浙教版初中数学七年级上册有理数的乘方及混合运算(提高)知识讲解
浙教版新初一数学第6讲-有理数的乘方与混合运算
学生姓名张逸、吴宇鑫年级初一任课教师王康课题有理数的乘方与混合运算教学目标1.理解有理数乘方的概念,掌握有理数乘方的运算;2.掌握有理数的混合运算顺序;3.理解科学计数法、近似数与有效数字的意义.重点、难点重点:有理数乘方的意义及其运算. 难点:理解幂、底数、指数的概念.考点及考试要求1.有理数乘方的意义及其运算.2.科学计数法、近似数和有效数字.教学内容授课时间:2014年7月12日授课时段:8:00—9:40授课阶段:第一阶段第6次1.乘方的意义求n 个相同因数的积的运算,叫做乘方.即把=n n a a a a ⨯⨯⨯个,乘方的结果叫做幂,在n a 中,a叫做底数,n 叫做指数.读作a 的n 次方或a 的n 次幂.注意:(1)乘方是一种运算;(2)因数相同;(3)积的运算;(4)分数乘方时,应将分数用括号括起来,如,要注意与式的不同,因此,当底数是分数时,这个分数一定要加括号,不加括号的底数不是分数乘方.计算带分数的乘方一般应化为假分数.4)5(-与45-的区别:(1)读法上的区别:4)5(-读作5-的4次方;45-读作5的4次方的相反数,或负的5的4次方;(2)结果的区别:4)5(-=625,而62554-=-;(3)底数不同:4)5(-的底数是5-,而45-的底数是5.2. 乘方运算的符号规律(1)负数的奇次幂是负数,负数的偶次幂是正数;(2)正数的任何次幂都是正数,0的任何(除0外)次幂都是0;(3)0的0次幂没有意义.3. 有理数的混合运算顺序做有理数的混合运算时,应注意以下运算顺序:(1)先乘方,再乘除,最后做加减;(2)同级运算,从左到右进行;(3)如果有括号,先做括号内的运算,按小括号、中括号、大括号的顺序进行运算.4. 大于10的数的科学记数法(1)科学记数法:把一个大于10的数写成n a 10⨯的形式(其中a 是整数位数只有一位的数,n 是正整数),这种记数的方法就是科学记数法.(2)用科学记数法时应注意:①不能改变原数的大小;②表示成n a 10⨯的形式;③10||1<≤a 且n 是正整数;④负数也可以用科学记数法表示,“-”照写,其它与正数一样.5. 近似数与有效数字:(1)近似数:在实际问题中由四舍五入得到的数或大约估计的数都是近似数.取近似数,应看要求精确到的数位的下一位数字,然后按四舍五入的总原则取近似值,而不看其它数位上的数.如:2.598精确到十分位是2.6.(2)精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位.精确度是指精确程度,如9.45精确到百分位,那么百分位就是精确度.精确度表示方式有两种:精确到哪一位或保留几个有效数字.(3)有效数字:从一个数左边第一个非0数字起,到四舍五入那个数字止,所有数字都是这个数的有效数字.说明:从左起第一个不是零的数字左边的零不是有效数字,而从这个数往右的零不论在中间还是末尾都是有效数字如:0.0250有三个有效数字2,5,0.确定有效数字应注意:(1)有效数字是指从左起第一个不是零的数字起,到精确到的数位止的所有数字.(2)以(科学记数法)形式写成的数的有效数字与数的有效数字完全相同.如:有2个有效数字:2,5.例1.计算(1)(2)(3)(4)(5)(6)例2. 计算(1)(2)例3. 下列由四舍五入得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)0.040(2)20.05000(3)9.03万(4)1.8亿(5)6.40×105例4.用四舍五入法,按括号里的要求对下列各数取近似值.(1)1.5982(精确到0.01)(2)0.03049(保留两个有效数字)(3)3.3074(精确到个位)(4)81.661(保留三个有效数字)【随堂练习】一、选择1.如果一个有理数的平方等于(-2)2,那么这个有理数等于()A.-2 B.2 C.4D.2或-22.一个数的立方是它本身,那么这个数是()A.0 B.0或1 C.-1或1D.0或1或-13.如果一个有理数的正偶次幂是非负数,那么这个数是()A.正数B.负数C.非负数D.任何有理数4.-24×(-22)×(-2) 3=()A.29B.-29C.-224D.2245.两个有理数互为相反数,那么它们的n次幂的值()A.相等B.不相等C.绝对值相等D.没有任何关系6.一个有理数的平方是正数,则这个数的立方是()A.正数B.负数C.正数或负数D.奇数+(-1)2003的值等于()7.(-1)2001+(-1)2002÷1A.0 B.1 C.-1D.2二、填空1.=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫ ⎝⎛-343 ,=-433 . 2.()372⋅-,()472⋅-,的大小关系用“<”号连接可表示为 . 3.如果44a a -=,那么a 是 .4.()()()()=----20022001433221 .三、计算1.--------1052313231805432(.)[()]|.|÷2.[()()]121243811634453-+--×÷3.-+---31203133122232003×÷×÷..()()()4.-17+17÷(-1)17-52×(-0.2)35.[()][()()]135********22×÷×---四、把下列各数用科学记数法表示1.679000 2.30000 3.113.2 4.61083.0⨯ 5.06.987-【课后同步作业】一.选择题1.118表示( )A .11个8连乘B .11乘以8C .8个11连乘D .8个别1相加2.-32的值是( )A .-9B .9C .-6D .63.下列各对数中,数值相等的是( ) ()572⋅-A . -32 与 -23B .-23 与 (-2)3C .-32 与 (-3)2D .(-3×2)2与-3×224.下列说法中正确的是( )A .23表示2×3的积B .任何一个有理数的偶次幂是正数C .-32 与 (-3)2互为相反数D .一个数的平方是94,这个数一定是32 5.下列各式运算结果为正数的是( )A .-24×5B .(1-2)×5C .(1-24)×5D .1-(3×5)66. 由四舍五入得到的近似数0.600的有效数字是 ( )A . 1个B . 2个C . 3个D . 4个 二、填空题 1.(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫ ⎝⎛-的底数是 ,指数是 ,结果是 .2.平方等于641的数是 ,立方等于641的数是 . 3.一个数的15次幂是负数,那么这个数的2003次幂是 .4.平方等于它本身的数是 ,立方等于它本身的数是 .5. 用四舍五入法取近似值,0.01249精确到0.001的近似数是_________,保留三个有效数字的近似数是___________.三.计算1.; 2.;3.4.5.6.。
新浙教版七年级数学上册2.5有理数的乘方(1) 讲学稿
新浙教版七年级数学上册2.5有理数的乘方(1)讲学稿教学目标:1、理解有理数乘方的意义;2、掌握有理数乘方运算;3、经历探索有理数乘方的运算,获得解决问题经验.教学重点:正确理解乘方的意义,掌握乘方运算法则.教学难点:正确理解乘方、底数、指数的概念并合理运算关键:弄清底数、指数、幂等概念,注意区别n a-与()n a-的意义教学过程:一、学前准备:1、手工活动:一张0.1毫米厚的纸片对折50次后与珠穆朗玛峰(高8844.43米)哪个高?2、见过拉面吗?0用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再.想想看,捏合次后,就可以拉出32根面条.3、边长为a的正方形的面积是 ,棱长为a的正方体的体积是 .4、计算:(1)2×2×2×2×2×2=_________(2)(-3)×(-3)×(-3)×(-3)=__________(3)21×21×21×21×21=________(4))32(-×)32(-×)32(-×)32(-=________(5)0.1×0.1×0.1×0.1=__________二、合作交流,探究新知:(一)乘方、底数、指数、幂的意义:①叫,aaaa⨯⨯⋅⋅⋅⨯⨯可记为_ __在式子n a中,a叫做,n叫做.如:②式子n a表示的意义是③从运算上看式子n a,可以读作,从结果上看式子n a,可以读作 . 特别地,一个数可以看着这个数本身的一次方.如3就是31,指数1通常省略不写.练习:1、口答:②2)2(-的底数是 ,指数是 ;读作 ,或 ③3)21(- 的底数是 ,指数是 ;读作 ,或 ④ 把5看成幂的话,底数是 , 指数是 ,可读作2、填空:把下列式子写成幂的形式:(1)(-3)×(-3)×(-3)×(-3)=(2)-3×3×3×3 =(3) 222333⨯⨯= (4)2223⨯⨯= 注意:当负数或分数作为底数时,负数或分数应加括号,以便区别.3、算一算:()44-与44-,332⎪⎭⎫ ⎝⎛-与332-. 解:()=-44 = ;=-44 = .=⎪⎭⎫ ⎝⎛-332 = ;=-332 = .三、新知应用例1:(1)23 (2)35.1 (3)()23-(4)()33- (5)()111- (5)5我发现幂的符号规律:(1)0的任何正整数次幂都是 .(2)正数的任何次幂都是 数.(3)负数的偶次幂是 数;负数的奇次幂是 数.试一试:不计算下列各式的值,确定幂的符号()112-符号为 ,()122-符号为 ,112符号为 ,122符号为 ,我发现:进行有理数的混合运算时,应注意以下运算顺序:(1)先 ,再 ,最后(2)同级运算,从 到 进行运算.(3)如有括号,先做括号里面的运算,按 依次进行.四、这节课我的收获1、2、 3、五、巩固练习:1.在(-2)6中,指数为,底数为 .(—43)4中,底数是____,指数是____,读作____,意义: ___.2.在-26中,指数为 ,底数为 .3.若a 2=16,则a = .4.①—2的平方等于 ;—2的立方等于 .②平方是25的数是 ,立方是64的数是 .③平方等于本身的数为 ,立方等于本身的数为 .5.在(-2)5,(-3)5,(-21)5,(-31)5中,最大的数是.6.下列说法正确的是( ) A .平方得9的数是3 B .平方得-9的数是-3C .一个数的平方只能是正数D .一个数的平方不能是负数7.下列运算正确的是( )A .-24=16B .-(-2)2=-4C .(-31)2=-91D .(-21)2=-41 8.下列各组数中,不相等的是( )A .(-3)2与-32B .(-3)2与32C .(-2)3与-23D .3322--与能力提升:1. 计算:(考虑运算顺序) (1)-324(2)-22×(-3)2 (3)-22+(-3)22. 如果(a —2)2+|b+3|=0,那么b a = .3. —(—2)2、—(—22)、—22、(—2)2、—|—2|2、(—2)n2(n 是正整数)这6个数中,负数有( )A. 1个B. 2个C. 3个D. 4个4. 观察一列数:—2,4,—8,16,—32,64,…指出这一列数的规律.六、教学反思:。
浙教版七年级(上册)数学知识点复习资料全
数轴上一点a到原点的距离表示a的绝对值。
绝对值的性质:
(1) 正数的绝对值是其本身, 0的绝对值是0, 负数的绝对值 是它的相反数
(2) 绝对值可表示为:
或
绝对值的问题经常分类讨论;
(3)
5.有理数大小的概念:
(1)正数的绝对值越大, 这个数越大;
(2)正数永远比0大, 负数永远比0小;
(2)常数项: 多项式中,不含字母的项叫做常数项.
