四川省绵阳市高中2013级第一次诊断性数学(理)考试(免费word版)
2023—2024学年四川省绵阳市高三上学期第一次诊断性考试数学(文科)模拟试题(含答案)
D.若 c 0 ,则 ac bc
5.已知 5a
10b
,则
b a
(
)
A.
1 2
B.2
C. log510
D.1 lg2
6.已知 tan 2 ,则 sin2 ( )
A.- 3 5
B. 4 5
C. 3 10
D. 7 10
7.若等比数列an首项 a1 2, a4 8 2 ,则数列an的前 n 项和为( )
件的 的积属于区间( )
A. 1, 4
B.4, 7
C. 7,13
D.13,
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
13.程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框
图,若输入的 a,b 分别为 21,14,则输出的 a=
.
14.已知点
M
1,1, N
2,
m
,若向量
MN
与
a
m, 2 的方向相反,则
r a
.
15.已知函数
f
x
ex ex 2, x
x2 2x, x
0
0 ,则
f
x
的值域为
.
16.已知函数 f x, g x 的定义域为 R ,且 f x f x 6, f 2 x g x 4 ,若 g x 1 为奇
3.已知平面向量
a
与
b
的夹角为
45
,
a
b
2
,且
a
2 ,则
a
b
·
a
b
(
)
A. 2 2
B.-2
C.2
D. 2 2
四川省绵阳市2013届高三第一次诊断性考试数学(理)试题
保密★启用前【考试时间2012年11月1日下午3:00〜5:00】:绵阳市高中2013级第一次诊断性考试数学 (理科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分.第I卷1至2页,第II卷 3至4页.满分150分.考试时间120分钟.注意事项:1. 答题前,考生务必将自己的姓名、考号用0.5毫米的黑色签字笔填写在答题卡上,并将条形码粘贴在答题卡的指定位置.2. 选择题使用2B铅笔填涂在答题卡对应题0标号的位置上,非选择题用0.5毫米的黑色签字笔书写在答题卡的对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.3.考试结束后,将答题卡收回.第I卷(选择题,共60.分)—、选择题:本大题共彳2小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目荽求的.1. 设集合,B={0, 1, 2},则等于A. {0}B. {0,1}C. {0, 1, 2}D.2. 命题,则是A. B.C. D.3. 己知数列为等差数列,且,则的值为A. B. C. D.4. 设,,则A. c<b<aB. b<a<cC. c<a<bD. a<b<c5. 函数.的零点所在的区间为A. (-1,0)B. (0, 1)C. (1, 2)D. (2,3)6. 如图,在,中,AD=2DB,DE=EC,若,则=A. B.C. D.7. 设函数的部分图象如下图所示,则/(力的表达式为A.B.C.D.8. 若函数在区间(O, 1)上单调递增,且方程的根都在区间[-2, 2]上,则实数b的取值范围为A. [O, 4]B.C. [2, 4]D. [3, 4]9. 已知定义在R上的奇函数/(X)是上的增函数,旦f(1)=2,f(-2)=-4,设.若是的充分不必要条件,则实数t的取值范围是A. B. C. D.10. 某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为A. .2400 元B. 2300 元C. 2200元D. .2000 元11. 已知函数则满足不等式.例X的取值范围为A. (0,3)B.C.D. (-1, 3)12. 已知定义在R上的函数f(X)满足且当,则等于A. B. C. D.第II卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.13. 已知向量a=(2,1),b=(x,-2),若 a//b,则 x=______14. 已知偶函数在上是增函数,则n= _______15. 已知{a}是递增数列,且对任意的都有恒成立,则角θn的取值范围是_______16. 设所有可表示为两整数的平方差的整数组成集合M.给出下列命题:①所有奇数都属于M.②若偶数2k及属于M,则.③若,则,,④把所有不属于M的正整数从小到大依次择成一个数列,则它的前n项和其中正确命题的序号是_______•(写出所有正确命题的序号》三、解答题:本大题共6小题,共74分.解答应写出文字说明、说明过程或演算步骤.17. (本题满分12分)设向量,函数,.(I)求函数f(x))的最小正周期及对称轴方程;(I I )当时,求函数f(x)的值域. .18. (本题满分12分)已知等差数列{a n }的前n 项和为S n ,公差,且S 3+S 5=58,a 1,a 3,a 7成等比数列.(I)求数列{a n }的通项公式;(I I )若{b n }为等比数列,且记求T 10值.19. (本题满分12分)己知二次函数y=f(x) 的图像过点(1,-4),且不等式f (x) <0的解集 是(O, 5). (I )求函数f(x)的解析式;(I I )设若函数在[-4,-2]上单调递增,在[-2,0]上单调递减,求y=h(x)在[-3,1]上的最大值和最小值. .20. (本题满分12分)在中,角A,B ,C 的对边分别是a,b,c,若(I)求角C 的值: (II) 若c=2,且,求的面积.21. (本题满分12分)设数列{a n }的前n 项和为S n ,且(其中t 为常数, 且t>0).(I )求证:数列{a n }为等比数列;(II )若数列{a n }的公比q= f(t},数列{b n }满足,求数列{b n }的通项公式;(III) 设’对(II )中的数列{b n },在数列{a n }的任意相邻两项a k 与a k+1之间插 入k 个后,得到一个新的数列:记此数列为{c n }.求数列{c n }的前2012项之和.22. (本题满分14分)己知函数在;c=2处的切线斜率为.(I)求实数a 的值及函数f(x)的单调区间;(II) 设,,对使得成 立,求正实数的取值范围;(III) 证明:•绵阳市高2013级第一次诊断性考试 数学(理)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.BCBCC AADDB AB二、填空题:本大题共4小题,每小题4分,共16分.13.-414.215.450233πππ⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦,, 16.①③三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.解:(Ⅰ)f (x)=a ·b =(cos2x ,1)·(1==2 sin(2x+6π), ……………………………………………6分∴ 最小正周期22T ππ==,令2x+6π=2k ππ+,k ∈Z ,解得x=26k ππ+,k ∈Z ,即f (x)的对称轴方程为x=26k ππ+,k ∈Z .…………………………………8分(Ⅱ)当x ∈[0,2π]时,即0≤x ≤2π,可得6π≤2x+6π≤76π,∴ 当2x+6π=2π,即x=6π时,f (x)取得最大值f (6π)=2;当2x+6π=76π,即x=2π时,f (x)取得最小值f (2π)=-1.即f (x) 的值域为[-1,2].……………………………………………………12分 18.解:(Ⅰ)由S 3+S 5=58,得3a 1+3d+5a 1+10d=8a 1+13d =58, ①∵ a 1,a 3,a 7成等比数列,a 32=a 1a 7, 即(a 1+2d)2=a 1(a 1+6d),整理得a 1=2d , 代入①得d=2, a 1=4,∴ a n =2n+2. …………………………………………………………………6分 (Ⅱ)由(Ⅰ)知a 8=18,b 5·b 6+b 4·b 7=2b 5·b 6=18,解得b 5·b 6 =9. ∵ T 10= log 3b 1 +log 3b 2+ log 3b 3+…+ log 3b 10=log 3(b 1·b 10) + log 3(b 2·b 9) +…+ log 3(b 5·b 6) =5log 3(b 5·b 6) =5log 39=10. ……………………………………………………………………12分19.解:(Ⅰ)由已知y= f (x)是二次函数,且f (x)<0的解集是(0,5),可得f (x)=0的两根为0,5, 于是设二次函数f (x)=ax(x-5),代入点(1,-4),得-4=a ×1×(1-5),解得a=1,∴ f (x)=x(x-5). ………………………………………………………………4分 (Ⅱ)h(x)= 2f (x)+g(x)=2x(x-5)+x 3-(4k-10)x+5=x 3+2x 2-4kx+5, 于是2()344h x x x k '=+-,∵ h(x)在[-4,-2]上单调递增,在[-2,0]上单调递减, ∴ x=-2是h(x)的极大值点,∴ 2(2)3(2)4(2)40h k '-=⨯-+⨯--=,解得k=1. …………………………6分 ∴ h(x)=x 3+2x 2-4x+5,进而得2()344h x x x '=+-. 令22()3443(2)()03h x x x x x '=+-=+-=,得12223x x =-=,.由下表:可知:h(-2)=(-2)3+2×(-2)2-4×(-2)+5=13,h(1)=13+2×12 -4×1+5=4, h(-3)=(-3)3+2×(-3)2-4×(-3)+5=8,h(23)=(23)3+2×(23)2-4×23+5=9527,∴ h(x)的最大值为13,最小值为9527.……………………………………12分20.解:(Ⅰ)∵asinA=(a-b)sinB+csinC ,结合0C π<<,得3C =. …………………………………………………6分(Ⅱ)由 C=π-(A+B),得sinC=sin(B+A)=sinBcosA+cosBsinA , ∵ sinC+sin(B-A)=3sin2A ,∴ sinBcosA+cosBsinA+sinBcosA-cosBsinA=6sinAcosA ,整理得sinBcosA=3sinAcosA . ………………………………………………8分 若cosA=0,即A=2π时,△ABC 是直角三角形,且B=6π,于是b=ctanB=2tan 6π3,∴ S △ABC =123. ……………………10分若cosA ≠0,则sinB=3sinA ,由正弦定理得b=3a .②联立①②,结合c=2,解得77∴ S △ABC =12absinC=1277×27.综上,△ABC 3或712分21.解:(Ⅰ)当t=1时,2a n -2=0,得a n =1,于是数列{a n }为首项和公比均为1的等比数列. ……………………………1分 当t ≠1时,由题设知(t-1)S 1=2ta 1-t-1,解得a 1=1, 由(t-1)S n =2ta n -t-1,得(t-1)S n+1=2ta n+1-t-1, 两式相减得(t-1)a n+1=2ta n+1-2ta n ,, ∴121n na t a t +=+(常数).∴ 数列{a n }是以1为首项,21t t +为公比的等比数列.………………………4分(Ⅱ)∵ q= f (t)=21t t +,b 1=a 1=1,b n+1=21f (b n )=1n n b b +,∴11111n n nnb b b b ++==+,∴ 数列1n b ⎧⎫⎨⎬⎩⎭是以1为首项,1为公差的等差数列,于是1nn b =, ∴ 1n b n=.………………………………………………………………………8分(III )当t=13时,由(I )知a n =11()2n -,于是数列{c n }为:1,-1,12,2,2,21()2,-3,-3,-3,31()2,…设数列{a n }的第k 项是数列{c n }的第m k 项,即a k =km c ,当k ≥2时,m k =k+[1+2+3+…+(k-1)]=(1)2k k +,∴ m 62=626319532⨯=,m 63=636420162⨯=.设S n 表示数列{c n }的前n 项和, 则S 2016=[1+12+21()2+…+621()2]+[-1+(-1)2×2×2+(-1)3×3×3+…+(-1)62×62×62]显然 1+12+21()2+…+621()2=636211()1221212-=--, ∵ (2n)2-(2n-1)2=4n-1,∴ -1+(-1)2×2×2+(-1)3×3×3+…+(-1)62×62×62=-1+22-32+42-52+62-…-612+622=(2+1)(2-1)+(4+3)(4-3)+(6+5)(6-5)+…+(62+61)(62-61) =3+7+11+…+123 =31(3123)2⨯+=1953. ∴ S 2016=62122-+1953=1955-6212.∴ S 2012=S 2016-(c 2016+c 2015+c 2014+c 2013)=1955-6212-(6212+62+62+62)=1769-6112.即数列{c n }的前2012项之和为1769-6112.…………………………………12分22.解:(Ⅰ)由已知:1()f x a x '=-,∴由题知11(2)22f a '=-=-,解得a=1.于是11()1x f x xx-'=-=,当x ∈(0,1)时,()0f x '>,f (x)为增函数, 当x ∈(1,+∞)时,()0f x '<,f (x)为减函数,即f (x)的单调递增区间为(0,1),单调递减区间为(1,+∞). ……5分 (Ⅱ)由(Ⅰ)∀x 1∈(0,+∞),f (x 1) ≤f (1)=0,即f (x 1)的最大值为0, 由题知:对∀x 1∈(0,+∞),∃x 2∈(-∞,0)使得f (x 1)≤g(x 2)成立, 只须f (x)max ≤g(x)max .∵ 22()x kx kg x x++=2kx k x =++2k x k x ⎛⎫=--++ ⎪-⎝⎭≤2k -+,∴ 只须k k 22+-≥0,解得k ≥1.………………………………………10分 (Ⅲ)要证明2222ln 2ln 3ln 21234(1)n n n nn --+++<+ (n∈N *,n ≥2).只须证22222ln 22ln 32ln 21232(1)n n n n n --+++<+ ,只须证2222222ln 2ln 3ln 21232(1)n n n nn --+++<+ .由(Ⅰ)当()1x ∈+∞,时,()0f x '<,f (x)为减函数, f (x)=lnx-x+1≤0,即lnx ≤x-1,∴ 当n ≥2时,22ln 1n n <-,22222ln 11111111(1)1n n nnnn n nn -<=-<-=-+++,222222ln 2ln 3ln 23n n+++<111221⎛⎫-++ ⎪+⎝⎭111331⎛⎫-++ ⎪+⎝⎭1111n n ⎛⎫⋅⋅⋅+-+ ⎪+⎝⎭211211212(1)n n n n n --=--+=++,∴2222ln 2ln 3ln 21234(1)n n n nn --+++<+ .………………………………………14分。
四川省绵阳市2025届高三第一次诊断性考试数学试题(含答案)
四川省绵阳市2025届高三第一次诊断性考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A={−2,−1,0,1,2},B=x|(x+1)2≤1,则A∩B=( )A. {−2,−1}B. {−2,−1,0}C. [−2,0]D. [−2,2]2.“ac2>bc2”是“a>b”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件3.已知x>0,y>0,且满足x+y=xy−3,则xy的最小值为( )A. 3B. 23C. 6D. 94.某公司根据近几年经营经验得到广告支出与获得利润数据如下:广告支出x/万元258111519利润y/万元334550535864根据表中数据可得利润y关于广告支出x的经验回归方程为y=1.65x+a.据此经验回归方程,若计划利润达到100万元,估计需要支出广告费( )A. 30万元B. 32万元C. 36万元D. 40万元5.下列选项中,既是增函数,也是奇函数的是( )A. y=x−2B. y=x+1x C. y=x−sinx D. y=ln x−1x+16.已知θ为第一象限角,且tan(θ+π3)+tanθ=0,则1−cos2θ1+cos2θ=( )A. 9B. 3C. 13D. 197.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:mg/L)与时间t(单位:ℎ)间的关系为P=P0e−kt(e是自然对数的底数,P0,k为正的常数).如果前9ℎ消除了20%的污染物,那么消除60%的污染物需要的时间约为()(参考数据:lg2≈0.301)A. 33ℎB. 35ℎC. 37ℎD. 39ℎ8.已知函数f(x)=−3(x+1)2,x≤0e x(x2−3),x>0 ,g(x)=mx,若关于x的不等式x(f(x)−g(x))<0的整数解有且仅有2个,则实数m的取值范围是( )A. 0,B. 0,C. (−2e,0]D. (−∞,0)∪0,二、多选题:本题共3小题,共18分。
四川省绵阳市高中2014届高三11月第一次诊断性考试数学理试题(WORD版)
1、若集合A ={x |1<x <4},集合B ={y |y 2<4},则A ∩B = A 、∅ B 、{1,2} C 、(1,2) D 、(1,4)2、对于非零向量a ,b ,“a ∥b ”是“a +b =0”的 A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、既不充分又不必要条件3、若向量a =(1,2),b =(1,-1),则2a +b 与b 的夹角为 A 、0 B 、3π C 、2πD 、π高考试题库4、已知命题p q :空集是集合A 的子集,下列判断正确的是 A 、p q ∨为假命题 B 、p q ∧真命题 C 、()()p q ⌝∨⌝为假命题 D 、()()p q ⌝∧⌝为假命题5、下列不等式中,正确的是A 、sin1°>cos1B 、sin1>cos1°C 、sin1<sin2D 、sin2<sin3 6、已知函数f (x )=k (01)x x a a a a --≠>且在R 上是奇函数,且是增函数,则函 数g (x )=log a (x -k )的大致图象是7、若正数a ,b 满足的最小值为A 、1B 、6C 、9D 、16 8、已知函数其中k >0,若当自变量x 在任何两个整数间(包括整数本身)变化 时,至少含有2个周期,则最小的正整数k 为 A 、50 B 、51 C 、12 D 、139、已知,αβ都是锐角,且4cos )5ααβ=+=高考试题库,则tan β为 A 、2 B 、-211 C 、-211或2 D 、211或-2 10、已知O 为△ABC 的外心,1cos ,,3A AO AB AC αβαβ==++ 若则的最大值为A 、13B 、12C 、23高考试题库 D 、3411、设数列{n a }的前n 项和为2n S n =。
,中5a =___ 12、计算:=_____13、已知变量x ,y 满足约束条件则z =2x +y 的最大值为___14、已知f (x )是R 上的减函数,A (3,-1),B (0,1)是其图象上两个点,则不等式 |f (1+lnx )|<1的解集是____15、对于定义域为[0,1]的函数f (x ),如果同时满足以下三条:①对任意的x ∈[0,1],总有f (x )≥0;②f (1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,都有f (x 1+x 2)≥f (x 1)+f (x 2)成立,则称函数f (x )为“美好函数”,给出下列结论: ①若函数f (x )为美好函数,则f (0)=0; ②函数g (x )=2x -1(x ∈[0,1])不是美好函数; ③函数是美好函数;④若函数f (x )为美好函数,且∃x 0∈[0,1],使得f (f (x 0))=x 0,则f (x 0)=x 0. 以上说法中正确的是______(写出所有正确的结论的序号)。
