脂酰CoA的转运机制

合集下载

脂代谢复习题-

脂代谢复习题-

第七章脂代谢一、填空题:1 .是动物和许多植物主要的能源贮存形式,是由与3 分子酯化而成的。

2 .在线粒体外膜脂酰CoA 合成酶催化下,游离脂肪酸与和反应,生成脂肪酸的活化形式,再经线粒体内膜进入线粒体基质。

3 .一个碳原子数为n (n 为偶数)的脂肪酸在β -氧化中需经次β-氧化循环,生成个乙酰CoA ,个FADH 2 和个NADH+H + 。

4 .脂肪酸从头合成的C 2 供体是,活化的C 2 供体是,还原剂是。

5 .乙酰CoA 羧化酶是脂肪酸从头合成的限速酶,该酶以为辅基,消耗,催化与生成。

6 .脂肪酸从头合成中,缩合、两次还原和脱水反应时酰基都连接在上,它有一个与一样的长臂。

7. 脂肪酸β-氧化包括、、和四步连续反应。

8 .脂肪酸合成酶复合物一般只合成,动物中脂肪酸碳链延长由或酶系统催化;植物的脂肪酸碳链延长酶系定位于。

9.肉毒碱的功能是10 .三酰甘油是由和在磷酸甘油转酰酶的作用下先形成,再由磷酸酶转变成,最后在催化下生成三酰甘油。

11 .磷脂合成中活化的胆碱供体为,在功能上类似于糖原合成中的或淀粉合成中的_______________。

12.膜脂一般包括________________、________________、和________________,其中以________________为主。

膜蛋白按其与脂双层相互作用的不同可分为________________与________________两类。

13. 磷脂酰胆碱(卵磷脂)是由________________、________________、________________和________________组成。

(二)选择题1.下列哪项叙述符合脂肪酸的β氧化:A.仅在线粒体中进行B.产生的NADPH 用于合成脂肪酸C.被胞浆酶催化D.产生的NADPH 用于葡萄糖转变成丙酮酸E.需要酰基载体蛋白参与2.脂肪酸在细胞中氧化降解A.从酰基CoA 开始B.产生的能量不能为细胞所利用C.被肉毒碱抑制D.主要在细胞核中进行E.在降解过程中反复脱下三碳单位使脂肪酸链变短3.下列哪些辅因子参与脂肪酸的β氧化:A.ACP B.FMN C.生物素D.NAD+4. 甘油脂完全被氧化成CO2和H2O不需要经过A.β-氧化B.TCA循环C.EMP D.糖异生5.脂肪酸从头合成的酰基载体是:A.ACP B.CoA C.生物素D.TPP6.下列有关甘油三酯的叙述,哪一个不正确?A.甘油三酯是由一分子甘油与三分子脂酸所组成的酯B.任何一个甘油三酯分子总是包含三个相同的脂酰基C.在室温下,甘油三酯可以是固体,也可以是液体D.甘油三酯可以制造肥皂E.甘油三酯在氯仿中是可溶的7.下列哪些是人类膳食的必需脂肪酸(多选)?A.油酸B.亚油酸C.亚麻酸D.花生四烯酸8.下述关于从乙酰CoA 合成软脂酸的说法,哪些是正确的(多选)?A.所有的氧化还原反应都以NADPH 做辅助因子;B.在合成途径中涉及许多物质,其中辅酶A 是唯一含有泛酰巯基乙胺的物质;C.丙二酰单酰CoA 是一种“被活化的“中间物;D.反应在线粒体内进行。

生化题目

生化题目

一.是非题1.脂肪酸活化为脂酰CoA时,需消耗2个高能磷酸键√2.哺乳动物在无氧下不能存活,因为葡萄糖酵解不能合成ATP。

×3.在缺氧的情况下,丙酮酸还原成乳酸的意义是使NAD+再生。

√4. 1 mol 葡萄糖经糖酵解途径生成乳酸,需经1次脱氢,两次底物水平磷酸化过程,最终净生成2 mol ATP。

√5.在生物体内物质代谢过程和能量代谢过程是紧密联系在一起的。

√6.脂酰CoA在肉毒碱的携带下,从胞浆进入线粒体中氧化。

√7.在蛋白质生物合成过程中mRNA是由3’端向5’端进得翻译的。

-8.葡萄糖是生命活动的主要能源之一,酵解途径和三羧酸循环都是在线粒体内进行的。

×9.磷酸吡哆醛只作为转氨酶的辅酶。

×10.真核生物mRNA多数为多顺反子,而原核生物mRNA多数为单顺反子。

×11.核糖体是细胞内进行蛋白质生物合成的部位。

√12.PCR技术体外扩增DNA的程序包括DNA变性、退火、和链的延伸三个步骤。

√13.原核生物转录终止时一定要ρ因子参与。

×14.RNA的转录合成和DNA合成一样,在起始合成前变需要有RNA引物参加。

×15.醛缩酶是糖酵解关键酶,催化单向反应。

×(04~05年)1.脂肪的氧化中,脂酰CoA在肉毒碱的携带下从线粒体进入胞浆中氧化。

×2.UDP-葡萄糖是糖原合成时的糖基体的供体形式。

√3.丙酮酸氧化脱羧生成乙酰CoA的反应是葡萄糖在有氧条件下进入柠檬酸循环的关键步骤。

×4.酮体在肝细胞内生成而在肝外组织被利用,这是脂肪氧化供能的另一种形式。

√5.鱼藤酮能阻断琥珀酸脱氢的电子传递,也能阻断α-酮戊二酸脱氢的电子传递。

√6.氨是有毒物质,必须在肾脏中合成尿素后排出体外。

√7.哺乳动物无氧下不能存活,因为葡萄糖酵解全部位于线粒体的基质中。

×8.糖酵解的酶系全部位于线粒体的的基质中。

×9.在动物体内蛋白质可以转变成为脂肪,但不能转变成糖。

脂类代谢脂类的消化吸收和转运脂类的消化主要

脂类代谢脂类的消化吸收和转运脂类的消化主要

第九单元脂类代谢一、脂类的消化、吸收和转运(一)脂类的消化(主要在十二指肠中)胃的食物糜(酸性)进入十二指肠,刺激肠促胰液肽的分泌,引起胰脏分泌HCO-3 至小肠(碱性)。

