二元一次方程组及其解法(1)
七年级数学下册7.2二元一次方程组的解法7.2.1用代入法解二元一次方程组(1)课件(新版)华东师大版
x=3, 则方程组的解为y=1.
【点悟】 用代入法解二元一次方程组时,应注意下列问题:(1)给原方 程组中的两方程编号;(2)写明关键步骤;(3)代入后,消去一个未知数,得 到一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入到系 数较简单的方程,求出另一未知数的值;(5)求出一对 x、y 值后,检验并下 结论.
代数式 x2+px+q 中,当 x=-1 时,它的值是-5;当 x=3 时,它 的值是 3,则 p、q 的值是多少?
-p+q=-6,① 解:根据题意,得3p+q=-6. ② 由①,得 q=p-6.③ 将③代入②,得 3p+p-6=-6,解得 p=0. 将 p=0 代入③,得 q=-6, 所以pq= =0-,6.
x+y=35,
x=23,
解:设鸡有 x 只,兔有 y 只.根据题意,得2x+4y=94,解得y=12.
即有鸡 23 只,兔 12 只.
当 堂 测 评 [学生用书P29]
3x+4y=2,①
1.用代入法解方程组2x-y=5 ② 时,化简比较容易的变形是( D )
A.由①,得 x=2-34y
B.由①,得 y=2-43x
归 类 探 究 [学生用书P29]
类型之一 用代入法解二元一次方程组
解方程组: y=2x-4, (1)3x+y=1;
x-2y=1, (2)x+3y=6.
解:(1)y3=x+2xy-=41,.②① 把①代入②,得 3x+2x-4=1,解得 x=1.
x=1, 把 x=1 代入①,得 y=-2.则方程组的解为y=-2.
A.y=0 B.y=2 C.y=2 D.y=1
二元一次方程组求解
二元一次方程组求解解法一:代入法对于一个二元一次方程组,可以使用代入法来求解。
假设我们有以下的方程组:方程一:ax + by = c方程二:dx + ey = f首先,我们可以将方程一中的 x 表达出来,然后代入方程二中计算y 值。
具体步骤如下:1. 将方程一中的 x 表达出来:ax = c - by ①从而可以得到 x 的表达式:x = (c - by)/a ②2. 将 x 的表达式 (②) 代入方程二中:d((c - by)/a) + ey = f化简得到:dc/a - dby/a + ey = f移项得到:dby/a + ey = f - dc/a整理得到:(db + ae)y = af - dc从而得到 y 的表达式:y = (af - dc)/(db + ae) ③3. 将 y 的表达式 (③) 代入方程一中即可得到 x 的值:ax + b((af - dc)/(db + ae)) = c化简得到:ax + baf/(db + ae) - bdc/(db + ae) = c移项得到:ax - baf/(db + ae) = c + bdc/(db + ae)整理得到:ax = c + bdc/(db + ae) + baf/(db + ae)从而得到 x 的表达式:x = (c(db + ae) + bdc + baf)/(ad - be) ④解法二:消元法对于二元一次方程组,还可以使用消元法来求解。
假设我们有以下的方程组:方程一:ax + by = c方程二:dx + ey = f具体步骤如下:1. 通过乘法使得方程一和方程二的系数相等:方程一乘以 e,方程二乘以 b,得到:aex + bey = cedbx + bey = fb从而我们可以得到一个新的方程组:aex + bey = cedbx + bey = fb2. 将方程二减去方程一,消去 y 的项:(dbx + bey) - (aex + bey) = fb - ce化简得到:dbx - aex = fb - ce移项得到:(db - ae)x = fb - ce从而得到 x 的表达式:x = (fb - ce)/(db - ae) ⑤3. 将 x 的表达式 (⑤) 代入方程一,计算得到 y 的值:ax + by = c化简得到:a((fb - ce)/(db - ae)) + by = c移项得到:(afb - ace)/(db - ae) + by = c整理得到:by = c - (afb - ace)/(db - ae)从而得到 y 的表达式:y = (c(db - ae) - afb + ace)/(db - ae) ⑥至此,我们通过代入法和消元法分别得到了二元一次方程组的解。
二元一次方程组及其解法
对二元一次方程组的理解应注意:
①方程组各方程中,相同的字母必须代表同一数量,否则不能将两个方程合在一起.
②怎样检验一组数值是不是某个二元一次方程组的解,常用的方法如下:将这组数值分别代入方程组中的每个方程,只有当这组数值满足其中的所有方程时,才能说这组数值是此方程组的解,否则,如果这组数值不满足其中任一个方程,那么它就不是此方程组的解.
例8.解方程组
一、选择题
1.下列各式中,是二元一次方程的是()
A.4x-2π=5B.3x+5yC.2x-5y=0D.2x-5=y2
2.如果5x3m-2n-2yn-m+11=0是二元一次方程,则()
A.m=1,n=2B.m=2,n=1 C.m=-1,n=2D.m=3,n=4
3.如果是方程3x-ay=7的一个解,那么a=()
二元一次方程组及其解法
知识要点
1.二元一次方程
(1)概念:含有两个未知数,并且含有未知数的项的次数都是1的方程,叫做二元一次方程.
你能区分这些方程吗?(1)5x+3y=75;(2)3x+1=8x;(3)+y=2;(4)2xy=9.
对二元一次方程概念的理解应注意以下几点:
①等号两边的代数式是整式;
②在方程中“元”是指未知数,二元是指方程中含有两个未知数;
解法2:
由①设x=k,y=2k,z=7k,并代入②,得k=1.
把k=1,代入x=k,得x=1;
把k=1,代入y=2k,得y=2;
把k=1,代入z=7k,得z=7.
因此三元一次方程组的解为
小结:遇比例式找关系式,采用设元解法.
例4、解方程组
分析:
二元一次方程组的解法
二元一次方程组的解法二元一次方程组是指包含两个未知数和两个方程的方程组。
解二元一次方程组的常用方法有消元法、代入法和矩阵法等。
下面将分别介绍这三种方法的步骤和应用。
一、消元法消元法是解二元一次方程组常用的方法,它的基本思想是通过消去一个未知数,从而将方程组转化为只含一个未知数的一次方程,进而求解。
假设给定的二元方程组为:a₁x + b₁y = c₁(1)a₂x + b₂y = c₂(2)步骤如下:1. 通过等式的加减消去一个未知数。
选择其中一个方程,将其系数乘以另一个方程中与其同未知数的系数的相反数,然后将两个方程相加或相减,消去该未知数。
2. 获得新的一次方程,其中只含有一个未知数。
3. 解新的一次方程,求得该未知数的值。
4. 将求得的未知数值代入原方程中,求得另一个未知数的值。
5. 检查解的可行性,在原方程组中验证求得的解是否满足原方程组。
二、代入法代入法是解二元一次方程组的另一种常用方法,它的基本思想是将一个方程的一个未知数表示为另一个未知数的函数,然后将其代入另一个方程,从而将方程组转化为只含一个未知数的方程,进而求解。
假设给定的二元方程组为:a₁x + b₁y = c₁(1)a₂x + b₂y = c₂(2)步骤如下:1. 选择一个方程,将其一个未知数表示为另一个未知数的函数,例如将(1)中的 x 表示为 y 的函数:x = f(y)。
2. 将函数表达式代入另一个方程(2),得到只含有一个未知数 y的一次方程。
3. 解这个一次方程,求得 y 的值。
4. 将求得的 y 值代入第一个方程(1),求得 x 的值。
5. 检查解的可行性,在原方程组中验证求得的解是否满足原方程组。
三、矩阵法矩阵法是用矩阵运算的方法解二元一次方程组,它的基本思想是将方程组转化为矩阵方程,通过对矩阵的运算得到解。
假设给定的二元方程组为:a₁x + b₁y = c₁(1)a₂x + b₂y = c₂(2)将方程组表示为矩阵形式:⎛ a₁ b₁⎞⎛ x ⎞⎛ c₁⎞⎜⎟⎜⎟⎜⎟⎝ a₂ b₂⎠ * ⎝ y ⎠ = ⎝ c₂⎠利用矩阵的逆矩阵,可以得到未知数向量的值:⎛ x ⎞⎛ a₁ b₁⎞⁻¹⎛ c₁⎞⎜⎟⎜⎟⎜⎟⎝ y ⎠ = ⎝ a₂ b₂⎠⎝ c₂⎠通过计算矩阵的逆矩阵,可以求得未知数的值。
二元一次方程组的解1(系数为互为相反数或相同修改版)
(1) (2)
解 :(1) (2) 得 (3x 5 y)(3x 4 y) 5 23
9 y 18 y 2
将y 2代 入 (1) 得 3x 5 (2) 5
x5
所
以xy
5
2
例3、
解
下
列
方
程
组:43xx
7 7
y y
9 5
(1) (2)
思考:用什么方法可以消去一个未知数?先消去哪
加减消元法应用条件: 1)当方程组中某个未知数的系数相同时,应用 减法消元 2)当方程组中某个未知数的系数互为相反数时, 应用加法消元
练习解方程组
2x-5y=7 ①
解: ② - ①,得2x+3y=-1 ② 2x-5y-(2x+3y)=7-(-1)
8y=-8 y=-1
将y=-1代入①,得2x+5=7
解:设原来杯中有x克水,第一杯倒了y克水到第 二杯中,由题意得方程组:
x y 30 (1) x y 70 (2)
解二元一次方程组
异系数加减消元法1
例2解方程组
2x+3y=12 ① 3x+4y=17 ②
同学们:你能否使两个方程中x (或y)的系数相等(或相反)呢?