2013年高考全国Ⅰ理科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2013年全国Ⅰ,理1,5分】已知集合{}{2|20,|A x x x B x x =->=<,则( ) (A )A B =∅ (B )A B =R (C )B A ⊆ (D )A B ⊆ 【答案】B【解析】∵2()0x x ->,∴0x <或2x >.由图象可以看出A B =R ,故选B . (2)【2013年全国Ⅰ,理2,5分】若复数z 满足(34i)|43i |z -=+,则z 的虚部为( )(A )4- (B )45- (C )4 (D )45【答案】D【解析】∵(34i)|43i |z -=+,∴55(34i)34i 34i (34i)(34i)55z +===+--+.故z 的虚部为45,故选D . (3)【2013年全国Ⅰ,理3,5分】为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )(A )简单随机抽样 (B )按性别分层抽样 (C )按学段分层抽样 (D )系统抽样 【答案】C【解析】因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样,故选C .(4)【2013年全国Ⅰ,理4,5分】已知双曲线C :()2222=10,0x y a b a b->>C 的渐近线方程为( )(A )14y x =± (B )13y x =± (C )12y x =± (D )y x =±【答案】C【解析】∵c e a ==,∴22222254c a b e a a +===.∴224a b =,1=2b a ±. ∴渐近线方程为12b y x x a =±±,故选C .(5)【2013年全国Ⅰ,理5,5分】执行下面的程序框图,如果输入的[]1,3t ∈-,则输出的s 属于( ) (A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]- 【答案】D【解析】若[)1,1t ∈-,则执行3s t =,故[)3,3s ∈-.若[]1,3t ∈,则执行24s t t =-,其对称轴为2t =.故当2t =时,s 取得最大值4.当1t =或3时,s 取得最小值3,则[]3,4s ∈. 综上可知,输出的[]3,4s ∈-,故选D .(6)【2013年全国Ⅰ,理6,5分】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm , 将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚 度,则球的体积为( )(A )35003cm π (B )38663cm π (C )313723cm π(D )320483cm π【答案】B【解析】设球半径为R ,由题可知R ,2R -,正方体棱长一半可构成直角三角形,即OBA ∆为直角三角形,如图,2BC =,4BA =,2OB R =-,OA R =,由()22224R R =-+,得5R =,所以球的体积为34500533ππ=(cm 3),故选B .(7)【2013年全国Ⅰ,理7,5分】设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )(A )3(B )4 (C )5 (D )6【答案】C 【解析】∵12m S -=-,0m S =,13m S +=,∴()1022m m m a S S -=-=--=,11303m m m a S S ++=-=-=.∴1321m m d a a +=-=-=.∵()11102m m m S ma -=+⨯=,∴112m a -=-. 又∵1113m a a m +=+⨯=,∴132m m --+=.∴5m =,故选C . (8)【2013年全国Ⅰ,理8,5分】某几何体的三视图如图所示,则该几何体的体积为( ) (A )168π+ (B )88π+ (C )1616π+ (D )816π+ 【答案】A【解析】由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径2r =,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为24422816r ππ⨯⨯+⨯⨯=+,故选A .(9)【2013年全国Ⅰ,理9,5分】设m 为正整数,()2m x y +展开式的二项式系数的最大值为a , ()21m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )(A )5 (B )6 (C )7 (D )8 【答案】B【解析】由题意可知,2m m a C =,21mm b C +=,又∵137a b =,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+),即132171m m +=+.解得6m =,故选B .(10)【2013年全国Ⅰ,理10,5分】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( ) (A )2214536x y +=(B )2213627x y += (C )2212718x y += (D )221189x y +=【答案】D【解析】设11()A x y ,,22()B x y ,,∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①②,①-②,得 1212121222=0x x x x y y y y a b (+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为()1,1-,∴122y y +=-,122x x +=,而1212011=312AB y y k x x --(-)==--, ∴221=2b a .又∵229a b -=,∴218a =,29b =.∴椭圆E 的方程为22=1189x y +,故选D . (11)【2013年全国Ⅰ,理11,5分】已知函数()()220ln 10x x x f x x x ⎧-+≤⎪=⎨+>⎪⎩,若()f x a x ≥|,则a 的取值范围是( ) (A )(],0-∞ (B )(],1-∞ (C )[2,1]- (D )[2,0]-【答案】D【解析】由()y f x =的图象知:①当0x >时,y ax =只有0a ≤时,才能满足()f x ax ≥,可排除B ,C .②当0x ≤时,()2222y f x x x x x ==-+=-.故由()f x ax ≥得 22x x ax -≥.当0x =时,不等式为00≥成立.当0x <时,不等式等价于2x a -≤.∵22x -<-,∴2a ≥-.综上可知:[]2,0a ∈-,故选D .(12)【2013年全国Ⅰ,理12,5分】设n n n A B C ∆的三边长分别为n a ,n b ,n c ,n n n A B C ∆的面积为n S ,1,2,3.n =⋯,若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++=,12n nn b a c ++=,则( )(A ){}n S 为递减数列 (B ){}n S 为递增数列(C ){}21n S -为递增数列,{}2n S 为递减数列 (D ){}21n S -为递减数列,{}2n S 为递增数列 【答案】B第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2013年全国Ⅰ,理13,5分】已知两个单位向量a ,b 的夹角为60°,()1t t =+-c a b .若·0=b c ,则t = . 【答案】2【解析】∵()1t t =+-c a b ,∴()2··1t t =+-bc ab b .又∵1==a b ,且a 与b 夹角为60°,⊥b c , ∴()0 601t cos t =︒+-a b ,1012t t =+-.∴2t =.(14)【2013年全国Ⅰ,理14,5分】若数列{}n a 的前n 项和2133n n S a =+,则{}n a 的通项公式是n a = .【答案】()12n --【解析】∵2133n n S a =+,① ∴当2n ≥时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-,即12n n aa -=-.∵1112133a S a ==+,∴11a =.∴{}n a 是以1为首项,-2为公比的等比数列,()12n n a -=-.(15)【2013年全国Ⅰ,理15,5分】设当x θ=时,函数()2f x sinx cosx =-取得最大值,则cos θ= .【答案】 【解析】()s 2x f x sinx cosx x ⎫⎪==⎭-,令cos α=,sin α=,则()()f x x α=+,当22()x k k ππα=+-∈Z 时,()sin x α+有最大值1,()f x,即22()k k πθπα=+-∈Z ,所以cos θ=πcos =cos 2π+cos sin 22k πθααα⎛⎫⎛⎫-=-=== ⎪ ⎪⎝⎭⎝⎭(16)【2013年全国Ⅰ,理16,5分】若函数()()()221f x x x ax b =-++的图像关于直线2x =-对称,则()f x 的最大值为 .【答案】16【解析】∵函数()f x 的图像关于直线2x =-对称,∴()f x 满足()()04f f =-,()()13f f -=-,即151640893b a b a b =-(-+)⎧⎨=-(-+)⎩,得815a b =⎧⎨=⎩∴()432814815f x x x x x =---++.由()324242880f x x x x '=---+=,得12x =-22x =-,32x =-.易知,()f x在(,2-∞-上为增函数,在()22--上为减函数,在(2,2--上为增函数,在()2-+-∞上为减函数.∴(((((222122821588806416f ⎡⎤⎡⎤-=---+-+=---=-=⎢⎥⎢⎥⎣⎦⎣⎦.()()()()()22212282153416915f ⎡⎤⎡-=---+⨯⎤==-⎣⎦⎣⎦-+--+(((((222122821588806416f ⎡⎤⎡⎤-=---++-++=-++=-=⎢⎥⎢⎥⎣⎦⎣⎦.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2013年全国Ⅰ,理17,12分】如图,在ABC ∆中,90ABC ∠=︒,AB =,1BC =,P为ABC ∆内一点,90BPC ∠=︒.(1)若12PB =,求PA ;(2)若150APB ∠=︒,求tan PBA ∠.解:(1)由已知得60PBC ∠=︒,30PBA ∴∠=︒.在PBA ∆中,由余弦定理得211732cos 30424PA =+-︒=.故PA =(2)设PBA α∠=,由已知得sin PB α=.在PBA ∆sin sin(30)αα=︒-,4sin αα=.所以tan α,即tan PBA ∠= (18)【2013年全国Ⅰ,理18,12分】如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=︒. (1)证明:1AB A C ⊥;(2)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.解:(1)取AB 的中点O ,连结OC ,1OA ,1A B .因为CA CB =,所以OC AB ⊥.由于1AB AA =,160BAA ∠=︒,故1AA B ∆为等边三角形,所以1OA AB ⊥.因为1OC OA O = ,所以AB ⊥平面1OA C . 又1A C 平面1OA C ,故1AB A C ⊥.(2)由(1)知OC AB ⊥,1OA AB ⊥.又平面ABC ⊥平面11AA B B ,交线为AB ,所以OC ⊥平面11AA B B ,故OA ,1OA ,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,OA为单位长,建立如图所示的空间直角坐标系O xyz -.由题设知()1,0,0A,1()0A ,(0,0C ,()1,0,0B -.则(1,03BC =,11()BB AA =-=,(10,A C = .设()n x y z =,,是平面11BB C C 的法向量,则100BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0x x ⎧=⎪⎨-=⎪⎩可取1)n =-.故111cos ,n AC n AC n AC ⋅==⋅ .所以1A C 与平面11BB C C. (19)【2013年全国Ⅰ,理19,12分】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.解:(1)设第一次取出的4件产品中恰有3件优质品为事件1A ,第一次取出的4件产品全是优质品为事件2A ,第二次取出的4件产品都是优质品为事件1B ,第二次取出的1件产品是优质品为事件2B ,这批产品通过检验为事件A ,依题意有()()1122A A B A B = ,且11A B 与22A B 互斥,所以 ()()()()()()()112211122241113||161616264P A P A B P A B P A P B A P A P B A ==⨯++⨯==+.(2)X 可能的取值为400,500,800,并且()41114001161616P X ==--=,()500116P X ==,()80140P X ==. 所以X 的分布列为()111400+500+800506.2516164E X =⨯⨯⨯=. (20)【2013年全国Ⅰ,理20,12分】已知圆()2211M x y ++=:,圆()2219N x y -+=:,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求AB . 解:由已知得圆M 的圆心为()1,0M -,半径11r =;圆N 的圆心为()1,0N ,半径23r =.设圆P 的圆心为(),P xy ,半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以()()12124PM PN R r r R r r +=++-=+=.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为()22=1243x y x +≠-.(2)对于曲线C 上任意一点()P x y ,,由于222PM PN R -=-≤,所以2R ≤,当且仅当圆P 的圆心为()2,0时,2R =.所以当圆P 的半径最长时,其方程为()2224x y -+=.若l 的倾斜角为90︒,则l 与y 轴重 合,可得AB =l 的倾斜角不为90︒,由1r R ≠知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得()4,0Q -,所以可设()4l y k x =+:.由l 与圆M ,解得k =. 当k =时,将y =+22=13x y +,并整理得27880x x +-=,解得1,2x =. 2118|7AB x x =-=.当k =时,由图形对称性可知187AB =.综上,AB =187AB =. (21)【2013年全国Ⅰ,理21,12分】设函数()2f x x ax b =++,()()x g x e cx d =+.若曲线()y f x =和曲线()y g x =都过点()0,2P ,且在点P 处有相同的切线42y x =+.(1)求a ,b ,c ,d 的值;(2)若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:(1)由已知得()02f =,()02g =,()04f '=,()04g '=.而()2f x x a '=+,()()x g x e cx d c '=++, 故2b =,2d =,4a =,4d c +=.从而4a =,2b =,2c =,2d =. (2)由(1)知,()242f x x x =++,()()21x g x e x =+.设函数()()()()22142x F x kg x f x ke x x x =-=+---,()()()()2224221x x F x ke x x x ke '=+--=+-.()00F ≥ ,即1k ≥.令()0F x '=得1ln x k =-,22x =-. ①若21k e ≤<,则120x -<≤.从而当12()x x ∈-,时,()0F x '<;当1()x x ∈+∞,时,()0F x '>. 即()F x 在1(2)x -,单调递减,在1()x +∞,单调递增.故()F x 在[)2-+∞,的最小值为()1F x . 而()()11111224220F x x x x x =+---=-+≥.故当2x ≥-时,()0F x ≥,即()()f x kg x ≤恒成立. ②若2k e =,则()()()2222x F x e x e e -'=+-.∴当2x >-时,()0F x '>,即()F x 在()2-+∞,单调递增. 而()20F -=,故当2x ≥-时,()0F x ≥,即()()f x kg x ≤恒成立. ③若2k e >,则()()22222220F k eek e ---=-+=--<.从而当2x ≥-时,()()f x kg x ≤不可能恒成立.综上,k 的取值范围是2[1]e ,. 请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.(22)【2013年全国Ⅰ,理22,10分】(选修4-1:几何证明选讲)如图,直线AB为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆 于点D . (1)证明:DB DC =;(2)设圆的半径为1,BC =CE 交AB 于点F ,求BCF ∆外接圆的半径. 解:(1)连结DE ,交BC 于点G .由弦切角定理得,ABE BCE ∠=∠.而ABE CBE ∠=∠,故CBE BCE ∠=∠,BE CE =.又因为DB BE ⊥,所以DE 为直径,90DCE ∠=︒,DB DC =.(2)由(1)知,CDE BDE ∠=∠,DB DC =,故DG 是BC的中垂线,所以BG =设DE 的中点为O ,连结BO ,则60BOG ∠=︒.从而30ABE BCE CBE ∠=∠=∠=︒,所以CF BF ⊥,故Rt BCF ∆.(23)【2013年全国Ⅰ,理23,10分】(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0ρ≥,02θπ≤<).解:(1)将45cos 55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程()()224525x y -+-=,即221810160C x y x y +--+=:.将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得28cos 10sin 160ρρθρθ--+=. 所以1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=.(2)2C 的普通方程为2220x y y +-=.由222281016020x y x y x y y ⎧+--+=⎨+-=⎩,解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩, 所以1C 与2C交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭.(24)【2013年全国Ⅰ,理24,10分】(选修4-5:不等式选讲)已知函数()212f x x x a =-++,()3g x x =+.(1)当2a =-时,求不等式()()f x g x <的解集;(2)设1a >-,且当1,22a x ⎡⎫∈-⎪⎢⎣⎭时,()()f x g x ≤,求a 的取值范围.解:(1)当2a =-时,()()f x g x <化为212230x x x -+---<.设函数21223y x x x =-+---,则y =15,212,1236,1x x y x x x x ⎧-<⎪⎪⎪=--≤≤⎨⎪->⎪⎪⎩,其图像如图所示.从图像可知,当且仅当()0,2x ∈时,0y <.所以原不等式的解集是{}2|0x x <<.(2)当1,22x a ⎡⎫-⎪⎢⎣⎭∈时,()1f x a =+.不等式()()f x g x ≤化为13a x +≤+.所以2x a ≥-,对1,22x a ⎡⎫-⎪⎢⎣⎭∈都成立.故22a a -≥-,即43a ≤.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
四川省绵阳市届高三第一次诊断性考试英语试题含答案
绵阳市高中级第一次诊断性考试参考答案英语第一部分听力(共两节,满分30分)第一节(共5小题;每小题1。
5分,满分7。
5分)1—5 CABCB第二节(共15小题;每小题1.5分,满分22.5分)6—10 CACCB 11—15 BCABC 16—20 ABCAB第二部分阅读理解(共两节, 满分40分)第一节(共15小题;每小题2分,满分30分)21-25 ACBDD 26—30 CDDBC31-35 ABADA第二节(共5小题;每小题2分,满分10分)36—40 ADGFE第三部分英语知识运用(共两节,满分45分)第一节完型填空(共20小题;每小题1。