(3)多项式次数: 多项式里,次数最高的项的次数,就是这个多项式的次数.
4.整式:
单项式和多项式统称整式。
5.同类项:
所含字母相同,并且相同字母的次数也相同的项,叫做同类项. 常数项都是同类项。
合并同类项法则: 同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
(3)整式的加减运算可归结为去括号和合并同类项。
7、常用的关系:
奇数2n-1或2n+1;偶数2n;三个连续的整数一般写作n-1, n, n+1;三个连续的偶数一般写作2n-2, 2n, 2n+2;三个连续的奇数一般写作2n-1, 2n+1, 2n+3
练习题
1.已知
与
是同类项, 则
A. 4 B. 37 C. 2或4 D. 2
A
B
4、下列说法,正确是( ) A、零是最小的自然数 B、零是最小的正整数 C、零是最小的有理数 D.零既是负数又是正数
A
1、下列各对数中,互为相反数是( ) A.2和
C.
和2 D.
和
D
5、火车上的车次号有两个意义,一是数字越小表示车速越快,1∽98次为特快列车,101∽198次为直快列车,301∽398次为普快列车,401∽498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京方向.根据以上规定,杭州开往北京的某一直快列车的车次号可能是( ) A、20 B、119 C、120 D.319
浙教版度七年级数学上册第2章有理数的运算26有理数的混合运算(知识清单经典例题夯实基础提优特训中考链
浙江版2019-2020学年度七年级数学上册第2章有理数的运算有理数的混合运算(有详解) 【知识清单】有理数混合运算法则:1.有理数的运算中,运算顺序的确定很关键.如异号两数相加,取绝对值较大的符号;两数相乘(或相除),同号得正,异号得负;一个负数的奇次幂的符号为负,偶次幂符号为正.2.有理数混合运算中,先算乘方,再算乘除,最后算加减,有括号的,先算括号里面的. 【经典例题】例题1、计算:(1)3)31(31)3(⨯-÷⨯-;(2)[]22018)4(51171----【考点】有理数的混合运算. 【分析】先确定运算顺序,再计算. 【解答】(1)原式=33313⨯⨯⨯=9; (2)原式=[]1651171--- =)11(1171-⨯-- =-1+7=6.【点评】(1)有理数的混合运算的顺序:先算乘方,再算乘除,最后算加减;有括号的,先算括号里面的;(2)在进行有理数的混合运算时,要抓住两点:一是明确运算顺序;二是确定运算结果的符号.例题2、“二十四点游戏”的规则为:给出4个数字,所给数字均为有理数,用加、减、乘、除(可加括号)把给出的数计算成结果为24.每个数必须用一次且只能用一次.若某位同学抽出的4个数为3,4,-6,-10,请你运用“二十四点游戏”规则,帮他写出三种不同的算式,使其结果等于24.【考点】有理数的混合运算.【分析】“二十四点游戏”注意运算顺序与运算符号,以及题目的要求. 【解答】(1) 3×{4+[(-6)-(-10)]}=3×8=24; (2) (-6)×(-10)÷3+4=24; (3) 4×[(-6)÷3-(-10)]=24.【点评】本题考查了有理数的混合运算,并利用数字做载体,增加了计算的趣味性. 【夯实基础】1、如果四个有理数之和的41是5,其中三个数是-17,-9,11,那么第四个数是 ( ) A .20 B .-5 C .46 D .352、计算-32-2的结果是( )A .7B .-11C .-7D .1 3、下列各式中,最后结果等于0的是( )A .-32-32B .-14+)33(612- C .13-1÷51×5 D .-33+(-3)34、若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算!2019!2018的结果是 ( ).A .2018B .2019C .20191 D .201815、七年级“数学晚会”上,有六个同学分别藏在下图中的6个大盾牌后,规定女生只能藏在负数后面,男生只能藏在正数后面,则盾牌后的男生共有________人,女生共有________人.6、如果n 为奇数,那么[])3216()2(214.3-÷-+⨯-n n 7、若a 2=(-2)2,则a 8、计算:(1) 24-(-3)2×5-(-2)3÷4; (2) -(-10)2-11×31÷31×(-11); (3) 52-56÷(-2)2411212321--)÷)125(-; (4) -14- (1-0.5) ×141×[]2)3(2--. 9、一件大衣第一次降价15%无人问津,再降价20%就有人买走,最后实际售价680元,已知进价是原标价的40%,卖这件大衣能赚多少元? 【提优特训】10、设a =-22×3,b =(-2×3)2,c =-(2×3)2 ,则a 、b 、c 的大小关系是( )A .a <c <bB .b < a < cC .b < a < cD .c < a <b 11、-242)23(94-⨯÷等于( ) A .-16 B .-81 C .16 D .81 12、若a 、b 互为倒数,a 、c 是互为相反数,且3=d ,则式子d 2- d (3ab c a ++)2的值为( )A .8179 B .8183 C. 8179或8183 D13、若a ,b ,c 为整数,且1201999=-+-ac b a ,则a c c b b a -+-+-的值为 ( )A .0B .1C .2D .4 14、若a -b =-5,则3(b -a )2-5(a -b )-10= . 15、若(3a +12)2+026=-b ,则-a b 的值为 .16、某工厂一台机床价值为10万元,第一年的折扣率为20%,第二年后每年的折旧率为10%,那么这台机床使用1年后价值为多少万元?使用3年后呢?17、按如图所示的程序计算,若开始输入的x 的值为48,我们发现第一次得到的结果为24,第二次得到的结果为12,…, 请你探索第2021次输出的结果.18、已知a 、b 是有理数,如果定义一种新运算a △b =a 2+b 2+3ab ,如2△3=22+32+3×2×3=31,根据以上的运算规律完成下列各题:(1)-4△5;(2)(1△5)△(-3). 19、阅读下面解题过程,然后回答问题:计算:-26÷2)21()411(31-⨯⎥⎦⎤⎢⎣⎡+--解:-26÷2)21()411(31-⨯⎥⎦⎤⎢⎣⎡+--=-26÷41)41131(⨯++ (第一步) =-26÷411219⨯ (第二步) =-26411912⨯⨯ (第三步) =-1978. 上述解题过程是否有错误?若有错误,请你指出错在第几步并予以更正. 20、计算: (1))20202019202032020220201()434241()3231(21+⋅⋅⋅++++⋅⋅⋅++++++; (3) 1+20193211432113211211+⋅⋅⋅++++⋅⋅⋅+++++++++. 【中考链接】22、(2019,山东淄博,4分)与下面科学计算器的按键顺序: 对应的计算任务是( ) A .0.6×56+124 B .0.6×65+124 C .0.6×5÷6+412D .0.6×56+412第17题图23、(2019•山东省滨州市 •3分)下列各数中,负数是( )A .-(-2)B .-|-2|C .(-2)2D .(-2)024、(2018•宜昌)计算4+(-2)2×5=( )A .-16B .16C .20D .2425、(2018•湖州)计算:(-6)2×(2131-). 参考答案1、D2、B3、B4、C5、46、0 10、D 11、B 12、C 13、C 14、90 15、64 22、B 23、B 24、D 8、计算:(1) 24-(-3)2×5-(-2)3÷4; 解: (1)原式=16-9×5-(-8) ÷4 =16-45+2=-27;(2) -(-10)2-11×31÷31×(-11); 解: (2)原式=-100-11×31×3×(-11) =-100+121=21; (3) 52-56÷(-2)2411212321--)÷)125(-;解: (3)原式=25-56÷4×714525--)×)512(- =25-4-4+6+3=26; (4) -14- (1-0.5) ×141×[]2)3(2--. 解: (4)原式=-1×141×)92(- =-1×141×)7(- =-1+41=43-. 9、一件大衣第一次降价15%无人问津,再降价20%就有人买走,最后实际售价680元,已知进价是原标价的40%,卖这件大衣能赚多少元? 解:原价 680÷(1-20%)÷(1-15%)=680÷0.8÷0.85=1000元 进价 1000×40%=400元 赚了680-400=280元16、某工厂一台机床价值为10万元,第一年的折扣率为20%,第二年后每年的折旧率为10%,那么这台机床使用1年后价值为多少万元?使用3年后呢? 解:1年后为10×(1-20%)=8万元, 3年后为10×(1-20%0×(1-10%)×(1-万元.17、按如图所示的程序计算,若开始输入的x 的值为48,我们发现第一次得到的结果为24, 第二次得到的结果为12,…,请你探索第2021次输出的结果. 探索:根据图示的程序可得,48→24→12→6→3→10→5→12→6→3→10→5→12…, 从上面的结果,可以知每5次一循环,将2018扣除三次, 因为前面有48→24→12三次计算, 所以2018÷5=403余3, 所以第2019次就是10.18、已知a 、b 是有理数,如果定义一种新运算a △b =a 2+b 2+3ab ,如2△3=22+32+3×2×3=31,根据以上的运算规律完成下列各题:(1)-4△5;(2)(1△5)△(-3). 解:(1)-4△5=(-4)2+52+3×(-4)×5 =16+25-60=-19; (2)(1△2)=12+22+3×1×2=11 11△(-3)=112+(-3)2+3×11×(-3) =121+9-99=31.19、阅读下面解题过程,然后回答问题:计算:-26÷2)21()411(31-⨯⎥⎦⎤⎢⎣⎡+--解:-26÷2)21()411(31-⨯⎥⎦⎤⎢⎣⎡+--=-26÷41)41131(⨯++ (第一步) =-26÷411219⨯ (第二步) =-26411912⨯⨯ (第三步) =-1978. 上述解题过程是否有错误?若有错误,请你指出错在第几步并予以更正.错在第一步,错误的原因是:去掉括号,括号前面是负号,括号内的各项都变号!第17题图更正如下:解:-26÷2)21()411(31-⨯⎥⎦⎤⎢⎣⎡+--=-26÷41)43(31(⨯⎥⎦⎤⎢⎣⎡--=-26÷41)4331(⨯+ =-26÷411213⨯ =-26411312⨯⨯ =-6. 20、计算: (1))20202019202032020220201()434241()3231(21+⋅⋅⋅++++⋅⋅⋅++++++; (3) 1+20193211432113211211+⋅⋅⋅++++⋅⋅⋅+++++++++. 解:(1)原式=22019232221+⋅⋅⋅+++=222019)20191(⨯⨯+=505×2019; =2017+2018-(4⨯2016÷4) =2017+2018-2016 =2019; (3) 原式=1+2020201921016131⨯+⋅⋅⋅+++ =1+20202019220212262⨯+⋅⋅⋅+++ =1+2)20202019120112161(⨯+⋅⋅⋅+++⨯ =1+2)2020120191514141313121(-+⋅⋅⋅+-+-+-⨯ =1+2)2020121(-⨯ =1+)101011(- =110101009. 25、(2018•湖州)计算:(-6)2×(2131-).【分析】原式先计算乘方运算,再利用乘法分配律计算即可求出值. 【解答】解:原式=36×(21-31)=18-12=6.。
