是排好序的序列。

要达到这个⽬的,我们可以⽤顺序⽐较的⽅法。

数据结构排序算法总结表格

数据结构排序算法总结表格
数据结构排序算法总结表格
在计算机科学中,排序算法是用于对数据进行排序的一种算法。以下是一些常见的排序算法,总结在一张表格中:
算法名称
描述
时间复杂度
空间复杂度
稳定性
冒泡排序
通过重复地比较相邻元素并交换位置,将最大(或最小)的元素移到数组的末尾。
O(n²)
O(1)

选择排序
在未排序的序列中找到最小(或最大)的元素,将其放在已排序
插入排序
将一个元素插入到已排序的序列中,保持序列的有序性。
O(n²)
O(1)

希尔排序
将数组划分为多个子序列,然后分别对子序列进行插入排序,最后再进行一次插入排序。
O(n²)
O(1)

快速排序
选择一个元素作为基准,将数组划分为两个子序列,一个子序列的所有元素都比基准小,另一个子序列的所有元素都比基准大。递归地对子序列进行排序。
O(n log n)
O(1)(如果从数组创建堆时)
是(但是不稳定)
基数排序
通过按位(或数字的其他属性)对元素进行比较和交换位置来排序数组。是一种稳定的排序算法。
O(nk)(k是数字的位数)
O(n)(如果使用外部存储)

O(n log n) 到 O(n²)(最坏情况下)
O(log n) 到 O(n)(递归调用的开销)
否(但是快速选择是稳定的)
归并排序
将数组划分为两个子数组,分别对子数组进行排序,然后将两个已排序的子数组合并成一个有序的数组。递归地进行这个过程。
O(n log n)
O(n)(合并时)

堆排序
将数组构建成一个大顶堆或小顶堆,然后不断地将堆顶元素与堆尾元素交换,并重新调整堆结构。重复这个过程直到所有元素都已排序。

数据结构课程设计—内部排序算法比较

数据结构课程设计—内部排序算法比较

数据结构课程设计—内部排序算法比较在计算机科学领域中,数据的排序是一项非常基础且重要的操作。

内部排序算法作为其中的关键部分,对于提高程序的运行效率和数据处理能力起着至关重要的作用。

本次课程设计将对几种常见的内部排序算法进行比较和分析,包括冒泡排序、插入排序、选择排序、快速排序和归并排序。

冒泡排序是一种简单直观的排序算法。

它通过重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。

这种算法的优点是易于理解和实现,但其效率较低,在处理大规模数据时性能不佳。

因为它在最坏情况下的时间复杂度为 O(n²),平均时间复杂度也为O(n²)。

插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个序列有序。

插入排序在数据量较小时表现较好,其平均时间复杂度和最坏情况时间复杂度也都是 O(n²),但在某些情况下,它的性能可能会优于冒泡排序。

选择排序则是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。

以此类推,直到全部待排序的数据元素排完。

选择排序的时间复杂度同样为O(n²),但它在某些情况下的交换操作次数可能会少于冒泡排序和插入排序。

快速排序是一种分治的排序算法。

它首先选择一个基准元素,将数列分成两部分,一部分的元素都比基准小,另一部分的元素都比基准大,然后对这两部分分别进行快速排序。

快速排序在平均情况下的时间复杂度为 O(nlogn),最坏情况下的时间复杂度为 O(n²)。

然而,在实际应用中,快速排序通常表现出色,是一种非常高效的排序算法。

归并排序也是一种分治算法,它将待排序序列分成若干个子序列,每个子序列有序,然后将子序列合并成一个有序序列。

《数据结构排序》课件

《数据结构排序》课件

根据实际需求选择时间复杂度和空间 复杂度最优的排序算法,例如快速排 序在平均情况下具有较好的性能,但 最坏情况下其时间复杂度为O(n^2)。
排序算法的适用场景问题
适用场景考虑因素
选择排序算法时需要考虑实际应 用场景的特点,如数据量大小、 数据类型、是否需要稳定排序等 因素。
不同场景适用不同
算法
例如,对于小规模数据,插入排 序可能更合适;对于大规模数据 ,快速排序或归并排序可能更优 。
排序的算法复杂度
时间复杂度
衡量排序算法执行时间随数据量增长而增长的速率。时间复杂度越低,算法效 率越高。常见的时间复杂度有O(n^2)、O(nlogn)、O(n)等。
空间复杂度
衡量排序算法所需额外空间的大小。空间复杂度越低,算法所需额外空间越少 。常见的空间复杂度有O(1)、O(logn)、O(n)等。
在数据库查询中,经常需要对结果进行排序,以便用户能够快速找到所需信息。排序算 法的效率直接影响到查询的响应时间。
索引与排序
数据库索引能够提高查询效率,但同时也需要考虑到排序的需求。合理地设计索引结构 ,可以加速排序操作。
搜索引擎中的排序
相关性排序
搜索引擎的核心功能是根据用户输入的 关键词,返回最相关的网页。排序算法 需要综合考虑网页内容、关键词密度、 链接关系等因素。
VS
广告与排序
搜索引擎中的广告通常会根据关键词的竞 价和相关性进行排序,以达到最佳的广告 效果。
程序中的排序应用
数组排序
在程序中处理数组时,经常需要对其进行排 序。不同的排序算法适用于不同类型的数据 和场景,如快速排序、归并排序等。
数据可视化中的排序
在数据可视化中,需要对数据进行排序以生 成图表。例如,柱状图、饼图等都需要对数 据进行排序处理。