① 3,得6x+9y=36 ② 2,得6x+8y=34
做一做
用加减法解二元一次方程组
⑴ 7x-2y=3
x=-1
9x+2y=-19 y=-5
6x-5y=3
⑵
6x+y=-15
x=-2 y=-3
4s+3t=5
(3)
2s-t=-5
s=-1 t=3
5x-6y=9
(4)
二元一次方程组解法详解
一、二元一次方程组解法总结1、二元一次方程组解法的基本思想二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为一元一次方程,就可以先解出一个未知数,然后再设法求另一个未知数,这种将未知数的个数由多化少,逐一简化的思想方法,叫做消元思想.即二元一次方程组形如:ax=b(a,b为已知数)的方程.2、代入消元法由方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程的解,这种方法叫做代入消元法,简称代入法.3、用代入消元法解二元一次方程组的步骤(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的代数式表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.4、加减消元法两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.5、加减消元法解二元一次方程组的一般步骤(1)把一个方程或者两个方程的两边乘以适当的数,使方程组的两个方程中一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)把求得的未知数的值代入到原方程组中的系数比较简单的一个方程中,求出另一个未知数的值;(5)把求出的未知数的值写成的形式. 6、二元一次方程组解的情况 若二元一次方程组(a 1,a 2,b 1,b 2,c 1,c 2均为不等于0的已知数),则 (1)当时,这个方程组只有唯一解;(2)当时,这个方程组无解;(3)当时,这个方程组有无穷多个解.二、重难点知识归纳二元一次方程组的解的理解,二元一次方程组的解法,运用有关概念解决相关数学问题.三、典型例题讲解例1、(1)下列方程中是二元一次方程的有( )① ② ③④mn +m=7 ⑤x +y=6A .1个B .2个C .3个D .4个(2)在方程(k 2-4)x 2+(2-k)x +(k +1)y +3k=0中,若此方程为二元一次方程,则k 的值为( )A .2B .-2C .±2D .以上都不对分析:一个方程是否是二元一次方程,必须看它是否满足或使它满足三个条件:①含有两个未知数;②未知数项的次数为1;③整式方程.解答:(1)∵方程①③不是整式方程,∴它们不是二元一次方程.∵mn的次数为2,∴方程④不是二元一次方程.∵方程②⑤满足二元一次方程的三个条件,∴方程②⑤是二元一次方程.故此题应选择B.(2)∵方程(k2-4)x2+(2-k)x+(k+1)y+3k=0是二元一次方程,∴它应满足条件:k2-4=0且2-k≠0且k+1≠0,解得k=±2且k≠2且k≠-1.∴k=-2.例2、在方程3x-ay=0中,如果是它的一个解,那么a的值为_____..由于方程的解必使方程左右两边的值相等,所以只需将代入方程中,解关于a的一次方程即可.解答:∵是方程3x-ay=0的一个解,∴3×3-a·2=0,例3、甲、乙两人同时解方程组乙因抄错c,解得求a、b、c的值.将正确的解代入方程组中可直接求出c的值,但不能求a、b的值.错误解有什么作用呢?方程组的解应满足每一个方程,因此正确解满足ax+by=2,错误的解同样能满足方程ax+by=2,那么就可以建立a、b的方程组,于是a、b、c的值均可求出.解答:都是方程①的解.又∵是方程②的解,∴c+3=-2,∴c=-5.故a、b、c的值分别为例4、解下列方程组.(1)先将①化简为3y=4x+5,再代入②即可消去y,从而求出x的值.(2)先将方程组进行化简,整理为标准的二元一次方程组的形式,再观察选择消去哪个未知数.解:(1)将①化简得:3y=4x+5 ③把③代入②得:2x-(4x+5)=1解得x=-3将x=-3代入③得:3y=4×(-3)+5∴∴原方程组的解为.(2)原方程组整理为由③×3-④×4,得7b=14,∴b=2.将b=2代入③,得a=2.∴原方程组的解为.例5、已知方程组与方程组有相同的解,求a、b 的值.题设的已知条件是两个方程组有相同的解。
二元一次方程的解法-代入法1
小结: 小结
x =5− y x = 2 ; (1) ; (2) 3x +2y = 4 2x+4y =7
6 x + 3 y = 7 (4) 3x + 3 y = 5;
通过本节课的研究,学习, 通过本节课的研究,学习,你有 哪些收获? 哪些收获?
x − y = 3 (3) 3x − 2 y = 5;
1
1、练习:解方程组 练习:
2 x − 3 y = 7 (1) 4 x + y = − 1; 2 y − 7 x = 8 ( 2) 3 x − 8 y − 10 = 0 .
2
看看你掌 握了吗?
2、已知(2x+3y- 4)+∣x+3y-7∣=0 、已知( ) ∣ ∣ -3 ,y= 1 0 。 则x=
由两个一次方程组成, 由两个一次方程组成,并且含有两个未知数的方程组
问题3 什么是二元一次方程组的解。 问题3:什么是二元一次方程组的解。 使二元一次方程组中的两个方程左右两边的值都相 等的两个未知数的值(即两个方程的公共解)。 等的两个未知数的值(即两个方程的公共解)。
1你能把下列方程写成用含x的式子表示y的形式吗? 你能把下列方程写成用含x的式子表示y的形式吗?
知识拓展
1.