浙教版七年级上册数学.1有理数的乘方课件
• (1)二进制中的1011相当于十进制中的多少?
• (2)二进制中的什么数相当于十进制中的8?
• 解:(1)1011=1×23+0×22+1×21+1=11,即二进制中的1011相当于 十进制中的11.
• (2)8=23=0+0×21+0×22+1×23,即二进制中的1000相当于十进制中 的8.
• C.-2乘5 D.25的相反数
• 4.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马 有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装 着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数 为( C )
• A.42 B.49
• C.76 D.77
6
5.在-233 中,指数是___3_____,底数是_-__23_____,其结果是__-__2_87___,它表 示____3____个__-__23____相乘.
次方”. • (2)有理数乘方的符号法则: • ①正数的任何次幂是正数,负数的奇数次幂是负数,负数的偶数次幂
是正数. • ②0的任何正整数次幂是0,00没有意义. • 注意:(1)一个数可以看作这个数本身的一次方,如5就是51,指数1通
常省略不写. • (2)当幂的底数是负数或分数时,底数应该添上括号.
9
能力提升
• 11.你吃过“拉面”吗?如果把一个面团拉开,然后对折,再拉开,再 对折,如此反复做下去,对折10次拉出的面条是( D )
• A.20根 B.10根 • C.100根 D.1024根
• 12.定义一种新的运算:a&b=ab,如2&3=23=8,那么(3&2)&2=___8_1____.
浙教版七上2.6有理数的混合运算
复杂混合运算示例
计算 (-5) × (-4) + 3 - (-2)^2:先进行乘方运算,再进 行乘法运算,最后进行加减运算。
计算 (-8) × [(-3) + (-5)]:先进行括号内的加法运算, 再进行乘法运算。
(-5) × (-4) + 3 - (-2)^2 = 20 + 3 - 4 = 19 (-8) × [(-3) + (-5)] = -8 × (-8) = 64
学习目标
01
02
03
04
掌握有理数的混合运算 顺序,理解先乘除后加 减的原则。
学会处理带有括号的运 算式,掌握去括号法则。
理解有理数乘方的概念, 掌握乘方运算的技巧。
通过实际问题的解决, 提高数学应用能力和解 决问题的能力。
02 有理数的混合运算概述
有理数混合运算的定义
有理数混合运算是将加减乘除等基本 运算结合在一起进行的运算,包括加 法、减法、乘法、除法以及这些运算 的组合。
基础练习题
总结词
掌握基本概念和运算规则
详细描述
基础练习题主要涉及有理数混合运算的基本概念和运算规则,包括加法、减法、乘法、除法以及加减 乘除的混合运算。通过这些练习,学生可以加深对有理数混合运算的理解,掌握基本的运算技巧。
进阶练习题
总结词
提高运算能力和思维灵活性
详细描述
进阶练习题在难度上有所提升,题目设计更加灵活,需要学生运用所学知识解决较为复杂的有理数混合运算问题。 通过这些练习,学生可以提高自己的运算能力和思维灵活性,加深对有理数混合运算的理解和应用。
实际应用示例
一家商店在某月的营业额为负增长, 具体为下降了$5%$,即下降了 $10000$元。求该月的营业额。
七年级上册 专题04 有理数的乘方及混合运算(知识点串讲)(教师版含解析)
专题04 有理数的乘方及混合运算知识网络重难突破知识点一有理数的乘方1.乘方:求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂,在n a中,a叫做底数,n叫做指数.2. 乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0【典例1】(2019秋•瑞安市校级月考)下面各式中,计算正确的是()A.﹣22=4 B.(﹣2)2=4 C.(﹣3)2=6 D.(﹣1)3=﹣3【点拨】根据乘方的运算法则计算即可.【解析】解:A.﹣22=﹣4≠4,故该选项错误;B.(﹣2)2=4,故该选项正确;C.(﹣3)2=9≠6,故该选项错误;D.(﹣1)3=﹣1≠﹣3,故该选项错误;故选:B.【点睛】本题考查了有理数的乘方,熟记乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0,是解题的关键.【变式训练】1.(2019秋•拱墅区校级月考)下列各组数中,相等的一组是()A.(﹣2)2和|﹣2|2B.(﹣3)4和﹣34C.(﹣4)3和|﹣4|3D.(﹣3)4和﹣(﹣3)4【点拨】根据乘方的定义和绝对值的性质逐一计算即可判断.【解析】解:A、(﹣2)2=4、|﹣2|2=4,故此选项正确;B、(﹣3)4=81、﹣34=﹣81,故此选项错误;C、(﹣4)3=﹣64、|﹣4|3=64,此选项错误;D、(﹣3)4=81、﹣(﹣3)4=﹣81,此选项错误;故选:A.【点睛】本题主要考查有理数的乘方,解题的关键是熟练掌握有理数乘方的定义和绝对值的性质.2.(2019秋•永定区期中)一个有理数的平方等于它本身,那么这个有理数是() A.0 B.1 C.±1 D.0或1【点拨】直接利用有理数的乘方运算法则得出答案.【解析】解:∵一个有理数的平方等于它本身,∴这个有理数是:0或1.故选:D.【点睛】此题主要考查了有理数的乘方运算,正确掌握相关运算法则是解题关键.3.(2019春•西湖区校级月考)下列说法中正确的是()A.﹣a n和(﹣a)n一定是互为相反数B.当n为奇数时,﹣a n和(﹣a)n相等C.当n为偶数时,﹣a n和(﹣a)n相等D.﹣a n和(﹣a)n一定不相等【点拨】根据有理数的乘方的定义,分n是奇数和偶数两种情况讨论求解即可.【解析】解:当n为奇数时,﹣a n和(﹣a)n相等,当n为偶数时,﹣a n和(﹣a)n一定互为相反数.故选:B.【点睛】本题考查了有理数的乘方,难点在于分n是偶数和奇数讨论.知识点二科学记数法1.把一个数表示成a×10n(1≤|a|<10,n为整数)的形式叫做科学记数法..2.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【典例2】(2019秋•诸暨市期中)在今年的十一黄金周期间,五泄景区共接待海内外游客约11.2万人次,则数据11.2万用科学记数法可表示为()A.11.2×104B.11.2×105C.1.12×104D.1.12×105【点拨】先还原成112000,再用科学记数法表示出来即可.【解析】解:11.2万=112000=1.12×105,故选:D.【点睛】本题考查了科学记数法,知道任何绝对值大于10的数都可以表示成a×10n的形式(1≤a<10,n为正整数)是解此题的关键.【变式训练】1.(2019秋•南浔区期中)据统计,2019年十一期间,湖州市共接待国内外游客约585万人次,数据585万用科学记数法表示为()A.5.85×105B.5.85×106C.0.585×107D.585×106【点拨】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解析】解:585万=5850000=5.85×106,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.2.(2019秋•富阳区期中)计算机的计算速度为每秒384000000000次,这个速度用科学记数法表示为每秒()A.384×109次B.38.4×1010次C.3.84×1011次D.0.384×1012次【点拨】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解析】解:384000000000用科学记数法表示为:3.84×1011.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(2016•富阳市模拟)﹣4.5×10﹣5表示()A.﹣000045 B.﹣0.000045 C.﹣450000 D.﹣45000【点拨】根据将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n 位所得到的数.【解析】解:﹣4.5×10﹣5表示﹣0.000045,故选:B.【点睛】本题考查写出用科学记数法表示的原数,将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.知识点三近似数1.准确数与近似数:与实际完全符合的数称为准确数;与实际接近的数称为近似数.2.一个近似数的精确度可用四舍五入法表述.一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位. 【典例3】(2018秋•桥西区期末)下列说法错误的是()A.0.350是精确到0.001的近似数B.3.80万是精确到百位的近似数C.近似数26.9与26.90表示的意义相同D.近似数2.20是由数a四舍五入得到的,那么数a的取值范围是2.195≤a<2.205【点拨】根据近似数的精确度对各选项进行判断.