5分,满分30分) 41-45 DBCBC 46-50 BCABC 51—55 BDABD56—60 ABBCA第二节(共10小题;每小题1.5分,满分15分)61。
to take 62。
jobs63. greater64. themselves 65。
has come66. using 67。
mainly68。
by/through 69。
the70。
that/which第四部分写作(共两节,满分35分)第一节短文改错(共10小题;每小题1分,满分10分)We are required to collect our smart phones and keep it in the t e a c h e r’s d u r i n g t h ethem weekdays. In fact the most of us obey this regulation, but some still play v a r i o u s t r i c ktricksagainst it. I’m among those。
Once,I hand in a waste phone. Mr. Li, o u r h e a d t e a c h e r,handedseemed∧ignore all that。
四川省绵阳市高中高三文综第一次诊断性考试试卷(绵阳“一诊”)
绵阳市高中2012级第一次诊断性考试文科综合测试参考答案及评分标准第Ⅰ卷(选择题,共140分)一、选择题(每小题4分,共140分)1.C 2.B 3.B 4.C 5.D 6.A 7.A 8.C 9.D 10.D 11.A 12.B 13.D 14.D 15.B 16.C 17.A 18.A 19.A 20.D 21.C 22.C 23.D 24.D 25.B 26.B 27.A 28.D 29.B 30.C 31.B 32.D 33.C 34.A 35.B第Ⅱ卷(非选择题,共160分)二、问答题36.(36分)(1)西三角(2分)。
以西安为中心的秦岭以北地区:旱地为主,农作物两年三熟,主要粮食作物是小麦、玉米等(4分)。
以成都、重庆为中心的秦岭以南地区:水田为主,农作物一年两熟,主要粮食作物是水稻、小麦。
(4分)(2)土地:地处西部,面积辽阔,土地租金低。
(2分)市场:承东启西的位置,拥有西部广阔的经济腹地和巨大的市场潜力;是东部原材料重要供应地。
(4分)资源:西三角经济区拥有丰富的煤气等自然资源,丰富的自然风光等旅游资源,丰富而廉价的劳动力资源等(4分,言之有理酌情给分)37.(1)滑坡(2分)泥石流(2分)(顺序可交换,其它如崩塌、地面塌陷也给分)(2)地处低纬度,冬季日照长,获得太阳辐射能多(2分),且距冬季风的源地远(2分),气温较高;夏季因海拔较高,气温比同纬度低(10℃左右)(2分)。
(3)差异:昆明日照时数大,成都日照时数小(2分)原因:昆明(地处云贵高原),比(地处四川盆地的)成都海拔高,空气相对稀薄,太阳辐射强(3分);从气候来看,成都常年阴天多,昆明则晴天多,昆明比成都太阳辐射强,日照时间长(3分)。
(4)地处(生态屏障)长江上游(2分),水源充足,水质条件优越,为优质白酒生产提供了水源(2分);四川盆地土质肥沃,亚热带季风气候(2分),盛产高粱,水稻、小麦等粮食作物,白酒生产的原料丰富(2分);“白酒金三角”区域白酒生产历史悠久,传统酿酒工艺精湛,酒的品质好(2分)。
2013年普通高等学校招生全国统一考试(全国新课标II卷)数学试题 (理科) word解析版
2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共50分)一、 选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N 等于( ) A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3} 答案 A解析 化简集合M 得M ={x |-1<x <3,x ∈R },则M ∩N ={0,1,2}.2.设复数z 满足(1-i)z =2i ,则z =( )A .-1+iB .-1-IC .1+iD .1-i 答案 A解析 由已知得z =2i1-i =2i (1+i )(1-i )(1+i )=-1+i.3.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1等于( )A.13 B .-13 C.19 D .-19 答案 C解析 设等比数列{a n }的公比为q ,由S 3=a 2+10a 1得a 1+a 2+a 3=a 2+10a 1,即a 3=9a 1,q 2=9,又a 5=a 1q 4=9,所以a 1=19.4.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( ) A .α∥β且l ∥α B .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l 答案 D解析 假设α∥β,由m ⊥平面α,n ⊥平面β,则m ∥n ,这与已知m ,n 为异面直线矛盾,那么α与β相交,设交线为l 1,则l 1⊥m ,l 1⊥n ,在直线m 上任取一点作n 1平行于n ,那么l 1和l 都垂直于直线m 与n 1所确定的平面,所以l 1∥l .5.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a 等于( ) A .-4 B .-3 C .-2 D .-1 答案 D解析 (1+ax )(1+x )5中含x 2的项为:(C 25+C 15a )x 2,即C 25+C 15a =5,a =- 1.6.执行右面的程序框图,如果输入的N =10,那么输出的S =( )A .1+12+13+…+110B .1+12!+13!+…+110!C .1+12+13+…+111D .1+12!+13!+…+111!答案 B解析 k =1,T =11,S =1,k =2,T =11×2=12!,S =1+12!,k =3,T =11×2×3=13!,S =1+12!+13!,…由于N =10,即k >10时,结束循环,共执行10次.所以输出S =1+12!+13!+…+110!.7.一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,1,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为()答案 A解析 在空间直角坐标系中,先画出四面体O -ABC 的直观图,以zOx 平面为投影面,则得到正视图,所以选A.8.设a =log 36,b =log 510,c =log 714,则( )A .c >b >aB .b >c >aC .a >c >bD .a >b >c 答案 D解析 设a =log 36=1+log 32=1+1log 23,b =log 510=1+log 52=1+1log 25,c =log 714=1+log 72=1+1log 27,显然a >b >c.(9)已知a >0,x ,y 满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若z=2x+y 的最小值为1,则a=(A) 14 (B) 12(C)1(D)210.已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .∃x 0∈R ,f (x 0)=0B .函数y =f (x )的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)上单调递减D .若x 0是f (x )的极值点,则f ′(x 0)=0 答案 C解析 若c =0,则有f (0)=0,所以A 正确.由f (x )=x 3+ax 2+bx +c 得f (x )-c =x 3+ax 2+bx ,因为函数f (x )=x 3+ax 2+bx 的对称中心为(0,0),所以f (x )=x 3+ax 2+bx +c 的对称中心为(0,c ),所以B 正确.由三次函数的图象可知,若x 0是f (x )的极小值点,则极大值点在x 0的左侧,所以函数在区间(-∞,x 0 )单调递减是错误的,D 正确.选C.11.设抛物线C :y 2=2px (p ≥0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( ) A .y 2=4x 或y 2=8x B .y 2=2x 或y 2=8x C .y 2=4x 或y 2=16x D .y 2=2x 或y 2=16x 答案 C解析 由题意知:F ⎝⎛⎭⎫p 2,0,抛物线的准线方程为x =-p 2,则由抛物线的定义知,x M =5-p2,设以MF 为直径的圆的圆心为⎝⎛⎭⎫52,y M 2,所以圆的方程为⎝⎛⎭⎫x -522+⎝⎛⎭⎫y -y M 22=254,又因为圆过点(0,2),所以y M =4,又因为点M 在C 上,所以16=2p ⎝⎛⎭⎫5-p2,解得p =2或p =8,所以抛物线C 的方程为y 2=4x 或y 2=16x ,故选C.12.已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫1-22,12 C.⎝⎛⎭⎫1-22,13 D.⎣⎡⎭⎫13,12 答案 B二、填空题13.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 2解析 由题意知:AE →·BD →=(AD →+DE →)·(AD →-AB →)=(AD →+12AB →)·(AD →-AB →)=AD →2-12AD →·AB →-12AB →2=4-0-2=2.14.从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=________. 答案 8解析 由题意,取出的两个数只可能是1与4,2与3这两种情况,∴在n 个数中任意取出两个不同的数的总情况应该是C 2n=n (n -1)2=2÷114=28,∴n =8.15.设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=________. 答案 -105解析 ∵tan ⎝⎛⎭⎫θ+π4=12,∴tan θ=-13,即{ 3sin θ=-cos θ,2θ+cos 2θ=1,解得sin θ=1010,cos θ=-31010. ∴sin θ+cos θ=-105.16.等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________. 答案 -49解析 由题意知a 1+a 10=0,a 1+a 15=103.两式相减得a 15-a 10=103=5d ,∴d =23,a 1=-3.∴nS n =n ·⎝⎛⎭⎫na 1+n (n -1)2d =n 3-10n 23=f (n ), f ′(n )=13n (3n -20).由函数的单调性知f (6)=-48,f (7)=-49. ∴nS n 的最小值为-49.三、解答题17.△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,已知a =bcos C +c sin B . (1)求B ;(2)若b =2,求△ABC 面积的最大值. 解 (1)由已知及正弦定理得sin A =sin B cos C +sin C sin B ,① 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①,②和C ∈(0,π)得sin B =cos B .又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1.18.如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1∥平面A 1CD ;(2)求二面角D -A 1C -E 的正弦值.(1)证明 连结AC 1交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连结DF ,则BC 1∥DF . 因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD , 所以BC 1∥平面A 1CD .(2)解 由AC =CB =22AB 得,AC ⊥BC .以C 为坐标原点,CA →的方向为x 轴正方向,CB →的方向为y 轴正方向,CC 1→的方向为z 轴正方向,建立如图所示的空间直角坐标系C -xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2), CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则{n ·CD →=0,n ·CA 1→=0,即{ x 1+y 1=0,x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 是平面A 1CE 的法向量,则{m ·CE →=0,m ·CA 1→=0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n ·m |n ||m |=33,故sin 〈n ,m 〉=63.即二面角D -A 1C -E 的正弦值为63.19.经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位: t,100≤X ≤150)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率; (3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的T 的数学期望.解 (1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000. 当X ∈[130,150]时,T =500×130=65 000.所以T ={ 800X -39 000,100≤X <130,,130≤X ≤150. (2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.(3)依题意可得T 的分布列为所以E (T )=45 000×20.平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形的最大值.解 (1)设A (x 1,y 1),B (x 2,y 2),则 x 21a 2+y 21b 2=1① x 22a 2+y 22b2=1②①-②,得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0.因为y 1-y 2x 1-x 2=-1,设P (x 0,y 0),因为P 为AB 的中点,且OP 的斜率为12,所以y 0=12x 0,即y 1+y 2=12(x 1+x 2).所以可以解得a 2=2b 2,即a 2=2(a 2-c 2),即a 2=2c 2, 又因为c =3,所以a 2=6,所以M 的方程为x 26+y 23=1.(2)因为CD ⊥AB ,直线AB 方程为x +y -3=0, 所以设直线CD 方程为y =x +m ,将x +y -3=0代入x 26+y 23=1得:3x 2-43x =0,即A (0,3),B ⎝⎛⎭⎫433,-33, 所以可得|AB |=463;将y =x +m 代入x 26+y 23=1得:3x 2+4mx +2m 2-6=0, 设C (x 3,y 3),D (x 4,y 4),则|CD |=2(x 3+x 4)2-4x 3x 4=22318-2m 2,又因为Δ=16m 2-12(2m 2-6)>0,即-3<m <3,所以当m =0时,|CD |取得最大值4,所以四边形ACBD 面积的最大值为12|AB |·|CD |=863.21.已知函数f (x )=e x -ln(x +m ).(1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; (2)当m ≤2时,证明f (x )>0.(1)解 f (x )=e x -ln(x +m )⇒f ′(x )=e x -1x +m ⇒f ′(0)=e 0-10+m=0⇒m =1,定义域为{x |x >-1},f ′(x )=e x-1x +m =e x (x +1)-1x +1,令1)1()(-+=x e x g x ,则0)2()(>+='x e x g x ,又0)0(=g显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增.(2)证明 令g (x )=e x -ln(x +2),则g ′(x )=e x -1x +2(x >-2).h (x )=g ′(x )=e x -1x +2(x >-2)⇒h ′(x )=e x +1(x +2)2>0,所以h (x )是增函数,h (x )=0至多只有一个实数根,又g ′(-12)=1e -132<0,g ′(0)=1-12>0,所以h (x )=g ′(x )=0的唯一实根在区间⎝⎛⎭⎫-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0⎝⎛⎭⎫-12<t <0,所以,e t =1t +2⇒t +2=e -t , 当x ∈(-2,t )时,g ′(x )<g ′(t )=0,g (x )单调递减; 当x ∈(t ,+∞)时,g ′(x )>g ′(t )=0,g (x )单调递增;所以g (x )min =g (t )=e t-ln(t +2)=1t +2+t =(1+t )2t +2>0,当m ≤2时,有ln(x +m )≤ln(x +2),所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0.22.[选修4-1]几何证明选讲如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,E 、F 分别为弦AB 与弦AC 上的点,且BC ·AE =DC ·AF ,B 、E 、F 、C 四点共圆.(1)证明:CA 是△ABC 外接圆的直径;(2)若DB =BE =EA ,求过B 、E 、F 、C 四点的圆的面积与△ABC 外接圆面积的比值.(1)证明 因为CD 为△ABC 外接圆的切线,所以∠DCB =∠A ,由题设知BC F A =DCEA,故△CDB ∽△AEF ,所以∠DBC =∠EF A .因为B ,E ,F ,C 四点共圆,所以∠CFE =∠DBC , 故∠EF A =∠CFE =90°. 所以∠CBA =90°,因此CA 是△ABC 外接圆的直径.(2)解 连结CE ,因为∠CBE =90°,所以过B ,E ,F ,C 四点的圆的直径为CE , 由DB =BE ,有CE =DC , 又BC 2=DB ·BA =2DB 2, 所以CA 2=4DB 2+BC 2=6DB 2. 而DC 2=DB ·DA =3DB 2,故过B ,E ,F ,C 四点的圆的面积与△ABC外接圆面积的比值为12.23.[选修4-4]坐标系与参数方程已知动点P 、Q 都在曲线C :{ x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为{ x =cos α+cos 2α,y =sin α+sin 2α,(α为参数,0<α<2π). (2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π,d =0,故M 的轨迹过坐标原点.24.[选修4-5]不等式选讲设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得 a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c2a +a ≥2c ,故a 2b +b 2c +c2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a ≥1.。
四川省绵阳市 中考数学一诊试卷 (Word版 含解析)