数据结构的常用算法

数据结构的常用算法

数据结构的常用算法一、排序算法排序算法是数据结构中最基本、最常用的算法之一。

常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。

1. 冒泡排序冒泡排序是一种简单的排序算法,它重复地比较相邻的两个元素,如果它们的顺序错误就将它们交换过来。

通过多次的比较和交换,最大(或最小)的元素会逐渐“浮”到数列的顶端,从而实现排序。

2. 选择排序选择排序是一种简单直观的排序算法,它每次从待排序的数据中选择最小(或最大)的元素,放到已排序序列的末尾,直到全部元素排序完毕。

3. 插入排序插入排序是一种简单直观的排序算法,它将待排序的数据分为已排序区和未排序区,每次从未排序区中取出一个元素,插入到已排序区的合适位置,直到全部元素排序完毕。

4. 快速排序快速排序是一种常用的排序算法,它采用分治的思想,通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分小,然后再按此方法对这两部分数据进行快速排序,递归地进行,最终实现整个序列有序。

5. 归并排序归并排序是一种稳定的排序算法,它采用分治的思想,将待排序的数据分成若干个子序列,分别进行排序,然后将排好序的子序列合并成更大的有序序列,直到最终整个序列有序。

二、查找算法查找算法是在数据结构中根据给定的某个值,在数据集合中找出目标元素的算法。

常见的查找算法有线性查找、二分查找、哈希查找等。

1. 线性查找线性查找是一种简单直观的查找算法,它从数据集合的第一个元素开始,依次比较每个元素,直到找到目标元素或遍历完整个数据集合。

2. 二分查找二分查找是一种高效的查找算法,它要求数据集合必须是有序的。

通过不断地将数据集合分成两半,将目标元素与中间元素比较,从而缩小查找范围,最终找到目标元素或确定目标元素不存在。

3. 哈希查找哈希查找是一种基于哈希表的查找算法,它通过利用哈希函数将目标元素映射到哈希表中的某个位置,从而快速地找到目标元素。

三、图算法图算法是解决图结构中相关问题的算法。

数据结构(C语言版)实验报告 (内部排序算法比较)

数据结构(C语言版)实验报告 (内部排序算法比较)

《数据结构与算法》实验报告一、需求分析问题描述:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概执行时间。

试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。

基本要求:(l)对以下6种常用的内部排序算法进行比较:起泡排序、直接插入排序、简单选择排序、快速排序、希尔排序、堆排序。

(2)待排序表的表长不小于100000;其中的数据要用伪随机数程序产生;至少要用5组不同的输入数据作比较;比较的指标为有关键字参加的比较次数和关键字的移动次数(关键字交换计为3次移动)。

(3)最后要对结果作简单分析,包括对各组数据得出结果波动大小的解释。

数据测试:二.概要设计1.程序所需的抽象数据类型的定义:typedef int BOOL; //说明BOOL是int的别名typedef struct StudentData { int num; //存放关键字}Data; typedef struct LinkList { int Length; //数组长度Data Record[MAXSIZE]; //用数组存放所有的随机数} LinkList int RandArray[MAXSIZE]; //定义长度为MAXSIZE的随机数组void RandomNum() //随机生成函数void InitLinkList(LinkList* L) //初始化链表BOOL LT(int i, int j,int* CmpNum) //比较i和j 的大小void Display(LinkList* L) //显示输出函数void ShellSort(LinkList* L, int dlta[], int t,int* CmpNum, int* ChgNum) //希尔排序void QuickSort (LinkList* L, int* CmpNum, int* ChgNum) //快速排序void HeapSort (LinkList* L, int* CmpNum, int* ChgNum) //堆排序void BubbleSort(LinkList* L, int* CmpNum, int* ChgNum) //冒泡排序void SelSort(LinkList* L, int* CmpNum, int* ChgNum) //选择排序void Compare(LinkList* L,int* CmpNum, int* ChgNum) //比较所有排序2 .各程序模块之间的层次(调用)关系:二、详细设计typedef int BOOL; //定义标识符关键字BOOL别名为int typedef struct StudentData //记录数据类型{int num; //定义关键字类型}Data; //排序的记录数据类型定义typedef struct LinkList //记录线性表{int Length; //定义表长Data Record[MAXSIZE]; //表长记录最大值}LinkList; //排序的记录线性表类型定义int RandArray[MAXSIZE]; //定义随机数组类型及最大值/******************随机生成函数********************/void RandomNum(){int i; srand((int)time(NULL)); //用伪随机数程序产生伪随机数for(i=0; i小于MAXSIZE; i++) RandArray[i]<=(int)rand(); 返回;}/*****************初始化链表**********************/void InitLinkList(LinkList* L) //初始化链表{int i;memset(L,0,sizeof(LinkList));RandomNum();for(i=0; i小于<MAXSIZE; i++)L->Record[i].num<=RandArray[i]; L->Length<=i;}BOOL LT(int i, int j,int* CmpNum){(*CmpNum)++; 若i<j) 则返回TRUE; 否则返回FALSE;}void Display(LinkList* L){FILE* f; //定义一个文件指针f int i;若打开文件的指令不为空则//通过文件指针f打开文件为条件判断{ //是否应该打开文件输出“can't open file”;exit(0); }for (i=0; i小于L->Length; i++)fprintf(f,"%d\n",L->Record[i].num);通过文件指针f关闭文件;三、调试分析1.调试过程中遇到的问题及经验体会:在本次程序的编写和调试过程中,我曾多次修改代码,并根据调试显示的界面一次次调整代码。