【解析】解:A、0.350是精确到0.001的近似数,所以A选项的说法正确;B、3.80万是精确到百位的近似数,所以B选项的说法正确;C、近似数26.9精确到十分位,26.90精确到百分位,所以C选项的说法错误;D、近似数2.20是由数a四舍五入得到的,那么数a的取值范围是2.195≤a<2.205,所以D选项的说法正确.故选:C.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.【变式训练】1.(2019秋•慈溪市期中)用四舍五入法对0.4249取近似数,精确到百分位的结果是() A.0.425 B.0.43 C.0.42 D.0.420【点拨】取近似数,看千分位满5进1,不满5舍去即可.【解析】解:0.4249≈0.42,故选:C.【点睛】本题考查了近似数,能理解四舍五入的意义是解此题的关键.2.(2019秋•义乌市期中)由四舍五入得到的近似数3.50万,精确到()A.十分位B.百位C.十位D.百分位【点拨】先将3.50万还原,然后确定0所表示的数位即可;【解析】解:3.50万=35000,近似数3.50万精确到百位,故选:B.【点睛】此题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度.3.(2019秋•乐清市期中)数4是4.3的近似值,其中4.3叫做真值,若一个数经四舍五入得到的近似数是12,则下列各数中不可能是12的真值的是()A.12.38 B.12.66 C.11.99 D.12.42【点拨】先找到所给数的十分位,根据四舍五入不能得到12的数即可.【解析】解:∵12.38≈12,12.66≈13,11.99≈12,12.42≈12,∴下列各数中不可能是12的真值的是选项B.故选:B.【点睛】本题主要考查了知道近似数,求真值,只需看近似数的最末位的下一位,采用的方法是四舍五入.4.(2018秋•拱墅区期末)下列由四舍五入法得到的近似数,对其描述正确的是()A.1.20精确到十分位B.1.20万精确到百分位C.1.20万精确到万位D.1.20×105精确到千位【点拨】根据近似数的精确度分别进行判断.【解析】解:A、1.20精确到百分位,所以A选项的说法不正确;B、1.20万精确到百位,所以B选项的说法不正确;C、1.20万精确到百位,所以C选项的说法不正确;D、1.20×105精确到千位,所以D选项的说法正确.故选:D.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.知识点四有理数的混合运算有理数混合运算法则:1.先算乘方,再算乘除,最后算加减;2. 如果有括号,先进行括号里的运算3. 同级运算,应按从左到右的顺序进行计算;4.如果有绝对值,要先做绝对值内的运算.【典例4】(2019秋•慈溪市期中)计算:(1)(﹣7)×5﹣(﹣36)÷4;(2)﹣12020﹣(﹣)×6+32【点拨】(1)原式先计算乘除运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解析】解:(1)原式=﹣35+9=﹣26;(2)原式=﹣1﹣(2﹣3)+9=﹣1﹣2+3+9=9.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.【变式训练】1.(2019秋•瑞安市期中)下列运算中正确的个数有()①(﹣5)+5=0,②﹣3+2=﹣1,③﹣6÷3×=﹣6,④74﹣22÷70=1A.1个B.2个C.3个D.4个【点拨】①根据互为相反数的两个数和为0即可判断正误;②根据有理数的加法运算即可判断正误;③根据有理数的乘除运算顺序进行计算即可判断正误;④根据先算乘方、再算除法、最后算加减的运算顺序进行计算即可判断正误.【解析】解:①(﹣5)+5=0,正确;②﹣3+2=﹣1,正确;③﹣6÷3×=﹣6,错误.原式=﹣2×=﹣.④74﹣22÷70=1,错误.原式=74﹣=.故选:B.【点睛】本题考查了有理数的混合运算,解决本题的关键是严格按照有理数的混合运算顺序进行计算.2.(2018秋•拱墅区期末)计算:(1)﹣7﹣3+8(2)【点拨】(1)原式利用加减法则计算即可求出值;(2)原式先计算乘除运算,再计算加减运算即可求出值.【解析】解:(1)原式=﹣10+8=﹣2;(2)原式=﹣×6+4﹣30=﹣30.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2019秋•奉化区期中)计算:(1)(﹣18)+(+12)(2)(3)(4)12÷()【点拨】(1)根据有理数的加法法则计算;(2)先算乘,再算乘除,最后计算加法;(3)根据乘法分配律计算;(4)先算小括号里面的减法,再算括号外面的除法.【解析】解:(1)(﹣18)+(+12)=﹣6;(2)=﹣4×(﹣)+8÷4=2+2=4;(3)=(﹣100+)×26=﹣100×26+×26=﹣2600+4=﹣2596;(4)12÷()=12÷=72.【点睛】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.巩固训练1.(2018秋•西湖区期末)计算:|﹣2019|=2019,(﹣1)2019=﹣1.【点拨】根据绝对值的性质和有理数乘方的运算法则计算可得.【解析】解:|﹣2019|=2019,(﹣1)2019=﹣1,故答案为:2019,﹣1.【点睛】本题主要考查有理数的乘方,解题的关键是熟练掌握有理数乘方的定义与运算法则及绝对值的性质.2.(2019秋•瑞安市校级月考)把5×5×5写成乘方的形式53.【点拨】根据有理数乘方的定义解答即可.【解析】解:5×5×5=53.故答案为:53.【点睛】本题考查了有理数的乘方的定义,注意指数是底数的个数是解题的关键.3.(2018秋•三门县期中)下列各数|﹣2|,﹣22,﹣(﹣2),(﹣2)3中,负数的个数有2个.【点拨】先对每个数进行化简,然后再确定负数的个数.【解析】解:∵|﹣2|=2,﹣22=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,∴负数有﹣22和(﹣2)3这2个数,故答案为:2.【点睛】本题考查正数和负数,解题的关键是明确负数的定义及乘方运算法则与相反数的定义.4.(2019秋•吴兴区期中)0.0617(精确到千分位)0.062.近似数3.7×105精确到万位.【点拨】根据近似数的精确度求解.【解析】解:0.0617精确到千分位为:0.062;近似数3.7×105精确到万位.故答案为:0.062;万.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.5.(2019秋•温岭市期中)已知a、b互为相反数,m、n互为倒数,x的绝对值为2,则﹣2mn+﹣x=﹣4或0.【点拨】根据题意得a+b=0,mn=1,x=2或x=﹣2,代入原式计算可得.【解析】解:∵a、b互为相反数,m、n互为倒数,x的绝对值为2,∴a+b=0,mn=1,x=2或x=﹣2,当x=2时,原式=﹣2×1+0﹣2=﹣4;当x=﹣2时,原式=﹣2×1+0﹣(﹣2)=0.综上所述,﹣2mn+﹣x=﹣4或0.故答案为:﹣4或0.【点睛】本题主要考查了有理数的混合运算,相反数、倒数、绝对值的性质及代数式求值的能力,根据题意得出a+b、mn、x的值是关键.6.(2018秋•慈溪市期中)大于1的正整数m的三次方可“分裂”成若干个连续奇数的和,23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是1007,则m的值是32.【点拨】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数1007的是从3开始的第1007个数,然后确定出1007所在的范围即可得解.【解析】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=,∵2n+1=1007,n=503,∴奇数1007是从3开始的第503个奇数,∵=495,=527,∴第503个奇数是底数为32的数的立方分裂的奇数的其中一个,即m=32.故答案为:32.【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.7.(2018秋•余杭区期末)计算:(1)7.8+(﹣1.2)﹣(﹣0.2)(2)﹣÷﹣×(﹣3)2+32【点拨】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.【解析】解:(1)7.8+(﹣1.2)﹣(﹣0.2)=7.8+(﹣1.2)+0.2=6.8;(2)﹣÷﹣×(﹣3)2+32==﹣3+9=.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.8.(2019秋•拱墅区校级月考)(1)(﹣﹣+)÷(2)﹣22×+8÷(﹣2)2(3)(﹣)×(﹣4)2﹣0.25×(﹣5)×(﹣4)3.(4)8×(﹣)÷|﹣16|;(5)(﹣1)2008+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣).(6)﹣22﹣(﹣3)3×(﹣1)4﹣(﹣1)5;【点拨】(1)先把除法转化为乘法,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加法可以解答本题;(3)根据有理数的乘方、有理数的乘法和减法可以解答本题;(4)根据有理数的乘除法可以解答本题;(5)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(6)根据有理数的乘方、有理数的乘法和减法可以解答本题.【解析】解:(1)(﹣﹣+)÷=(﹣﹣+)×36=(﹣27)+(﹣20)+21=﹣26;(2)﹣22×+8÷(﹣2)2=﹣4×+8÷4=2+2=4;(3)(﹣)×(﹣4)2﹣0.25×(﹣5)×(﹣4)3=(﹣)×16﹣×(﹣5)×(﹣64)=(﹣10)﹣80=﹣90;(4)8×(﹣)÷|﹣16|=8×(﹣)×=﹣;(5)(﹣1)2008+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣)=1+(﹣5)×(﹣8+2)﹣16×(﹣2)=1+(﹣5)×(﹣6)+32=1+30+32=63;(6)﹣22﹣(﹣3)3×(﹣1)4﹣(﹣1)5=﹣4﹣(﹣27)×1﹣(﹣1)=﹣4+27+1=24.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.。