四川省绵阳市中考数学一诊试卷一.选择题(共12小题).1.下列国产车的标志中是中心对称图形的是()A.B.C.D.2.关于x的方程(m﹣1)x2+x+m2+2m﹣3=0的一个根是0,则m的值是()A.7B.﹣3C.1或﹣3D.03.某口罩加工厂今年一月口罩产值达80万元,第一季度总产值达340万元,问二,三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程为()A.80(1+x)2=340B.80+80(1+x)2=340C.80(1+x)+80(1+x)2=340D.80+80(1+x)+80(1+x)2=3404.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为()A.y=(x+1)2﹣13B.y=(x﹣5)2﹣5C.y=(x﹣5)2﹣13D.y=(x+1)2﹣55.如图,在△ABC中,将△ABC绕着点A顺时针旋转后,得到△AB′C′,且点C′在BC上,若∠B′C′B=52°,则∠C的度数为()A.74°B.66°C.64°D.76°6.如图,ABCDEF是中心为原点O,顶点A,D在x轴上,半径为4的正六边形,则顶点F的坐标为()A.(2,2)B.(﹣2,2)C.(﹣2,2)D.(﹣1,)7.如图,A、B、C三点在⊙O上,若∠ACB=∠AOB,则∠AOB的度数是()A.60°B.90°C.100°D.120°8.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲢鱼的概率约为()A.B.C.D.9.如图,矩形ABCD的边长AB=1,BC=2.把BC绕B逆时针旋转,使C恰好落在AD上的点E处,线段BC扫过部分为扇形BCE.若扇形BCE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.C.D.10.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表,下列说法错误的是()x…﹣1013…y…﹣3131…A.a<0B.方程ax2+bx+c=﹣2的正根在4与5之间C.2a+b>0D.若点(5,y1)、(﹣,y2)都在函数图象上,则y1<y211.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=4,CG=3,则CE的长为()A.5B.5C.5D.12.如图,函数y1=|x2﹣m|的图象如图,坐标系中一次函数y2=x+b的图象记为y2,则以下说法中正确的有()①当m=1,且y1与y2恰好有三个交点时b有唯一值为1;②当m=4,且y1与y2只有两个交点时,b>或﹣2<b<2;③当m=﹣b时,y1与y2一定有交点:④当m=b时,y1与y2至少有2个交点,且其中一个为(0,m).A.1个B.2个C.3个D.4个二、填空题(共6小题).13.平面直角坐标系中,P(x,2+y)与Q(2y,x)关于原点对称,则xy=.14.如图,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中∠ABC=90°,AC=50cm,AB=30cm,小明蒙上眼睛用棍子击中了锣面,他击中阴影部分的概率是.15.飞机着陆后滑行的距离s(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=96t﹣1.2t2,那么飞机着陆后秒停下.16.已知△ABC三边的长分别为5、12、13,那么△ABC内切圆的半径为.17.若min{a,b,c}表示a,b,c三个数中的最小值,当y=min{x2,2x+4,12﹣x}时,则y的取值范围是.18.等边△ABC的边长为6,P是AB上一点,AP=2,把AP绕点A旋转一周,P点的对应点为P′,连接BP′,BP′的中点为Q,连接CQ.则CQ长度的最小值是.三、解答题(共7个小题,共90分,解答应写出文字说明、证明过程或演算步骤)19.解方程:x2+2x+1=3x+3.20.在乐善中学组织的体育测试中,小壮掷出的实心球的高度y(m)与水平距离x(m)之间的关系式是y=﹣(x﹣3)2+,求小壮此次实心球推出的水平距离.21.疫情期间,游海中学进行了一次线上数学学情调查,九(1)班数学李老师对成绩进行分析,制作如下的频数分布表和频数分布直方图.60到70之间学生成绩尚未统计,根据情况画出的扇形图如图.请解答下列问题:类别分数段频数(人数)A60≤x<70aB70≤x<8016C80≤x<9024D90≤x<1006(1)完成频数分布表,a=,B类圆心角=°,并补全频数分布直方图;(2)全校九年级共有720名学生全部参加此次测试,估计该校成绩80≤x<100范围内的学生有多少人?(3)九(1)班数学老师准备从D类优生的6人中随机抽取两人进行线上学习经验交流,已知这6人中有两名是无家长管理的留守学生,求恰好只选中其中一名留守学生进行经验交流的概率.22.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(2,4)、B(1,2)、C(5,3).以点(0,0)为旋转中心,将△ABC顺时针旋转90°,得到△A1B1C1.(1)在坐标系中画出△A1B1C1.(2)若△ABC上有一点P(m,n),直接写出旋转后对应点P1的坐标.(3)求旋转中线段AC所经过部分的面积.23.已知关于x的一元二次方程(a﹣3)x2﹣4x+3=0有两个不等的实根.(1)求a的取值范围;(2)当a取最大整数值时,△ABC的三条边长均满足关于x的一元二次方程(a﹣3)x2﹣4x+3=0,求△ABC的周长.24.如图,游仙怡心月季养植园是一个矩形ABCD,AD=32米,AB=20米.为了便于养护与运输,养植园内留有四横四纵等宽道路,养植面积与道路面积比为7:3.(1)求道路的宽度.(2)养植区域内月季盆裁要均匀摆放,即每平方米摆放的盆数一样.每平方米最多能摆放36盆,密度越大,花的品质会下降,每盆月季的出售价也会随之降低.大棚内现在每平米有月季小盆栽10盆,每盆的出售价为5元.分析发现:每平方米每增加5盆,每盆的出售价会下降0.5元.老板准备增加养植数量,以获得最多的出售总额,那么每平米应该养植多少盆月季小盆栽才能使出售总额最多?25.如图1,O是△ABC的边BC的中点,⊙O与BC交于E、F两点,与AB相切于点D,连接AO交⊙O于点P,=.(1)猜想AC与⊙O的位置关系,并证明你的猜想.(2)如图2,延长AO交⊙O于Q点,连接DE、DF,DQ,FQ,FQ=,ED=5,求DQ的长.(3)如图3,若DE=5,连接DF、DP、PF,设DP=x,△DPF的面积为y,求y与x之间的函数关系式.26.如图,抛物线y=ax2+bx+c与x轴交于A(1,0),B(5,0)两点,与y轴交于点C.抛物线顶点纵坐标为﹣4.(1)求抛物线的解析式及C点坐标.(2)如图1,过C作x轴的平行线,与抛物线交于点M,连接AM、BM,在y轴上是否存在点N,使∠ANB=∠AMB?若存在,请求出点N的坐标;若不存在,请说明理由.(3)把线段OC绕O点顺时针旋转,使C点恰好落在抛物线对称轴上的点P处,如图2,再将线段OP绕P点逆时针旋转45°得线段PQ,请计算Q点坐标,并判断Q点在抛物线上吗?参考答案一.选择题(共12小题).1.下列国产车的标志中是中心对称图形的是()A.B.C.D.解:A.不是中心对称图形,不合题意;B.是中心对称图形,符合题意;C.不是中心对称图形,不合题意;D.不是中心对称图形,不合题意;故选:B.2.关于x的方程(m﹣1)x2+x+m2+2m﹣3=0的一个根是0,则m的值是()A.7B.﹣3C.1或﹣3D.0解:把x=0代入方程(m﹣1)x2+x+m2+2m﹣3=0,得m2+2m﹣3=0,解得m=1或﹣3.故选:C.3.某口罩加工厂今年一月口罩产值达80万元,第一季度总产值达340万元,问二,三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程为()A.80(1+x)2=340B.80+80(1+x)2=340C.80(1+x)+80(1+x)2=340D.80+80(1+x)+80(1+x)2=340解:设月平均增长率的百分数为x,80+80(1+x)+80(1+x)2=340.故选:D.4.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为()A.y=(x+1)2﹣13B.y=(x﹣5)2﹣5C.y=(x﹣5)2﹣13D.y=(x+1)2﹣5解:∵y=x2﹣4x﹣4=(x﹣2)2﹣8,∴将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为y=(x﹣2+3)2﹣8+3,即y=(x+1)2﹣5.故选:D.5.如图,在△ABC中,将△ABC绕着点A顺时针旋转后,得到△AB′C′,且点C′在BC上,若∠B′C′B=52°,则∠C的度数为()A.74°B.66°C.64°D.76°解:∵将△ABC绕点A顺时针旋转后,得到△AB′C′,∴AC′=AC,∴∠C=∠AC′C=∠AC′B′,∵∠B′C′B=52°,∴∠CC′B′=180°﹣52°=128°,∴∠C=∠AC′C=∠AC′B′=×128°=64°,故选:C.6.如图,ABCDEF是中心为原点O,顶点A,D在x轴上,半径为4的正六边形,则顶点F的坐标为()A.(2,2)B.(﹣2,2)C.(﹣2,2)D.(﹣1,)解:连接OF.∵∠AOF==60°,OA=OF,∴△AOF是等边三角形,∴OA=OF=4.设EF交y轴于G,则∠GOF=30°.在Rt△GOF中,∵∠GOF=30°,OF=4,∴GF=2,OG=2.∴F(﹣2,2).故选:C.7.如图,A、B、C三点在⊙O上,若∠ACB=∠AOB,则∠AOB的度数是()A.60°B.90°C.100°D.120°解:如图,在优弧AB上取一点D,连接AD,BD.∵∠ACB+∠ADB=180°,∠ACB=∠AOB=2∠ADB,∴2∠ADB+∠ADB=180°,∴∠ADB=60°,∴∠AOB=2∠ADB=120°,故选:D.8.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲢鱼的概率约为()A.B.C.D.解:∵捕捞到草鱼的频率稳定在0.5左右,设草鱼的条数为x,可得:=0.5,解得:x=2400,∴由题意可得,捞到鲢鱼的概率为:=;故选:D.9.如图,矩形ABCD的边长AB=1,BC=2.把BC绕B逆时针旋转,使C恰好落在AD上的点E处,线段BC扫过部分为扇形BCE.若扇形BCE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.C.D.解:∵线段CE由线段BC旋转而成,BC=2,∴BE=BC=2.∵AB=1,∠BAE=90°,∴∠AEB=30°.∵AD∥BC,∴∠EBC=∠AEB=30°,∴S阴影==,设围成的圆锥的底面半径为r,则2πr=,解得:r=.故选:A.10.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表,下列说法错误的是()x…﹣1013…y…﹣3131…A.a<0B.方程ax2+bx+c=﹣2的正根在4与5之间C.2a+b>0D.若点(5,y1)、(﹣,y2)都在函数图象上,则y1<y2解:∵二次函数值先由小变大,再由大变小,∴抛物线的开口向下,∴a<0,故A正确;∵x=﹣1时,y=﹣3,∴x=4时,y=﹣3,∴二次函数y=ax2+bx+c的函数值为﹣2时,﹣1<x<0或3<x<4,即方程ax2+bx+c=﹣2的负根在﹣1与0之间,正根在3与4之间,故B错误;∵抛物线过点(0,1)和(3,1),∴抛物线的对称轴为直线x=,∴﹣=>1,∴2a+b>0,故C正确;∵(﹣,y2)关于直线x=的对称点为(,y2),∵<5,∴y1<y2,故D正确;故选:B.11.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=4,CG=3,则CE的长为()A.5B.5C.5D.解:如图所示,连接EG,由旋转可得,△ADE≌△ABF,∴AE=AF,DE=BF,又∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=7﹣x=BF,FG=CF﹣CG=11﹣x,∴EG=11﹣x,∵∠C=90°,∴Rt△CEG中,CE2+CG2=EG2,即x2+32=(11﹣x)2,解得x=,∴CE的长为,故选:C.12.如图,函数y1=|x2﹣m|的图象如图,坐标系中一次函数y2=x+b的图象记为y2,则以下说法中正确的有()①当m=1,且y1与y2恰好有三个交点时b有唯一值为1;②当m=4,且y1与y2只有两个交点时,b>或﹣2<b<2;③当m=﹣b时,y1与y2一定有交点:④当m=b时,y1与y2至少有2个交点,且其中一个为(0,m).A.1个B.2个C.3个D.4个解:①错误.如图1中,当直线y=x+b与抛物线相切时,也满足条件只有三个交点.此时b≠1,故①错误.②正确.如图2中,当抛物线经过点(﹣2,0)时,0=4﹣m,m=4.由消去y得到x2+x+b﹣4=0,当△=0时,1﹣4b+16=0,∴b=,观察图象可知当b>或﹣2<b<2时,y1与y2有两个交点.故②正确.③错误.如图3中,当b=﹣4时,观察图象可知,y1与y2没有交点,故③错误.④正确.如图4中,当b=4时,观察图象可知,b>0,y1与y2至少有2个交点,且其中一个为(0,m),故④正确.故选:B.二、填空题(共6个小题,每小题4分,共24分,将答案填写在答题卡相应的横线上)13.平面直角坐标系中,P(x,2+y)与Q(2y,x)关于原点对称,则xy=﹣8.解:∵P(x,2+y)与Q(2y,x)关于原点对称,∴,解得:,则xy=﹣4×2=﹣8.故答案为:﹣8.14.如图,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中∠ABC=90°,AC=50cm,AB=30cm,小明蒙上眼睛用棍子击中了锣面,他击中阴影部分的概率是.解:∵∠ABC=90°,AC=50cm,AB=30cm,∴由勾股定理得:BC=40cm,∴S△ABC=AB•BC=×30×40=600(cm2),∴S阴影=S正方形﹣4S△ABC=502﹣4×600=100(cm2),∴小明蒙上眼睛用棍子击中了锣面,他击中阴影部分的概率是=,故答案为:.15.飞机着陆后滑行的距离s(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=96t﹣1.2t2,那么飞机着陆后40秒停下.解:s=96t﹣1.2t2,当t=﹣==40(秒)时,s将取到最大值,即飞机着陆后40秒停下.故答案为:40.16.已知△ABC三边的长分别为5、12、13,那么△ABC内切圆的半径为2.解:如图,圆O为△ABC内切圆,切点分别为D、E、F,连接OF、OE、OD,则OF⊥AC,OE ⊥BC,OD⊥AB.由切线长定理,可知AF=AD,CF=CE,BD=BE,∴OE=OF=CE=CF,又∵52+122=132,∴∠C=90°,∴四边形FCEO为正方形,∴CE===2.故答案为2.17.若min{a,b,c}表示a,b,c三个数中的最小值,当y=min{x2,2x+4,12﹣x}时,则y的取值范围是y≤9.解:如图,当x=3时y有最大值,y最大=12﹣3=9,故答案为y≤9.18.等边△ABC的边长为6,P是AB上一点,AP=2,把AP绕点A旋转一周,P点的对应点为P′,连接BP′,BP′的中点为Q,连接CQ.则CQ长度的最小值是3﹣1.解:如图,取AB中点D,连接DQ,CD,AP',∵AP=2,把AP绕点A旋转一周,∴AP'=2,∵等边△ABC的边长为6,点D是AB中点,∴BD=AD=3,CD⊥AB,∴CD===3,∵点Q是BP'是中点,∴BQ=QP',又∵AD=BD,∴DQ=AP'=1,在△CDQ中,CQ≥DC﹣DQ,∴CQ的最小值为3﹣1,故答案为3﹣1.三、解答题(本大题共7个小题,共90分,解答应写出文字说明、证明过程或演算步骤)19.解方程:x2+2x+1=3x+3.解:∵x2+2x+1=3x+3,∴(x+1)2﹣3(x+1)=0,则(x+1)(x﹣2)=0,∴x+1=0或x﹣2=0,解得x1=﹣1,x2=2.20.在乐善中学组织的体育测试中,小壮掷出的实心球的高度y(m)与水平距离x(m)之间的关系式是y=﹣(x﹣3)2+,求小壮此次实心球推出的水平距离.解:令y=0,则﹣(x﹣3)2+=0,解得:x1=8,x2=﹣2(舍去),故小壮此次实心球推出的水平距离为:8米.21.疫情期间,游海中学进行了一次线上数学学情调查,九(1)班数学李老师对成绩进行分析,制作如下的频数分布表和频数分布直方图.60到70之间学生成绩尚未统计,根据情况画出的扇形图如图.请解答下列问题:类别分数段频数(人数)A60≤x<70aB70≤x<8016C80≤x<9024D90≤x<1006(1)完成频数分布表,a=2,B类圆心角=120°,并补全频数分布直方图;(2)全校九年级共有720名学生全部参加此次测试,估计该校成绩80≤x<100范围内的学生有多少人?(3)九(1)班数学老师准备从D类优生的6人中随机抽取两人进行线上学习经验交流,已知这6人中有两名是无家长管理的留守学生,求恰好只选中其中一名留守学生进行经验交流的概率.解:(1)调查的总人数为:24÷50%=48(人),∴a=48﹣16﹣24﹣6=2,B类圆心角的度数为360°×=120°,故答案为2,120;补全频数分布直方图为:(2)720×=450(人),所以估计该校成绩80≤x<100范围内的学生有450人;(3)把D类优生的6人分别即为1、2、3、4、5、6,其中1、2为留守学生,画树状图如图:共有30个等可能的结果,恰好只选中其中一名留守学生进行经验交流的结果有16个,∴恰好只选中其中一名留守学生进行经验交流的概率为=.22.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(2,4)、B(1,2)、C(5,3).以点(0,0)为旋转中心,将△ABC顺时针旋转90°,得到△A1B1C1.(1)在坐标系中画出△A1B1C1.(2)若△ABC上有一点P(m,n),直接写出旋转后对应点P1的坐标.(3)求旋转中线段AC所经过部分的面积.解:(1)如图,△A1B1C1即为所求作.(2)P1(n,﹣m).(3)线段AC所经过部分的面积=﹣=(OC2﹣OA2)=•(32+52﹣22﹣42)=,23.已知关于x的一元二次方程(a﹣3)x2﹣4x+3=0有两个不等的实根.(1)求a的取值范围;(2)当a取最大整数值时,△ABC的三条边长均满足关于x的一元二次方程(a﹣3)x2﹣4x+3=0,求△ABC的周长.解:(1)∵关于x的一元二次方程(a﹣3)x2﹣4x+3=0有两个不相等的实数根,∴,解得a<且a≠3.(2)由(1)得a的最大整数值为4;∴x2﹣4x+3=0解得:x1=1 x2=3.∵△ABC的三条边长均满足关于x的一元二次方程(a﹣3)x2﹣4x+3=0,∴①三边都为1,则△ABC的周长为3;②三边都为3,则△ABC的周长为9;③三边为1,1,3,因为1+1<3,此情况不存在;④三边为1,3,3,则△ABC的周长为7.24.如图,游仙怡心月季养植园是一个矩形ABCD,AD=32米,AB=20米.为了便于养护与运输,养植园内留有四横四纵等宽道路,养植面积与道路面积比为7:3.(1)求道路的宽度.(2)养植区域内月季盆裁要均匀摆放,即每平方米摆放的盆数一样.每平方米最多能摆放36盆,密度越大,花的品质会下降,每盆月季的出售价也会随之降低.大棚内现在每平米有月季小盆栽10盆,每盆的出售价为5元.分析发现:每平方米每增加5盆,每盆的出售价会下降0.5元.老板准备增加养植数量,以获得最多的出售总额,那么每平米应该养植多少盆月季小盆栽才能使出售总额最多?解:(1)设道路宽x米,则(32﹣4x)(20﹣4x)=32×20×,解得:x1=1,x2=12(不合题意舍去),故x=1,答:道路宽为1米;(2)∵5:0.5=10:1,故设每平方米增加10z盆,则每盆售价降低z元,出售总额为w元/m2,则:w=(10+10z)(5﹣z)=﹣10(z﹣2)2+90,∵10z≤36﹣10,∴z≤2.6,∴0≤z≤2.6,又∵a=﹣10<0,且z=2在0≤z≤2.6内,∴每平米应该养植20盆月季小盆栽才能使出售总额最多.25.如图1,O是△ABC的边BC的中点,⊙O与BC交于E、F两点,与AB相切于点D,连接AO交⊙O于点P,=.(1)猜想AC与⊙O的位置关系,并证明你的猜想.(2)如图2,延长AO交⊙O于Q点,连接DE、DF,DQ,FQ,FQ=,ED=5,求DQ的长.(3)如图3,若DE=5,连接DF、DP、PF,设DP=x,△DPF的面积为y,求y与x之间的函数关系式.解:(1)结论:AC与⊙O相切,理由:过点O作OH⊥AC于H,∵⊙O与AB相切于点D,∴OD⊥AB,∵,点O是圆心,∴∠BOP=∠COP=90°,又∵O是BC的中点,∴AB=AC,∴∠BAO=∠OAC,又∵OD⊥AB,OH⊥AC,∴OD=OH,∴OH是半径,∴AC与⊙O相切.(2)如图2中,过点Q作QN⊥CD于N,QM⊥DE交DE的延长线于M,连接QE.∵AO⊥BC,O是圆心,∴PQ是直径,∴OQ=OF,∴FQ=OF=,∴FO=,∴EF=13,∵EC是直径,∴∠EDC=90°,∵DE=5∴CD===12,∵∠QDC=∠QOF=45°,∴∠QDM=∠QDN=45°,∴=,∴EQ=FQ,∵QM⊥DM,QN⊥DN,∴QM=QN,∵∠M=∠QNF=90°,∴Rt△QME≌Rt△QNF(HL),∴EM=FN,∵∠M=∠MDN=∠DNQ=90°,∴四边形DMQN是矩形,∵QM=QN,∴四边形DMQN是正方形,∴DM=DN,∴DE+DF=DM﹣EM+DN+NF=2DM=17,∴DM=DN=,∴DQ=DN=.(3)如图3中,过点F作FH⊥DP交DP的延长线于H.∵∠PDF=∠POC=45°,∠H=90°,∴∠HDF=∠DFH=45°,∴DH=FH,DF=FH,∵∠EDF=∠H=90°,∠EFP=∠DFH=45°,∴∠EFD=∠PFH,∴△EFD∽△PFH,∴==,∵DE=5,∴PH=,∴DH=FH=x+,∴y=S△PDF=•DP•FH,∴y=×x×(x+)=x2+x(x>0).26.如图,抛物线y=ax2+bx+c与x轴交于A(1,0),B(5,0)两点,与y轴交于点C.抛物线顶点纵坐标为﹣4.(1)求抛物线的解析式及C点坐标.(2)如图1,过C作x轴的平行线,与抛物线交于点M,连接AM、BM,在y轴上是否存在点N,使∠ANB=∠AMB?若存在,请求出点N的坐标;若不存在,请说明理由.(3)把线段OC绕O点顺时针旋转,使C点恰好落在抛物线对称轴上的点P处,如图2,再将线段OP绕P点逆时针旋转45°得线段PQ,请计算Q点坐标,并判断Q点在抛物线上吗?解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣1)(x﹣5)=a(x2﹣6x+5),函数的对称轴为x=3,当x=3时,y=a(x2﹣6x+5)=﹣4a=﹣4,解得a=1,故抛物线的表达式为y=x2﹣6x+5,当x=0时,y=5,故点C(0,5);(2)存在,理由:根据点的对称性,点C(0,5),函数对称轴为x=3,故点M(6,5),∵∠ANB=∠AMB,则点N、M、B、A四点共圆,∵△ABM的外接圆圆心在抛物线的对称轴上,故设圆心为H(3,m),设点N(0,t),则MH=BH,即(5﹣3)2+(m﹣0)2=(5﹣3)2+(m﹣5)2,解得m=3,故点H(3,3),同样HM=HN,即(5﹣3)2+(m﹣0)2=(0﹣3)2+(t﹣3)2,解得t=1或5,故点N的坐标为(0,1)或(0,5),根据图象的对称性,符合条件的点N还有(0,﹣1)或(0,﹣5),故点N的坐标为(0,1)或(0,5)或(0,﹣1)或(0,﹣5);(3)不在,理由:设函数对称轴交x轴于点D,在Rt△OPD中,OP=OC=5,OD=3,则PD=4,故P(3,4),则OP=5,设直线PQ交x轴于点K,则KR⊥OP于点R,tan∠POD=,在Rt△ORK中,设RK=4x,则OR=3x,OK=5x,在Rt△RKP中,∠RPK=45°,则PR=RK=4x,则OP=OR+PR=7x=5,解得x=,故OK=5x=,故点K(,0),由点P、K的坐标得,直线PK的表达式为y=﹣7x+25,设点Q的坐标为(s,﹣7s+25),由PQ=PO=5得:(3﹣s)2+(4+7s﹣25)2=25,解得s=(不合题意值已舍去),故点Q的坐标为(,),当x=时,y=x2﹣6x+5=﹣3.5≠,故点Q不在抛物线上.。