x = 1 bx+ay = 5 已知 y = 2 是二元一次方程组 ax+by = 7
的解, 的解,则 a= 1 ,b= 3 。
2.已知 (a+2b-5)2+|4a+b-6|=0, 已知 , 的值. 求a和b的值 和 的值
a=1 b=1
思考题 2x2x-y=3 3.若方程组 3.若方程组 的解与方程组 3x+2y=8
二元一次方程组及其解法优秀教案
二元一次方程组及其解法【课时安排】3课时【第一课时】【教学目标】一、知识与技能理解二元一次方程、二元一次方程组和它们的解的含义,并会检验一对数是不是某个二元一次方程组的解。
二、过程与方法经历认识二元一次方程和二元一次方程组的过程,感受类比的学习方法在数学学习过程中的作用。
三、情感、态度与价值观学会用类比的方法迁移知识,体验二元一次方程组在处理实际问题中的优越性,感受学习数学的乐趣。
【教学重难点】重点:理解二元一次方程组的解的意义。
难点:求二元一次方程的正整数解。
【教学过程】一、创设情境,引入新课(一)古老的“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足。
问鸡、兔各几何?”教师描述:这是我国古代数学著作《孙子算经》中记载的数学名题。
它曾在好几个世纪里引起过人们的兴趣,这个问题也一定会使在座的各位同学感兴趣。
怎样来解答这个问题呢?学生思考并自行解答,教师巡视。
最后,在学生动手动脑的基础上,集体讨论并给出各个解决方案。
(二)教师展示幻灯片:方法1:算筹解法。
(孙子算经,用算筹研究代数。
)方法2:图形解法。
(尚不成熟的符号语言,但很直观。
)方法3:算术解法。
兔数:(94÷2)-35=12鸡数:35-12=23方法4:一元一次方程的解法。
解:设鸡有x只,则兔有(35-x)只,则可列方程:2x+4(35-x)=94;解得:x=23。
则鸡有23只,兔有12只。
请同学们自己思考。
教师不失时机地复习一元一次方程的有关概念,“元”是指什么?“次”是指什么?二、尝试活动,探索新知(一)讨论二元一次方程、二元一次方程组的概念。
1.教师提问:上面的问题可以用一元一次方程来解,那么还有其他方法吗?方法6:设有x只鸡,y只兔,依题意得:x+y=35①2x+4y=94②针对学生列出的这两个方程,教师提出如下问题:(1)你能给这两个方程起个名字吗?(2)为什么叫二元一次方程呢?(3)什么样的方程叫二元一次方程呢?2.教师结合学生的回答,板书定义1:含有两个未知数,并且未知数的指数都是1的方程,叫做二元一次方程。
第8讲 二元一次方程(组)的概念和解法
第8讲二元一次方程(组)的概念和解法【学习目标】1.二元一方程(组)的概念2.二元一次方程组的基本解法3.复杂的多元一次方程组【模块一】二元一次方程组的概念在本模块我们的学习目标是:1、掌握二元一次方程概念2、掌握二元一次方程组概念3、理解方程组的解(公共解)一、二元一次方程1、定义:含有两个未知数,并且含未知数的项的最高次数是1的整式方程叫二元一次方程. 【例】x+2y=5,2x=3y,3x=y-2对于二元一次方程的定义可以用“三个条件一个前提”来理解:①含有两个未知数一一“二元②含有未知数的项的最高次数为1一“一次③未知数的系数不能为0前提:方程两边的代数式都是整式一一整式方程2、一般形式:二元一次方程的一般形式:ax+by+c=0(a=0,b=0)【课堂建议】类比一元一次方程:标准式:ax+b=0(a≠0)3、判定:先看前提,再化一般形式易错总结(1)二元:x+y+z=1,x-2=1(2)一次:x2-x+y=1,xy+x+y=1【袁华燕录入】(3) 系数不为0:x+y-1=x-y+1,x2-x+y-1=x2+x-y+1(4) 整式方程:1x+y=1,1x+x+y=1x【易错】x+y-1=x-y+1,x2-x+y-1=x2+x-y+1,1x+x+y=1x【例1】下列方程中,是二元一次方程的有哪些?①x+3=7;②a+b=0;③3a+4t=9;④xy-1=0;⑤1x-y=0;⑥x+y+z=4;⑦2x2+x+1=2x2+y+5;⑧x2+y-6=2x.【练1】方程2x-3y=5,xy=3,x+3y-1,3x-y+2z=0,x2+y=6中是二元一次方程的有()A. 1个B. 2个C. 3个D. 4个【例2】⑴己知方程x n-1+2y|m-1|=m关于x,y的二元—次方程,求m、n的值.⑵己知方程(a-2)x|a|-1-(b+5)y|b|-4=3是关于x、少的一元一次方程,求a、b的值.【练2】(1)若方程2x m-1+y n+m=12是二元一次方程.则mn=_____(2)若己知方程(k2-1)x2+(k+1)x+(k-7)y=k+2,当k=_______时,方程为一元一次方程,当k=_____时,方程为二元一次方程.4、二元一次方程的解:二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解.任何一个二元一次方程都有无数个解.【例3】⑴己知21xy=⎧⎨=⎩是方程3x+ay=5的解,则a的值为()A.-1B.1C.2D.3⑵判断下列数值是否是二元一次方程3t+2s=24的解.①29ts=⎧⎨=⎩②21ts=⎧⎨=⎩③89ts=⎧⎨=⎩④46ts=⎧⎨=⎩【练3】⑴若23x ky k=⎧⎨=-⎩是二元—次方程2x-y=14的解,则k的值是()A.2B.-2C.3D.-3⑵已知12xy=⎧⎨=⎩与3xy m=⎧⎨=⎩都是方程x+y-=n的解,求m与n的值.二.二元_次方程组:1、二元一次方程组.由几个一次方程组成并且含有两个未知数的方程组叫二元—次力程组.(1)二元:总共有两个未知数如:+12 22 xx=⎧⎨=⎩,21x y yx+=⎧⎨=⎩,12x yx y+=⎧⎨+=⎩,121x yx+=⎧⎨=⎩,12xy=⎧⎨=⎩,12x y zx y z+-=⎧⎨-+=⎩,11x yy z+=⎧⎨+=⎩(2) —次:每个都是一次方程如:22x yy x⎧=⎪⎨=⎪⎩,2222+x x xy y y⎧=⎪⎨+=⎪⎩,11x yxy+=⎧⎨=⎩,1111xy⎧=⎪⎪⎨⎪=⎪⎩(3)方程组:方程个数大于等于2如:x+y=l,112 xyz=⎧⎪=⎨⎪=⎩① 二元—次方程组一定是由两个或多个二元一次方程组成(错)② 两个或多个二元一次方程一定可以组成二元一次方程组(错)【例4】下列方程组中,属于二元一次方程组的是()A.527x yxy+=⎧⎨=⎩B.121340xyx y⎧+=⎪⎨⎪-=⎩C.354433x yx y=⎧⎪⎨+=⎪⎩D.28312x zx y-=⎧⎨+=⎩【练4】下列方程组中,是二元一次方程组的是()A.4119x yx y+=⎧⎪⎨+=⎪⎩B.57x yy z+=⎧⎨+=⎩C.1x y xyx y-=⎧⎨-=⎩D.1326xx y=⎧⎨-=⎩2、二元一次方程组的解:使二元一次方程组的两个方程左右两边都相等的两个未知数的值(即两个方程的公共解),叫做二元一次方程组的解,同时它也必须是-个数对.而不能是一个数.【例5】⑴己知43xy=-⎧⎨=⎩是方程组12ax yx by+=-⎧⎨-=⎩的解,则(a+b)b=_______,(2)己知21xy=⎧⎨=⎩是二元一次方程组12ax bybx ay+=⎧⎨+=⎩的解,则a-b的值为( )A.1B.-1C.2D.3【练5】(1)下列四个解中是方程组16223111x yx y⎧-=⎪⎨⎪+=-⎩的解是()A.810xy=⎧⎨=-⎩B.101xy=⎧⎨=-⎩C.6xy=⎧⎨=-⎩D.112xy⎧=-⎪⎨⎪=⎩⑵关于x,y的二元一次方程组331ax yx by-=⎧⎨-=-⎩解中的两个未知数的值互为相反数,其中x=l,求a,b的值.模块二二元一次方程组的基本解法一.会解基本二元一次方程组(体会消元过程)2、熟练应用代入与加减的方法,养成严格书写的习惯二元一次方程方程组最根本的思路就是将二元方程消元变成一元方程,代入消元法和加减消元法是最常用的方法.1.代入消元:why:等量代换when:(未知数系数为1时优先)how:用一个字母表示另一个字母直接代入(1)12xx y=⎧⎨+=⎩(2)2x yx y=⎧⎨+=⎩⑶23x yx y=⎧⎨+=⎩⑷13x yx y+=⎧⎨+=⎩变形代入(5)13x yx y-=⎧⎨+=⎩(6)2127x yx y-=⎧⎨+=⎩(7)2+38321x yx y=⎧⎨-=-⎩1.代入消元法代入消元法是解二元一次方程组的基本方法之一.“消元”体现了数学研究中转化的重要思想, 代入法不仅在解二元一次方程组中适用,也是今后解其他方程(组)经常用到的方法. 