脂肪间接刺激胆汁及胰液的分泌。

胆汁酸盐使脂类乳化,分散成小微团,在胰腺分泌的脂类水解酶作用下水解。

(二)脂类的吸收脂类的消化产物,甘油单脂、脂肪酸、胆固醇、溶血磷脂可与胆汁酸乳化成更小的混合微团(20nm),这种微团极性增大,易于穿过肠粘膜细胞表面的水屏障,被肠粘膜的拄状表面细胞吸收。

被吸收的脂类,在柱状细胞中重新合成甘油三酯,结合上蛋白质、磷酯、胆固醇,形成乳糜微粒(CM),经胞吐排至细胞外,再经淋巴系统进入血液。

小分子脂肪酸水溶性较高,可不经过淋巴系统,直接进入门静脉血液中。

(三)脂类转运和脂蛋白的作用甘油三脂和胆固醇脂在体内由脂蛋白转运。

脂蛋白是由疏水脂类为核心、围绕着极性脂类及载脂蛋白组成的复合体,是脂类物质的转运形式。

载脂蛋白(已发现18种,主要的有7种):在肝脏及小肠中合成分泌至胞外,可使疏水脂类增溶,并且具有信号识别、调控及转移功能,能将脂类运至特定的靶细胞中。

(四)贮脂的动用皮下脂肪在脂肪酶作用下分解,产生脂肪酸,经血浆白蛋白运输至各组织细胞中。

血浆白蛋白占血浆蛋白总量的50%,是脂肪酸运输蛋白,血浆白蛋白既可运输脂肪酸,又可解除脂肪酸对红细胞膜的破坏。

贮脂的降解受激素调节。

促进:肾上腺素、胰高血糖素、肾上腺皮质激素;抑制:胰岛素;植物种子发芽时,脂肪酶活性升高,能利用脂肪的微生物也能产生脂肪酶。

二、甘油三酯的分解代谢(一)甘油三酯的水解甘油三酯的水解由脂肪酶催化。

组织中有三种脂肪酶,逐步将甘油三酯水解成甘油二酯、甘油单酯、甘油和脂肪酸。

这三种酶是:脂肪酶(激素敏感性甘油三酯脂肪酶,是限速酶);甘油二酯脂肪酶;甘油单酯脂肪酶。

肾上腺素、胰高血糖素、肾上腺皮质激素都可以激活腺苷酸环化酶,使cAMP浓度升高,促使依赖cAMP的蛋白激酶活化,后者使无活性的脂肪酶磷酸化,转变成有活性的脂肪酶,加速脂解作用。

生物化学课后习题答案-第八章xt8

生物化学课后习题答案-第八章xt8

第八章 脂代谢一、 课后习题1.为什么说脂肪氧化可产生大量内源性水?2.如果用14C标记乙酰CoA的两个碳原子,并加入过量的丙二酸单酰CoA,用纯化的脂肪酸合成酶体系来催化脂肪酸的合成,在合成的软脂肪酸中,哪两个碳原子是被标记的?3.1mol三软脂酰甘油酯完全氧化分解,产生多少摩尔ATP?多少molCO2?如由3mol软脂肪酸和1mol甘油合成1mol三软脂酰甘油酯,需要多少摩尔ATP?4.在动物细胞中由丙酮酸合成1mol己酸,需净消耗多少摩尔ATP及NADPH?5.1mol下列含羟基不饱和脂肪酸完全氧化成CO2和水?可净生成多少摩尔ATP?CH3-CH2-CH2-CH-CH2-CH2CH-COOHOH6.据你所知,乙酰CoA在动物体内可转变成哪些物质?解析:1.生物体内的主要脂类物质中,脂肪是体内的储存能源物质,其氧化分解后比糖产生多得多的能量,这主要是由于脂肪酸含有高比例的氢氧比,含氢多,脱氢机会多,氧化后产生大量内源性水必然高。

2.标记碳原子将会出现在软脂酸的碳链末端(远羧基端)的15、16号碳原子。

乙酰CoA在脂肪酸的合成过程中是初始原料,而直接原料为丙二酰CoA,乙酰CoA通过羧化形成丙二酰CoA。

合成起始引物为乙酰CoA,合成过程直接由丙二酰CoA提供二碳单位,所以标记首先出现在远羧基端的两个碳原子上。

3.1mol三软脂酰甘油脂首先在脂肪酶的水解作用下生成1mol甘油和3mol软脂酸。

甘油在甘油激酶和ATP供能的作用下生成α-磷酸甘油,α-磷酸甘油再在α-磷酸甘油脱氢酶的作用下生成二羟磷酸丙酮和NADH+H+,二羟磷酸丙酮由此可插入酵解途径生成丙酮酸,丙酮酸再进入TCA循环,能量产生如下:10+2.5+2+2.5(苹果酸穿梭)×2-1=18.5molATP 或10+2.5+2+1.5(α-磷酸甘油穿梭)×2-1=16.5molATP;软脂酸通过β-氧化过程完成完全氧化,1mol软脂酸需要7次循环氧化,每个循环产生一个FADH+H+和NADH + H+,最终产生8mol乙酰2molATP,能量产生如下:[(1.5+2.5)× 7 + 8× 10 - 2] × 3 = 318molATP。