常见排序算法的时间复杂度比较和应用场景

常见排序算法的时间复杂度比较和应用场景

常见排序算法的时间复杂度比较和应用场景排序算法是计算机科学中最基本的算法之一。

在数据结构和算法中,排序算法的研究一直是热门话题。

这篇文章将会介绍一些最基本的排序算法,探讨它们的时间复杂度和一些应用场景。

1. 冒泡排序冒泡排序是最基本的排序算法之一。

其主要思想是循环遍历待排序的序列多次,每次比较相邻的两个元素的大小,如果前面的元素大于后面的元素,则交换这两个元素。

一个简单的例子如下:```pythondef bubble_sort(arr):n = len(arr)for i in range(n):for j in range(n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```冒泡排序的时间复杂度为 $O(n^2)$,其中 $n$ 是待排序序列的长度。

由于其时间复杂度较高,冒泡排序只适用于小规模的排序任务。

2. 快速排序快速排序是一种高效的排序算法。

其主要思想是选取序列中的一个元素作为基准值,将序列中小于基准值的元素放在基准值左边,大于基准值的元素放在右边,然后递归地对左右两部分进行排序。

一个简单的例子如下:```pythondef quick_sort(arr):if len(arr) <= 1:return arrpivot = arr[len(arr)//2]left = [x for x in arr if x < pivot]right = [x for x in arr if x > pivot]middle = [x for x in arr if x == pivot]return quick_sort(left) + middle + quick_sort(right)```快速排序的时间复杂度为 $O(n\log n)$,其中 $n$ 是待排序序列的长度。

数据结构排序算法稳定性总结——写给自己看

数据结构排序算法稳定性总结——写给自己看

数据结构排序算法稳定性总结——写给⾃⼰看⼀、排序分类(1)插⼊类:直接插⼊排序、折半插⼊排序、希尔排序(2)交换类:冒泡排序、快速排序(3)选择类:简单选择排序、堆排序(属于树形选择排序)(4)归并类:2-路归并排序(5)分配类:基数排序⼆、排序稳定性及其原因(1)稳定排序:直接插⼊排序、折半插⼊排序、冒泡排序、2-路归并排序、基数排序直接插⼊排序:每次将⼀个待排序的记录,按其关键字的⼤⼩插⼊到已经排好序的⼀组记录的适当位置上。

在数组内部前半部为排好序的记录,后半部是未排好序的。

⽐较时从前半部的后向前⽐较,所以不会改变相等记录的相对位置。

折半插⼊排序:将直接插⼊排序关键字⽐较时的查找利⽤“折半查找”来实现,本质并没有改变还是⼀种稳定排序。

冒泡排序:通过两两⽐较相邻记录的关键字,如果发⽣逆序,则进⾏交换。

也不会改变相等记录的相对位置。

2-路归并排序:将两个有序表合并成⼀个有序表。

每次划分的两个⼦序列前后相邻。

合并时每次⽐较两个有序⼦序列当前较⼩的⼀个关键字,将其放⼊排好序的序列尾部。

因为两⼦序列相邻,合并时也没有改变相等记录的相对位置,所以也是稳定的。

基数排序:对待排序序列进⾏若⼲趟“分配”和“收集”来实现排序。

分配时相等记录被分配在⼀块,没有改变相对位置,是⼀种稳定排序。

(2)不稳定排序:希尔排序、快速排序、堆排序希尔排序:采⽤分组插⼊的⽅法,将待排序列分割成⼏组,从⽽减少直接插⼊排序的数据量,对每组分别进⾏直接插⼊排序,然后增加数据量,重新分组。

经过⼏次分组排序之后,对全体记录进⾏⼀次直接插⼊排序。

但是希尔对记录的分组,不是简单的“逐段分割”,⽽是将相隔每个“增量”的记录分成⼀组(假如:有1~10⼗个数,以2为增量则分为13579、246810两组)。

这种跳跃式的移动导致该排序⽅法是不稳定的。

快速排序:改进的冒泡排序。

冒泡只⽐较相邻的两个记录,每次交换只能消除⼀个逆序。

快排就是通过交换两个不相邻的记录,达到⼀次消除多个逆序。

数据结构与算法(12):排序

数据结构与算法(12):排序

int[] data = new int[] {10,30,20,60,40,50};
mergesort(data);
for(int i:data) {
System.out.println(i);
}
}
public static void mergesort(int[] arr){
sort(arr, 0, arr.length-1);
例例如,假设有这样一一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步⻓长 为5开始进行行行排序,我们可以通过将这列列表放在有5列列的表中来更更好地描述算法,这样他们就应该 看起来是这样:
13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10
坏的情况下,移动次数为n(n − 1)/2
冒泡排序的时间复杂度为O(n2)。冒泡排序不不需要辅助存储单元,其空间复杂度为O(1)。如果关
键字相等,则冒泡排序不不交换数据元素,他是一一种稳定的排序方方法。
时间复杂度:最好O(n);最坏O(n2);平均O(n2) 空间复杂度:O(1)
稳定性:稳定
二二、选择排序(Selection Sort)
排好序时,元素的移动次数为0。当每一一趟都需要移动数据元素时,总的移动次数为n − 1
选择排序的时间复杂度为O(n2)。选择排序不不需要辅助的存储单元,其空间复杂度为O(1)。选择
排序在排序过程中需要在不不相邻的数据元素之间进行行行交换,它是一一种不不稳定的排序方方法。
时间复杂度:O(n2) 空间复杂度:O(1)
地方方增量量和差值都是delta temp = arr[j-delta]; arr[j-delta] = arr[j]; arr[j] = temp;