用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,例如y,用另一个未知数如x的代数式表示出来,即写成y=ax+b的形式:②把y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程:③解这个一元一次方程,求出x的值:④回代求解:把求得的x的值代入y=ax+b中求出y的值从而得出方程组的解.⑤把这个方程组的解写成x ay b=⎧⎨=⎩的形式.【例】解方程组2 239 x yx y-=⎧⎨+=⎩②①解:由①得y=x—2 ③把③代入②,得2x+3(x-2)=9 解得x=3把x=3代入③得,y=l所以方程组的解是31 xy=⎧⎨=⎩2、加减消元:Why:等式性质When:系数绝对值相同优先How:系数统一后相加减直接加减;⑴31x yx y+=⎧⎨-=⎩⑵521327x yx y-=⎧⎨+=⎩⑶24234x yx y+=⎧⎨-=-⎩系数统一(4)23124x yx y-=⎧⎨+=⎩(5)237324x yx y+=⎧⎨-=⎩2.加减消元法加减法是消元法的一种,也是解二元一次方程组的基本方法之一,也是今后解其他方程(组)经常用到的方法用加减法解二元一次方程组的-般步骤:①变换系数:把一个方程或者两个方程的两边都乘以适当的数.使两个方程里的某―个未知数互为相反数或相等.②加减消元:把两个方程的两边分别相加或相减.消去一个未知教,得到一个一个―次方程:③解这个一元一次方程,求得一个未知数的值:④回代:将求出的未知数的值代入原方程组中,求出另一个未知数的值:⑤把这个方程组的解写成x ay b=⎧⎨=⎩的形式例:解方程组32 12 3 x yx y-=⎧⎨+=⎩②①解:①×2 得4x+2y=6 ③①+③得7x=7解得x=l把x=l代入①得y=l所以方程组的解是11 xy=⎧⎨=⎩代入消元与加减消元的对比:代入消元方法的选择:①运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0” 的形式.求不出未知数的值.②当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.加减消元方法的选择:① 一般选择系数绝对值最小的未知数消元;② 当某一未知数的系数互为相反数时,用加法消元;当某一未知数的系数相等时,用减法消元;③某一未知数系数成倍数关系时,直接使其系数互为相反数或相等,再用加减消元求解.④当未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时方程进行变形,转化为系数的绝对值相同,再用加减消元求解.【例6】⑴方程组233x yx y-=⎧⎨+=⎩的解是( )A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.11xy=⎧⎨=⎩D.23xy=⎧⎨=⎩⑵方程组535213x yx y+=⎧⎨-=⎩的解是()A.12xy=⎧⎨=⎩B.45xy=-⎧⎨=⎩C.53xy=⎧⎨=⎩D.45xy=⎧⎨=-⎩⑶用代入消元法解方程组:3 3814 x yx y-=⎧⎨-=⎩⑷用加减消元法解方程组:49 351 x yx y+=-=⑸二元一次方程ax+by=6有两组解是22xy=⎧⎨=-⎩与18xy=-⎧⎨=-⎩,求a,b的值.【练6】⑴二元―次方程组2x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.11xy=⎧⎨=⎩D.11xy=-⎧⎨=-⎩⑵方程组25342x yx y-=⎧⎨+=⎩的解是____________.⑶己知方程组2421mx y nx ny m+=⎧⎨-=-⎩的解是11xy=⎧⎨=-⎩,那么m,n的值为()A.11mn=⎧⎨=-⎩B.21mn=⎧⎨=⎩C.32mn=⎧⎨=⎩D.31mn=⎧⎨=⎩三元:【例7】0 423 9328 a b ca b ca b c++=⎧⎪++=⎨⎪-+=⎩【练7】解方程组0.5320 322 x y zx y zx y z+-=⎧⎪-+=⎨⎪+-=⎩模块三二元一次方程组的基本解法本模块中,我们主要学习复杂二元一次方程组化简,同时,对换元,轮换,连等式等量代信思想的建议认识理解.复杂方程组化简为基本二元一次方程组消元求解【例8】解下列方程组:⑴3(1)4(4)5(1)3(5)y xx y-=-⎧⎨-=+⎩⑵134723m nm n⎧-=-⎪⎪⎨⎪+=⎪⎩【练8】解方程组:⑴2344143m n n mnm+-⎧-=⎪⎪⎨⎪+=⎪⎩⑵3221245323145x yx y--⎧+=⎪⎪⎨++⎪-=⎪⎩2、轮换对称:二元对称:【例9】解方程组:⑴231763172357x yx y+=⎧⎨+=⎩⑵201120134023201320114025x yx y+=⎧⎨+=⎩【曾伟录入】【练9】(1)解关于x、y的方程组301120722 150271571x yx y+=⎧⎨+=⎩(2)解关于x、y的方程组331512 173588x yx y+=⎧⎨+=⎩三元轮换【例10】解方程组(1)222426x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩;(2)1131x y zy z xz x y+-=⎧⎪+-=⎨⎪+-=⎩.【练10】(1)解方程组12323434545151212345x x xx x xx x xx x xx x x++=⎧⎪++=⎪⎪++=⎨⎪++=⎪⎪++=⎩;(2)已知1467245735674757671234567394941131499x x x x x x x x x x x x x x x x x x x x x x x x x +++=⎧⎪+++=⎪⎪+++=⎪+=⎨⎪+=⎪⎪+=⎪++++++=⎩,求7x .3、换元:【例11】(1)解方程组23237432323832x y x y x y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩【练11】(第七届“华罗庚杯”邀请赛试题) 解方程组1211631102221x y x y ⎧+=⎪--⎪⎨⎪+=⎪--⎩【例12】解方程组(1)1513pq p q pq p q ⎧=⎪+⎪⎨⎪=⎪-⎩;(2)1321312312mn m n mn m n ⎧=⎪⎪+⎨⎪=⎪+⎩.【练12】(1)已知1,2,3xy yz zx x y y z z x===+++,求x y z ++的值.(2)解关于x 、y 的方程组1111(0,)x y abx a b x y aby ab ab b aa b ⎧+=+⎪⎪⎨⎪+=+≠±≠⎪⎩.4、连等比例【例13】解方程组:(1):::1:2:3:49732200x y z u x y z u =⎧⎨+++=⎩;(2)解方程组:2345238x y z x y z ⎧==⎪⎨⎪+-=⎩【练13】已知a b c k b c a c a b===+++,求k 的值.第8讲[尖端课后作业二元一次方程(的)念和解法【习1】下列各方程中,是二元一次方程的是( )A. 312x xy +=B. x y =C. 2115x y =+ D. 253x y x y -=+ 【习2】下列各方程是二元一次方程的是( )A. 23x y z +=B. 45y x +=C. 2102x y +=D. 1(8)2y x =+【习3】若关于x 、y 的方程2(3)0a a x y --+=是二元一次方程,那么a 的取值为( )A. 3a =-B. 3a =C. 3a >D. 3a <【习4】若方程22(4)(23)(2)0k x k x k y -+-+-=为二元一次方程,则k 的值为( )A. 2B. -2C. 2或-2D. 以上均不对【习5】若方程2(3)25m m x y -+-=为关于x 、y 的二元一次方程,则2012(2)m -= .【习6】下列方程组中,是二元一次方程组的是( )A. 4119x y x y +=⎧⎪⎨+=⎪⎩B. 57x y y z +=⎧⎨+=⎩C. 1x y xy x y -=⎧⎨-=⎩D.1326x x y =⎧⎨-=⎩【习7】下列不是二元一次方程组的是( )A. 23x y y z +=⎧⎨+=⎩B. 2334m n n m =+⎧⎨-=⎩ C. 21x y =⎧⎨=-⎩D. 4252()12()3a a b a b +=⎧⎨-+=+-⎩ 【习8】解下列二元一次方程组:(1)527341x y x y -=⎧⎨+=-⎩ ;(2)327238x y x y +=⎧⎨+=⎩ ;(3)34165633x y x y +=⎧⎨-=⎩【习9】若方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解是( ) A. 6.32.2x y =⎧⎨=⎩ B. 8.31.2x y =⎧⎨=⎩ C. 10.32.2x y =⎧⎨=⎩ D. 10.30.2x y =⎧⎨=⎩【习10】若实数x 、y 满足2142y x ⎛⎫= ⎪⎝⎭,求关于x 、y 的方程组12x y a x y a +=-⎧⎨-=-⎩的解.