脂代谢复习题-

脂代谢复习题-

第七章脂代谢一、填空题:1 .是动物和许多植物主要的能源贮存形式,是由与3 分子酯化而成的。

2 .在线粒体外膜脂酰CoA 合成酶催化下,游离脂肪酸与和反应,生成脂肪酸的活化形式,再经线粒体内膜进入线粒体基质。

3 .一个碳原子数为n (n 为偶数)的脂肪酸在β -氧化中需经次β-氧化循环,生成个乙酰CoA ,个FADH 2 和个NADH+H + 。

4 .脂肪酸从头合成的C 2 供体是,活化的C 2 供体是,还原剂是。

5 .乙酰CoA 羧化酶是脂肪酸从头合成的限速酶,该酶以为辅基,消耗,催化与生成。

6 .脂肪酸从头合成中,缩合、两次还原和脱水反应时酰基都连接在上,它有一个与一样的长臂。

7. 脂肪酸β-氧化包括、、和四步连续反应。

8 .脂肪酸合成酶复合物一般只合成,动物中脂肪酸碳链延长由或酶系统催化;植物的脂肪酸碳链延长酶系定位于。

9.肉毒碱的功能是10 .三酰甘油是由和在磷酸甘油转酰酶的作用下先形成,再由磷酸酶转变成,最后在催化下生成三酰甘油。

11 .磷脂合成中活化的胆碱供体为,在功能上类似于糖原合成中的或淀粉合成中的_______________。

12.膜脂一般包括________________、________________、和________________,其中以________________为主。

膜蛋白按其与脂双层相互作用的不同可分为________________与________________两类。

13. 磷脂酰胆碱(卵磷脂)是由________________、________________、________________和________________组成。

(二)选择题1.下列哪项叙述符合脂肪酸的β氧化:A.仅在线粒体中进行B.产生的NADPH 用于合成脂肪酸C.被胞浆酶催化D.产生的NADPH 用于葡萄糖转变成丙酮酸E.需要酰基载体蛋白参与2.脂肪酸在细胞中氧化降解A.从酰基CoA 开始B.产生的能量不能为细胞所利用C.被肉毒碱抑制D.主要在细胞核中进行E.在降解过程中反复脱下三碳单位使脂肪酸链变短3.下列哪些辅因子参与脂肪酸的β氧化:A.ACP B.FMN C.生物素D.NAD+4. 甘油脂完全被氧化成CO2和H2O不需要经过A.β-氧化B.TCA循环C.EMP D.糖异生5.脂肪酸从头合成的酰基载体是:A.ACP B.CoA C.生物素D.TPP6.下列有关甘油三酯的叙述,哪一个不正确?A.甘油三酯是由一分子甘油与三分子脂酸所组成的酯B.任何一个甘油三酯分子总是包含三个相同的脂酰基C.在室温下,甘油三酯可以是固体,也可以是液体D.甘油三酯可以制造肥皂E.甘油三酯在氯仿中是可溶的7.下列哪些是人类膳食的必需脂肪酸(多选)?A.油酸B.亚油酸C.亚麻酸D.花生四烯酸8.下述关于从乙酰CoA 合成软脂酸的说法,哪些是正确的(多选)?A.所有的氧化还原反应都以NADPH 做辅助因子;B.在合成途径中涉及许多物质,其中辅酶A 是唯一含有泛酰巯基乙胺的物质;C.丙二酰单酰CoA 是一种“被活化的“中间物;D.反应在线粒体内进行。

脂肪酸的分解代谢

脂肪酸的分解代谢

磷脂的代谢(自学)
五.脂肪酸代谢的调节控制
(一) 脂肪酸进入线粒体的调控 脂肪酸分解代谢的调控主要是由线粒体控制脂 肪酸进入线粒体内.主要的调控点是肉碱酰基 转移酶Ⅰ, 它强烈的受丙二酸-coA抑制,丙二 酸-coA处于高水平时,它指向脂肪酸的合成,抑 制水解.
(二) 心脏中脂肪酸氧化的调节
脂肪酸的氧化是心脏的主要能源,心脏用能减少,乙酰 coA与NADH积累,前者抑制硫解酶的活性。
3.许多类脂及其衍生物有重要的生理作用。如固醇类激素、 维生素D及胆汁酸等,磷酸肌醇有细胞内信使的作用,前 列腺素有各种生理效应,而糖脂与细胞的识别和免疫方 面有着密切的关系。
4.人类的某些疾病如动脉粥样硬化、脂肪肝和酮尿症等都与 脂类代谢紊乱有关。
一.脂肪酸的结构
1.脂肪酸的结构 脂肪酸有一长的烃链,其一端为羧基。绝 大多数的脂肪酸有着偶数的碳原子,而且 不具侧链。饱和脂肪酸在其碳-碳原子这 间没有双键。但单或多-不饱和则有一个 或多个双键。



脂肪酸的完全氧化可以产生大量的能量。例如软脂酸 (含16碳)经过7次-氧化,可以生成8个乙酰CoA,每一 次-氧化,还将生成1分子FADH2和1分子NADH。软脂酸完 全氧化的反应式为: C16H31CO~SCoA + 7 CoA-SH + 7 FAD + NAD+ +7 H2O 8 CH3CO~SCoA + 7 FADH2 + 7 NADH + 7 H+ 按照一个NADH产生2.5个ATP,1个FADH2产生1.5个ATP, 1 个乙酰CoA完全氧化产生10个ATP计算,1分子软脂酰CoA 在分解代谢过程中共产生108个ATP。 由于软脂酸转化成软脂酰CoA时消耗了1分子ATP中的两个 高能磷酸键的能量(ATP分解为AMP, 可视为消耗了2个 ATP),因此,1分子软脂酸完全氧化净生成 108 – 2 = 106 个ATP。