数据结构课程设计题目

数据结构课程设计题目

数据结构课程设计题目以下7个题目任选其一。

1.排序算法比较利用随机函数产生30000个随机整数,利用插入排序、起泡排序、选择排序、快速排序、堆排序、归并排序等排序方法进行排序,并且(1)统计每一种排序上机所花费的时间。

(2)统计在完全正序,完全逆序情况下记录的比较次数和移动次数。

(3)比较的指标为关键字的比较次数和记录的移动次数(一次记录交换计为3次移动)。

(4)对结果作简单分析,包括对各组数据得出结果波动大小的解释。

2.图的深度遍历对任意给定的图(顶点数和边数自定),建立它的邻接表并输出,然后利用堆栈的五种基本运算(清空堆栈、压栈、弹出、取栈顶元素、判栈空)实现图的深度优先搜索遍历。

画出搜索顺序示意图。

3.图的广度遍历对任意给定的图(顶点数和边数自定),建立它的邻接表并输出,然后利用队列的五种基本运算(置空队列、进队、出队、取队头元素、判队空)实现图的广度优先搜索遍历。

画出搜索顺序示意图。

4.二叉树的遍历对任意给定的二叉树(顶点数自定)建立它的二叉链表存贮结构,并利用栈的五种基本运算(置空栈、进栈、出栈、取栈顶元素、判栈空)实现二叉树的先序、中序、后序三种遍历,输出三种遍历的结果。

画出搜索顺序示意图。

5.链表操作利用链表的插入运算建立线性链表,然后利用链表的查找、删除、计数、输出等运算反复实现链表的这些操作(插入、删除、查找、计数、输出单独写成函数的形式),并能在屏幕上输出操作前后的结果。

画出搜索顺序示意图。

6.一元稀疏多项式简单计数器(1)输入并建立多项式(2)输出多项式,输出形式为整数序列:n,c1,e1,c2,e2……cn,en,其中n是多项式的项数,ci,ei分别为第i项的系数和指数。

序列按指数降序排列。

(3)多项式a和b相加,建立多项式a+b,输出相加的多项式。

(4)多项式a和b相减,建立多项式a-b,输出相减的多项式。

用带头结点的单链表存储多项式。

测试数据:(1)(2x+5x8-3.1x11)+(7-5x8+11x9)(2)(6x-3-x+4.4x2-1.2x9)-(-6x-3+5.4x2+7.8x15)(3)(x+x2+x3)+0(4)(x+x3)-(-x-x-3)7.实现两个链表的合并基本功能要求:(1)建立两个链表A和B,链表元素个数分别为m和n个。

数据结构——排序——8种常用排序算法稳定性分析

数据结构——排序——8种常用排序算法稳定性分析

数据结构——排序——8种常⽤排序算法稳定性分析⾸先,排序算法的稳定性⼤家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。

在简单形式化⼀下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。

其次,说⼀下稳定性的好处。

排序算法如果是稳定的,那么从⼀个键上排序,然后再从另⼀个键上排序,第⼀个键排序的结果可以为第⼆个键排序所⽤。

基数排序就是这样,先按低位排序,逐次按⾼位排序,低位相同的元素其顺序再⾼位也相同时是不会改变的。

另外,如果排序算法稳定,对基于⽐较的排序算法⽽⾔,元素交换的次数可能会少⼀些(个⼈感觉,没有证实)。

回到主题,现在分析⼀下常见的排序算法的稳定性,每个都给出简单的理由。

(1)冒泡排序冒泡排序就是把⼩的元素往前调或者把⼤的元素往后调。

⽐较是相邻的两个元素⽐较,交换也发⽣在这两个元素之间。

所以,如果两个元素相等,我想你是不会再⽆聊地把他们俩交换⼀下的;如果两个相等的元素没有相邻,那么即使通过前⾯的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是⼀种稳定排序算法。

(2)选择排序选择排序是给每个位置选择当前元素最⼩的,⽐如给第⼀个位置选择最⼩的,在剩余元素⾥⾯给第⼆个元素选择第⼆⼩的,依次类推,直到第n-1个元素,第n个元素不⽤选择了,因为只剩下它⼀个最⼤的元素了。

那么,在⼀趟选择,如果当前元素⽐⼀个元素⼩,⽽该⼩的元素⼜出现在⼀个和当前元素相等的元素后⾯,那么交换后稳定性就被破坏了。

⽐较拗⼝,举个例⼦,序列5 8 5 2 9,我们知道第⼀遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是⼀个稳定的排序算法。