【习11】已知211(3)02a b -++=,解方程组315ax y x by -=⎧⎨+=⎩. 【习12】解方程组2(1)5(2)1101217102x y x y --++=⎧⎪-+⎨-=⎪⎩【习13】解方程组3()4()4126x y x y x y x y +--=⎧⎪+-⎨+=⎪⎩ 【习14】解方程组2320235297x y x y y --=⎧⎪-+⎨+=⎪⎩【习15】解方程组9()18523()2032m n m m n ⎧+=⎪⎪⎨⎪++=⎪⎩【习16】解方程组1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩【习17】解方程组37043225x y y z x z -+=⎧⎪+=⎨⎪-=-⎩【习18】解方程组23162125x y z x y z x y z ++=⎧⎪-+=-⎨⎪+-=⎩【习19】解方程组56812412345x y z x y z x y z +-=⎧⎪+-=-⎨⎪+-=⎩【玉勇录入】【习20】已知方程组361463102463361102x y x y +=-⎧⎨+=⎩的解是x p y q =⎧⎨=⎩,方程组345113435113991332x y z x y z x y z ++=⎧⎪++=⎨⎪+-=⎩的解是x m y n z t =⎧⎪=⎨⎪=⎩,则(p -q )(m -n +t )等于 .【习21】(武汉市“CASIO ”竞赛题)已知正数a ,b ,c ,d ,e ,f 满足becdf a =4,acdef b =9,abdef c =16,abcef d =14,abcdf e =19, abcde f =116,求(a +c +e )-(b +d +f )的值.【习22】(第二十三届“希望杯”全国数学邀请赛初二第1试)已知实数x 1,x 2,x 3,x 4满足条件1231234234134124x x x a x x x a x x x a x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=⎩,其中a 1<a 2<a 3<a 4,则x 1,x 2,x 3,x 4的大小关系是( ) A . x 1<x 2<x 3<x 4 B . x 2<x 3<x 4<x 1 C . x 3<x 2<x 1<x 4 D . x 4<x 3<x 2<x 1【习23】若x1,x2,x3,x4,x5满足方程组12323434545151212345x x xx x xx x xx x xx x x-+=⎧⎪-+=⎪⎪-+=⎨⎪-+=⎪⎪-+=⎩①②③④⑤,求x2x3x4的值.【习24】解方程组::3:2:5:466 x yy zx y z=⎧⎪=⎨⎪++=⎩【张来录入】。
二元一次方程组解法(一)--代入法(基础)知识讲解
二元一次方程组解法(一)--代入法(基础)知识讲解【学习目标】1. 理解消元的思想;2. 会用代入法解二元一次方程组.【要点梳理】要点一、消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.要点二、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.要点诠释:(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解; ②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;③若方程组中所有方程里的未知数的系数都不是1或-1,选系数绝对值较小的方程变形比较简便.【典型例题】类型一、用代入法解二元一次方程组1.用代入法解方程组:5341x y x y =+⎧⎨+=⎩. 【思路点拨】直接将上面的式子代入下面的式子,化简整理即可.【答案与解析】解:5341x y x y =+⎧⎨+=⎩①② 将①代入②得:3(5)41y y ++=③去括号,移项,合并,系数化1得:2y =- ④把④代入①得:3x =∴ 原方程组的解为:32x y =⎧⎨=-⎩【总结升华】当方程组中出现一个未知量代替另一个未知量的方程时,一般用直接代入法解方程组.举一反三:【变式】若方程y =1-x 的解也是方程3x +2y =5的解,则x =____,y =____.【答案】3,﹣ 2.2. 用代入法解二元一次方程组:524050x y x y --=⎧⎨+-=⎩①②【思路点拨】观察两个方程的系数特点,可以发现方程②中x 的系数为1,所以把方程②中的x 用y 来表示,再代入①中即可.【答案与解析】解:由②得x =5-y ③将③代入①得5(5-y )-2y -4=0,解得:y =3,把y =3代入③,得x =5-y =5-3=2所以原方程组的解为23x y =⎧⎨=⎩. 【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.举一反三:【高清课堂:二元一次方程组的解法 369939 例3】【变式1】与方程组2020x y x y +-=⎧⎨+=⎩有完全相同的解的是( ) A .x+y -2=0B .x+2y=0C .(x+y -2)(x+2y)=0D .22(2)0x y x y +-++=【答案】D【变式2】若∣x-2y +1∣+(x +y -5)2=0,则 x= , y= .【答案】3,2类型二、由解确定方程组中的相关量3. 方程组43235x y k x y -=⎧⎨+=⎩的解x y 与的值相等,则k 的值是 .【思路点拨】将x y =代入上式,可得,x y 的值,再代入下面的方程可得k 值.【答案】1【解析】解:43235x y k x y -=⎧⎨+=⎩①② 将x y =代入②得1x y ==,再代入①得1k =.【总结升华】一般地,先将k 看作常数,解关于x ,y 的二元一次方程组再令x=m 或y=m ,得到关于m 的方程,解方程即可.【高清课堂:二元一次方程组的解法 369939 例8(4)】举一反三:【变式】若方程组231(1)(1)4x y k x k y +=⎧⎨-++=⎩的解x 与y 相等,求k.【答案】将x y =代入上式得15x y ==,再代入下式得10k =. 4. 若方程组ax+by=11(5-a)x-2by+14=0⎧⎨⎩的解为14x y =⎧⎨=⎩,试求a b 、的值. 【答案与解析】解:将14x y =⎧⎨=⎩代入得a+4b=11(5-a)-2b 4+14=0⎧⎨⨯⎩,即a+4b=11a+8b=19⎧⎨⎩, 解得a=3b=2⎧⎨⎩. 【总结升华】将已知解代入原方程组得关于a b 、的方程组,再解关于a b 、方程组得a b 、的值.二元一次方程组解法(一)--代入法(基础)巩固练习【巩固练习】一、选择题1.用代入消元法解方程组323211x y x y -=⎧⎨+=⎩①②代入消元法正确的是( ).A .由①②得y =3x+2,代入②,得3x =11-2(3x+2)B .由②得1123y x -=,代入①,得11231123y y -=- C .由①得23y x -=,代入②,得2-y =11-2y D .由②得3x =11-2y ,代入①,得11-2y -y =22.用代入法解方程组34225x y x y +=⎧⎨-=⎩①②使得代入后化简比较容易的变形是( ). A .由①得243y x -= B .由①得234x y -= C .由②得52y x += D .由②得y =2x -53.对于方程3x -2y -1=0,用含y 的代数式表示x ,应是( ).A .1(31)2y x =-B .312x y +=C .1(21)3x y =-D .213y x += 4.已知x+3y =0,则3232y x y x +-的值为( ).A.13B.13-C.3 D.-35.一副三角板按如图摆放,∠1的度数比∠2的度数大50°,若设,,则可得到方程组为( ) .A. B. C. D.6.