脂代谢 重要知识点

脂代谢 重要知识点

1、脂肪 (fat)和类脂 (lipoid)总称为脂类 (lipid);脂肪又称三脂 酰甘油 (triacylglycerols,TAG)也称甘油三酯。

2、脂肪动员(活化):储存在脂肪细胞中的脂肪,被脂肪酶逐步水解 为游离脂肪酸和甘油, 并释放入血中以供其它组织细胞氧化利用的过 程。

3、甘油直接运至肝、肾等组织进行糖异生。

4、生物体内脂肪酸的分解方式主要为 -氧化,其他氧化方式还有α 氧化、ω氧化等。

5、脂肪酸的活化:在胞液(基质)中进行,生成脂酰 CoA,反应不 可逆,1 分子的脂肪酸活化需要消耗 2 个~P。

6、脂酰 CoA 在肉碱(carnitine)的协助下进入线粒体。

肉碱脂酰转 移酶Ⅰ是限速酶,脂酰 CoA 进入线粒体是脂酸 -氧化的主要限速步 骤。

7、 脂肪酸在线粒体内进行的氧化分解是从脂酰基羧基端 -碳原子开 始的,故称为 -氧化。

8、-氧化包括氧化(脱氢) 、水化、再氧化(脱氢)和硫解四步, 第一次脱氢由 FAD 接受;第二次脱氢由 NAD+接受。

9、脂肪酸每经一次 -氧化,生成少了两个碳原子的脂酰 CoA 及 1 分 子乙酰 CoA 、1 分子 NADH+H+、1 分子 FADH2。

10、偶数碳的饱和脂肪酸 -氧化的产物是乙酰 CoA 。

11、 脂肪酸β-氧化本身并不生成能量。

只能生成乙酰 CoA 和供氢体, 它们必须分别进入三羧酸循环和氧化磷酸化才能生成 ATP。

12、 1 分子软脂酸经 7 轮β-氧化的产物为 8 分子乙酰 CoA, 在有氧情 况下完全氧化可产生 7×1.5 + 7×2.5 + 8×10 -2 =106 分子 ATP。

13、偶数碳的饱和脂肪酸 -氧化要点: (1)任何碳原子数的脂肪酸进行 -氧化都只需活化 1 次,消耗 2 个 高能磷酸键。

(2)脂酸 -氧化的次数 = 碳原子数÷2-1 (3)产生乙酰 CoA 的个数 = 碳原子数÷2 (4)饱和脂肪酸进行一次 -氧化产生的 ATP 数 = -氧化的次数×4 [1 分子 FADH2 产生 1.5 分子 ATP, 1 分子 NADH 产生 2.5 分子 ATP] (5)1 分子乙酰 CoA 进入 TCA 彻底氧化为 CO2 和 H2O 可产生 10 分子 ATP。

脂肪分解是脂肪氧化产能的过程,脂肪酸β-氧化-概述说明以及解释

脂肪分解是脂肪氧化产能的过程,脂肪酸β-氧化-概述说明以及解释

脂肪分解是脂肪氧化产能的过程,脂肪酸β-氧化-概述说明以及解释1.引言1.1 概述脂肪分解是机体利用脂肪储备产生能量的重要过程。

当身体需要能量时,储存在脂肪细胞中的三酰甘油会被分解成脂肪酸和甘油。

脂肪酸进一步参与到脂肪酸β-氧化的过程中,产生更多的能量供给身体使用。

脂肪分解的过程主要由两个关键酵素调控,即激活脂肪酶和己二酰甘油酯脂酶。

在能量需求增加或血糖水平下降时,激活脂肪酶会分解脂肪细胞中的三酰甘油,释放出脂肪酸和甘油。

脂肪酸随后进入细胞质和线粒体,参与到脂肪酸β-氧化过程中。

脂肪酸β-氧化是指脂肪酸分子在细胞线粒体中逐步被切割成较短的碳链,最终产生能量。

该过程主要包括四个关键步骤:脂肪酸激活、脂肪酸转运至线粒体内膜、β-氧化反应和酮体生成。

脂肪氧化产能的机制是通过脂肪酸在β-氧化过程中释放出大量的能量。

每个脂肪酸分子在完全氧化的情况下可以产生较多的三磷酸腺苷(ATP),这是细胞能量的重要来源。

脂肪酸氧化具有高能量产出和持久的能量供应的特点,对于长时间、低强度运动(如有氧运动)提供了重要的能量支持。

总之,脂肪分解和脂肪酸β-氧化是相互关联的过程。

脂肪分解为脂肪酸β-氧化提供了底物,而脂肪酸β-氧化则产生能量供给身体使用。

脂肪氧化在能量产生中的重要性不容忽视,并且对于体能的提升和维持健康的身体状况具有重要的作用。

未来的研究可以进一步深入探究脂肪分解和脂肪酸β-氧化的调控机制,以及其在疾病发展和代谢健康中的作用,为相关领域的进一步发展提供科学依据。

文章结构部分的内容可以按照以下方式撰写:1.2 文章结构本文主要分为引言、正文和结论三个部分。

引言部分主要概述脂肪分解和脂肪酸β-氧化的过程,并介绍了文章的目的和意义。

正文部分分为三个小节,分别是脂肪分解的过程、脂肪酸β-氧化的过程和脂肪氧化产能的机制。

在2.1小节中,将详细介绍脂肪分解是如何进行的,包括酶的作用、信号通路和相关的调控因素等。

在2.2小节中,将介绍脂肪酸β-氧化的过程,包括脂肪酸在细胞内的转运、β-氧化酶的作用以及生成乙酰辅酶A等。

生化期末复习题及答案

生化期末复习题及答案

生化期末复习题及答案一、名词解释1、同聚多糖:由一种单糖组成的多糖,水解后生成同种单糖,如淀粉、纤维素等2、氧化磷酸化;在真核细胞的线粒体或细菌中,物质在体内氧化时释放的能量供给ADP与无机磷合成ATP 的偶联反应。