(3)插⼊排序插⼊排序是在⼀个已经有序的⼩序列的基础上,⼀次插⼊⼀个元素。

当然,刚开始这个有序的⼩序列只有1个元素,就是第⼀个元素。

数据结构简单排序

数据结构简单排序

数据结构简单排序一、简介数据结构是计算机科学中重要的概念之一,它用于组织和存储数据,以便于访问和修改。

而排序算法则是数据结构中的重要内容,它可以将无序的数据按照特定规则进行排列,提高数据的查找和处理效率。

本文将介绍数据结构中的简单排序算法。

二、冒泡排序冒泡排序是最基础的排序算法之一,它通过不断比较相邻元素并交换位置,将较大或较小的元素逐步“冒泡”到数组的末尾或开头。

具体步骤如下:1. 从数组第一个元素开始比较相邻元素。

2. 如果前一个元素大于后一个元素,则交换它们的位置。

3. 继续向后比较相邻元素,并交换位置直到最后一个元素。

4. 重复以上步骤直到整个数组有序。

三、选择排序选择排序也是一种简单且常用的排序算法。

它通过不断寻找最小值或最大值,并将其放在已排好序部分的末尾或开头。

具体步骤如下:1. 找到当前未排序部分中最小值(或最大值)。

2. 将该值与未排序部分第一个元素交换位置。

3. 将已排序部分的末尾(或开头)指针向后(或前)移动一位。

4. 重复以上步骤直到整个数组有序。

四、插入排序插入排序是一种简单但高效的排序算法,它通过将未排序部分中的每个元素插入已排好序部分中的合适位置,逐步构建一个有序数组。

具体步骤如下:1. 将第一个元素视为已排好序部分,将第二个元素作为未排序部分中的第一个元素。

2. 将未排序部分中的第一个元素插入已排好序部分中合适的位置。

3. 将已排好序部分扩展至包含前两个元素,并将未排序部分中的下一个元素插入到合适位置。

4. 重复以上步骤直到整个数组有序。

五、希尔排序希尔排序是一种高效且简单的改进版插入排序算法。

它通过对数据进行多次局部交换和移动,使得数据更快地接近有序状态。

具体步骤如下:1. 定义一个增量值h,将数组按照间隔h划分成若干子数组。

2. 对每个子数组进行插入排序操作。

3. 缩小增量h,重复以上操作直到h=1。

4. 对整个数组进行插入排序操作。

六、归并排序归并排序是一种高效且稳定的排序算法。

数据结构与算法-排序

数据结构与算法-排序
构成的逆序记录对。
假定待排序文件由 n 条记录组成,记录依次存储在 r[1]~r[n]中。使用简单冒泡排
序算法对待排序文件中的记录进行排序,具体处理流程如下。
(1)遍历待排序文件 r[1]~r[n],每访问一条记录 r[j]时,比较所访问记录排序关
键字与所访问记录后一记录排序关键字的大小,核对所访问记录 r[j]与所访问记录后一
则,此排序算法是不稳定的。例如, 给定待排序文件 A={1,2,3,1,4}和B={1,3,1,2,4},假定某
一排序算法对文件 A 和B 的排序结果分别为{1,1,2,3,4}和{1,1,2,3,4},由于文件 B 中存在多
项同为 1 的记录,且排序后同为 1 的记录相对位置发生了改变,因此,此算法是不稳定
排序

CONTENTS

01
排序的概述
02
插入排序算法
03
交换排序算法
04
选择排序算法
05
归并排序算法
06
分配排序算法
07
各种排序技术比较
08
本章小结
01
PART
排序的概述
排序是以某一数据项(称为排序关键字)为依据,将一组无序记录调整成一组有序
记录,形成有序表的过程。排序问题可以定义为以下形式。
件排序时,记录分组以及每趟排序结果如右
图所示。
插入排序算法
2.3希尔排序算法
第一趟排序时,增量 h=4,因此,以
h=4 为记录间隔,将待排序文件中的记录分
为 4 组:{r[1],r[5],r[9]}、{r[2],r[6]}、{r[3],r[7]}
和{r[4],r[8]},并分别对 4 组记录进行直接插入

头歌数据结构十大经典排序算法

头歌数据结构十大经典排序算法

头歌数据结构十大经典排序算法导言在计算机科学中,排序算法是一类常见且重要的算法。

通过对一组元素进行排序,我们可以提高数据的组织性和检索效率。

本文将介绍头歌数据结构十大经典排序算法,包括冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序、计数排序、桶排序和基数排序。

