北师大版初中数学八年级上册4.4 第1课时 确定一次函数的表达式2
北师大版八年级数学上册用二元一次方程组确定一次函数表达式课件
用作图象的方法可以直观地获得问题的结果,但有时却难以准确,为了获得准确的结果,我们一般用代数方法。
2. 例:某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(kg)的一次函数,现知李明带了60kg的行李,交了行李费5元,王华带了90kg的行李,交了行李费10元.
(1)写出y与x之间的函数表达式
(2)旅客最多可免费携带多少千克的行李?
解:(1)设y=kx+b,根据题意,得
解得
所以 y与x之间的函数表达式为
(2)当y=0时,解得x=30所以旅客最多可以免费携带30 kg的行李。
学习新知
(1)一般设一次函数的表达式为什么?(2)确定一次函数的表达式关键是确定哪些参数的值?(3)确定一次函数的表达式需要几个条件?(4)确定一次函数的表达式需要几个步骤?
四、学习新知
你有几种解决上述问题的方法?它们有什么不同之处?
10080604020
小明的方法求出的结果准确吗?
1
2
3
5
2.8
你明白他的想法吗? 用他的方法做一做, 看看和你的结果一致吗?
用方程解行程问题
1 h后乙距A地80 km,即乙的速度是 20 km/h,
解:(1)设y=kx+b,根据题意,得
解得
∴y与x之间的函数表达式为
(2)当x=4时,y=0.5×4+14.5解得y=16.5∴当所挂物体的质量为4kg时弹簧的长为16.5cm.
五、课内训练(一)
2.图中的两条直线 , 的交点坐标是 ,
北师大版数学八年级上册《4.4一次函数的应用》教案
北师大版数学八年级上册《4.4一次函数的应用》教案一. 教材分析《4.4一次函数的应用》这一节内容,主要让学生了解一次函数在实际生活中的应用,通过具体的实例,让学生学会用一次函数解决实际问题,培养学生的动手操作能力和解决实际问题的能力。
教材中给出了丰富的实例,为学生提供了充足的学习材料。
二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的性质,对于一次函数的图像和表达式有一定的了解。
但学生在实际应用中,可能会对如何将实际问题转化为一次函数模型感到困惑。
因此,在教学过程中,教师需要引导学生正确地将实际问题抽象为一次函数模型,并运用一次函数的知识解决实际问题。
三. 教学目标1.了解一次函数在实际生活中的应用。
2.学会将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。
3.培养学生的动手操作能力和解决实际问题的能力。
四. 教学重难点1.教学重点:一次函数在实际生活中的应用。
2.教学难点:如何将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。
五. 教学方法采用案例分析法、问题驱动法、小组合作学习法等,引导学生通过自主学习、合作探讨,提高解决实际问题的能力。
六. 教学准备1.准备与一次函数应用相关的实例。
2.准备教学课件。
七. 教学过程1.导入(5分钟)通过一个实际问题引出本节内容,例如:某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
让学生思考如何用数学模型来表示这个问题。
2.呈现(15分钟)呈现教材中的实例,引导学生了解一次函数在实际生活中的应用,如:手机话费套餐、出租车计费等。
让学生观察这些实例中的一次函数表达式,分析一次函数的构成和特点。
3.操练(15分钟)让学生分组讨论,每组选择一个实例,尝试将实际问题转化为一次函数模型,并求解。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)请各组学生汇报他们的解题过程和结果,其他学生和教师进行评价和讨论。
通过这个环节,巩固学生对一次函数模型的理解和应用。
新版北师大版八年级数学上册第四章一次函数全章课件
(2)由圆的面积公式,得y=πx2,y不是x的正比例函数, 也不是x的一次函数;
(3)这个水池每时增加5 m3水,x h增加5x m3水,因 而y=15+5x,y是x的一次函数,但不是x的正比例函数.
二、新课讲解
例2 我国自2011年9月1日起,个人工资、薪金所得税征 收办法规定:月收入不超过3500元的部分不收税;月收 入超过3500元但不超过5000元的部分征收3%的所得 税……如某人月收入3860元,他应缴纳个人工资、薪金 所得税为(3860-3500)×3%=10.8(元). (1)当月收入超过3500元而又不超过5000元时,写出 应缴纳个人工资、薪金所得税y(元)与月收入x(元)之 间的关系式; (2)某人月收入为4160元,他应缴纳个人工资、薪金所 得税多少元? (3)如果某人本月缴纳个人工资、薪金所得税19.2元, 那么此人本月工资、薪金收入是多少元?
吗?
当t>-273时,t+273>0,即T>0,满足T≧0. 故给定一个大于-273℃的t值,能求出相应的T值.
二、新课讲解
在上面各例中,都有两个变量,给定其中某一个变量 的值,相应地就确定了另一个变量的值.
一般地,如果在一个变化过程中有两个变量x和y,并 且对于变量x的每一个值,变量y都有唯一的值与它对应, 那么我们称y是x的函数,其中x是自变量.
温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有 如下数量关系:T=t+273,T≧0.