3、多酶复合体: 几种功能不同的酶彼此嵌合在一起构成复合体,完成一系列酶促反应4、限制性内切酶;一种在特殊核甘酸序列处水解双链DNA的内切酶。

Ⅰ型限制性内切酶既能催化宿主DNA 的甲基化,又催化非甲基化的DNA的水解;而Ⅱ型限制性内切酶只催化非甲基化的DNA的水解5、结构域:多肽链在二级结构或超二级结构的基础上形成三级结构的局部折叠区域,它是相对独立的紧密球形实体,称为结构域6、脂肪酸ω-氧化:脂肪酸的ω-碳原子先被氧化成羧基,再进一步氧化成ω-羧基,形成α、ω-二羧脂肪酸,以后可以在两端进行α-氧化而分解。

7、戊糖磷酸途径:又称为磷酸已糖支路。

是一个葡萄糖-6-磷酸经代谢产生NADPH和核糖-5-磷酸的途径。

该途径包括氧化和非氧化两个阶段,在氧化阶段,葡萄糖-6-磷酸转化为核酮糖-5-磷酸和CO2,并生成两分子NADPH;在非氧化阶段,核酮糖-5-磷酸异构化生成核糖-5-磷酸或转化为酵解的两用人才个中间代谢物果糖-6-磷酸和甘油醛-3-磷酸。

( 是指从6-磷酸葡萄糖开始,经过氧化脱羧、糖磷酸酯间的互变,最后形成6-磷酸果糖和3-磷酸甘油醛的过程)8、竞争性抑制作用:通过增加底物浓度可以逆转的一种酶抑制类型。

竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。

这种抑制剂使Km增大而υmax不变。

9、肉毒碱穿梭作用:活化后的脂酰CoA是在线粒体外需要一个特殊的转运机制才能进入线粒体内膜。

在膜内外都含有肉毒碱,脂酰CoA和肉毒碱结合,通过特殊通道进入膜内然后再与肉毒碱分离(脂酰CoA 通过形成脂酰肉毒碱从细胞质转运到线粒体的一个穿梭循环途径。

)10、呼吸链:又称电子传递链,是由一系列电子载体构成的,从NADH或FADH2向氧传递电子的系统11 增色效应;当双螺旋DNA熔解(解链)时,260nm处紫外吸收增加的现象。

2023年江南大学食品生工考研的801生物化学三套卷(一)真题及参考答案

2023年江南大学食品生工考研的801生物化学三套卷(一)真题及参考答案

801生物化学(含实验)密押三套卷(一)一、名词解释(每题5分,共40分)Allosteric enzymeStarch gelatinizationHyperchromic effectEnergy rich phosphate compounds GluconeogenesisTricarboxylic acid cycleEssential fatty acidsSemiconservative replication参考答案答:别构酶:又称为变构酶,这类酶是寡聚蛋白,含有两个及两个以上亚基。

别构酶含有活性部位和调节部位,活性部位负责对底物的结合和催化;调节部位负责控制别构酶的催化反应的速度。

当代谢物分子可逆地结合到酶的调节部位时,可改变酶的构象,进而改变酶的活性,这种调节称别构调节,受别构调节的酶称别构酶。

答:淀粉糊化:淀粉在植物细胞内以颗粒形式存在,在冷水中不溶解,但在加热的情况下淀粉颗粒吸水膨胀,分散于水中,形成半透明的胶悬液,此过程称为糊化。

答:增色效应:天然状态的DNA在变性解链过程中,由于碱基外露,导致的碱基中电子的相互作用更有利于紫外吸收而使摩尔磷吸光系数增加的现象。

答:高能磷酸化合物:生物体内的一类磷酸化合物,当它的磷酰基水解时,可以释放出大量的自由能。

答:糖异生:由非糖物质如丙酮酸等化合物转变为葡萄糖或糖原的过程称为糖异生。

主要沿着糖酵解途径逆行,仅有三步不可逆反应需要经过其他的代谢反应绕行。

答:柠檬酸循环:在线粒体中,乙酰-CoA和草酰乙酸缩合生成柠檬酸,经历一系列酶促反应重新生成草酰乙酸,而将乙酰COA彻底氧化生成水和二氧化碳,并释放能量的循环反应体系。

 答:必需脂肪酸:指亚油酸和亚麻酸这类人体生长所必需的且人体自身无法合成的,必须从食物中摄取的脂肪酸。

答:半保留复制:是DNA的一种复制方式。

每条链都可以作为合成反应的模板链,合成出两条新的子代DNA链,每个DNA分子都是由一条亲代链和一条子代链组成的。

生物化学第九章脂代谢

生物化学第九章脂代谢
(以16C的软脂酸为例)彻底氧化成CO2和H2O。 16C经过7次ß -氧化: 生成7个FADH2和7个NADH +H+ 7个FADH2经呼吸链生成 2 × 7 = 14 ATP 7个NADH +H+ 经呼吸链生成 3 × 7 = 21 ATP 生成8个乙酰COA: 8个 乙酰COA经TCA生成 12 × 8 = 96 ATP 总 计: 14+21+96-2=129ATP 另有一种算法: 1个FADH2经呼吸链生成1.5ATP 1个NADH+H+经呼吸链生成2.5ATP
SH
H2O
HOOCCH2CO-S CH3CO-S CH3COCH2CO-S
SH