冒泡排序冒泡排序是一种简单直观的排序算法。

它通过多次比较和交换相邻元素的方式,将较大(或较小)的元素逐渐交换至数组的一端,从而达到排序的目的。

选择排序选择排序是一种简单且高效的排序算法。

它通过每次选择未排序部分的最小元素,并将其交换至已排序部分的末尾,从而逐步构建有序序列。

插入排序插入排序是一种自然而然的排序算法。

它通过将待排序元素逐个插入已排序序列的正确位置,不断扩大已排序部分的范围,从而完成排序。

希尔排序希尔排序是一种高效的插入式排序算法。

它通过将待排序元素分组,分组内进行插入排序,然后逐步减小分组的大小,以达到整体有序的目的。

归并排序归并排序是一种高效且稳定的排序算法。

它将已排序的子序列合并,不断递归地执行该操作,直到合并整个序列,从而实现排序。

快速排序快速排序是一种高效的分治排序算法。

它通过选择一个基准元素,将序列分割成两部分,并分别对这两部分进行排序,最终将序列有序地整合起来。

堆排序堆排序是一种高效且稳定的排序算法。

它利用堆这种特殊的数据结构,在每次构建堆过程中,获取最大(或最小)元素,并将其放入已排序部分的末尾,从而完成排序。

计数排序计数排序是一种非比较性的排序算法。

它通过统计每个元素出现的次数,计算每个元素应该在有序序列中的位置,从而完成排序。

桶排序桶排序是一种高效的排序算法。

它通过将元素分配到不同的桶中,并对每个桶进行排序,从而得到排序结果。

基数排序基数排序是一种高效的排序算法。

它通过将待排序元素按照个位、十位、百位等进行排序,最终得到有序序列。

结语头歌数据结构十大经典排序算法是计算机科学中不可或缺的内容。

数据结构-排序PPT课件

数据结构-排序PPT课件
平均情况时间复杂度
O(nlogn),归并排序的平均时间复杂度为O(nlogn)。其中,n为待排序序列的长度。
06
基数排序
基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。
分配和收集
基数排序是一种稳定的排序算法,即相同的元素在排序后仍保持原有的顺序。
文件系统需要对文件和目录进行排序,以便用户可以更方便地浏览和管理文件。
数据挖掘和分析中需要对数据进行排序,以便发现数据中的模式和趋势。
计算机图形学中需要对图形数据进行排序,以便进行高效的渲染和操作。
数据库系统
文件系统
数据挖掘和分析
计算机图形学
02
插入排序
将待排序的元素按其排序码的大小,逐个插入到已经排好序的有序序列中,直到所有元素插入完毕。
简单选择排序
基本思想:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。 时间复杂度:堆排序的时间复杂度为O(nlogn),其中n为待排序元素的个数。 稳定性:堆排序是不稳定的排序算法。 优点:堆排序在最坏的情况下也能保证时间复杂度为O(nlogn),并且其空间复杂度为O(1),是一种效率较高的排序算法。
基数排序的实现过程
空间复杂度
基数排序的空间复杂度为O(n+k),其中n为待排序数组的长度,k为计数数组的长度。
时间复杂度
基数排序的时间复杂度为O(d(n+k)),其中d为最大位数,n为待排序数组的长度,k为计数数组的长度。
适用场景
当待排序数组的元素位数较少且范围较小时,基数排序具有较高的效率。然而,当元素位数较多或范围较大时,基数排序可能不是最优选择。

数据结构八大排序之冒泡排序算法

数据结构八大排序之冒泡排序算法

数据结构八大排序之冒泡排序算法冒泡排序是一种经典的排序算法,它基于比较和交换的思想,简单易懂却非常高效。

在实际应用中,我们经常会遇到需要对一组数据进行排序的情况,而冒泡排序就是解决这个问题的利器。

首先,我们来了解一下冒泡排序的基本原理。

冒泡排序的核心思想是通过相邻元素的比较和交换,将较大的元素逐渐“冒泡”到数组的末尾,达到排序的目的。

具体来说,算法从数组的第一个元素开始,比较相邻的两个元素,如果前一个元素大于后一个元素,则交换它们的位置;如果前一个元素小于等于后一个元素,则位置不变。

通过一轮比较后,最大的元素就会“冒泡”到数组的末尾。

然后,算法再从数组的第一个元素开始进行下一轮比较,依次类推,直到所有元素都排好序。

接下来,我们详细了解冒泡排序的具体步骤。

假设我们需要对一个由n个元素组成的数组进行排序,首先,我们需要进行n-1轮的比较。

每一轮比较都从数组的第一个元素开始,比较相邻的两个元素,根据大小进行交换或保持不变。

一轮比较下来,最大的元素就会“冒泡”到数组的末尾。

然后,下一轮比较就会从数组的第一个元素到倒数第二个元素进行,以此类推,直到最后一轮只需要比较数组的前两个元素。

冒泡排序的时间复杂度为O(n²),这是因为每一轮比较需要遍历整个数组,而总共需要进行n-1轮比较。

在最好的情况下,也就是数组已经排好序的情况下,冒泡排序的时间复杂度可以优化到O(n)。

然而,在最坏的情况下,即数组完全逆序的情况下,冒泡排序的性能较差。

冒泡排序是一种稳定的排序算法,这意味着相等元素的相对顺序不会被改变。

冒泡排序的思想简单直观,实现也相对简单,所以它在教学和入门级应用中被广泛使用。

然而,在大规模数据的排序中,由于其时间复杂度较高,冒泡排序的效率相对较低。

除了基本的冒泡排序算法,还有一些优化的方法可以进一步提高算法的效率。

例如,我们可以设置一个标志位来判断一轮比较中是否进行了交换,如果没有交换,说明数组已经有序,可以提前结束排序。

数据结构之——八大排序算法

数据结构之——八大排序算法

数据结构之——⼋⼤排序算法排序算法⼩汇总 冒泡排序⼀般将前⾯作为有序区(初始⽆元素),后⾯作为⽆序区(初始元素都在⽆序区⾥),在遍历过程中把当前⽆序区最⼩的数像泡泡⼀样,让其往上飘,然后在⽆序区继续执⾏此操作,直到⽆序区不再有元素。

这块是对⽼式冒泡排序的⼀种优化,因为当某次冒泡结束后,可能数组已经变得有序,继续进⾏冒泡排序会增加很多⽆⽤的⽐较次数,提⾼时间复杂度。

所以我们增加了⼀个标识变量flag,将其初始化为1,外层循环还是和⽼式的⼀样从0到末尾,内存循环我们改为从最后⾯向前⾯i(外层循环所处的位置)处遍历找最⼩的,如果在内存没有出现交换,说明⽆序区的元素已经变得有序,所以不需要交换,即整个数组已经变得有序。

(感谢@站在远处看童年在评论区的指正)#include<iostream>using namespace std;void sort(int k[] ,int n){int flag = 1;int temp;for(int i = 0; i < n-1 && flag; i++){flag = 0;for(int j = n-1; j > i; j--){/*下⾯这⾥和i没关系,注意看这块,从下往上travel,两两⽐较,如果不合适就调换,如果上来后⼀次都没调换,说明下⾯已经按顺序拍好了,上⾯也是按顺序排好的,所以完美!*/if(k[j-1] > k[j]){temp = k[j-1];k[j-1] = k[j];k[j] = temp;flag = 1;}}}}int main(){int k[3] = {0,9,6};sort(k,3);for(int i =0; i < 3; i++)printf("%d ",k[i]);}快速排序(Quicksort),基于分治算法思想,是对冒泡排序的⼀种改进。