2023-2024学年四川省绵阳市高三第一次诊断性考试理综生物试题
2023-2024学年四川省绵阳市高三第一次诊断性考试理综生物试题1.南极雌帝企鹅产蛋后,由雄帝企鹅负责孵蛋,孵蛋期间不进食。
下列叙述错误的是()A.帝企鹅蛋的卵清蛋白中N元素的质量分数高于C元素B.帝企鹅的核酸、多糖和蛋白质合成过程中都有水的产生C.帝企鹅蛋孵化过程中有mRNA和蛋白质种类的变化D.雄帝企鹅孵蛋期间主要靠消耗体内脂肪以供能2.植物组织培养过程中,培养基中常添加蔗糖,植物细胞利用蔗糖的方式如图所示。
下列叙述正确的是()A.转运蔗糖时,共转运体的构型不发生变化B.使用ATP合成抑制剂,会使蔗糖运输速率下降C.植物组培过程中蔗糖是植物细胞吸收的唯一碳源D.培养基的pH值高于细胞内,有利于蔗糖的吸收3.水淹时,玉米根细胞由于较长时间进行无氧呼吸导致能量供应不足,使液泡膜上的H+转运减缓,引起细胞质基质内H+积累,无氧呼吸产生的乳酸也使细胞质基质pH降低。
pH 降低至一定程度会引起细胞酸中毒。
细胞可通过将无氧呼吸过程中的丙酮酸产乳酸途径转换为丙酮酸产酒精途径,延缓细胞酸中毒。
下列说法正确的是()A.正常玉米根细胞液泡内pH高于细胞质基质B.检测到水淹的玉米根有CO 2的产生不能判断是否有酒精生成C.转换为丙酮酸产酒精途径时释放的ATP增多以缓解能量供应不足D.转换为丙酮酸产酒精途径时消耗的[H]增多以缓解酸中毒4.已知某种氨基酸(简称甲)是一种特殊氨基酸,迄今只在某些古菌(古细菌)中发现含有该氨基酸的蛋白质。
研究发现这种情况出现的原因是,这些古菌含有特异的能够转运甲的tRNA(表示为tRNA甲)和酶E,酶E催化甲与tRNA甲结合生成携带了甲的tRNA甲(表示为甲-tRNA甲),进而将甲带入核糖体参与肽链合成。
已知tRNA甲可以识别大肠杆菌mRNA中特定的密码子,从而在其核糖体上参与肽链的合成。
若要在大肠杆菌中合成含有甲的肽链,则下列物质或细胞器中必须转入大肠杆菌细胞内的是()①ATP ②甲③RNA聚合酶④古菌的核糖体⑤酶E的基因⑥tRNA甲的基因A.②⑤⑥B.①②⑤C.③④⑥D.②④⑤5.某基因型为AaX D Y的二倍体雄性动物(2n=8),1个初级精母细胞的染色体发生片段交换,引起1个A和1个a发生互换。
2013中考数学试题及答案(word完整版)(1)
二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。
四川省绵阳市绵阳2024届高三年级第一次教学质量诊断性联合考试数学试题
四川省绵阳市绵阳2024届高三年级第一次教学质量诊断性联合考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设等差数列{}n a 的前n 项和为n S ,若31425a a a =+=,,则6S =( ) A .10B .9C .8D .72.设全集U =R ,集合{}02A x x =<≤,{}1B x x =<,则集合A B =( )A .()2,+∞B .[)2,+∞C .(],2-∞D .(],1-∞3.已知ABC ∆的内角,,A B C 的对边分别是,,,a b c 且444222222a b c a b c a b+++=+,若c 为最大边,则a b c +的取值范围是( )A .2313⎛⎫⎪ ⎪⎝⎭,B .()1,3C .2313⎛⎤⎥ ⎝⎦,D .(1,3]4.已知α、,22ππβ⎛⎫∈- ⎪⎝⎭,αβ≠,则下列是等式sin sin 2αβαβ-=-成立的必要不充分条件的是( ) A .sin sin αβ> B .sin sin αβ< C .cos cos αβ>D .cos cos αβ<5.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为( ) A .B .C .D .6.祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A 、B 为两个同高的几何体,:p A 、B 的体积不相等,:q A 、B 在等高处的截面积不恒相等.根据祖暅原理可知,p 是q的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.函数2sin cos ()20x x xf x x =+在[2,0)(0,2]ππ-⋃上的图象大致为( ) A . B .C .D .8.已知角α的顶点与坐标原点O 重合,始边与x 轴的非负半轴重合,它的终边过点(3,4)P --,则tan 24πα⎛⎫+ ⎪⎝⎭的值为( ) A .247-B .1731-C .247D .17319.已知椭圆()222210x y a b a b+=>>的右焦点为F ,左顶点为A ,点P 椭圆上,且PF AF ⊥,若1tan 2PAF ∠=,则椭圆的离心率e 为( ) A .14B .13C .12D .2310.设a ,b 都是不等于1的正数,则“22a b log log <”是“222a b >>”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件11.函数()cos2xf x π=与()g x kx k =-在[]6,8-上最多有n 个交点,交点分别为(),x y (1i =,……,n ),则()1nii i xy =+=∑( )A .7B .8C .9D .1012.等差数列{}n a 的前n 项和为n S ,若13a =,535S =,则数列{}n a 的公差为( ) A .-2B .2C .4D .7二、填空题:本题共4小题,每小题5分,共20分。
绵阳市高中2015届第一次诊断性考试(数学理)word版含答案
保密 ★ 启用前 【考试时间:2014年10月31日15:00—17:00】绵阳市高中2012级第一次诊断性考试数 学(理工类)本试卷分第I 卷(选择题)和第II 卷(非选择题)。
第I 卷1至2页,第II 卷2至4页.共4页。
满分150分。
考试时间120分钟.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将答题卡交回。
第Ⅰ卷(选择题,共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
第I 卷共10小题。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1. 已知集合A ={x ∈Z |x 2-1≤0},B ={x |x 2-x -2=0},则A ∩B =(A) ∅(B) {2}(C) {0}(D) {-1}2.下列说法中正确的是(A) 命题“)0(∞+∈∀,x ,12>x ”的否定是“)0(0∞+∉∃,x ,02x ≤1” (B) 命题“)0(∞+∈∀,x ,12>x ”的否定是“)0(0∞+∈∃,x ,02x ≤1” (C) 命题“若b a >,则22b a >”的逆否命题是“若22b a <,则b a <” (D) 命题“若b a >,则22b a >”的逆否命题是“若2a ≥2b ,则a ≥b ”3.设各项均不为0的数列{a n }满足n n a a 21=+(n ≥1),S n 是其前n 项和,若5422a a a =,则S 4=(A) 42(B) 28 (C) 233+(D) 266+4.如图,正六边形ABCDEF 的边长为1,则DB AD ⋅=(A) -3 (B) 3- (C) 3(D)35.已知53)4cos(=-x π,那么sin 2x = (A) 2518 (B) 2524±(C) 257-(D)257 6.已知x ,y 满足⎪⎩⎪⎨⎧≤--≥-+≥+-,,,0330101y x y x y x 则2x -y 的最大值为(A) 1(B) 2(C) 3(D) 4http://www7.已知x ∈[π-,π],则“x ∈]22[ππ,-”是“sin(sin x )<cos(cos x )成立”的(A) 充要条件 (B) 必要不充分条件 (C) 充分不必要条件(D) 既不充分也不必要条件8.)(x f 是定义在非零实数集上的函数,)(x f '为其导函数,且0>x 时,0)()(<-'x f x f x ,记5log )5(log 2.0)2.0(2)2(22222.02.0f c f b f a ===,,,则 (A) c b a <<(B) c a b << (C) b a c <<(D) a b c <<9.已知函数⎪⎩⎪⎨⎧>≠><-=0)10(log 01)2sin()(x a a x x x x f a ,,且,,π的图象上关于y 轴对称的点至少有3对,则实数a 的取值范围是 (A) )330(,(B) )155(, (C) )133(, (D) )550(,10.已知∈b a ,R ,且1+x e ≥b ax +对x ∈R 恒成立,则ab 的最大值是(A) 321e (B)322e (C)323e (D) 3e第II 卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指的答题区域内作答。
2022届四川省绵阳市高三上学期第一次诊断性考试数学(理)试题解析
2022届四川省绵阳市高三上学期第一次诊断性考试数学(理)试题一、单选题1.设集合{}11A x x =-<≤,{}2log 1B x x =<,则A B =( ) A .{}11x x -<≤ B .{}11x x -<< C .{}01x x <≤ D .{}01x x <<答案:C根据对数函数的单调性求出集合B ,再根据交集的运算即可得出答案. 解:解:{}{}2log 102B x x x x =<=<<, 所以A B ={}01x x <≤. 故选:C.2.若0a b <<,则下列结论正确的是( ) A .ln ln a b > B .22b a <C .11a b<D .1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭答案:D根据函数ln y x =的单调性可判断A 是否正确;根据不等式的性质可判断B 是否正确;根据函数1y x=的单调性可判断C 是否正确;根据函数12xy ⎛⎫= ⎪⎝⎭的单调性即可判断D 是否正确.解:由于函数ln y x =在()0,+∞上单调递增,又0a b <<,所以ln ln a b <,故A 错误; 因为0a b <<,由不等式的性质可知,22a b <,故B 错误; 由于函数1y x=在()0,+∞上单调递减,又0a b <<,所以11a b>,故C 错误; 由于函数12xy ⎛⎫= ⎪⎝⎭在()0,+∞上单调递减,又0a b <<,所以1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故D 正确.故选:D.3.设D ,E 为ABC 所在平面内两点,AD DC =,2CB BE =,则DE =( )A .32AB AC -+B .32AB AC -C .32AB AC - D .32AB AC -+答案:B根据平面向量的线性运算即可求解.解:因为AD DC =,2CB BE =,所以12DC AC =,32CE CB =, 所以()13132222AC CB AC A DE DC CE B AC +=+=+-= 32AB AC =-, 故选:B.4.设x ,y 满足约束条件502803x y x y y +-≤⎧⎪+-≤⎨⎪≤⎩,则34z x y =+的最大值是( )A .12B .17C .18D .392答案:C根据线性约束条件作出可行域,作直线34y x =-沿可行域的方向平移,由z 的几何意义即可求解.解:根据线性约束条件作出可行域如图:由34z x y =+可得344zy x =-+,作直线34y x =-沿可行域的方向平移,由图知:过点A 时,4z最大即z 最大,由503x y y +-=⎧⎨=⎩可得()2,3A ,所以max 324318z =⨯+⨯=, 故选:C.5.通常人们用震级来描述地震的大小,地震震级是对地震本身大小的相对量度,用M 表示,强制性国家标准GB 17740-1999《地震震级的规定》规定了我国地震震级的计算和使用要求,即通过地震面波质点运动最大值()max /T A 进行测定,计算公式如下()lg /T 1.66lg 3.5max M A =+∆+(其中∆为震中距),已知某次某地发生了4.8级地震,测得地震面波质点运动最大值为0.01,则震中距大约为( ) A .58 B .78C .98D .118答案:C由题意,max 4.8,(/)0.01M A T ==,代入式子可得 1.98810∆≈,结合选项估计,即得解 解:由题意,max 4.8,(/)0.01M A T == 代入()lg /T 1.66lg 3.5max M A =+∆+ 可得4.8lg0.01 1.66lg 3.5=+∆+1.66lg 4.8 3.52 3.3∴∆=-+=3.3lg 1.9881.66∴∆=≈ 1.98821010100∴∆≈<=因此震中距∆是接近100但小于100的数 结合选项,震中距大约为98 故选:C6.“1122(1)(32)a a +<-”是“223a -<<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:A结合函数定义域和单调性得到不等式组,求出1122(1)(32)a a +<-所满足的a 的取值范围,进而判断出结果.解:因为12y x =定义域为[)0,∞+,且为增函数,又1122(1)(32)a a +<-,所以13210320a aa a +<-⎧⎪+≥⎨⎪-≥⎩,解得:213a -≤<,因为223123a a ⇒-≤<-<<,而 223a -<<⇒213a -≤<,故“1122(1)(32)a a +<-”是“223a -<<”的充分不必要条件. 故选:A 7.函数()sin cos x x x f x +=在,22ππ⎛⎫- ⎪⎝⎭上的图象大致为( ) A . B .C .D .答案:A求导,分析函数在(0,)2π的单调性,可排除BD ,计算可得14f π⎛⎫⎪⎝⎭> ,可排除C ,即得解 解:由题意, ()22(cos 1)cos sin (sin )1cos sin cos cos x x x x x x x xf x xx +++++'== 当(0,)2x π∈时,()0f x '>,故函数()f x 在(0,)2π单调递增,BD 错误;又142422f ππ=⎛⎫ ⎝⎭>⎪,故C 错误故选:A8.已知141681a -⎛⎫= ⎪⎝⎭,32log 2log 3b =+,32log 23c =,则a ,b ,c 的大小关系为( ) A .c b a >> B .b a c >> C . a c b >> D .b c a >>答案:B根据指数的运算性质化简a ,利用对数的单调性判断,b c 的范围,即可比较a ,b ,c 的大小关系得出正确选项. 解:因为1141441622381332a ⎛⎫-⨯-- ⎪⎝⎭⎛⎫⎛⎫⎛⎫==== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,32331log 2log 3log 2log 2b =+=+,因为3331log log 2log 312=<<=即31log 212<<,311log 2>, 所以3313log 2log 22b =+>, 又因为33222log 2log 3333c =<=,所以b a c >>, 故选:B.9.已知首项为1的数列{}n a 的前n 项和为n S ,1416n n n a a +=,则下列说法不正确的是( ) A .数列{}n a 是等比数列 B .数列{}n S 为单调递增数列C .5256a =D .1434n n n a S -=+答案:D由1416n n n a a +=,112416n n n a a +++=,可得216n na a +=,可得数列的奇数项、偶数项分别成等比数列,且2214n n a a -=,2124n naa +=,故数列{}n a 是公比为4的等比数列,可判断A ;由10n n n S S a --=>可判断B ;代入通项公式计算5a 可判断C ;利用通项公式和求和公式代入可判断D 解:由题意,1416nn n a a += 112416n n n a a +++∴=216n na a +∴= 在1416nn n a a +=中,令1n =可得24a =故数列{}n a 的奇数项是以1为首项,16为公比的等比数列;偶数项是以4为首项,16为公比的等比数列 故奇数项的通项公式为:121116n n a --=⨯,偶数项的通项公式为:12416n n a -=⨯2214n n a a -∴=,2124n naa +=,故数列{}n a 是公比为4的等比数列,故A 正确 由于10n n n S S a --=>,故数列{}n S 为单调递增数列,故B 正确; 315116256a -=⨯=,故C 正确;由于11(14)4114,143n n n n n a S -⨯--=⨯==- 故1141544,34344134n n n n n n n a S ---=+=⨯+=⨯-,故D 错误故选:D10.设函数()211,,21log ,,2x f x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩则满足()()21f x f x -<的x 的取值范围是( )A .13,24⎛⎤⎥⎝⎦B .3,14⎡⎫⎪⎢⎣⎭C .3,4⎛⎤-∞ ⎥⎝⎦D .1,12⎛⎫⎪⎝⎭答案:D结合函数性质分析可得()()121212f x f x x x -<⇔-<<或1212x x ≤-<,求解即可 解:由题意,2log y x =在1[,)2+∞单调递增,且21log 12=-故()()121212f x f x x x -<⇔-<<或1212x x ≤-< 解得:112x << 故选:D11.