CO2

NADP+ NADPH
2.线粒体中的合成

碳链的延长发生在线粒体和内质网中。与脂肪酸β-氧化的逆 向过程相似,使得一些脂肪酸碳链(C16)加长。 延长是独立于脂肪酸合成之外的过程,是乙酰单元的加长和 还原,恰恰是脂肪酸降解过程的逆反应。光面内质网中的延 长更为活跃。
酮体的生成
HMGCoA裂 解酶 CH3COCH2COOH
乙酰乙酸 脱氢酶
HMGCoA 合成酶
NADH+H+ NAD+
脱羧酶 CO2
OH | HOOCCH2-C-CH2COSCoA | CH3 羟甲基戊二酸单酰CoA (HMGCoA)
CH3CHOHCH2COOH
--羟丁酸
CH3COCOOH
丙酮
酮血症?
5.不饱和脂肪酸的氧化
与脂肪酸的β-氧化相同,但需增加异构酶 和 还原酶:
(三)脂肪酸氧化的其它途径
1.奇数碳原子脂肪酸的氧化 如17个碳直链脂肪酸: 先经β-氧化至3碳的丙酰-CoA ,产生7个乙酰CoA和一个丙酰-CoA 。 丙酰-CoA经3步反应转化为琥珀酰-CoA然后进入 三羧酸循环进一步进行代谢。

生物化学中文名词解释

生物化学中文名词解释

1、ACA T(脂酰CoA胆固醇脂酰转移酶):催化HDL中卵磷脂2位上的脂肪酰基转移至游离胆固醇的3位上,使位于HDL表面的胆固醇酯化后向HDL内核转移,促成HDL成熟及胆固醇逆向转运。

2、核苷酸合成的抗代谢物:指某些嘌呤、嘧啶、叶酸以及某些氨基酸类似物具有通过竞争性抑制或者以假乱真等方式干扰或阻断核苷酸的正常合成代谢,从而进一步抑制核酸、蛋白质合成以及细胞增殖的作用,即为核苷酸合成的抗代谢作用。

3、转录空泡:由RNA-pol,局部解开的DNA双链及转录产物RNA3’-端一小段依附于DNA模板链而组成的转录延长过程的复合物。

4、泛素化标记:是一种依赖ATP参与在胞浆中进行的蛋白质标记过程,标记多个泛素化分子后由蛋白酶体将其标记蛋白分解成多肽小分子物质。

5、逆转录酶:以RNA为模板合成DNA的过程,是RNA病毒的复制形式,需逆转录酶催化,过程是RNA为模板合成DNA/RNA杂化双链,然后水解RNA,再合成DNA双链的过程。

6、基因的不连续性:真核结构基因两侧存在有不被转录的非编码序列,往往是基因表达的调控区。

在编码基因内部有内含子将外显子分割开来,因此真核基因是不连续的。

7、酶的活性中心:酶分子中与酶的活性密切相关的基团称为酶的必需基团。

这些必需基团在一级结构上可能相距很远,但在空间结构上彼此靠近,形成具有特定空间结构的区域。

该区域能与底物特异地结合并将底物转化为产物。

该区域称为酶的活性中心。

8、多聚核蛋白体:不论真核还是原核细胞中1条mRNA模板链可能附着10-100个核蛋白体,同时进行肽链合成,这种mRNA和多个核蛋白体聚合物称为多聚核蛋白体。

9、限速酶:指整条代谢通路中,催化反应速度最慢的酶,它不但可以影响整条代谢途径的总速度,还可改变代谢方向,是代谢途径的关键酶,常受到变构调节和/或化学修饰调节。

10、酶的化学修饰:某些酶分子上的一些基团,受其他酶的催化发生共价化学变化,从而导致酶活性的变化。

脂类代谢-生物化学

脂类代谢-生物化学

03
04
合成过程可以分为三个阶段:
乙酰CoA羧化酶可分成三个不同的亚基:
05
生物素羧基载体蛋白(BCCP)
原料的准备——乙酰CoA羧化生成丙二酸单酰CoA(在细胞液中进行),由乙酰CoA羧化酶催化,辅基为生物素,是一个不可逆反应。
生物素羧化酶(BC)
羧基转移酶(CT)
06
柠檬酸穿梭系统
肉毒碱转运
脂酰CoA的β氧化反应过程如下:
脂肪酸的β氧化
脱氢 脂酰CoA经脂酰CoA脱氢酶催化,在其α和β碳原子上脱氢,生成△2反烯脂酰CoA,该脱氢反应的辅基为FAD。 加水(水合反应) △2反烯脂酰CoA在△2反烯脂酰CoA水合酶催化下,在双键上加水生成L-β-羟脂酰CoA。
脱氢 L-β-羟脂酰CoA在L-β-羟脂酰CoA脱氢酶催化下,脱去β碳原子与羟基上的氢原子生成β-酮脂酰CoA,该反应的辅酶为NAD+。 硫解 在β-酮脂酰CoA硫解酶催化下,β-酮脂酰CoA与CoA作用,硫解产生 1分子乙酰CoA和比原来少两个碳原子的脂酰CoA。
乙酰CoA的去路
2分子的乙酰CoA在肝脏线粒体乙酰乙酰CoA硫解酶的作用下,缩合成乙酰乙酰CoA,并释放1分子的CoASH。
乙酰乙酰CoA与另一分子乙酰CoA缩合成羟甲基戊二酸单酰CoA(HMG CoA),并释放1分子CoASH。
HMG CoA在HMG CoA裂解酶催化下裂解生成乙酰乙酸和乙酰CoA。乙酰乙酸在线粒体内膜β-羟丁酸脱氢酶作用下,被还原成β-羟丁酸。部分乙酰乙酸可在酶催化下脱羧而成为丙酮。
β-羟丁酸在β-羟丁酸脱氢酶作用下,脱氢生成乙酰乙酸,然后再转变成乙酰CoA而被氧化。
乙酰乙酰CoA被β氧化酶系中的硫解酶裂解成乙酰CoA进入三羧酸循环。