已知21xy=⎧⎨=⎩是二元一次方程组71ax byax by+=⎧⎨-=⎩的解.则a-b的值为().A.-1 B.1 C.2 D.3 二、填空题7.解方程组523,61,x yx y+=⎧⎨-=⎩①②若用代入法解,最好是对方程________变形,用含_______的代数式表示________.8.如果-x+3y=5,那么7+x-3y=________.9.方程组525x yx y=+⎧⎨-=⎩的解满足方程x+y-a=0,那么a的值是________.10.若方程3x-13y=12的解也是x-3y=2的解,则x=________,y=_______.11.小刚解出了方程组332x yx y-=⎧⎨+=⎩▲的解为4xy=⎧⎨=⎩▉,因不小心滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲=________,▇=________.12.三年前父亲的年龄是儿子年龄的4倍,三年后父亲的年龄是儿子年龄的3倍,则父亲现在的年龄是________岁,儿子现在的年龄是________岁.三、解答题13.用代入法解下列方程组:(1)52233x yx y-=-⎧⎨+=⎩①②(2)233511x yx y+=⎧⎨-=⎩①②14.小明在解方程组时,遇到了困难,你能根据他的解题过程,帮他找出原因吗?并求出原方程组的解.解方程组123761x y x y -=⎧⎨+=⎩①②解:由②,得y =1-6x ③将③代入②,得6x+(1-6x )=1(由于x 消元,无法继续)15.m 为何值时,方程组522312x y m x y m -=⎧⎨+=-⎩的解互为相反数? 【答案与解析】一、选择题1. 【答案】D ;2. 【答案】D ;3. 【答案】D ;【解析】移项,得321x y =+,系数化1得213y x +=. 4. 【答案】B ;【解析】由x+3y =0得3y =﹣x ,代入32213223y x x x y x x x +-+==----. 5. 【答案】D ;6. 【答案】A ;【解析】将21x y =⎧⎨=⎩代入71ax by ax by +=⎧⎨-=⎩得2721a b a b +=⎧⎨-=⎩,解得23a b =⎧⎨=⎩. 二、填空题7. 【答案】②; x , y ;8. 【答案】2;【解析】由-x+3y =5得x -3y =﹣5,代入7+x -3y=7+(﹣5)=2.9. 【答案】-5;【解析】由525x y x y =+⎧⎨-=⎩解得05x y =⎧⎨=-⎩,代入 x+y -a =0,得a =-5.10.【答案】﹣2.5,﹣1.5;【解析】联立方程组3131232x y x y -=⎧⎨-=⎩,解得 2.51.5x y =-⎧⎨=-⎩. 11.【答案】17,9;【解析】将4x =代入33x y -=得9y =,即▇=9,再将4x =,9y =代入2x y +=▲,得▲=17.12.【答案】51,15;【解析】设父亲现在的年龄是x 岁,儿子现在的年龄是y .由题意得:34(3)33(3)x y x y -=-⎧⎨+=+⎩,解得5115x y =⎧⎨=⎩.三、解答题13.【解析】解: (1)由②得x=3-3y③,将③代入①得,5(3-3y)-2y=-2,解得y=1,将y=1代入③得x=0,故1 xy=⎧⎨=⎩.(2)由①得y=3-2x ③,将③代入②得,3x-5(3-2x)=11,解得x=2,将x=2代入③得y=-1,故21 xy=⎧⎨=-⎩.14.【解析】解:无法继续的原因是变形所得的③应该代入①,不可代入②.由②,得y=1-6x ③,将③代入①,得12x-3(1-6x)=7.解得13x=,将13x=代入③,得y=-1.所以原方程组的解为131xy⎧=⎪⎨⎪=-⎩.15.【解析】解:由题意得x=-y,把x=-y代入方程得522312y y my y m--=⎧⎨-+=-⎩,整理得312m yy m=-⎧⎨=-⎩①②.把②代入①,得m=9.所以m为9时,原方程组的解互为相反数.。
二元一次方程组及其解法第1课时 二元一次方程组(安徽)
4x+6y=48 4x+6y=48 C.5x+3y=38 D.3x+5y=38
13.在方程3xy=-2x,=1;x3x+-y=y=0, 5;xx+y=21y=,3;
x1x+ +1yy;=1,yx==11,中,是二元一次方程组的有__3__个.
14.关于 x,y 的方程(a-1)x|a|+y=3 是二元一次方程,则 a=___-_1__.若 方程组5y+x-az3=y=4 7,是二元一次方程组,则 a 的值为__0__.
15.根据题意列方程组. (1)某班共有学生45人,其中男生比女生的2倍少9人,该班的男生、女生各有 多少人?
(2)将一摞笔记本分给若干同学.每个同学5本,则剩下8本;每个同学8本, 又差了7本,共有多少本笔记本,多少个同学?
2x+4y=36 4x+2y=36 C.x+y=100 D.x+y=100
8.2 元的人民币 x 张,5 元的人民币 y 张,共 120 元,这个关系用方程 可以表示为_____2_x_+_5_y_=__1_2_0__.
9.五女峰森林公园门票价格:成人票每张 50 元,学生票每张 25 元.某
旅 意游 列团 方买 程组30是张_门_x5_票+ 0_x_花y+ __了=_2_153_20y_5=_0__元1_2_.5_设0__其.中有 x 张成人票,y 张学生票,根据题
解:方法一:设该农户种树 x 亩,则种草(30-x)亩,则 150x+(30-x)×100 =4000.
方法二:设该农户种树 x 亩,种草 y 亩,则x2+ 00xy=+31050y=5500
( )B
A.不可能是2 B.不可能是1 C.不可能是0 D.不可能是-1
二元一次方程组的概念及解法
二元一次方程组的概念及解法二元一次方程一、二元一次方程组由几个一次方程组成并且一共..含有两个未知数的方程组叫做二元一次方程组.特别地,134xy x+=⎧⎨-=⎩和31xy=⎧⎨=-⎩也是二元一次方程组.二、二元一次方程组的解二元一次方程组中所有方程(一般为两个)的公共解...叫做二元一次方程组的解.注意:(1)二元一次方程组的解一定要写成联立的形式,如方程组2397x yx y-=⎧⎨+=⎩的解是61xy=⎧⎨=⎩.(2)二元一次方程组的解必须同时满足所有方程,即将解代入方程组的每一个方程时,等号两边的值都相等.例如:因为12xy=⎧⎨=⎩能同时满足方程3x y+=、1y x-=,所以12xy=⎧⎨=⎩是方程组31x yy x+=⎧⎨-=⎩的解.易错点1:代入法解二元一次方程组时,循环代入导致错误.辨析:在利用代入法解二元一次方程组时,需要将方程组中某一个方程进行变形,然后将变形后的方程代入到另一个方程中(注意不是变形前的方程).易错点2:方程变形时,忽略常数项而出现错误.辨析:在用加减法解二元一次方程组时,为了把两个方程中某一个未知数的系数化成相等或者互为相反数,需要在方程两边同乘一个不等于零的数,此时不要忘记常数项,造成漏乘导致出现错解.二元一次方程组的解法一、消元思想二元一次方程组中有两个未知数,如果能“消去”一个未知数,那么就能把二元一次方程组转化为我们熟悉的一元一次方程.这种将未知数的个数由多化少、逐一解决的思想,叫做“消元”.使用“消元法”减少未知数的个数,使多元方程组最终转化为一元方程,再逐步解出未知数的值.二、代入消元法1、代入消元法的概念将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法.2、用代入消元法解二元一次方程组的一般步骤:①等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y),用另一个未知数(如x)的代数式表示出来,即将方程写成y ax b=+的形式;②代入消元:将y ax b=+代入另一个方程中,消去y,得到一个关于x的一元一次方程;③解这个一元一次方程,求出x的值;④回代:把求得的x 的值代入y ax b =+中求出y 的值,从而得出方程组的解; ⑤把这个方程组的解写成x ay b =⎧⎨=⎩的形式.三、加减消元法1、加减消元法的概念当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法.2、用加减消元法解二元一次方程组的一般步骤:①变换系数:利用等式的基本性质,把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数互为相反数或相等;②加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求得一个未知数的值; ④回代:将求出的未知数的值代入原方程组的任何一个方程中,求出另一个未知数的值;⑤把这个方程组的解写成x a y b =⎧⎨=⎩的形式.