已知定义在R 上的函数()y f x =满足下列三个条件: ①对任意的1212x x ≤<≤,都有()()12f x f x >; ②()1y f x =+的图象关于y 轴对称; ③对任意的R x ∈,都有()()2f x f x =+ 则13f ⎛⎫ ⎪⎝⎭,32f ⎛⎫⎪⎝⎭,83f ⎛⎫⎪⎝⎭的大小关系是( ) A .831323f f f ⎛⎫⎛⎫⎛⎫>>⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .813332f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ C .138323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .381233f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭答案:A根据①可得()y f x =在()1,2上单调递减,根据②可得()y f x =的图象关于1x =对称,根据③可得()y f x =周期为2,根据单调性、周期性、对称性即可比较大小.解:因为①对任意的1212x x ≤<≤,都有()()12f x f x >; 可得()y f x =在()1,2上单调递减, 因为②()1y f x =+的图象关于y 轴对称; 可得()y f x =的图象关于1x =对称, 因为③对任意的R x ∈,都有()()2f x f x =+, 所以()y f x =周期为2,因为()y f x =的图象关于1x =对称,所以1533f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,因为()y f x =周期为2,所以824333f f f ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为()y f x =在()1,2上单调递减,435323<<, 所以435323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即831323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故选:A.12.函数()()3sin x x f ωϕ=+(0>ω,2πϕ<),已知||33f π⎛⎫= ⎪⎝⎭,且对于任意的R x ∈都有066f x f x ππ⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭,若()f x 在52,369ππ⎛⎫ ⎪⎝⎭上单调,则ω的最大值为( )A .11B .9C .7D .5答案:D结合正弦函数的最值,对称性求ϕ的值,再结合单调性确定ω的最大值. 解:∵ ||33f π⎛⎫= ⎪⎝⎭,()()3sin x x f ωϕ=+,∴ 32k ππωϕπ+=+,k Z ∈,又对于任意的R x ∈都有066f x f x ππ⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭, ∴ 6m πωϕπ-+=,m Z ∈,∴ 3(2)2k m πϕπ=++,又2πϕ<,∴ 6π=ϕ或6πϕ=-,当6π=ϕ时, 31w k =+,k Z ∈且61w m =-+, 当7w =时,()3sin 76f x x π⎛⎫ ⎪⎝=⎭+,若52,369x,则4131736618x πππ≤+≤, ∴()f x 在52,369ππ⎛⎫⎪⎝⎭上不单调,C 错误, 当6πϕ=-时, 32w k =+,k Z ∈且61w m =--,当11w =时,()3sin 116f x x π⎛⎫ ⎪⎝-⎭=,若52,369x ,则49411136618x πππ≤-≤, ∴()f x 在52,369ππ⎛⎫⎪⎝⎭上不单调,A 错误, 当5w =时,()3sin 56f x x π⎛⎫ ⎪⎝=⎭-,若52,369x ,则1917536618x πππ≤-≤, ∴()f x 在52,369ππ⎛⎫⎪⎝⎭上单调,D 正确, 故选:D.【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的性质求函数解析式的关键在于转化为正弦函数的问题. 二、填空题13.设n S 是等差数列{}n a 的前n 项和,若12a =,735S =,则6a =___________. 答案:7利用等差数列通项公式和前n 项和公式将条件化为公差d 的方程,解方程求公差d ,由此可求6a . 解:设等差数列{}n a 的公差为d , ∵ 12a =,735S =, ∴ 172135a d +=, ∴ 1d =,∴ 6157a a d =+=, 故答案为:7.14.已知平面向量()1,3a =,(),1b m =-,若a b ⊥,则b =___________.答案:2由向量垂直的坐标表示求m ,再由向量的模的公式求b . 解:∵ a b ⊥,()1,3a =,(),1b m =- ∴1m ⨯-1)=0, ∴m , ∴ 312b =+=, 故答案为:2.15.若tan 5tan 7a π=,则5cos 14sin 7a a ππ⎛⎫- ⎪⎝⎭=⎛⎫- ⎪⎝⎭___________. 答案:321.5由两角和差公式化简分数,再由同角关系化为正切表达式,结合已知条件求值. 解:555cos cos sin sin cos cos cos sin sin 14771414sin cos cos sin sin cos cos sin sin 77777a a πππππααααπππππαααα⎛⎫-++ ⎪⎝⎭==⎛⎫--- ⎪⎝⎭, ∴ 5cos tan tan 147tan tansin 77a a ππαππα⎛⎫-+ ⎪⎝⎭=⎛⎫-- ⎪⎝⎭, 又tan 5tan7a π=,∴5cos 3142sin 7a a ππ⎛⎫- ⎪⎝⎭=⎛⎫- ⎪⎝⎭, 故答案为:32.16.已知函数()cos2sin 1f x a x x =+-,若不等式()1f x ≤对任意的[]0,πx ∈恒成立,则实数a的取值范围为___________.答案:⎡⎣由题意可得1cos2sin 11x a x -≤+-≤,即2012sin sin 2x a x ≤-+≤,令[]sin 0,1x t =∈,讨论0=t 时恒成立,当0t ≠时,分离a 转化为最值问题即可求解.解:若()1f x ≤可得()11f x -≤≤,即1cos2sin 11x a x -≤+-≤,所以0cos2sin 2x a x ≤+≤,所以2012sin sin 2x a x ≤-+≤, 令[]sin 0,1x t =∈,若212sin sin 2x a x -+≤,则221t at -+≤, 当0=t 时,01≤成立,当0t ≠时,22112t a t t t+≤=+,所以min 12a t t ⎛⎫≤+ ⎪⎝⎭,因为12t t +≥=当且仅当12t t =即t =,π4x =或3π4时,12t t +取得最小值所以a ≤若212sin sin 0x a x -+≥,则2120t at -+≥, 当0=t 时,10≥恒成立,当0t ≠时,22112t a t t t-≥=-,可得max 12a t t ⎛⎫≥- ⎪⎝⎭, 因为12y t t =-在(]0,1上单调递增,所以1t =即π2x =时,max 12111y =⨯-=,所以1a ≥,综上所述:1a ≤≤故答案为:1,⎡⎣.三、解答题17.已知函数()22sin cos f x x x x ωωω=+()0ω>,其图象的两条相邻对称轴间的距离为π2. (1)求函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的单调递增区间;(2)将函数()f x 的图象向左平移ϕ()π02ϕ<<个单位后得到函数()g x 的图象,若函数()g x 为偶函数,求ϕ的值.答案:(1)π0,12⎡⎤⎢⎥⎣⎦;(2)π12ϕ=.(1)先由二倍角公式和辅助角公式化简()f x ,再由正弦函数的单调增区间即可求解;(2)根据图象的平移变换得出()π2sin 223g x x ϕ⎛⎫=++ ⎪⎝⎭,由()ππ2πZ 32k k ϕ+=+∈结合ϕ的范围即可求解.解:(1)()cos2)sin2f x x x ωω++π2sin 22sin 23x x x ωωω⎛⎫=+=+ ⎪⎝⎭,因为相邻对称轴间距离为π2,所以函数的最小正周期π2π2T =⨯=,即2ππ2ω=,解:1ω=,所以()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭. 由()πππ2π22πZ 232k x k k -+≤+≤+∈,可得()5ππππZ 1212k x k k -+≤≤+∈,当0k =时,5ππ1212x -≤≤, 所以函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的单调递增区间为π0,12⎡⎤⎢⎥⎣⎦;(2)将函数()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭的图象向左平移π02ϕϕ⎛⎫<< ⎪⎝⎭个单位后得()()ππ2sin 22sin 2233g x x x ϕϕ⎡⎤⎛⎫=++=++ ⎪⎢⎥⎣⎦⎝⎭,因为()g x 为偶函数,所以()π02sin 223g ϕ⎛⎫=+=± ⎪⎝⎭,即πsin 213ϕ⎛⎫+=± ⎪⎝⎭,所以()ππ2πZ 32k k ϕ+=+∈,即ππ()212k k Z ϕ=+∈, 又因为π02ϕ<<,所以0k =,π12ϕ=. 18.已知n S 是数列{}n a 的前n 项和,12a =,且满足132n n S S +=+. (1)求数列{}n a 的通项公式; (2)求数列{}n na 的前n 项和n T .答案:(1)123n n a -=⨯;(2)11()322n n T n =-+.(1)根据132n n S S +=+,可得当2n ≥时,132n n S S -=+,两式相减可证得数列{}n a 是等比数列,从而可的答案;(2)利用错位相减法即可求得答案. 解:解:(1)∵132n n S S +=+①, ∴2132S S =+,即12132a a a +=+. ∵12a =,∴26a =. 当2n ≥时,132n n S S -=+.②由①-②得13n n a a +=,即13(2)≥n na n a +=.又213a a =,∴数列{}n a 是以首项为2,公比为3的等比数列,∴123n n a -=⨯;(2)由123n n n a n -⋅=⋅,得()011213233n n T n -=⨯+⨯+⋅⋅⋅+⨯①,()123213233n n T n =⨯+⨯+⋅⋅⋅+⨯②,由①-②,得()0122233333n n n T n -=+++⋅⋅⋅+⋅-1-,132223(12)3113nn n n T n n --=⨯-⋅=---.∴11()322n n T n =-+.19.在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,3c =,从以下三个条件中任选一个:①()tan 2tan b C a b B =-;②2cos 2c B a b =-;③()222cos cos 1ac A a C b c +-=-,解答如下的问题(1)证明:3cos a B B =+;(2)若AB 边上的点P 满足2AP PB =,求线段CP 的长度的最大值.答案:(1)选条件①②③,证明见解析;(2)(1)选条件①:利用切化弦,由正弦定理化边为角,逆用两角和的正弦公式化简求出cos C 的值即可求出角C ,再由正弦定理可得π3a A B ⎛⎫+ ⎪⎝⎭展开即可求证;选条件②:利用正弦定理化边为角结合sin sin()A C B =+求出cos C 的值即可求出角C ,再由正弦定理可得π3a A B ⎛⎫+ ⎪⎝⎭展开即可求证;选条件③:已知条件可整理为:2222cos cos b a c ac A a C+-=+结合余弦定理以及正弦定理化边为角求出cos C 的值即可求出角C ,再由正弦定理可得π3a A B ⎛⎫+ ⎪⎝⎭展开即可求解;求出cos C 的值即可求出角C ,再由正弦定理可得π3a A B ⎛⎫+ ⎪⎝⎭展开即可求证;(2)求出1PB =,在PBC 中,由余弦定理求2PC ,结合三角函数的性质即可求得最值. 解:(1)选条件①:由()tan 2tan b C a b B =-,得sin (2)sin cos cos b C a b BC B-=, 由正弦定理可得:()sin sin cos 2sin sin sin cos B C B A B B C =-, 因为sin 0B ≠,所以sin cos 2sin cos sin cos C B A C B C =-,所以()2sin cos sin cos sin cos sin sin A C C B B C B C A =+=+=, 因为sin 0A ≠,所以2cos 1C =,即1cos 2C =, 因为()0,πC ∈,所以π3C =;在ABC 中,由正弦定理可得:sin sin sin a c cA C C===所以π3cos 3a B A B B ⎛⎪+⎫+ ⎝⎭,即证;选择条件②:由正弦定理可得:2sin cos 2sin sin C B A B =-, 又因为sin sin()A C B =+,所以()2sin cos 2sin sin 2sin cos 2cos sin sin C B C B B C B C B B =+-=+-, 化简整理得:2cos sin sin C B B =, 由sin 0B ≠,所以1cos 2C =, 又π02C <<,所以π3C =,在ABC 中,由正弦定理可得:sin sin sin a c cA C C===所以π3cos 3a B A B B ⎛⎪+⎫+ ⎝⎭,即证;选择条件③:由已知得:2222cos cos b a c ac A a C +-=+, 由余弦定理得2222cos b a c ab C +-=, 所以22cos cos cos ab C ac A a C =+, 因为0a >,所以2cos cos cos b C c A a C =+,由正弦定理可得:()2sin cos sin cos sin cos sin sin B C C A A C A C B =+=+=, 因为sin 0B ≠,所以1cos 2C =, 又π02C <<,所以π3C =,在ABC 中,由正弦定理可得:sin sin sin a c cA C C===所以π3cos 3a B A B B ⎛⎪+⎫+ ⎝⎭,即证;(2)由2AP PB =及3AB =,可得1PB =, 在PBC 中,由余弦定理可得: ))22212cos 3cos 123cos cos CP a a B B BB B B =+-=++-+42B =+,因为ABC 为锐角三角形,所以π022π0π32B B ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得:ππ62B <<,所以π2,π3B ⎛⎫∈ ⎪⎝⎭,所以当π22B =即π4B =时,2CP取最大值为, 所以线段CP的长度的最大值为20.已知函数()32215333f x x ax a x =-++-.(1)若1a =-时,求()f x 在区间[]4,2-上的最大值与最小值;(2)若存在实数m ,使得不等式()0f x <的解集为(),m +∞,求实数a 的取值范围.答案:(1)最大值为0,最小值为323-;(2)⎛- ⎝⎭. (1)利用导数得出()f x 的单调性,再求最值;(2)分0,0,0a a a <=>三种情况,利用导数得出其单调性,结合题意得出实数a 的取值范围. 解:解:(1)由题意得22()23?(3)()f x x ax a x a x a =-+'+=--+ 当1a =-时,()(1)(3)f x x x -'=-+,[]4,2x ∈- 由()0f x '>,解得31x -<<; 由()0f x '<,解得43x -≤<-或12x <≤.∴函数()f x 在区间(3,1)-上单调递增,在区间[4,3),(1,2]--单调递减. 又2532(4)(3)33f f -=--=-,,7(1)0(2)3f f ==-, ∴函数()f x 在区间[]4,2-上的最大值为0,最小值为323-. (2)存在实数m ,使不等式()0f x <的解集恰好为(,)m +∞,等价于函数()f x 只有一个零点. ∵22()23=(3)()f x x ax a x a x a =-++--+', i )当a <0时,由()0f x '>,解得3a x a <<-, ∴函数()f x 在区间(3,)a a -上单调递增; 由()0f x '<,解得3x a <或x a >-,∴函数()f x 在区间(,3),(,)a a -∞-+∞上单调递减.又5(0)03f =-<,∴只需要()0f a -<,解得10a -<<. ∴实数a 的取值范围为10a -<<.ii )当a =0时,显然()f x 只有一个零点成立. iii )当a >0时,由()0f x '>,解得3a x a -<<, 即()f x 在区间(,3)a a -上单调递增; 由()0f x '<,解得x a <-或3x a >,即函数()f x 在区间(,),(3,)a a -∞-+∞上单调递减;又5(0)03f =-<,∴只需要(3)0f a <,解得0a <.综上:实数a 的取值范围是⎛- ⎝⎭. 21.已知函数()21e ln 2x f x x bx x x =--()R b ∈,其图象在点()()1,1f 处的切线斜率为2e 3-.(1)证明:当1x >时,()23e 12xf x x x >-+;(2)若函数()()()41g x a x x f =+--在定义域上无极值,求正整数a 的最大值. 答案:(1)证明见解析;(2)5.(1)求()f x ',由()12e 3f '=-可得b 的值,将所证明的不等式化简为12ln 0x x x-->,令()12ln F x x x x=--,利用导数判断单调性以及最值即可求证;(2)由题意可知()0g x '≥恒成立或()0g x '≤恒成立,讨论()0g x '≥可得2(1)e 2ln x a x x x -≤+--,设()(1)e 2ln xh x x x x =+--利用导数判断单调性求最值可求a 的范围,同理()0g x '≤时求a 的范围,即可求解.解:(1)由()21e ln 2x f x x bx x x =--可得:()(1)e (ln 1)x f x x b x x =+-+-'.因为函数()f x 的图象在点()()1,1f 处的切线的斜率为2e 3-, 所以()12e 12e 3f b -='=--,解得:2b =,当1x >时,()23e 12xf x x x >-+等价于22ln 10x x x -->,即12ln 0x x x -->.令()12ln F x x x x =--,则()()22212110x F x x x x -'=-+=>,所以函数()F x 在区间()1,+∞上单调递增,所以()()1112ln101F x F >=--=,所以当1x >时,()23e 12xf x x x >-+;(2)由题得()()21e 2ln 412xg x x x x x a x =--+--,若()()()41g x a x x f =+--无极值,则()0g x '≥恒成立或()0g x '≤恒成立, (i )当()0g x '≥恒成立时,()(1)e 2(1ln )40x g x x x x a =+-+-+-≥',即2(1)e 2ln x a x x x -≤+--恒成立,所以min 2(1)e 2ln xa x x x ⎡⎤-≤+--⎣⎦,令()(1)e 2ln xh x x x x =+--.所以()()()()221(2)e 12e 2e xx x x h x x x x x x x +⎛⎫=+--=+-=+- ⎪⎝⎭'()0x >, 令()1=e x x x ϕ-,则()21=e 0xx xϕ'+>,即()x ϕ在()0,∞+上单调递增,1202ϕ⎛⎫< ⎪⎝⎭,()1=e 10ϕ->,所以存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()0001e =0x x x ϕ=-,当()00,x x ∈时,()0x ϕ<,即()0h x '<, 当()0,x x ∈+∞时,()0x ϕ>,即()0h x '>,所以函数()h x 在区间()00,x 单调递减,函数()h x 在区间()0,x +∞单调递增,所以函数()h x 的最小值为()0000000001(1)e 2ln (1)2ln x h x x x x x x x x =+--=+⋅-- 又因为01e x x =,即00ln x x =-, 所以()00000011121h x x x x x x =++-=++. 又因为01,12x ⎛⎫∈ ⎪⎝⎭,则()0001713,2h x x x ⎛⎫=++∈ ⎪⎝⎭,所以23a -≤,可得5a ≤,所以正整数a 的最大值是5;(ii )当()0g x '≤恒成立时,()(1)e 2(1ln )40x g x x x x a =+-+-+-≤',即2(1)e 2ln x a x x x -≥+--恒成立,所以max 2(1)e 2ln xa x x x ⎡⎤-≥+--⎣⎦,又由(i )知,函数()h x 在区间()0,x +∞上单调递增, 所以函数()h x 不存在最大值, 综上所述:正整数a 的最大值是5.