ACO、CPTI、CPTII、L-FABP 等脂代谢中关键酶的研究进展

ACO、CPTI、CPTII、L-FABP 等脂代谢中关键酶的研究进展

CPT1(肉碱酯酰辅酶A转移酶1)
CPT2(肉碱酯酰辅酶A转移酶2)
脂质代谢:
脂肪酸代谢
β – 氧化过程示意图
脂酰CoA进入线粒体后,胞液中活化的脂酰CoA不能 直接透过线粒体内膜,必须与肉碱结合成脂酰肉碱才 能进入线粒体基质内。
反应由肉碱脂酰转移酶(CPT- I和CPT-ll)催化:
RCO-SCoA (CH3)3N CH2CH CH2COOH
β 氧 化 的 限 速 环 节
脂肪酸的 β-氧化,脂肪酸必须先在胞液中活化为脂酰辅酶 A,然后才 能进入线粒体内进行β-氧化。
脂肪酸
进入线粒 体
胞液
活化
脂酰辅 酶A
肉碱依赖的转运系统由肉碱酯酰转移酶 CPT1、肉碱-乙酰肉碱
移位酶、肉碱酯酰转移酶CPT2组成, 定位于不同的线粒体亚结构。
在能量代谢中起重要作用的长链脂肪酸及其辅酶 A只有通过该转运 系统才能进入线粒体基质进行β-氧化。
L/O/G/O
ACO、CPT1、CPT2、 L-FABP在脂肪代谢过程 中的调控作用及机理研究
此次读书报告整体思路:
脂质代谢 脂肪代谢 其他物质代谢
脂肪代谢 合成代谢 分解代谢
脂肪酸分解代 谢 β-氧化过程
三种酶的作用 机理 ACO(脂酰辅酶A氧化酶)
一种结合蛋白 作用机理 肝型脂肪酸结 合蛋白(LFABP)
肉碱棕榈酰转移酶( CPT1)是脂肪酸氧化过程中的一种限速酶, 催化脂肪酸转运至线粒体基质进行β-氧化。
CPT2 处于线粒体内及对 M-CoA 的不敏感都决定了它不可对 脂酰 CoA 的转运起调控作用 。而且CPT2比较稳定,
脂肪酸
CPT1
线粒体基 质
限速
在肉碱(carnitine)的协助下

脂类的消化、吸收和转运[技巧]

脂类的消化、吸收和转运[技巧]

脂类的消化、吸收和转运第一节脂类的消化、吸收和转运一、脂类的消化和吸收1、脂类的消化(主要在十二指肠中)食物中的脂类主要是甘油三酯 80-90%还有少量的磷脂 6-10%胆固醇 2-3%胃的食物糜(酸性)进入十二指肠,刺激肠促胰液肽的分泌,引起胰脏分泌HCO-3 至小肠(碱性)。

脂肪间接刺激胆汁及胰液的分泌。

胆汁酸盐使脂类乳化,分散成小微团,在胰腺分泌的脂类水解酶作用下水解。

胰腺分泌的脂类水解酶:① 三脂酰甘油脂肪酶(水解三酰甘油的C1、C3酯键,生成2-单酰甘油和两个游离的脂肪酸。

胰脏分泌的脂肪酶原要在小肠中激活)②磷脂酶A2(水解磷脂,产生溶血磷酸和脂肪酸)③胆固醇脂酶(水解胆固醇脂,产生胆固醇和脂肪酸)④辅脂酶(Colipase)(它和胆汁共同激活胰脏分泌的脂肪酶原)2、脂类的吸收脂类的消化产物,甘油单脂、脂肪酸、胆固醇、溶血磷脂可与胆汁酸乳化成更小的混合微团(20nm),这种微团极性增大,易于穿过肠粘膜细胞表面的水屏障,被肠粘膜的拄状表面细胞吸收。