例题讲解二元一次方程1.下列各方程是二元一次方程的是 ( ) A .2x+xy=3 B .m -n 2+2=0 C .302y x x y -= D .12S t = 2.已知方程:①3x -4y=10;②3y+2x=-1;③6y=4-5x ;④2y -7=4x+1,则21x y =⎧⎨=-⎩所满足的方程是 ( ) A .① B .①② C .①③ D .①②④ 3.关系式132x y-=,用 x 的代数式表示y 得 ( ) A .223x y -=B .2133x y =- C .223x y =- D .223xy =- 4.下列说法中正确的是 ( ) A .32x y =⎧⎨=⎩是方程3x -4y=1的一组解B .方程3x -4y=1有无数组解,即x 、y 可以取任何数值C.方程3x-4y=1只有两组解,两组解分别是:11112xxyy=⎧=-⎧⎪⎨⎨=-=⎩⎪⎩、D.方程3x-4y=1可能无解5. 把二元一次方程3x-2y+5=0化为y=kx+m的形式,写出k、m的值.6.如果4x-5y=0,且x≠0,那么125125x yx y-+的值是__________.7.把二元一次方程3x-2y+5=0化为y=kx+m的形式,写出k、m的值二元一次方程组1.下列方程组中,不是二元一次方程组的是 ( )A.320,41x yx y-=⎧⎨-=⎩B.5,3x yy z+=⎧⎨+=⎩C.222,20x x yx y⎧-=+⎨-=⎩D.21,x yy=+⎧⎨=⎩2.下列方程组:①4,3;x yxy-=⎧⎨=⎩②25,41;x yy x-=⎧⎨=+⎩③3,48;y xx z=⎧⎨+=⎩④53,1;324x yx y-=⎧⎪⎨-=⎪⎩⑤53,31.x yyx-=⎧⎪⎨+=⎪⎩其中,二元一次方程组的个数是 ( )A.1 B.2 C.3 D.43.如图,点O在直线AB上,OC为射线,∠1比∠2的3倍少10°,如果设∠1、∠2的度数分别为x、y,那么下列方程组正确的是 ( )A.180,10x yx y+=⎧⎨=-⎩B.180,310x yx y+=⎧⎨=-⎩C.180,10x yx y+=⎧⎨=+⎩D.3180,310yx y=⎧⎨=-⎩4.(2009.青海)如果代数式-3x m-1 y3与52x n y m+n是同类项,那么m、n的值分别是 ( )A.2,1mn=⎧⎨=-⎩B.2,1mn=-⎧⎨=-⎩C.2,1mn=⎧⎨=⎩D.2,1mn=-⎧⎨=⎩5.根据下面的条件列出二元一次方程组:(1)已知3223357m n m n x y +---=是关于x 、y 的二元一次方程,列出关于m 和n 的二元一次方程组. (2)已知522325m n x y ++与632134m n x y ---的和是单项式,列出关于m 和n 的二元一次方程组.解二元一次方程组 代入消元法1.方程组25328y x x y =-⎧⎨-=⎩,消去y 后所得的方程是 ( )A .3x -4x -10=8B .3x -4x+5=8C .3x -4x -5=8D .3x -4x+10=8 2.四名学生解二元一次方程组345(1)23(2)x y x y -=⎧⎨-=⎩提出四种不同的解法,其中解法不正确的是( ) A .由①得543y x +=,代入② B .由①得354x y -=,代入② C .由②得32x y -=,代入① D .由②得x=3+2y ,代入① 3.二元一次方程组32725x y x y -=⎧⎨+=⎩的解是 ( )A .32x y =⎧⎨=⎩ B .12x y =⎧⎨=⎩ C .42x y =⎧⎨=⎩ D .31x y =⎧⎨=⎩4.方程组 379475x y x y +=⎧⎨-=⎩的解是 ( )A .21x y =-⎧⎨=⎩B .237x y =-⎧⎪⎨=⎪⎩C .237x y =⎧⎪⎨=-⎪⎩D .237x y =⎧⎪⎨=⎪⎩5.用代入法解方程组(a)23(1)328(2)y x x y =-⎧⎨+=⎩ (b)23(1)325(2)s t s t =⎧⎨-=⎩ (c)37(1)8361(2)x x x y -=-⎧⎨-=⎩ (d)23(1)431(2)y x x y =-⎧⎨-=⎩将各方程组中的方程①代入方程②中,所得的方程正确的是 ( ) A .(a)3x+4x -3=8 B .(b)3t -2t=5 C .(c)40-3y=61 D .(d)4x -6x -9=1 6. 已知代数式1312a x y -与23b a b x y -+-是同类项,那么a ,b 的值分别是 ( ) A .21a b =⎧⎨=-⎩ B .21a b =⎧⎨=⎩ C .21a b =-⎧⎨=-⎩ D .21a b =-⎧⎨=⎩7.解二元一次方程组35821x y x y +=⎧⎨-=⎩8.解方程2215y x x y =+⎧⎨-=⎩9.已知方程组35223x y a x y a+=+⎧⎨+=⎩的解适合x+y=8,求a 的值.10.小明和小华同时解方程组5213mx y x ny +=⎧⎨-=⎩,小明看错了m ,解得722x y ⎧=⎪⎨⎪=-⎩,小华看错了n ,解得37xy=⎧⎨=-⎩,你能知道原方程组正确的解吗?解二元一次方程组加减消元法1.用加减消元法解方程231328x yx y+=⎧⎨-=⎩时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:①691648x yx y+=⎧⎨-=⎩②461968x yx y+=⎧⎨-=⎩③6936416x yx y+=⎧⎨-+=-⎩④4629624x yx y+=⎧⎨-=⎩其中变形正确的是 ( ) A.①② B.③④ C.①③ D.②④2.已知二元一次方程组0.80.73(1)827(2)x yx y+=⎧⎨--=⎩,用加减消元法解该方程组时,将方程①两边同时乘以_________,再将得到的方程与方程②两边相_________,即可消去________.3.李老师用36元买了两种笔记本共40本,其中两种笔记本的价格分别为1元和0.8元,则李老师买了价格为1元的笔记本_________本,0.8元的笔记本________本.4.解方程组:235 3212 x yx y-=-⎧⎨+=⎩5.解方程组:1 23 x yx y+=⎧⎨+=⎩6.已知关x、y的方程组2331x yax by-=⎧⎨+=-⎩和3211233x yax by+=⎧⎨+=⎩的解相同,求a、b的值.练习1.下列各式:①12x +2x =3;②3x +2y ;③4x =3y ;④x 2-y 2;⑤1132x y =+;⑥x 2-2x=3;⑦4(x +y )=5(x -y )+1;⑧xy =x -y .其中,是二元一次方程的是 ( )A .①⑤B .③⑦C .⑥⑧D .②④ 2.方程m x -2y =x +5是二元一次方程时,m 的取值为 ( ) A .m ≠0 B .m ≠1 C .m ≠-1 D .m ≠2 3.方程2x +3y =6与3x +2y =-1的公共解是 ( )A .3,2x y =⎧⎨=-⎩B .3,4x y =-⎧⎨=⎩C .3,2x y =⎧⎨=⎩D .3,2x y =-⎧⎨=⎩4.(1)二元一次方程2x +y =5中,当x =2时,y =________.(2)把二元一次方程2x -3y =5写成用含x 的代数式表示y 的形式是________. (3)已知方程3241252m n x y +--=是二元一次方程,则m =________,n =________. (4)方程x +2y =-7的非正整数解有________组,解为________________________. (5)写出一个二元一次方程,使其满足x 的系数是大于2的自然数,y 的系数是小于-3的整数,且x =2,y =3是它的一个解,该方程为________________________.5.已知132x y x y-+-=. (1)用含x 的代数式表示y .(2)用含y 的代数式表示x .6.用代入法解下列方程组:(1)(2010.广州)21,3211x y x y +=⎧⎨-=⎩ (2) (2010.青岛) 3419,4x y x y +=⎧⎨-=⎩(3) (2010.南京) 24,25x y x y +=⎧⎨+=⎩ (4) (2010.吴洲) 4310,321x y x y +=⎧⎨-=-⎩7.