浙教版数学七年级上册2.5《有理数的乘方》(第1课时)教学设计
浙教版数学七年级上册2.5《有理数的乘方》(第1课时)教学设计一. 教材分析《有理数的乘方》是浙教版数学七年级上册第2.5节的内容,主要介绍了有理数的乘方概念、性质及运算法则。
这部分内容是学生学习数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
本节内容与现实生活紧密相连,有利于激发学生的学习兴趣。
二. 学情分析七年级的学生已具备一定的数学基础,掌握了有理数的加减乘除运算。
但学生对于乘方的概念和性质可能较为抽象,需要通过具体的例子和实际操作来理解和掌握。
此外,学生的学习习惯和思维方式各有不同,需要教师在教学中善于引导和调动学生的积极性。
三. 教学目标1.理解有理数的乘方概念,掌握有理数乘方的性质和运算法则。
2.能够运用乘方知识解决实际问题,提高学生的数学应用能力。
3.培养学生的逻辑思维和抽象思维能力,提高学生的数学素养。
4.激发学生学习数学的兴趣,养成良好的学习习惯。
四. 教学重难点1.有理数的乘方概念和性质的理解。
2.有理数乘方的运算法则的掌握。
3.乘方知识在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入乘方概念,激发学生学习兴趣。
2.引导发现法:教师引导学生发现乘方的性质和运算法则,培养学生的自主学习能力。
3.实践操作法:让学生通过实际操作,加深对乘方知识的理解和掌握。
4.巩固拓展法:通过课堂练习和课后作业,巩固所学知识,提高学生的应用能力。
六. 教学准备1.教学PPT:制作包含乘方概念、性质和运算法则的PPT,以便于课堂展示和讲解。
2.教学案例:准备一些与生活紧密相关的乘方实例,以便于引导学生学习和应用。
3.练习题:准备一些有针对性的练习题,以便于课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)利用生活实例引入乘方概念,如“2的3次方表示3个2相乘,即2×2×2=8”。
通过实例让学生感受乘方的意义,激发学生的学习兴趣。
2.呈现(10分钟)呈现乘方的性质和运算法则,如“乘方的性质:a m×a n=a(m+n);乘方的运算法则:a m÷a n=a(m-n)”。
浙教版(2024)七年级数学上册 2.5 有理数的乘方 课件
敲黑板(1)用科学记数法表示一个带单位的数时,其表示的结果也应该带单位且前后应该一致。(2)用科学记数法表示负数的方法和表示正数的方法一样,只需前面加一个“-”即可。(3)“万”可转化为,“亿”可转化为 。
3.把用科学记数法表示的数还原:(1)中的指数 加上1就得到原数的整数位数,从而确定原数。(2)把中的小数点向右移动 位即可,若向右移动的位数不够,则用“0”补足。
个 相乘的积记作
底数可以是任意有理数,指数 是正整数。
概念
示例
幂
乘方的结果叫作幂。
_
底数
在中, 叫作底数。
指数
在中, 叫作指数。
敲黑板(1)一个数可以看作这个数本身的一次方。例如,5就是 ,指数1通常省略不写。(2)指数是2时读作平方或二次方,指数是3时读作立方或三次方。例如,通常读作“5的平方”,也可以读作“5的二次方”; 通常读作“5的立方”,也可以读作“5的三次方”。
第2章 有理数的运算
2.5 有理数的乘方
七上数学 ZJ
1.理解有理数乘方的意义,掌握乘方、幂、指数、底数等概念,发展抽象能力。2.会进行有理数的乘方运算,强化运算能力。3.会用科学记数法表示较大的数,会将用科学记数法表示的数还原。
概念
示例
乘方
求几个相同因数的积的运算,叫作乘方。(乘方是一种运算,幂是乘方的结果)
典例4(1) 用科学记 数法表示数:, 万。
解: 。万 。
(2)下列用科学记数法表示的数,原来各是什么数?
; 。
解: 。 。
典例5 (2023·温州中考)苏步青来自“数学家之乡”,为纪念其卓越贡献,国际上将一颗距地球约218 000 000公里的行星命名为“苏步青星”。数据218 000 000用科学记数法表示为( )
浙教版初中数学七年级上册《有理数及有理数的运算》复习与巩固 知识讲解
《有理数及有理数的运算》复习与巩固(基础):【学习目标】1.理解正负数的意义,掌握有理数的概念.2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算.3.学会借助数轴来理解绝对值、有理数比较大小等相关知识.4. 理解科学记数法及近似数的相关概念并能灵活应用.5. 体会数学知识中体现的一些数学思想.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:2.数轴:规定了原点、正方向和单位长度的直线.要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可.(3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负.4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作a .(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.要点二、有理数的运算1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0. (4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a ÷b=a ·1b(b ≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0.(6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36.(3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-. 2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ;(2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc)(3)分配律:a(b+c)=ab+ac要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.要点四、科学记数法、近似数及精确度1.科学记数法:把一个大于10的数表示成10na ⨯的形式(其中110a ≤<,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯.2.近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.3.精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度.要点诠释:(1)精确度是指近似数与准确数的接近程度.(2)精确度有两种形式:①精确到哪一位.②保留几个有效数字.这两种的形式的意义不一样,一般来说精确到哪一位可以表示误差绝对值的大小,例如精确到0.1米,说明结果与实际数相差不超过0.05米,而有效数字往往用来比较几个近似数哪个更精确些.【典型例题】 类型一、有理数相关概念1.若一个有理数的:(1)相反数;(2)倒数;(3)绝对值;(4)平方;(5)立方,等于它本身.则这个数分别为(1)________;(2)________;(3)________;(4)________;(5)________.【答案】(1)0; (2)1和-1;(3)正数和0;(4)1和0;(5)-1、0和1【解析】根据定义,把符合条件的有理数写全.【总结升华】要全面正确地理解倒数,绝对值,相反数等概念.举一反三:【:有理数专题复习 357133 概念的理解与应用】【变式】(1)321-的倒数是 ;321-的相反数是 ;321-的绝对值是 . -(-8)的相反数是 ;21-的相反数的倒数是_____. (2)某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 _ ;如果这种油的原价是76元,那么现在的卖价是 .(3) 上海浦东磁悬浮铁路全长30km ,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 m /min.(4) 若a 、b 互为相反数,c 、d 互为倒数,则=++)(323b a cd ____ . (5) 近似数0.4062精确到 位,近似数 5.47×105精确到 位,近似数3.5万精确到位, 3.4030×105精确到千位是 .【答案】(1)35-; 213; 213;-8;2 (2)降价5.8元,70.2 元;(3)33.7510⨯;(4)3; (5)万分;千;千;3.40×1052.(2015春•射洪县月考)如果|x+3|+|y ﹣4|=0,求x+2y 的值.【思路点拨】根据非负数的性质,可求出x 、y 的值,然后将x 、y 的值代入代数式化简计算即可.【答案与解析】解:∵|x+3|+|y ﹣4|=0,∴x+3=0,y ﹣4=0,解得,x=﹣3,y=4,x+2y=﹣3+4×2=5.【总结升华】本题考查了绝对值的性质和非负数的性质,掌握有限个非负数的和为零,那么每一个加数也必为零是解题的关键.3.在下列两数之间填上适当的不等号: 20052006________20062007. 【思路点拨】根据“a-b >0,a-b =0,a-b <0分别得到a >b ,a =b ,a <b ”来比较两数的大小.【答案】<【解析】法一:作差法 由于20052006200520072006200610200620072006200720062007⨯-⨯-==-<⨯⨯,所以2005200620062007< 法二:倒数比较法:因为2006112007112005200520062006=+>+= 所以2005200620062007< 【总结升华】比较大小常用的有五种方法,要根据数的特征选择使用. 举一反三:【变式】比较大小:(1)199-________0.001; (2)23-________-0.68 【答案】(1)< (2)>类型二、有理数的运算4.(2016•厦门)计算:.