被吸收的脂类,在柱状细胞中重新合成甘油三酯,结合上蛋白质、磷酯、胆固醇,形成乳糜微粒(CM),经胞吐排至细胞外,再经淋巴系统进入血液。

小分子脂肪酸水溶性较高,可不经过淋巴系统,直接进入门静脉血液中。

二、脂类转运和脂蛋白的作用甘油三脂和胆固醇脂在体内由脂蛋白转运。

脂蛋白:是由疏水脂类为核心、围绕着极性脂类及载脂蛋白组成的复合体,是脂类物质的转运形式。

载脂蛋白:(已发现18种,主要的有7种)在肝脏及小肠中合成,分泌至胞外,可使疏水脂类增溶,并且具有信号识别、调控及转移功能,能将脂类运至特定的靶细胞中。

脂蛋白的分类及功能:P151表15-1各种脂蛋白的组成、理化性质、生理功能三、贮脂的动用皮下脂肪在脂肪酶作用下分解,产生脂肪酸,经血浆白蛋白运输至各组织细胞中。

血浆白蛋白占血浆蛋白总量的50%,是脂肪酸运输蛋白,血浆白蛋白既可运输脂肪酸,又可解除脂肪酸对红细胞膜的破坏。

脂酰CoA进入线粒体脂肪酸的β-氧化

脂酰CoA进入线粒体脂肪酸的β-氧化
1分子软脂酸彻底氧化共生成: (2×7)+(3×7)+(12×8)=131分子ATP
减去脂肪酸活化时消耗ATP的2个高能磷酸 键净生成129分子ATP。
乙酰CoA的去路 1.TCA , 动物
2.乙醛酸循环(植物,微生物) 3.生成酮体
乙酰乙酸、丙酮、D-β-羟丁酸
TCA
乙醛酸24循个 环
乙醛酸循环的意义
➢ ATP、NADPH、HCO3-(二氧化碳)及Mn2+等。
其中NADPH主要来自胞浆中的磷酸戊糖途径, 其次是柠檬酸穿梭系统。
柠檬酸穿梭系统:
乙酰CoA的穿膜转运
柠檬酸穿梭系统
肉毒碱转运
脂肪酸合成
脂肪酸分解
3. 合成过程
在胞浆中进行
(1)丙二酸单酰CoA的合成—原料的准备
CH3CO~SCoA 乙酰CoA羧化酶 + HCO3- + ATP Mn2+、生物素
CH3CH2CH2C0-SACP
丁酰ACP
(五)脂肪酸的ω氧化:脂肪酸的末端甲基 (ω-端)可经氧化作用后转变为ω-羟脂酸, 然后再氧化成a,ω-二羧酸,两端同时进行β氧化。
第二节 脂肪酸及脂肪的合成
一、软脂酸的从头合成 二、脂肪酸碳链的延长 三、不饱和脂肪酸的的合成 四、脂肪的合成
一、软脂酸的从头合成
1、合成部位 2、合成原料 3、合成过程 4、从头合成与β-氧化比较
CoA-SH
=
O R C ~S C oA+C H 3C O ~S C oA
脂酰CoA+乙酰CoA
4.脂肪酸β-氧化的能量生成
1分子软脂酸(16C)活化生成的软脂酰CoA完全 降解要经7次β-氧化,总反应式如下:

脂肪酸的分解代谢

脂肪酸的分解代谢

四种血浆脂蛋白及其功能



①CM:小肠合成,转 运外源性脂类到肝内; ②VLDL:肝脏合成, 转运内源性脂类到肝外; ③LDL:血管中合成, 转运内源性胆固醇和磷 脂至肝外; ④HDL:肝/肠/血浆中 合成,和LDL作用反, 收集肝外胆固醇和磷脂 到肝内。
(4)脂肪的动员

食物中的脂肪(外源性脂肪)经消化吸收(为 碳链长短与饱和度的改造过程)后,贮存于脂 肪组织(内源性脂肪)。
编辑ppt饱和脂肪酸的合成与氧化的比较区别要点从头合成氧化氧化细胞内进行部位细胞质线粒体酰基载体acpshcoash转运机制三羧酸转运机制肉碱载体系统二碳单位参与或断裂形式乙酰coa电子供体或受体nadphhfadnad羟酰基中间物的立体构型不同和柠檬酸的需求需要不需要所需酶能量需求或放出消耗7atp及14nadphh产生129atp编辑ppt二脂肪酸碳链的延长和去饱和编辑pptatp长链脂肪酸脂酰coa降解线粒体脂酰coa的转运
烯 脂 酰 C oA水 合 酶
再脱氢

在-羟脂酰CoA脱氢酶催化下,脱氢生 成-酮脂酰CoA。反应的氢受体为 NAD+。此脱氢酶具有立体专一性,只 催化L(+)--羟脂酰CoA的脱氢。
OH O 烯 脂 酰 C oA 脱 氢 酶 O
+ +
O
RCH2 CH CH C SCoA NAD
RCH2 C CH C SCoA NADH + H
线粒体基质
脂肪酸氧化
丙酮酸羧化酶
柠檬酸穿梭(三羧酸转运体系)
还原力的准备
反应中所需的NADPH+H+约有40%来自戊糖磷酸 途径,其余的60%可由EMP中生成的NADH+H+ 间接转化提供 NADH+H

脂酰coa的β氧化

脂酰coa的β氧化

脂酰coa的β氧化
脂酰CoA的β氧化是一种重要的代谢过程,主要发生在线粒体内。

以下是脂酰CoA的β氧化的基本步骤:
1.第一步:转运
脂酰CoA首先通过特定的转运蛋白质从细胞质转运到线粒体内。

这个过程需要消耗能量,并且由于线粒体外膜和内膜之间有较高的透性差异,因此需要特殊的转运通道。

2.第二步:β氧化
在线粒体内,脂酰CoA经过一系列反应被逐步氧化。

每一轮β氧化都包括以下四个关键步骤:
-2.1约化反应(Oxidation):
脂酰CoA经过脱氢酶催化作用,丢失一个氢原子,产生一个不饱和脂酰CoA和FADH2。

-2.2水解反应(Hydration):
不饱和脂酰CoA经过水合酶催化作用,在双键处加入一个水分子,生成羟基脂酰CoA。

-2.3氧化反应(Oxidation):
羟基脂酰CoA通过羟酰辅酶A脱氢酶的作用,再次丢失一个氢原子,并生成一个酮基脂酰CoA和NADH。

-2.4脱羧反应(Thiolysis):
酮基脂酰CoA被酯酶催化分解为乙酰CoA和一个较短的脂酰CoA,同时释放出能量。

3.第三步:重复循环
上述的β氧化步骤会不断重复进行,直到整个脂酰CoA分子被完全氧化为乙酰CoA,并产生相应的NADH和FADH2。

这些还可以进一步参与细胞的能量产生过程,如三羧酸循环和氧化磷酸化等。

需要注意的是,β氧化过程对于长链脂肪酸而言是必需的,它将脂肪酸分解为较短的单位,并提供能量。

此外,β氧化还产生了一些重要的代谢产物,例如酮体,可在特定条件下供给大脑使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档