用加减法解下列方程组:(1) 26,22x y x y -=⎧⎨+=-⎩ (2) 352,9223x y x y -=⎧⎨+=⎩(3) 237,328x y x y +=⎧⎨+=⎩ (4) 12,34231y x x y ++⎧=⎪⎨⎪-=⎩8.若2m n -++(2m +n +4)2=0,则m n的值是 ( )A .1B .0C .-1D .-29.(1)已知方程组5,28x y x y +=⎧⎨+=⎩的解也是方程4x +y +k =0的解,求k 的值.(2)已知方程4x -y =10中,x 与y 互为相反数,求x 、y 的值. 10.如果5312b ax y +和2243a b x y --是同类项,那么a 、b 的值是 ( ) A .1,2a b =-⎧⎨=⎩ B .7,0a b =⎧⎨=⎩ C .0,35a b =⎧⎪⎨=-⎪⎩D .2,1a b =⎧⎨=-⎩11.若关于x 、y 的方程组323,221x y m x y m +=+⎧⎨-=-⎩的解互为相反数,则m 的值为 ( )A .-7B .10C .-10D .-12检测题1.下列各对数值:①3,2x y =⎧⎨=⎩ ②1,1x y =⎧⎨=⎩ ③1,36x y ⎧=⎪⎨⎪=⎩④0,12x y =⎧⎪⎨=-⎪⎩⑤2,52x y =⎧⎪⎨=⎪⎩其中,满足方程3x-2y =1的有 ( )A .4组B .3组C .2组D .1组 2.下列方程:①327y x+=;②x =y ;③110x y -=-;④xy -3y =1;⑤x -π=1;⑥4x +3y .其中,二元一次方程有 ( )A .1个B .2个C .3个D .4个3.若214237m n x y --+=-是关于x 、y 的二元一次方程,则m ·n 的值为 ( ) A .2 B .32- C .32 D .524.二元一次方程2x +y =6的自然数解有 ( )A .1组B .2组C .3组D .4组 5.先阅读材料,再解方程组.解方程组()10,45x y x y y --=⎧⎪⎨--=⎪⎩时,可由①得x -y =1 ③,然后再将③代入②,得4×1-y =5,解得y =-1,从而可得0,1x y =⎧⎨=-⎩这种方法称为“整体代入”法.请用上面的方法解方程组2320,235297x y x y y --=⎧⎪-+⎨+=⎪⎩①②1.(1)方程x+y=5有________组解,有________组正整数解.(2)当方程m x-2y=x+5是二元一次方程时,m满足的条件为________.(3)已知2,3xy=-⎧⎨=⎩是方程2x-13y=5k的一个解,则k=________.(4)一个两位数,十位数字x比个位数字y的一半还少1,则可列出方程________,这样的两位数有________.2.解方程组:①21,758y xx y=-⎧⎨+=⎩②8625,17648s ts t+=⎧⎨-=⎩较为简便的是 ( )A.①②均用代入法 B.①②均用加减法C.①用代入法,②用加减法 D.①用加减法,②用代入法3.用加减消元法解方程组321,354x yx y+=⎧⎨-=-⎩由①-②得 ( )A.2y=1 B.5y=4 C.7y=5 D.-3y=-34.用加减消元法解方程组正确的方法是 ( )A.①+②得2x=5 B.①+②得3x=12C.①+②得3x+7=5 D.先将②变为x-3y=7③,再①-③得x=-2 ①5.(1)在方程组341,236x yx y+=⎧⎨-=⎩中,若要消去未知数x,则①式可乘______得______③;②式可乘得④;然后再将③、④两式即可.(2)在341,236x yx y+=⎧⎨-=⎩中,①×3得________③;②×4得________④,这种变形的目的是要消去未知数________.(3)已知二元一次方程组200920102008,201020092011x yx y+=⎧⎨+=⎩则x-y=______,x+y=______.①②①②①②。
二元一次方程组的概念及解法
二元一次方程组的概念及解法二元一次方程组是含有两个未知数,且未知数的指数都是1的方程。
当把两个二元一次方程合在一起时,就组成了一个二元一次方程组。
方程组的解是使得两个方程的未知数相等的值。
公共解是指两个方程的解都相同的值。
例如,在方程组中,是一个二元一次方程组的例子。
另外,已知二元一次方程2x-y=1,当x=2时,y=3;当y=1时,x=3.消元解法是解二元一次方程组的一种方法。
代入消元法是将一个方程中的一个未知数表示为另一个未知数的函数,然后代入另一个方程中进行消元。
加减消元法是将两个方程相加或相减,消去一个未知数,然后解出另一个未知数。
例如,方程2x-y-5=0可以表示为x=(y+5)/2,y=2x-5.另外,方程组可以用消元解法来解,例如,方程组(2x+3y=40.x-y=-5)可以用加减消元法解出x=11,y=6.举例来说,如果有一个两位数,其个位和十位数字之和为11,将其个位数字和十位数字对调后得到的数比原数大63,那么可以用代数式表示原数为(10y+x),对调后的数为(10x+y),则可以列出方程组(10y+x+63=10x+y。
x+y=11)。
解方程组可以得到x=8,y=3,因此原数为83.鸡兔同笼”问题是另一个例子,可以用二元一次方程组表示。
题目中给出了总共30个头和94只脚,因此可以列出方程组(2x+4y=30.2x+2y=94),其中x表示鸡的数量,y表示兔的数量。
解方程组可以得到x=12,y=9,因此鸡的数量为12,兔的数量为9.综上所述,二元一次方程组是含有两个未知数和未知数的指数都是1的方程组。
解二元一次方程组可以使用消元解法,包括代入消元法和加减消元法。
实际问题可以用二元一次方程组来表示,然后解方程组得出答案。
1.在方程y=-3x-2中,若x=2,则y=-8.若y=2,则x=-4.2.若方程2x-y=3写成用含x的式子表示y的形式:y=2x-3;写成用含y的式子表示x的形式:x=(y+3)/2.3.已知43=2x-3y+1,4x-15y-17=0,6x-25y-23=0,则x=3,y=-2.4.二元一次方程3x-my=4和mx+ny=3有一个公共解,则m=-4,n=3.5.已知|a-b+2|+(b-3)^2=1,那么ab=-1.6.对于方程组(1){xy= -10.x+y=-2},是二次方程组;(2){x-y=1.x/y=3/4},是一次方程组;(3){x+y=5.xy=3},是二次方程组;(4){x+y=3.x=2y},是一次方程组。
二元一次方程公式
二元一次方程组(一)一、重点、难点1、二元一次方程及其解集(1)含有两个未知数,并且未知数项的次数是1的整式方程叫二元一次方程.(2)二元一次方程的解是无数多组.2、二元一次方程组和它的解(1)含有两个一样未知量的两个二元一次方程合在一起,就组成了一个二元一次方程组.(2)使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值叫做二元一次方程组的解.3、二元一次方程组的解法(1)代入消元法:把其中的一个方程的某一个未知数用含有另一个未知数的代数式表示,然后代入另一个方程,就可以消去一个未知数.(2)加减消元法:先利用等式的性质,用适当的数同乘以需要变形的方程的两边,使两个方程中某个未知数的系数的绝对值相等,然后把两个方程的两边分别相加或相减,就可以消去这个未知数.4、三元一次方程组及其解法(1)含有三个未知数,每个方程的未知数的次数都是1,并且是由三个方程组成的方程组叫做三元一次方程组.(2)解三元一次方程组的根本思想是用消元的方法把“三元〞转化为“二元〞(将未知问题转化为问题,再将“二元〞转化为“一元〞).二、例题分析:例1: 在方程2x-3y=6中,1)用含x的代数式表示y.2)用含y的代数式表示x.答案:1)y= x-2;2)x=3+ y例2:x+y=0,且|x|=2,求y+2的值.解:∵|x|=2∴x=2,或x=-2又∵x+y=0∴y=-2,或y=2故y+2=0,或y+2=4例3:方程组的解是,求a与b的值分析:方程组的解就是适合原方程组,所以将代入方程可以得到关于a,b的新的方程。
解:因为方程组的解是所以〔1〕×2得2a-4=2b (3)〔3〕-〔2〕得-5=2b-2∴b=-将b=- 代入〔1〕得a=∴答案:a= , b=-例4:方程x+3y=10在正整数围的解有_____组,它们是________________。
答案:3;例5:把方程3(x+5)=5(y-1)+3化成二元一次方程的一般形式为______.答案:3x-5y+17=0例6:关于x,y的方程(k2-1)x2+(k+1)x+(k-7)y=k+2。