【思路点拨】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【答案与解析】解:原式=10+8×﹣2×5=10+2﹣10=2.【总结升华】有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.举一反三:【变式】(2014秋•埇桥区校级期中)﹣33×(﹣5)+16÷(﹣2)3﹣|﹣4×5|+(﹣0.625)2.【答案】解:原式=﹣27×(﹣5)+16÷(﹣8)﹣|﹣20|+02=135﹣2﹣20+0=113.类型三、数学思想在本章中的应用5.(1)数形结合思想:有理数a在数轴上对应的点如图所示,则a,-a,1的大小关系.A.-a<a<1 B.1<-a<a C.1<-a<a D.a<1<-a(2)分类讨论思想:已知|x|=5,|y|=3.求x-y的值.(3)转化思想:计算:31 35()147⎛⎫-÷- ⎪⎝⎭【答案与解析】解:(1)将-a在数轴上标出,如图所示,得到a<1<-a,所以大小关系为:a<1<-a.所以正确选项为:D.(2)因为| x|=5,所以x为-5或5因为|y|=3,所以y为3或-3.当x=5,y=3时,x-y=5-3=2当x=5,y=-3时,x-y=5-(-3)=8当x=-5,y=3时,x-y=-5-3=-8当x=-5,y=-3时,x-y=-5-(-3)=-2故(x-y)的值为±2或±8(3)原式=331 35(7)3577246 14142⎛⎫--⨯-=⨯+⨯=⎪⎝⎭【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合——“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”.举一反三:【变式】若a 是有理数,|a|-a 能不能是负数?为什么?【答案】解:当a >0时,|a|-a =a-a =0;当a =0时,|a|-a =0-0=0;当a <0时,|a|-a =-a-a =-2a >0.所以,对于任何有理数a ,|a|-a 都不会是负数.类型四、规律探索6.将1,12-,13,14-,15,16-,…,按一定规律排列如下:请你写出第20行从左至右第10个数是________.【思路点拨】通过观察题目所给的图形、表格或一段语言叙述,然后归纳总结,寻找规律. 【答案】1200- 【解析】 认真观察可知,第1行有1个数,第2行有2个数,第3行有3个数,……,所以第20行有20个数,从第1行到第20行共有1+2+3+…+20=210个数,所以第20行最后一个数的绝对值应是1210;又由表中可知,凡是分母是偶数的分数是负数,故第20行最后一个数是1210-,以此类推向前10个,则得到第20行第10个数是1200-. 【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并将规律表示出来.。
精选-浙教版七年级数学上册有理数的乘方知识点
浙教版七年级数学上册有理数的乘方知识点正数的任何次幂都是正数,负数的奇数次幂是负数,负数的偶数次幂是正数。
查字典数学网为大家整理了有理数的乘方知识点,让我们一起学习,一起进步吧!知识点(1)求相同因数的积的运算叫做乘方.乘方运算的结果叫幂. 一般地,记作,读作:a的n次方,表示n个a相乘;其中,a是底数,n是指数,称为幂。
(2)正数的任何次幂都是正数.负数的奇数次幂是负数,负数的偶数次幂是正数.(3)一个数的平方为它本身,这个数是0和1;一个数的立方为它本身,这个数是0、1和-1。
课后练习1.下列语句中的各数不是近似数的是( ).A.印度洋海啸死亡和失踪总人数已超28万人B.生物圈中已知的绿色植物,大约有30万种C.光明学校有1148人D.我国人均森林面积不到世界的公顷分析:根据精确数和近似数对各选项中的数进行判断.解答:A、印度洋海啸死亡和失踪总人数已超28万,28为近似数,所以A选项错误;B、生物圈中已知的绿色植物,大约有30万种,30万为近似数,所以A选项错误;C、光明学校有1148人,1148为精确数,所以C选项正确;D、我国人均森林面积不到世界的0.25公顷,0.25为近似数,所以D选项错误.故选C.2.用四舍五入法按要求对0.05019取近似值,其中错误的是( )A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(保留两个有效数字)D.0.0502(精确到0.0001) 【分析】根据近似数的精确度把0.05019精确到0.1得到0.1,精确度千分位得0.050,精确到百分位得0.05,精确到0.0001得0.0502,然后依次进行判断.【解答】A、0.05019≈0.1(精确到0.1),所以A选项正确;B、0.05019≈0.050(精确到千分位),所以B选项错误;C、0.05019≈0.05(精确到百分位),所以C选项正确;D、0.05019≈0.0502(精确到0.0001),所以D选项正确.故选:B.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.有理数的乘方知识点的全部内容就是这些,预祝大家在新学期可以更好的学习。
浙教版数学七年级上《有理数的乘方》精品教案
教案主题:有理数的乘方教学目标:1.理解有理数的乘方的定义;2.掌握有理数的平方和立方的计算方法;3.能够解决与有理数的乘方相关的实际问题。
教学重点:1.有理数的平方和立方的计算;2.实际问题的解决。
教学难点:1.理解和掌握有理数的乘方的定义;2.能够将实际问题转化为有理数的乘方运算。
教学准备:黑板、笔、课本《浙教版数学七年级上》,作业本、实物模型。
教学过程:Step 1:引入1.引导学生回顾上节课所学的内容:实数和有理数的概念。
2.引导学生思考,有理数可以进行哪些运算?Step 2:概念解释1.通过与学生的互动,引导他们理解有理数的平方和立方的定义。
2.解释乘方的定义:乘方就是将一个数连续乘以自己的运算。
Step 3:有理数的平方计算1.通过具体例子展示有理数的平方计算方法,并逐步引导学生掌握。
2.给学生分发练习册,让他们完成相关练习。
Step 4:有理数的立方计算1.展示有理数的立方计算方法,并通过例子引导学生掌握。
2.给学生分发练习册,让他们完成相关练习。
Step 5:应用题1.给学生提供一些实际问题,并引导他们将问题转化为有理数的乘方运算。
2.让学生自己思考解决问题的方法,并鼓励他们表达自己的答案和解决思路。
Step 6:练习和巩固1.配置学生实物模型,让学生使用模型进行有理数的乘方的计算。
2.再次让学生进行相关练习,巩固所学知识。
Step 7:总结与评价1.引导学生回顾本节课所学的内容,并总结有理数的乘方的要点。
2.对学生的答题情况进行评价,并鼓励他们继续努力。
Step 8:作业布置布置课后作业,要求学生进一步巩固所学内容。
Step 9:课堂小结1.核对课堂内容的完成情况;2.总结本节课的收获和困惑;3.督促学生完成课后作业。
教学反思:本节课通过概念解释、具体计算方法的引导和实际问题的应用,帮助学生理解和掌握有理数的乘方运算。
通过实物模型的使用,可以增加学生的参与性,提高课堂的互动性。
七年级数学有理数的乘方及混合运算(提高)知识讲解
有理数的乘方及混合运算(提高)责编:杜少波【学习目标】1.理解有理数乘方的定义;2. 掌握有理数乘方运算的符号法则,并能熟练进行乘方运算;3. 进一步掌握有理数的混合运算. 【要点梳理】要点一、有理数的乘方定义:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power).即有:n a a a a n ⋅⋅⋅=个.在na 中,a 叫做底数, n 叫做指数.要点诠释: (1)乘方与幂不同,乘方是几个相同因数的乘法运算,幂是乘方运算的结果. (2)底数一定是相同的因数,当底数不是单纯的一个数时,要用括号括起来.(3)一个数可以看作这个数本身的一次方.例如,5就是51,指数1通常省略不写. 要点二、乘方运算的符号法则(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)0的任何正整数次幂都是0;(4)任何一个数的偶次幂都是非负数,即.要点诠释:(1)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.(2)任何数的偶次幂都是非负数. 【高清课堂:有理数的乘方及混合运算 356849 有理数的混合运算】要点三、有理数的混合运算有理数混合运算的顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:(1)有理数运算分三级,并且从高级到低级进行运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第三级运算;(2)在含有多重括号的混合运算中,有时根据式子特点也可按大括号、中括号、小括号的顺序进行.(3)在运算过程中注意运算律的运用. 【典型例题】类型一、有理数的乘方1.(2016•虞城县一模)下列各数:①﹣12;②﹣(﹣1)2;③﹣13;④(﹣1)2,其中结果等于﹣1的是( )A .①②③B .①②④C .②③④D .①②③④【思路点拨】原式各项计算得到结果,即可作出判断. 【答案】A .【解析】解:①﹣12=﹣1,符合题意;②﹣(﹣1)2=﹣1,符合题意;③﹣13=﹣1,符合题意;④(﹣1)2=1,不符合题意. 故选A .【总结升华】注意()n a -与na -的意义的区别.22()n n a a -=(n 为正整数),2121()n n a a ++-=-(n 为正整数). 举一反三:【变式1】比较(-5)3与-53的异同.【答案】相同点:它们的结果相同,指数相同;不同点:(-5)3表示-5的3次方,即(-5)×(-5)×(-5)=-125,而-53表示5的3次方的相反数,即-53=-(5×5×5).因此,它们的底数不同,表示的意义不同. 【变式2】(2015•杭州模拟)若n 为正整数,(﹣1)2n=( ) A .1 B . ﹣1 C . 2n D . 不确定【答案】A .因为n 为正整数,2n 一定是偶数,所以(﹣1)2n=1.类型二、乘方运算的符号法则2.不做运算,判断下列各运算结果的符号.(-2)7,(-3)24,(-1.0009)2009,553⎛⎫ ⎪⎝⎭,-(-2)2010【答案与解析】根据乘方的符号法则判断可得:(-2)7运算的结果是负;(-3)24运算的结果为正;(-1.0009)2009运算的结果是负;553⎛⎫⎪⎝⎭运算的结果是正;-(-2)2010运算的结果是负. 