【点睛】由不等式恒成立(或能成立)求参数时,①可对不等式变形,分离参数,根据分离参数后的结果,构造函数,由导数的方法求出函数的最值,进而可求出结果;②可根据不等式,直接构成函数,根据导数的方法,利用分类讨论求函数的最值,即可得出结果. 22.如图,在极坐标系中,已知点()2,0M , 曲线1C 是以极点O 为圆心,以OM 为半径的半圆,曲线2C 是过极点且与曲线1C 相切于点2,2π⎛⎫⎪⎝⎭的圆.(1)分别写出曲线1C 、2C 的极坐标方程;(2)直线()0π,R θααρ=<<∈与曲线1C 、2C 分别相交于点A 、B (异于极点),求ABM 面积的最大值.答案:(1)()1:20C ρθπ=≤≤,()2:2sin 0C ρθθπ=≤≤; (2)12.(1)分析可知曲线1C 是以极点O 为圆心,以2为半径的半圆,结合图形可得到曲线1C 的极坐标方程,设(),P ρθ为曲线2C 上的任意一点,根据三角函数的定义可得出曲线2C 的极坐标方程; (2)设(),A A ρα、(),B B ρθ,由题意得2sin B ρα=,2A ρ=,求出AB 以及点M 到直线AB 的距离,利用三角形的面积公式以及基本不等式可求得结果. (1)解:由题意可知,曲线1C 是以极点O 为圆心,以2为半径的半圆, 结合图形可知,曲线1C 的极坐标方程为()20ρ=≤θ≤π.设(),P ρθ为曲线2C 上的任意一点,可得2cos 2sin 2πρθθ⎛⎫=-= ⎪⎝⎭.因此,曲线2C 极坐标方程为()2sin 0ρθθπ=≤≤. (2)解:因为直线()0π,R θααρ=<<∈与曲线1C 、2C 分别相交于点A 、B (异于极点), 设(),A A ρα、(),B B ρθ,由题意得2sin B ρα=,2A ρ=,所以,22sin A B AB ρρα=-=-.因为点M 到直线AB 的距离为sin 2sin d OM αα==,所以,()()()2sin 1sin 11122sin 2sin 2sin 1sin 22242ABMS AB d αααααα+-=⋅=-⋅=-≤⨯=△, 当且仅当1sin 2α=时,等号成立,故ABM 面积的最大值为12. 23.已知函数()2f x m x m x =+--()0m >的最大值为6. (1)求m 的值;(2)若正数x ,y ,z 满足x y z m ++=答案:(1)2;(2)证明见解析.(1)利用绝对值三角不等式求出()f x 的最大值,让最大值等于6即可得m 的值;(2)由(1)知,2x y z ++=,由222xxx y z y z ⎛⎫⎛⎫=++=+++ ⎪ ⎪⎝⎭⎝⎭利用基本不等式即可求证.解:(1)由题意得()2()(2)3f x x m x m x m x m m =+--≤+--=, 因为函数()f x 的最大值为6,所以36m =,即2m =±. 因为0m >,所以2m =; (2)由(1)知,2x y z ++=, 因为0x >,0y >,0z >,所以222xxx y z y z ⎛⎫⎛⎫=++=+++≥ ⎪ ⎪⎝⎭⎝⎭, 当且仅当2x y z ==时,即1x =,12y z ==等号成立,22m =当且仅当11,2x y z ===时,等号成立.。
四川省绵阳市2024-2025学年高三第一次诊断性考试数学质量检测试题(含解析)
注意事项:1.答卷前,考生务必将自己的班级、姓名、考号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.4四川省绵阳市2024-2025学年高三第一次诊断性考试数学质量检测试题.考试结束后,将答题卡交回.第Ⅰ卷(选择题,共58分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,1,0,1,2A =--,(){}211B x x =+≤,则A B = ( )A. {}2,1--B. {}2,1,0-- C. []2,0- D. []22-,【答案】B 【解析】【分析】先求出集合B ,再根据集合交集运算即可得答案【详解】由()211x +≤,可得20x -≤≤,所以{}20B x x =-≤≤,所以A B = {}{}{}2,1,0,1,2202,1,0x x --⋂-≤≤=--.故选:B2. “22ac bc >”,是“a b >”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】利用充分条件、必要条件的定义判断即得.【详解】若22ac bc >,则20,0c c ≠>,因此a b >,当a b >,0c =时,220ac bc ==,所以“22ac bc >”,是“a b >”的充分不必要条件.故选:A3. 已知0,0x y >>,且满足3x y xy +=-,则xy 的最小值为( )A. 3B. C. 6D. 9【答案】D 【解析】【分析】利用基本不等式化简已知条件,再解不等式求得xy 的范围,从而求得xy 的最小值.详解】3x y xy +=-≥)23310--=+≥,30,9xy -≥≥,当且仅当3x y ==时等号成立,所以xy 的最小值为9.故选:D4. 某公司根据近几年经营经验,得到广告支出与获得利润数据如下:广告支出x /万元258111519利润y /万元334550535864根据表中数据可得利润y 关于广告支出x 的经验回归方程为ˆ 1.6ˆ5yx a =+.据此经验回归方程,若计划利润达到100万元,估计需要支出广告费( )A. 30万元 B. 32万元C. 36万元D. 40万元【答案】D 【解析】【分析】先得求数据的中心点()10,50.5,代入ˆ 1.6ˆ5yx a =+得ˆ34a =,再由ˆ100=y 求得40x =即得.【详解】258111519106x +++++==,33455053586450.56y +++++==,因ˆ 1.6ˆ5yx a =+过点()x y ,故ˆ50.5 1.6510a =⨯+,得ˆ34a =,【故当ˆ100=y时,341001.65x +=,得40x =,故选:D5. 下列选项中,既是增函数,也是奇函数的是( )A. 2y x -= B. 1y x x=+C. sin y x x =-D. 1ln1x y x -=+【答案】C 【解析】【分析】分别判断函数的奇偶性和单调性即可.【详解】对于A ,令()2f x x -=,0x ≠,()()()22fx x x fx ---=-==,所以2y x -=是偶函数,故A 错误;对于B ,1y x x=+在(),1∞--和()1,+∞上单调递增,在()1,0-和()0,1上单调递减,故B 错误;对于C ,令()sin g x x x =-,R x ∈,()()()()sin sin g x x x x x g x -=---=--=-,所以sin y x x =-是奇函数,又1cos 0y x '=-≥,所以sin y x x =-是R 上的增函数,故C 正确;对于D ,令()1ln1x h x x -=+,()(),11,x ∈-∞-⋃+∞,则()()()11201111x x h x x x x x '+-⎛⎫'=⋅=> ⎪-+-+⎝⎭,所以函数1ln 1x y x -=+在(),1∞--和()1,+∞上单调递增,但在定义域上不单调,故D 错误.故选:C.6. 已知θ为第一象限角,且πtan tan 03θθ⎛⎫++= ⎪⎝⎭,则1cos21cos2θθ-=+( )A. 9 B. 3C.13D.19【答案】B 【解析】【分析】根据两角和正切公式结合已知条件可求出tan θ=.【详解】由题意知θ为第一象限角,且πtan tan 03θθ⎛⎫++= ⎪⎝⎭,的故πtan tan3tan 0π1tan tan 3θθθ++=-,解得tan θ=或tan θ=(舍去),则2221cos22sin tan 31cos22cos θθθθθ-===+,故选:B7. 某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P (单位:mg/L )与时间t (单位:h )间的关系为0ektP P -=(e 是自然对数的底数,0P ,k 为正的常数).如果前9h 消除了20%的污染物,那么消除60%的污染物需要的时间约为( )(参考数据:lg 20.301≈)A. 33h B. 35h C. 37h D. 39h【答案】C 【解析】【分析】根据给定条件,求出常数k ,然后再令0.4P =即可解出t .【详解】依题意,900(120%)ekP P --=,解得1ln 0.89k =-,即900.8t P P =,当0(160%)P P =-时,9000.40.8tP P =,即90.80.4t=,解得9lg 0.49(2lg 21)9(120.301)37lg 0.83lg 21130.301t --⨯==≈≈--⨯,所以污消除60%的污染物需要的时间约为37h .故选:C8. 已知函数()()()()2231,0,e 3,0x x x f x g x mx x x ⎧-+≤⎪==⎨->⎪⎩,若关于x 的不等式()()()0x f x g x -<的整数解有且仅有2个,则实数m 的取值范围是( )A. 30,2⎛⎤⎥⎝⎦B. 2e 0,2⎛⎤ ⎥⎝⎦C. (]2e,0- D. ()3,00,2⎛⎤-∞ ⎥⎝⎦【答案】A 【解析】【分析】判断函数的单调性,作出函数图象,结合题意列出相应不等式组,即可求得答案.【详解】令()()2e3,0xh x xx =->,则()()()e 31x h x x x +'=-,当01x <<时,ℎ′(x )<0,则ℎ(x )在(0,1)上单调递减;当1x >时,ℎ′(x )>0,则ℎ(x )在(1,+∞)上单调递增;令()()231,0k x x x =-+≤,则其图象为开口向下,对称轴为1x =-的抛物线;由关于x 的不等式()()()0x f x g x -<,可知0x ≠,当0x >时,()()f x g x <,即有()()h x g x <;当0x <时,()()f x g x >,即有()()k x g x >;作出函数图象如图:要使关于x 的不等式()()()0x f x g x -<的整数解有且仅有2个,显然0m ≤不能满足题意,故需满足()()()()02222m h g k g ⎧>⎪≥⎨⎪-≤-⎩,即20e 232m m m>⎧⎪≥⎨⎪-≤-⎩,解得302m <≤,即m 的取值范围为30,2⎛⎤⎥⎝⎦,故选:A【点睛】关键点睛:解答本题的关键在于作出函数图象,从而列出相应不等式组,求得答案.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知数列{a n }的前n 项和为n S ,且116,6n n a a S +==+,则( )A. 342S = B. 2n nS a <C. {}n S 是等比数列 D. 存在大于1的整数n ,k ,使得n kS a =【答案】AB 【解析】【分析】通过n a 与n S 的关系,作差得到数列{}n a 是以6为首项,2为公比的等比数列,进而逐项判断即可.【详解】由16n n a S +=+,可得16,2n n a S n -=+≥两式相减可得:12,2n n a a n +=≥,又2211612,2a a S a =+==,所以数列{}n a 是以6为首项,2为公比的等比数列,所以162n n a -=⨯,626nn S =⨯-,所以3362642S =⨯-=,A 正确;262n n a =⨯,所以2n n S a <,B 正确;由626nn S =⨯-,可得1236,18,42S S S ===,显然3212S S S S ≠,可判断{}n S 不是等比数列,C 错误;若n k S a =,即162662n k -⨯-=⨯,也即1221n k --=,显然不存在大于1的整数,n k ,使得等式成立,D 错误;故选:AB10. 已知函数()22sin cos0)222xxxf x ωωωω=-+>在[)0,π上有且仅有4个零点,则( )A.1114,33ω⎛⎤∈⎥⎝⎦B. 令()π6g x f x ⎛⎫=+⎪⎝⎭,存在ω,使得()g x '为偶函数C. 函数()f x 在()0,π上可能有3个或4个极值点D. 函数()f x 在ππ,3535⎛⎫- ⎪⎝⎭上单调递增【答案】ABD 【解析】【分析】利用二倍角和辅助角公式化简得到()π2sin 3f x x ω⎛⎫=+⎪⎝⎭,根据()f x 在[)0,π上有且仅有4个零点,可确定πππ,π333x ωω⎡⎫+∈+⎪⎢⎣⎭,进而解得111433ω<≤,再根据其范围结合函数图象和平移知识等逐一判断即可.【详解】()2π2sincossin 2sin (0)2223xxxf x x x x ωωωωωωω⎛⎫=-=+=+> ⎪⎝⎭对于A , [)0,πx ∈,πππ,π333x ωω⎡⎫+∈+⎪⎢⎣⎭, 因为()f x 在[)0,π上有且仅有4个零点,所以π4ππ5π3ω<+≤,解得111433ω<≤,∴1114,33ω⎛⎤∈ ⎥⎝⎦,故A 正确;对于B ,()π6g x f x ⎛⎫=+⎪⎝⎭ππππ2sin 2sin 6363x x ωωω⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,()ππ2cos 63g x x ωωω'⎛⎫=++ ⎪⎝⎭为偶函数,则πππ,63k k ω+=∈Z ,即62,k k ω=-∈Z ,∵0,ω>∴取4ω=,()8cos 4g x x '=-为偶函数,满足题意,故B 正确;对于C ,x ∈(0,π),πππ,π333x ωω⎛⎫+∈+ ⎪⎝⎭,∵1114,33ω⎛⎤∈⎥⎝⎦,(]ππ4π,5π3ω+∈,∴函数()f x 在()0,π上可能有4个或5个极值点, 故C 不正确;对于D ,若ππ,3535x ⎛⎫∈-⎪⎝⎭,则πππππ,3353353x ωωω⎛⎫+∈-++ ⎪⎝⎭,∵1114,33ω⎛⎤∈⎥⎝⎦,∴ππ7π8πππ46π7π,,,353353535310515ωω⎡⎫⎛⎤-+∈+∈⎪ ⎢⎥⎣⎭⎝⎦,∴函数()f x 在ππ,3535⎛⎫- ⎪⎝⎭上单调递增. 故D 正确;故选:ABD.11. 已知函数()f x 的定义域为R ,()f x 不恒为0,且()()222f x f y x y x y f f ++-⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,则( )A. ()0f 可以等于零 B. ()f x 的解析式可以为:()cos2f x x =C. 曲线f (x−1)为轴对称图形 D. 若()11f =,则201()20k f k ==∑【答案】BCD【解析】【分析】利用赋值法可得()00f =或()01f =,分类讨论可得()01f =,判断A ;.有一只判断出函数的奇偶性,可判断B ;结合B 的分析以及图象的平移可判断C ;判断出(){}f k 是以()11f =为首项,0为公差的等差数列,即可判断D.【详解】令0x y ==,可得()()000000222f f f f ++-⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,可得()()200f f =,解得()00f =或()01f =,当()00f =时,则可得()()0222f x f x x x x x f f ++-⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,则()0f x =,与()f x 不恒为0矛盾,所以()01f =,故A 错误;令y x =-,可得()()()()()()20,f x f x f f x f x f x +-=∴-=,所以()f x 为偶函数,因为()cos 2f x x =是偶函数,所以()f x 的解析式可以为:()cos2f x x =,故B 正确;因为()f x 为偶函数,所以()f x 的图象关于直线0x =对称,所以()1f x -关于直线1x =对称,所以曲线()1f x -为轴对称图形,故C 正确;令2,x k y k =+=,则可得()()2222222f k f k k f f +++⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,所以()()()*221,N f k f k f k k ++=+∈,又()()2022222f f f f +⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,解得()21f =,所以(){}f k 是以()11f =为首项,0为公差的等差数列,所以201()20k f k ==∑,故D 正确.故选:BCD.【点睛】关键点点睛:采用赋值法是解抽象函数的一种有效方法,多领会其思路.第Ⅱ卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.12. 记ABC V 内角A ,B ,C 的对边分别为a ,b ,c .已知()22,3,cos 3b c B C ==+=-,则a =______.【解析】【分析】结合三角形内角和、诱导公式与余弦定理计算即可得解.【详解】由()()2cos cos πcos 3B C B C A ⎡⎤+=-+=-=-⎣⎦,故2cos 3A =,则22222cos 491253a b c bc A =+-=+-⨯=,故a =..13. 已知函数()|ln|2||f x x m =+-,m 为正的常数,则()f x 的零点之和为________.【答案】8-【解析】【分析】根据给定条件,探讨函数的对称性,再结合零点的意义即可求解得答案.【详解】函数()f x 的定义域为{R |2}x x ∈≠-,由()0f x =,得|ln|2||x m +=,令函数()|ln|2||g x x =+,(4)|ln|42|||ln |2||()g x x x g x --=--+=+=,则函数()y g x =图象关于直线2x =-对称,在同一坐标系内作出直线(0)y m m =>与函数()y g x =的图象,如图,直线(0)y m m =>与函数()y g x =的图象有4个交点,令其横坐标从左到右依次为1234,,,x x x x ,观察图象得14234x x x x +=+=-,所以()f x 的零点之和为8-.故答案为:8-14. 若2x =是函数()()213e 22xf x x a x x ⎛⎫=-+-⎪⎝⎭的极大值点,则实数a 的取值范围为________.【答案】2e a <-【解析】【分析】根据函数的导数,对a 分类讨论,再结合()0f x '=的根,分类讨论,分析函数的极大值点即可得出答案.【详解】()()()()()e222e xx f x x a x x a =-+-=-+',当0a ≥时,e 0x a +>,当2x <时,f ′(x )<0,当2x >时,f ′(x )>0,所以()f x 在(),2∞-上单调递减,在()2,∞+上单调递增,所以2x =是函数的极小值点,不符合题意;当0a <时,令()0f x '=,可得()122,ln x x a ==-,若()2ln a <-,即2e a <-时,则2x <时,f ′(x )>0,函数()f x 单调递增,()2ln x a <<-时,f ′(x )<0,函数()f x 单调递减,所以2是函数()()213e 22xf x x a x x ⎛⎫=-+- ⎪⎝⎭的极大值点,符合题意;若()2ln a >-即20e a >>-时,则2x >时,f ′(x )>0,函数()f x 单调递增,()ln 2a x -<<时,f ′(x )<0,函数()f x 单调递减,所以2是函数()()213e 22xf x x a x x ⎛⎫=-+-⎪⎝⎭的极小值点,不符合题意;若()2ln a =-即2e a =-时,则R x ∈时,f ′(x )≥0,函数()f x 单调递增,函数()f x 无极值点,不符合题意.综上,当2e a <-时,2是函数()f x 的极大值点.故答案为:2e a <-【点睛】关键点点睛:首先观察导函数,当0a ≥时,分析函数单调性判断2是否为极大值点,当0a <时,根据()0f x '=的两根大小分类,由导数的正负得函数的单调性,再由单调性判断极大值点是否为2.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 近年来,解放军强军兴军的深刻变化,感召了越来越多的高中优秀青年学子献身国防,投身军营.2024年高考,很多高考毕业学生报考了军事类院校.从某地区内学校的高三年级中随机抽取了900名学生,其中男生500人,女生400人,通过调查,有报考军事类院校意向的男生、女生各100名.(1)完成给出的列联表,并分别估计该地区高三男、女学生有报考军事类院校意向的概率;有报考意向无报考意向合计男学生女学生合计(2)根据小概率值0.10α=的独立性检验,能否认为学生有报考军事类院校的意愿与性别有关.