快速排序由C. A. R. Hoare在1960年提出。

数据结构中最优和最差相同的排序算法

数据结构中最优和最差相同的排序算法

数据结构中最优和最差相同的排序算法在数据结构中,排序算法是非常重要的一部分。

排序算法是将一组数据按照一定的顺序进行排列的过程,在实际应用中,排序算法可以提高数据处理效率,因此,排序算法一直是计算机科学领域中备受关注的问题。

在排序算法中,有一种算法被称为“桶排序”,它是一种不错的排序算法。

在桶排序中,最优情况和最差情况是相同的。

下面我们将介绍桶排序的原理、应用、优缺点等方面的详细内容。

1. 桶排序的原理桶排序是一种线性排序算法,它使用桶来实现排序。

桶排序的原理非常简单,就是将要排序的数据分到几个有序的桶里,每个桶里的数据再分别进行排序,最后将每个桶中的数据按照顺序依次接起来,就完成了排序工作。

桶排序的核心思想就是:将数据分散到多个桶中,让每个桶中的数据都有一定的顺序,然后将这些桶中的数据合并起来。

2. 桶排序的应用桶排序适用于数据量较大,但是数据范围比较有限的情况。

比如:在计算人口年龄的分布情况时,可以将年龄分成若干个桶,每个桶中存储相同年龄的人口数量。

然后对每个桶内的人口进行排序,最后将每个桶内的人口合并起来即可得到年龄的分布情况。

桶排序还可以用来对文件进行排序和划分。

3. 桶排序的时间复杂度桶排序的时间复杂度为O(n),它是一种线性排序算法,相对于其他排序算法而言,它的时间复杂度非常低。

按照循序渐进的原则,桶排序的时间复杂度为O(n),也就是说,如果要排序的数据量n非常大,桶排序会是一种非常高效的排序算法。

4. 桶排序的优缺点桶排序的优点(1) 桶排序是一种非常快速的排序算法,它的时间复杂度为O(n)。

(2) 桶排序适用于数据范围小且分布均匀的情况。

(3) 桶排序可以用来解决需要排序但是无法一次性装入内存的大数据量问题。

桶排序的缺点(1) 桶排序在数据分散不均匀的情况下可能会出现较大的空间浪费。

(2) 桶排序需要额外的存储空间,这个存储空间与要排序的数据量相关。

(3) 桶排序的速度受到所使用的桶数量的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计报告课程设计题目:排序算法比较学号:201120182020姓名:揭审鹏专业:软件工程班级: 1121820指导教师: 张军目录一、需求分析 (3)二、程序的主要功能 (3)三、程序运行平台 (3)四、算法及时间复杂度 (3)五、测试用例 (5)六、程序源代码 (9)七、感想体会与总结 (17)一、需求分析利用随机函数产生30000个随机整数,利用插入排序、起泡排序、选择排序、快速排序、堆排序、归并排序等排序方法进行排序,并统计每一种排序上机所花费的时间。

二、程序的主要功能1.掌握各种排序的基本思想。

2.掌握各种排序方法的算法实现。

3.掌握各种排序方法的优劣分析及花费的时间的计算。

4.掌握各种排序方法所适应的不同场合。

三、程序运行平台Visual C++ 6.0版本四、算法及时间复杂度(一)各个排序是算法思想:(1)直接插入排序:将一个记录插入到已排好的有序表中,从而得到一个新的,记录数增加1的有序表。

(2)起泡排序:首先将第一个记录的关键字和第二个记录的关键字进行比较,若为逆序,则将两个记录交换,然后比较第二个记录和第三个记录的关键字。

依此类推,直到第N-1和第N个记录的关键字进行过比较为止。

上述为第一趟排序,其结果使得关键字的最大纪录被安排到最后一个记录的位置上。

然后进行第二趟起泡排序,对前N-1个记录进行同样操作。

一共要进行N-1趟起泡排序。

(3)快速排序:通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,已达到整个序列有序。

(4)选择排序:通过N-I次关键字间的比较,从N-I+1个记录中选出关键字最小的记录,并和第I(1<=I<=N)个记录交换。

(5)堆排序:在堆排序的算法中先建一个大顶堆,既先选得一个关键字作为最大的记录并与序列中最后一个记录交换,然后对序列中前N-1记录进行选择,重新将它调整成一个大顶堆,如此反复直到排序结束。