【总结升华】 “一看底数,二看指数”,当底数是正数时,结果为正;当底数是0,指数不为0时,结果是0;当底数是负数时,再看指数,若指数为偶数,结果为正;若指数是奇数,结果为负. 举一反三:【变式】当n 为奇数时,()()()1111144n n n n ++--+--= .【答案】0类型三、有理数的混合运算3.计算:(1)-(-3)2+(-2)3÷[(-3)-(-5)](2)[73-6×(-7)2-(-1)10]÷(-214-24+214)(3)3112222233⎛⎫⎛⎫-+⨯-- ⎪ ⎪⎝⎭⎝⎭;(4)()2311113121121324424340.2⎛⎫⎛⎫⎛⎫÷-++-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭- 【答案与解析】(1)-(-3)2+(-2)3÷[(-3)-(-5)]=-9+(-8)÷(-3+5) =-9+(-8)÷2 =-9+(-4)=-13(2) [73-6×(-7)2-(-1)10]÷(-214-24+214)=(7×72-6×72-1)÷(-214+214-24)=[72×(7-6)-1]÷(-24) =(49-1)÷(-24) =-2(3)有绝对值的先去掉绝对值,然后再按混合运算.原式11221111[(2)]82338324=-+⨯--=--=- (4)将带分数化为假分数,小数化为分数后再进行运算.()23311113121121324424340.215457551()()241162434()5125724241251652313960561251204040⎛⎫⎛⎫⎛⎫÷-++-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-=÷-++-⨯--=-⨯-⨯+⨯+=--++=【总结升华】有理数的混合运算,确定运算顺序是关键,细心计算是运算正确的前提.举一反三:【高清课堂:有理数的乘方及混合运算 356849 典型例题1】【变式】计算:(1)()⎡⎤⎛⎫⎡⎤⎪⎢⎥⎣⎦⎝⎭⎣⎦211-1-0.5××2--33(2)()⎡⎤⎣⎦341-1-×2--36(3)3201111(1+-2.75)×(-24)+(-1)--238(4)33211-+|-2-3|(-0.1)(-0.2)【答案】(1)原式()7651-⨯⎪⎭⎫⎝⎛-=()=1×-767=-6或原式=(1-1+1123⨯)(2-9)()1=×-76 (2)原式()=⎡⎤⎣⎦1-1-×2--276=1-1-×296=35-6(3) 原式=4111(+-)×(-24)-1-8384=-32-3+66-9=22 (4) 原式=11-+|-8-3|-0.0010.04=-1000-25+11=-10144.计算:20112012(2)2-+ 【答案与解析】逆用分配律可得:2011201220112012201120112011(2)2222(12)122-+=-+=-+=⋅=【总结升华】灵活运用运算律,简化运算.另外有212222121222;222n n n n n n +---=-=举一反三:【变式1】计算:201918171643222222...2222--------- 【答案】原式=191817164321817164322222...2222222...2222--------=-------2...222==-=【变式2】计算:7734()()43-⨯-【答案】7773434()()[()()]14343-⨯-=-⨯-=类型四、探索规律5.(2015•滕州市校级二模)求1+2+22+23+…+22013的值,可令S=1+2+22+23+…+22013,则2S=2+22+23+…+22014,因此2S ﹣S=22014﹣1.仿照以上推理,计算出1+5+52+53+…+52014= . 【答案】解:设S=1+5+52+53+…+52014,则5S=5+52+53+…+52015,5S ﹣S=(5+52+53+…+52015)﹣(1+5+52+53+…+52014)=52015﹣1, 所以,S=.7=-6【总结升华】根据题目信息,设S=1+5+52+53+…+52014,表示出5S=5+52+53+…+52015,然后相减求出S即可.举一反三:【变式】观察下面三行数:①-3,9,-27,81,-243,729,…②0,12,-24,84,-240,732,…③-1,3,-9,27,-81,243,…(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.【答案】 (1)第①行数的规律是:-3,(-3)2,(-3)3,(-3)4,…;(2)第②行数是第①行数相应的数加3,即:-3+3,(-3)2+3,(-3)3+3,(-3)4+3,…;第③行数是第①行数相应的数的13,即133-⨯,21(3)3-⨯,31(3)3-⨯,41(3)3-⨯,…;(3)每行数中的第10个数的和是:1010101(3)[(3)3](3)3-+-++-⨯=59049+59052+19683=137784.。
浙教版七上有理数的运算知识点
1、有理数的加法加法法则:1.同号相加,取相同的符号,并把绝对值相加。
2.异号两数相加,绝对值相等时何为0,绝对值不等时,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
3.一个数同0相加,仍得这个数。
运算律:交换律:a+b=b+a 结合律:(a+b )+c=a+(b+c )2、有理数的减法减法法则:减去一个数等于加上这个数的相反数。
如:3-5=3+(-5)将减法转化成加法时,注意两变:一是减号变加号,二是减数变为其相反数。
3、有理数的乘法有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘,积仍为0。
※如果两个数互为倒数,则它们的乘积为1。
※乘法的交换律、结合律、分配律在有理数运算中同样适用。
有理数乘法运算步骤:①先确定积的符号;②求出各因数的绝对值的积。
乘积为1的两个有理数互为倒数。
注意:①零没有倒数②求分数的倒数,就是把分数的分子分母颠倒位置。
带分数要先化成假分数。
③正数的倒数是正数,负数的倒数是负数。
4、有理数的除法有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。
②0除以任何非0的数都得0。
0不可作为除数,否则无意义。
5、有理数的乘方 ※注意:①一个数可以看作是本身的一次方,如5=15;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。
※乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数;③任何数的偶数次幂都是非负数;④1的任何次幂都得1,0的任何次幂都得0;⑤-1的偶次幂得1;-1的奇次幂得-1;⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
7、有理数混合运算法则:①先算乘方,再算乘除,最后算加减。
②如果有括号,先算括号里面的。
=⨯⨯⨯⨯a n a a a a 个。
七级数学上册2.6有理数的混合运算知识点解读素材(新版)浙教版
知识点解读:有理数的混淆运算一般地 , 有理数混淆运算的法例是:先算乘方,再算乘除,最后算加减. 若有括号,先进行括号里的运算.在进行有理数的混淆运算时,要注意以下几点:一、注意符号自从有了负数,符号就与运算有了不解之缘,在运算时,第一要注意符号确实定 .例1. 计算:-1+5+2-1.463 2剖析:此题是一道有理数加减混淆运算题,在互换加数的地点时, 应带着该加数的符号一同互换 .解:原式 =- 1- 1+5+2=- 3+9=3.4 26346 4评注: 每个数都包含它前方的符号,符号与数是一个有机的整体,在运算时,千万不要忽视了数的性质符号 .例 2. 计算: -14- 1×[2-(-3) 2].6剖析:在计算此题中的两个乘方运算时,要特别注意符号, - 14 =-1 ,而不是 1,( -3 )2 =9,而不是 -9.解:原式 =-1-1×( 2-9 ) =-1-1×( -7)=-1 +7=1 .666 6评注:在进行乘方运算时,要特别注意 ( 1)n 与 1n 的不一样 .二、注意运算次序与运算步骤有理数混淆运算的次序是:先算乘方,再算乘除,最后算加减. 假若有括号,就先算括号里面的 . 有理数的运算步骤是:关于每一个运算,都应先确立结果的符号,再计算结果的绝对值 . 即“符号先判断,绝对值后计算”.例 3. 计算: -81÷ 9 × 4÷(-16 ).49剖析:这是一道有理数乘除混淆运算的题目, 因为乘除是同级运算, 应按从左到右的顺序挨次进行 .解:原式 =- 81× 4 ×4×( -1 ) =1. 99169 × 4=1 的迷惑,来一个从中间开始算起,就违评注:在计算此题时,假如你忍不住4 9背了运算次序的原则,势必致使失败!三、注意运算律的灵巧应用有理数的运算律包含加法互换律、联合律,乘法互换律、 联合律、 乘法对加法的分派律 .若能灵巧、 奇妙地运用它们, 将使计算过程变得简捷. 在详细运用时, 主要有以下几种技巧:( 1)相反数联合; ( 2)凑整联合;( 3)正、负数分别联合; ( 4)分数、小数、整数分别联合;( 5)带分数打开后,整数、分数分别联合; ( 6)同分母或分母易通分的先联合; (7)易约分的先联合等 . 在有理数的混淆运算中,常常是两种或两种以上的技巧的综合运用.例 4. 计算:(+ 3 3 )+(+ 43)-(+12)+( -33).5454剖析:此题可应用联合律简化运算过程.解:原式 =[(+33)-(+12)]+[(+4 3)+( -33) ]5544=2 1 +1=31.5 5例 5. 计算: 7115×( -8 ).16剖析:关于此题,假如先把7115化成假分数再计算, 将十分繁琐 . 若把 7115拆成( 71+ 151616),则可应用乘法的分派律求解 .16解:原式 =( 71+15)×( -8 )=71×( -8 )+15×( -8 )1616=-568 +( -15) =-575 1.22。
七年级数学有理数乘方(二);有理数的混合运算;准确数和近似数浙江版知识精讲
【同步教育信息】一. 本周教学内容::有理数乘方(二);:有理数的混合运算;:准确数和近似数二. 重点、难点: 重点:1. 乘方的符号法则:正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数。