参考公式及数据:()()()()()22,n ad bcn a b c da b c d a c b dχ-==+++ ++++.α0.250.150.100.050.0250.0100.0050.001xα1.3232.072 2.7063.841 5.024 6.6357.87910.828【答案】(1)列联表见解析,男生有报考军事类院校意向的概率为15,女生有报考军事类院校意向的概率为1 4(2)能认为学生有报考军事类院校的意愿与性别有关【解析】【分析】(1)先填写22⨯列联表,再根据古典概型概率计算公式求得正确答案.(2)计算2χ的知识,从而作出判断.【小问1详解】根据已知条件,填写22⨯列联表如下:有报考意向无报考意向合计男学生100400500女学生100300400合计200700900男生有报考军事类院校意向的概率为1001 5005=,女生有报考军事类院校意向的概率为1001 4004=.【小问2详解】()22900100300400100 3.214 2.072200700400500χ⨯-⨯=≈>⨯⨯⨯,所以能认为学生有报考军事类院校的意愿与性别有关.16. 记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c .已知1sin 2a C =,且cos cos 1a C c A +=,(1)求ABC V 的面积;(2)若π4B =,求A .【答案】(1)14; (2)π8或5π8.【解析】【分析】(1)根据给定条件,利用余弦定理及三角形面积公式求解即得.(2)利用正弦定理,结合和角的正弦公式、二倍角公式求解即得.【小问1详解】在ABC V 中,由余弦定理及cos cos 1a C c A +=,得222222122a b c b c a a c ab bc+-+-⋅+⋅=,整理得1b =,而1sin 2a C =,所以ABC V 的面积11sin 24S ba C ==.【小问2详解】由(1)及正弦定理得1πsin sin sin 4a b A B ===a A =,于1sin 2A C =1sin(2π)4A A +=,12cos )A A A +=,即22sin cos 12sin A A A =-,因此sin 2cos 2A A =,即tan 21A =,由3π04A <<,得3π022A <<,解得π24A =或5π24A =,所以π8A =或5π8A =.17. 已知数列{}{},n n a b 满足()1n n n a nb +=,且1n a +是n b 与1n b +的等比中项.(1)若124a a +=,求1b 的值;(2)若12a =,设数列{}{},n n a b 的前n 项和分别为,n n S T .(ⅰ)求数列{}{},n n a b 的通项公式;(ⅱ)求n n T S -.【答案】(1)2(2)(ⅰ)()1n a n n =+,()21n b n =+(ⅱ)()32n n n n T S +-=【解析】【分析】(1)先得112b a =,2232b a =,利用1n a +是n b 与1n b +的等比中项可得;(2)(ⅰ)先求得1n n n b a n+=,利用1n a +是n b 与1n b +的等比中项可得12n n n a a n ++=,由累乘法可得()1n a n n =+,进而可得()21n b n =+;(ⅱ)先得1n n n a b -=+,利用等差数列前n 项和公式可得()32n n T S n n +-=.【小问1详解】由()1n n n a nb +=可得112b a =,2232b a =,由题意可知2a 是1b 与2b 的等比中项,故2212a b b =,可得22123a a a =,即213a a =,又因124a a +=,故11a =,故1122b a ==【小问2详解】(ⅰ)由()1n n n a nb +=得1n n n b a n +=,由题意可得1211121n n n n n n n a a a n n b b ++++++==⋅,得12n n n a a n ++=,故12n n a n a n++=,故()1112211321121n n n n n a a a a n n n n a n n a a a ---=⨯⨯⨯⨯+⨯⨯⨯=+--= ,()211n n n b a n n+==+,故()1n a n n =+,()21n b n =+(ⅱ)()()2111n n b n a n n n =+-=-++,()()1212n n n n T b b b a a a S =+++-++-()()()1122n n b a b a b a =-+-++- ()231n =++++ ()212n n++=()32n n +=18. 已知函数()3221f x x ax a x =+--.(1)当5a =-时,则过点()0,2的曲线()f x 的切线有几条?并写出其中一条切线方程;(2)讨论()f x 的单调性;(3)若()f x 有唯一零点,求实数a 的取值范围.【答案】(1)有3条切线,322y x =-+(2)答案见解析 (3)⎛⎫ ⎪ ⎪⎝⎭【解析】【分析】(1)根据导数的几何意义,设出切点得出切线斜率,列方程组分析解得个数即可;(2)求出导函数,对a 分类讨论即可得出函数单调区间;(3)根据函数的单调性,结合当x →+∞时,()f x →+∞,利用极大值建立不等式求解.【小问1详解】当5a =-时,()325251f x x x x =---,()231025f x x x =--',设切点为()00,x y ,因为切线过点(0,2),所以切线斜率存在,故可设切线方程为2y kx =+,则3200002002525131025kx x x x k x x ⎧+=---⎨=--⎩,化简可得()2200021330x x x --+=,即()()200012330x x x ---=,由2002330x x --=的判别式9240∆=+>知方程有2个不等实根且不为1,故()()200012330x x x ---=有3个不等的实根,所以切线有3条,其中一条切点横坐标为1,故3102532k =--=-,所以切线方程为322y x =-+.【小问2详解】()()()22323f x x ax a x a x a =+-=-+',当0a =时,()230f x x ='≥,所以函数R 上单调递增;当0a >时,3a a -<,所以x a <-或3ax <时,f ′(x )>0,()f x 单调递增,当3aa x -<<时,f ′(x )<0,()f x 单调递减;当0a <时,3aa ->,所以x a >-或3a x <时,f ′(x )>0,()f x 单调递增,当3ax a <<-时,f ′(x )<0,()f x 单调递减;综上,0a =时,()f x 在R 上单调递增,无递减区间;当0a >时,()f x 在(),a ∞--和,3a ∞⎛⎫+ ⎪⎝⎭上单调递增,在,3a a ⎛⎫- ⎪⎝⎭上单调递减;当0a <时,()f x 在,3a ∞⎛⎫- ⎪⎝⎭和(),a ∞-+上单调递增,在,3a a ⎛⎫- ⎪⎝⎭上单调递减.【小问3详解】当0a =时,3()1f x x =-,函数仅有1个零点1;当0a >时,由(2)知,()f x 的极大值为()f a -,且当x →+∞时,()f x →+∞,若()f x 有唯一零点,则333()10f a a a a -=-++-<,解得1a <,故()0,1a ∈,当0a <时,由(2)知,()f x 的极大值为3a f ⎛⎫⎪⎝⎭,同理,若()f x 有唯一零点,则3510327a f a ⎛⎫=--< ⎪⎝⎭,解得a >,故a ⎛⎫∈ ⎪ ⎪⎝⎭,综上,实数a的取值范围⎛⎫⎪ ⎪⎝⎭【点睛】关键点点睛:对于含参数的函数,研究单调区间的关键在于对导函数的特点分析,本题导函数为二次函数,所以分析的重点在于导函数零点的关系,在根据函数有唯一零点求参数的时候,利用函数的极大值点建立不等式是解题关键.19. 已知函数()2ln 3f x x x x a =+-+,()f x 在(]0,1上的最大值为3ln24-.在(1)求实数a 的值;(2)若数列{}n a 满足()1231n n n n a a f a a +=+-,且143a =.(ⅰ)当2,n n ≥∈Z 时,比较n a 与1的大小,并说明理由;(ⅱ)求证:1312nii a=-<∑.【答案】(1)a =2(2)(1)1n a >,理由见详解;(2)证明见详解【解析】【分析】(1)利用导数判断()f x 的单调性求出最大值得解;(2)(i )由已知结合基本不等式可得1ln 12nn na a a +≥+,利用数学归纳法证明1n a >,()2,Z n n ≥∈,(ii )先构造函数()ln 1x x xϕ+=,并利用导数证明()1x ϕ<,从而得到()11112+-<-n n a a ,将所证明的式子放缩求和证明.【小问1详解】()()()121123x x f x x x x--'=+-=Q ,(]0,1x ∈,当102x <<时,10x -<,210x -<,()0f x '∴>,则()f x 在10,2⎛⎫⎪⎝⎭上单调递增,当112x ≤≤时,10x -≤,210x -≥,()0f x '∴≤,则()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,()max 11133ln ln 222424f x f a ⎛⎫∴==+-+=- ⎪⎝⎭,解得2a =所以实数a 的值为2.【小问2详解】(i )由(1)知,()2ln 32f x x x x =+-+,所以212ln 3231n n n n n n a a a a a a +=+-++-,即21ln 12n n n na a a a +++=,212n n a a +≥Q ,1ln 12nn na a a +∴≥+,.下面用数学归纳法证明1n a >,()2,Z n n ≥∈,当2n =时,143a =,1214lnln 3111823a a a ∴≥+=+>,假设()2,Z n k k k =≥∈时,命题成立,则1k a >,当1n k =+时,有1ln 112kk ka a a +≥+>成立,所以上述命题对2,Z n n ≥∈,均有1n a >成立.(ii )当1n =时,13112a -=<成立,当2n ≥时,令()ln 1x x x ϕ+=,则()2ln xx x ϕ-'=,当01x <<时,()0x ϕ'>,当1x >时,()0x ϕ'<,所以()x ϕ在()0,1上单调递增,在()1,+∞上单调递减,则()()11x ϕϕ<=,所以()()21ln 11ln 1112222n n n nn n n n n n a a a a a a a a a a ϕ+⎛⎫++++==+=+< ⎪⎝⎭,即11112n n a a +-<-,又由(i )知1n a >,则()11112+-<-n n a a ,()()()121313111ni n i a a a a =∴-=-+-++-⎡⎤⎣⎦∑L ()121111311222n a -⎡⎤⎛⎫<-++++ ⎪⎢⎥⎝⎭⎣⎦L 111123211322n n -⎛⎫=⨯⨯=- ⎪⎝⎭,102n >Q ,1112n ∴-<,12122n⎛⎫∴-< ⎪⎝⎭,即1312ni i a =-<∑,得证.【点睛】关键点点睛:本题最后小问证明的关键是构造函数()ln 1x x xϕ+=,并利用导数证明()1x ϕ<,从而得到()11112+-<-n n a a .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绵阳市高2013级第一次诊断性考试数学(理)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.BCBCC AADDB AB二、填空题:本大题共4小题,每小题4分,共16分.13.-414.215.450233πππ⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦,,16.①③ 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.解:(Ⅰ)f (x )=a ·b =(cos2x ,1)·(1x )sin2x+ cos2x =2 sin(2x+6π), ……………………………………………6分 ∴ 最小正周期22T ππ==, 令2x+6π=2k ππ+,k ∈Z ,解得x=26k ππ+,k ∈Z ,即f (x )的对称轴方程为x=26k ππ+,k ∈Z .…………………………………8分(Ⅱ)当x ∈[0,2π]时,即0≤x ≤2π,可得6π≤2x+6π≤76π,∴ 当2x+6π=2π,即x=6π时,f (x )取得最大值f (6π)=2;当2x+6π=76π,即x=2π时,f (x )取得最小值f (2π)=-1.即f (x ) 的值域为[-1,2].……………………………………………………12分 18.解:(Ⅰ)由S 3+S 5=58,得3a 1+3d +5a 1+10d=8a 1+13d =58, ①∵ a 1,a 3,a 7成等比数列,a 32=a 1a 7, 即(a 1+2d )2=a 1(a 1+6d ),整理得a 1=2d , 代入①得d =2, a 1=4,∴ a n =2n+2. …………………………………………………………………6分 (Ⅱ)由(Ⅰ)知a 8=18,b 5·b 6+b 4·b 7=2b 5·b 6=18,解得b 5·b 6=9. ∵ T 10= log 3b 1+log 3b 2+ log 3b 3+…+ log 3b 10=log 3(b 1·b 10) + log 3(b 2·b 9) +…+ log 3(b 5·b 6) =5log 3(b 5·b 6)=5log 39=10. ……………………………………………………………………12分19.解:(Ⅰ)由已知y = f (x )是二次函数,且f (x )<0的解集是(0,5),可得f (x )=0的两根为0,5, 于是设二次函数f (x )=ax (x -5),代入点(1,-4),得-4=a×1×(1-5),解得a =1,∴ f (x )=x (x -5). ………………………………………………………………4分(Ⅱ)h (x )=2f (x )+g (x )=2x (x -5)+x 3-(4k -10)x +5=x 3+2x 2-4kx +5, 于是2()344h x x x k '=+-,∵ h (x )在[-4,-2]上单调递增,在[-2,0]上单调递减, ∴ x =-2是h (x )的极大值点,∴ 2(2)3(2)4(2)40h k '-=⨯-+⨯--=,解得k=1. …………………………6分 ∴ h (x )=x 3+2x 2-4x +5,进而得2()344h x x x '=+-.令22()3443(2)()03h x x x x x '=+-=+-=,得12223x x =-=,.由下表:可知:h (-2)=(-2)3+2×(-2)2-4×(-2)+5=13,h (1)=13+2×12 -4×1+5=4,h (-3)=(-3)3+2×(-3)2-4×(-3)+5=8,h (23)=(23)3+2×(23)2-4×23+5=9527,∴ h (x )的最大值为13,最小值为9527.……………………………………12分20.解:(Ⅰ)∵a sin A =(a -b )sin B +c sin C ,结合0C π<<,得3C =. …………………………………………………6分 (Ⅱ)由 C =π-(A +B ),得sin C =sin(B +A )=sin B cos A +cos B sin A , ∵ sin C +sin(B -A )=3sin2A ,∴ sin B cos A +cos B sin A +sin B cos A -cos B sin A =6sin A cos A ,整理得sin B cos A =3sin A cos A . ………………………………………………8分 若cos A =0,即A =2π时,△ABC 是直角三角形,且B =6π,于是b =c tan B =2tan6π S △ABC =12bc . ……………………10分 若cos A ≠0,则sin B =3sin A ,由正弦定理得b =3a .②联立①②,结合c =2,解得a b∴ S △ABC =12ab sin C =12×综上,△ABC 12分 21.解:(Ⅰ)当t=1时,2a n -2=0,得a n =1,于是数列{a n }为首项和公比均为1的等比数列. ……………………………1分 当t ≠1时,由题设知(t -1)S 1=2ta 1-t -1,解得a 1=1, 由(t -1)S n =2ta n -t -1,得(t -1)S n+1=2ta n+1-t -1, 两式相减得(t -1)a n +1=2ta n +1-2ta n , , ∴121n n a ta t +=+(常数). ∴ 数列{a n }是以1为首项,21tt +为公比的等比数列.………………………4分 (Ⅱ)∵ q = f (t )=21tt +,b 1=a 1=1,b n +1=21f (b n )= 1n nb b +,∴11111n n n nb b b b ++==+, ∴ 数列1n b ⎧⎫⎨⎬⎩⎭是以1为首项,1为公差的等差数列,于是1n n b =,∴ 1n b n=.………………………………………………………………………8分 (III )当t =13时,由(I )知a n =11()2n -,于是数列{c n }为:1,-1,12,2,2,21()2,-3,-3,-3,31()2,…设数列{a n }的第k 项是数列{c n }的第m k 项,即a k =k m c , 当k ≥2时,m k =k +[1+2+3+…+(k -1)]=(1)2k k +, ∴ m 62=626319532⨯=,m 63=636420162⨯=.设S n 表示数列{c n }的前n 项和,则S 2016=[1+12+21()2+…+621()2]+[-1+(-1)2×2×2+(-1)3×3×3+…+(-1)62×62×62] 显然 1+12+21()2+…+621()2=636211()1221212-=--, ∵ (2n )2-(2n -1)2=4n -1,∴ -1+(-1)2×2×2+(-1)3×3×3+…+(-1)62×62×62 =-1+22-32+42-52+62-…-612+622=(2+1)(2-1)+(4+3)(4-3)+(6+5)(6-5)+…+(62+61)(62-61) =3+7+11+…+123=31(3123)2⨯+=1953.∴ S 2016=62122-+1953=1955-6212.∴ S 2012=S 2016-(c 2016+c 2015+c 2014+c 2013)=1955-6212-(6212+62+62+62) =1769-6112.即数列{c n }的前2012项之和为1769-6112.…………………………………12分 22.解:(Ⅰ)由已知:1()f x a x'=-, ∴由题知11(2)22f a '=-=-,解得a =1. 于是11()1xf x x x-'=-=,当x ∈(0,1)时,()0f x '>,f (x )为增函数,当x ∈(1,+∞)时,()0f x '<,f (x )为减函数,即f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). ……5分 (Ⅱ)由(Ⅰ)∀x 1∈(0,+∞),f (x 1) ≤f (1)=0,即f (x 1)的最大值为0, 由题知:对∀x 1∈(0,+∞),∃x 2∈(-∞,0)使得f (x 1)≤g (x 2)成立, 只须f (x )max ≤g (x )max .∵ 22()x kx k g x x ++=2k x k x =++2k x k x ⎛⎫=--++ ⎪-⎝⎭≤2k -,∴ 只须k k 22+-≥0,解得k ≥1.………………………………………10分(Ⅲ)要证明2222ln 2ln3ln 21234(1)n n n n n --+++<+ (n ∈N*,n ≥2).只须证22222ln 22ln32ln 21232(1)n n n n n --+++<+ ,只须证2222222ln 2ln3ln 21232(1)n n n n n --+++<+ .由(Ⅰ)当()1x ∈+∞,时,()0f x '<,f (x )为减函数, f (x )=ln x -x +1≤0,即ln x ≤x -1, ∴ 当n ≥2时,22ln 1n n <-,22222ln 11111111(1)1n n n n n n n n n -<=-<-=-+++, 222222ln 2ln3ln 23n n +++ <111221⎛⎫-++ ⎪+⎝⎭111331⎛⎫-++ ⎪+⎝⎭1111n n ⎛⎫⋅⋅⋅+-+ ⎪+⎝⎭211211212(1)n n n n n --=--+=++,∴ 2222ln 2ln3ln 21234(1)n n n n n --+++<+ .………………………………………14分。