(6)归并排序:按最低位优先法先对低位关键字进行排序,直到对最高位关键字排序为止,经过若干次分配和收集来实现排序(二)时间复杂度分析排序算法最差时间时间复杂度是否稳定?插入排序O(n2) O(n2) 稳定冒泡排序O(n2) O(n2) 稳定快速排序O(n2) O(n*log2n) 不稳定选择排序O(n2) O(n2) 稳定堆排序O(n*log2n) O(n*log2n) 不稳定归并排序O(n*log2n) O(n2) 稳定30000个数据的时间比较:算法名称用时直接插入排序 1起泡排序 4快速排序0选择排序 1堆排序0归并排序0五、测试用例产生30000个随机数快速排序堆排序归并排序直接插入排序起泡排序选择排序排序时间六、程序源代码#include<iostream.h>#include<stdlib.h>#include<iomanip.h>#include<time.h>const int N=30000;#define ElemType int//以下为起泡排序void Bubblesort(ElemType R[],int n) {int flag=1;//当flag为0,停止排序for(int i=1;i<n;i++){//i表示趟数,最多n-1趟flag=0; //开始时元素未交换for(int j=n-1;j>=i;j--)if(R[j]<R[j-1]){//发生逆序ElemType t=R[j];R[j]=R[j-1];R[j-1]=t;flag=1; //交换,并标记发生了变换}if(flag==0)return;}}//以下为直接排序void selectsort(ElemType R[],int n){int i,j,m;ElemType t;for(i=0;i<n-1;i++){m=i;for(j=i+1;j<n;j++)if(R[j]<R[m]) m=j;if(m!=i){t=R[i];R[i]=R[m];R[m]=t;}}}//以下为直接插入排序void insertsort(ElemType R[],int n)//待排序元素用一个R表示,数组有n个元素{for(int i=1;i<n;i++)//i表示插入次数,共进行n-1次插入{ElemType temp=R[i]; //把待排序元素赋给tempint j=i-1;while((j>=0)&&(temp<R[j])){R[j+1]=R[j];j--;//顺序比较和移动}R[j+1]=temp;}}//以下为快速排序void quicksort(ElemType R[],int left,int right) {int i=left,j=right;ElemType temp=R[i];while(i<j){while((R[j]>temp)&&(j>i))j=j-1;if(j>i){R[i]=R[j];i=i+1;}while((R[i]<=temp)&&(j>i))i=i+1;if(i<j){R[j]=R[i];j=j-1;}}//一次划分得到的基准值的正确位置R[i]=temp;if(left<i-1) quicksort(R,left,i-1);if(i+1<right) quicksort(R,i+1,right);}//以下为堆排序void creatheap(ElemType R[],int i,int n)//建立大根堆{int j;ElemType t;t=R[i];j=2*i;while(j<n){if((j<n)&&(R[j]<R[j+1]))j++;if(t<R[j]){R[i]=R[j];i=j;j=2*i;}else j=n;R[i]=t;}}void heapsort(ElemType R[],int n)//堆排序{ElemType t;for(int i=n/2;i>=0;i--)creatheap(R,i,n);for(i=n-1;i>=0;i--){t=R[0];R[0]=R[i];R[i]=t;creatheap(R,0,i-1);}}//以下为归并排序void merge(ElemType R[],ElemType A[],int s,int m,int t)//对两个子区间R[s]~R[m]和R[M+1]~R[t]进行合并,结果存入A中{int i,j,k;i=s;j=m+1;k=s;while((i<=m)&&(j<=t))if(R[i]<=R[j]){A[k]=R[i];i++;k++;}else{A[k]=R[j];j++;k++;}while(i<=m){A[k]=R[i];i++;k++;}while(j<=t){A[k]=R[j];j++;k++;}}void mergepass(ElemType R[],ElemType A[],int n,int c)//对R数组做一趟归并,结果存入A数组中,n为元素个数,c为区间长度{int i,j;i=0;while(i+2*c-1<=n-1){//长度均为c的两个区间合并成一个区间merge(R,A,i,i+c-1,i+2*c-1);i+=2*c;}if(i+c-1<n) //长度不等的两个区间合并成一个区间merge(R,A,i,i+c-1,n-1);elsefor(j=i;j<=n-1;j++)//仅剩一个区间时,直接复制到A中A[j]=R[j];}void mergesort(ElemType R[],int n){int c=1;ElemType A[N];while(c<n){mergepass(R,A,n,c);//一次合并,结果存入A中c*=2;mergepass(R,A,n,c);//再次合并,结果存入A中c*=2;}}void print(ElemType R[],int n){for(int i=0;i<=n-1;i++){if(i%10==0){cout<<endl;}cout<<R[i]<<setw(6);}cout<<endl;}void main(){char ch;ElemType R[N],T[N];time_t t1,t2;double tt1,tt2,tt3,tt4,tt5,tt6;srand(0);for(int i=0;i<=N-1;i++)T[i]=rand();//产生随机数print(T,N);//输出随机数cout<<"快速排序开始(y/n)";cin>>ch;if(ch=='y'){for(i=0;i<N;i++) R[i]=T[i];t1=time(NULL);quicksort(R,0,N-1);t2=time(NULL);tt1=difftime(t2,t1);print(R,N);}cout<<"堆排序开始(y/n)";cin>>ch;if(ch=='y'){for(i=0;i<N;i++) R[i]=T[i];t1=time(NULL);heapsort(R,N);t2=time(NULL);tt2=difftime(t2,t1);print(R,N);}cout<<"归并排序开始(y/n)";cin>>ch;if(ch=='y'){for(i=0;i<N;i++) R[i]=T[i];t1=time(NULL);mergesort(R,N);t2=time(NULL);tt3=difftime(t2,t1);print(R,N);}cout<<"直接插入排序开始(y/n)";cin>>ch;if(ch=='y'){for(i=0;i<N;i++) R[i]=T[i];t1=time(NULL);insertsort(R,N);t2=time(NULL);tt4=difftime(t2,t1);print(R,N);}cout<<"起泡排序开始(y/n)";cin>>ch;if(ch=='y'){for(i=0;i<N;i++) R[i]=T[i];t1=time(NULL);Bubblesort(R,N);t2=time(NULL);tt5=difftime(t2,t1);print(R,N);}cout<<"选择排序开始(y/n)";cin>>ch;if(ch=='y'){for(i=0;i<N;i++) R[i]=T[i];t1=time(NULL);selectsort(R,N);t2=time(NULL);tt6=difftime(t2,t1);print(R,N);}cout<<"快速排序的时间为:"<<tt1<<endl;cout<<"堆排序的时间为:"<<tt2<<endl;cout<<"归并排序的时间为:"<<tt3<<endl;cout<<"直接插入排序的时间为:"<<tt4<<endl;cout<<"起泡排序的时间为:"<<tt5<<endl;cout<<"选择排序的时间为:"<<tt6<<endl;}七感想体会与总结1、做什么都需要耐心,做设计写程序更需要耐心。

相关文档
最新文档