2. 科学记数法。
3. 有理数混合运算的顺序及运用运算律简化计算。
4. 近似值的取法及有效数字。
难点:1. 乘方运算中形如()-22与-22的区别。
2. 科学记数法中第一个因数只允许带一位整数。
3. 含有多种运算的较复杂的有理数混合运算。
4. 有效数字及其取法。
【典型例题】例1. 计算:(1)()-⨯342(2)-÷342(3)()()()-÷-⨯-22112322(4)4405123-⨯-÷-(.)()解:(1)()()-⨯=-=341214422(2)-÷=-÷=-343163162(3)()()()-÷-⨯-22112322=-÷-⨯=⨯⨯=()()84948149492(4)4405123-⨯-÷-(.)()=-⨯-÷-=-=441812413()()注意:1. 运算顺序:先乘方,再乘除,后加减,有括号先算括号里的。
2. 底数为带分数时,必须先化为假分数,再进行乘方运算。
例2. 用科学记数法表示: (1)543700(2)-84579.(3)23000000解:(1)5437005437105=⨯. (2)-=-⨯8457984579102.. (3)2300000023107=⨯.注意:用科学记数法表示数第一个因数是带一位整数的小数,第二个因数的指数比原数的位数小1。
例3. 计算:(1)()[()()]-⨯-----34322423(2)---⨯--1112132242[()][](3)145123113123⨯-+÷---()()|| (4)111112132332-÷--⨯⨯---[()][()()]解:(1)原式=⨯-++925698[] =⨯-=-92392151()(2)原式=--⨯--1121324[][] =--⨯-=-+=1166110() (3)原式=-⨯+÷--95531163() =---=-36312(4)原式=-÷-+⨯---11111689[][()]=-÷⨯-+=-⨯⨯=-11168911615()注意:1. 第(1)题中()-32与()-32的区别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的乘方及混合运算(提高)【学习目标】1.理解有理数乘方的定义;2. 掌握有理数乘方运算的符号法则,并能熟练进行乘方运算;3. 进一步掌握有理数的混合运算. 【要点梳理】要点一、有理数的乘方定义:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power).即有:n a a a a n ⋅⋅⋅=个.在na 中,a 叫做底数, n 叫做指数.要点诠释: (1)乘方与幂不同,乘方是几个相同因数的乘法运算,幂是乘方运算的结果. (2)底数一定是相同的因数,当底数不是单纯的一个数时,要用括号括起来.(3)一个数可以看作这个数本身的一次方.例如,5就是51,指数1通常省略不写. 要点二、乘方运算的符号法则(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)0的任何正整数次幂都是0;(4)任何一个数的偶次幂都是非负数,即.要点诠释:(1)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.(2)任何数的偶次幂都是非负数. 【:有理数的乘方及混合运算 356849 有理数的混合运算】要点三、有理数的混合运算有理数混合运算的顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:(1)有理数运算分三级,并且从高级到低级进行运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第三级运算;(2)在含有多重括号的混合运算中,有时根据式子特点也可按大括号、中括号、小括号的顺序进行.(3)在运算过程中注意运算律的运用. 【典型例题】类型一、有理数的乘方1.(2016•虞城县一模)下列各数:①﹣12;②﹣(﹣1)2;③﹣13;④(﹣1)2,其中结果等于﹣1的是( )A .①②③B .①②④C .②③④D .①②③④【思路点拨】原式各项计算得到结果,即可作出判断. 【答案】A .【解析】解:①﹣12=﹣1,符合题意;②﹣(﹣1)2=﹣1,符合题意;③﹣13=﹣1,符合题意;④(﹣1)2=1,不符合题意. 故选A .【总结升华】注意()n a -与n a -的意义的区别.22()nn a a -=(n 为正整数),2121()n n a a ++-=-(n 为正整数).举一反三:【变式1】比较(-5)3与-53的异同.【答案】相同点:它们的结果相同,指数相同;不同点:(-5)3表示-5的3次方,即(-5)×(-5)×(-5)=-125,而-53表示5的3次方的相反数,即-53=-(5×5×5).因此,它们的底数不同,表示的意义不同. 【变式2】(2015•杭州模拟)若n 为正整数,(﹣1)2n=( ) A .1 B . ﹣1 C . 2n D . 不确定【答案】A .因为n 为正整数,2n 一定是偶数,所以(﹣1)2n=1.类型二、乘方运算的符号法则2.不做运算,判断下列各运算结果的符号.(-2)7,(-3)24,(-1.0009)2009,553⎛⎫ ⎪⎝⎭,-(-2)2010【答案与解析】根据乘方的符号法则判断可得:(-2)7运算的结果是负;(-3)24运算的结果为正;(-1.0009)2009运算的结果是负;553⎛⎫⎪⎝⎭运算的结果是正;-(-2)2010运算的结果是负. 【总结升华】 “一看底数,二看指数”,当底数是正数时,结果为正;当底数是0,指数不为0时,结果是0;当底数是负数时,再看指数,若指数为偶数,结果为正;若指数是奇数,结果为负. 举一反三:【变式】当n 为奇数时,()()()1111144n n n n ++--+--= .【答案】0类型三、有理数的混合运算3.计算:(1)-(-3)2+(-2)3÷[(-3)-(-5)](2)[73-6×(-7)2-(-1)10]÷(-214-24+214)(3)3112222233⎛⎫⎛⎫-+⨯-- ⎪ ⎪⎝⎭⎝⎭;(4)()2311113121121324424340.2⎛⎫⎛⎫⎛⎫÷-++-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭- 【答案与解析】(1)-(-3)2+(-2)3÷[(-3)-(-5)]=-9+(-8)÷(-3+5) =-9+(-8)÷2 =-9+(-4)=-13(2) [73-6×(-7)2-(-1)10]÷(-214-24+214)=(7×72-6×72-1)÷(-214+214-24)=[72×(7-6)-1]÷(-24) =(49-1)÷(-24) =-2(3)有绝对值的先去掉绝对值,然后再按混合运算.原式11221111[(2)]82338324=-+⨯--=--=- (4)将带分数化为假分数,小数化为分数后再进行运算.()23311113121121324424340.215457551()()241162434()5125724241251652313960561251204040⎛⎫⎛⎫⎛⎫÷-++-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-=÷-++-⨯--=-⨯-⨯+⨯+=--++=【总结升华】有理数的混合运算,确定运算顺序是关键,细心计算是运算正确的前提.举一反三:【:有理数的乘方及混合运算 356849 典型例题1】【变式】计算:(1)()⎡⎤⎛⎫⎡⎤⎪⎢⎥⎣⎦⎝⎭⎣⎦211-1-0.5××2--33(2)()⎡⎤⎣⎦341-1-×2--36(3)3201111(1+-2.75)×(-24)+(-1)--238(4)33211-+|-2-3|(-0.1)(-0.2)【答案】(1)原式()7651-⨯⎪⎭⎫ ⎝⎛-=()=1×-767=-6或原式=(1-1+1123⨯)(2-9)()1=×-76 (2)原式()=⎡⎤⎣⎦1-1-×2--276=1-1-×296=35-6(3) 原式=4111(+-)×(-24)-1-8384=-32-3+66-9=22(4) 原式=11-+|-8-3|-0.0010.04=-1000-25+11=-10144.计算:20112012(2)2-+【答案与解析】逆用分配律可得:2011201220112012201120112011(2)2222(12)122-+=-+=-+=⋅=【总结升华】灵活运用运算律,简化运算.另外有212222121222;222n n n n n n +---=-=举一反三:【变式1】计算:201918171643222222...2222--------- 【答案】原式=191817164321817164322222...2222222...2222--------=-------2...222==-=【变式2】计算:7734()()43-⨯-【答案】7773434()()[()()]14343-⨯-=-⨯-=类型四、探索规律5.(2015•滕州市校级二模)求1+2+22+23+…+22013的值,可令S=1+2+22+23+…+22013,则2S=2+22+23+…+22014,因此2S ﹣S=22014﹣1.仿照以上推理,计算出1+5+52+53+…+52014= . 【答案】解:设S=1+5+52+53+…+52014,则5S=5+52+53+…+52015,5S ﹣S=(5+52+53+…+52015)﹣(1+5+52+53+…+52014)=52015﹣1, 所以,S=.7=-6【总结升华】根据题目信息,设S=1+5+52+53+…+52014,表示出5S=5+52+53+…+52015,然后相减求出S即可.举一反三:【变式】观察下面三行数:①-3,9,-27,81,-243,729,…②0,12,-24,84,-240,732,…③-1,3,-9,27,-81,243,…(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.【答案】 (1)第①行数的规律是:-3,(-3)2,(-3)3,(-3)4,…;(2)第②行数是第①行数相应的数加3,即:-3+3,(-3)2+3,(-3)3+3,(-3)4+3,…;第③行数是第①行数相应的数的13,即133-⨯,21(3)3-⨯,31(3)3-⨯,41(3)3-⨯,…;(3)每行数中的第10个数的和是:1010101(3)[(3)3](3)3-+-++-⨯=59049+59052+19683=137784.。