(1)当t分别为-43℃,-27℃,0℃,18℃时,相应的热
力学温度T是多少? 根据T=t+273,当t=-43℃时,T=230K;当t=-27℃
时,T=246K;当t=0℃时,T=273K;当t=18℃时, T=291K. (2)给定一个大于-273℃的t值,你都能求出相应的T值
北师大版八年级数学上册第4章 一次函数 一次函数的图象和性质
次函数的图象吗?
例1 画出一次函数 y = -2x+1 的图象
x y = –2x+1
–2
–1
5
3
y = –2x+1
0
1
1 –1 y
5
01 23 4 5
4
2 列表
–3
一次函数的图 象是什么?
01 23 4 5 01 23 4 5
01 23 4 5 01 23 4 5
思考:观察它们的图象有什么特点?
y y=x+2
.
.
..
.O.
.
.
.
y
.
2
=
x
-
2
x
探究归纳
观察三个函数图象的平移情况:
y y=x+2 y=x
2●
y=x-2
O2
x
●
把一次函数y = x+2,y = x-2的图象与y = x比较,发现: 1. 这三个函数的图象形状都是 直线 ,并且倾斜程度
_相__同___. 2. 函数 y = x 的图象经过原点,函数 y = x + 2 的图象与
y 随 x 的增大而增大. ① b>0 时,直线经过第一、二、三象限;
② b<0 时,直线经过第一、三、四象限. 当 k<0 时,直线 y = kx+b 从左到右逐渐下降,
y 随 x 的增大而减小. ① b>0 时,直线经过第一、二、四象限;
② b<0 时,直线经过第二、三、四象限.
练一练 两个一次函数 y1 = ax+b 与 y2 = bx+a,它们在
要点归纳
思考:与 x 轴的 交点坐标是什么?
b k
4.4 一次函数的应用 第1课时 借助一次函数表达式解决一些简单问题 北师大版八年级上册数学习题课件
7.已知某一次函数的图象与直线y=-x+1平行,且过点(8,2),则这个一次函数的 表达式为____y_=__-__x_+__1_0___.
8.已知一次函数y=kx+b的图象与y轴交点的纵坐标为-2,且当x=2时,y=1,那 么此函数的表达式为_____y_=__32__x_-__2___.
9.如图,一次函数y=kx+3的图象经过点A(1,4). (1)求这个一次函数的表达式; (2)试判断点B(-1,5),C(0,3),D(2,1)是否在这个一次函数的图象上.
解:(1)将点A(1,4)代入表达式y=kx+3,得k+3=4,k=1.∴这个一次函数的表达 式为y=x+3
(2)将各点的横坐标代入表达式y=x+3得:点B:y=-1+3=2≠5,不在函数图象上; 点C:y=0+3=3,在函数图象上;Leabharlann D:y=2+3=5≠1,不在函数图象上
10.某天晚上,一休闲广场举行了盛大的焰火晚会,场面壮观.已知声音在空气中的
知识点二 确定一次函数的表达式 3.直线y=kx-4经过点(-2,2),则该直线的函数表达式是( A ) A.y=-3x-4 B.y=-x-4 C.y=x-4 D.y=3x-4
4.已知直线y=kx+b经过点(2,4)和点(0,-2),那么这条直线的表达式是( B ) A.y=-2x+3 B.y=3x-2 C.y=-3x+2 D.y=2x-3
16.如图,在平面直角坐标系 xOy 中,一次函数 y=-1 2
x+5 的图象 l1 分别与 x,
y 轴交于 A,B 两点,正比例函数的图象 l2 与 l1 交于点 C(m,4).
(1)求 m 的值及 l2 的表达式;
(2)求 S△AOC-S△BOC 的值;
(3)一次函数 y=kx+1 的图象为 l3,且 l1,l2,l3 不能围成三角形,直接写出 k 的值.
北师大版数学八年级上册第四章《一次函数》第3节《一次函数的图像》第一课时
教学设计4.3 一次函数的图象(第1课时)教材的地位和作用《一次函数的图象》是义务教育课程标准北师大版八年级(上)第四章《一次函数》的第三节.在学习本节课之前,学生已学习了平面直角坐标系、变量与函数、以及一次函数与正比例函数的概念等相关的知识。
学生能在平面直角坐标系中熟练的表示一个点,为画图像做好的充分铺垫作用。
本节课也是后续学习反比例函数、二次函数图像和性质的重要基础。
数形结合的思想是本节课的主要数学思想。
教学目标知识与技能:了解正比例函数的图象是一条直线,能熟练画出正比例函数的图像。
理解正比例函数表达式与图象之间的一一对应关系。
过程与方法:经历正比例函数图像画法的探索过程,体会“数”“形”结合的数学思想在问题解决中的作用,并能运用图像及数形结合的思想解决相关函数问题。
情感态度与价值观:在动手画图过程中,培养学生的合作意识和大胆猜想、乐于探索的学习意志。
体验“数”与“形”的转化过程,让学生感受函数图像的美妙,激发学生学数学的兴趣。
教学重、难点:重点:初步了解作函数图象的一般步骤:列表、描点、连线.会画出正比例函数的图像,正比例函数的图像是一条直线。
难点:理解一次函数的代数表达式与图象之间的一一对应关系,正比例函数的性质以及|k|的大小对正比例函数的影响。
教学过程:一、温故知新1、一次函数和正比例函数的定义是什么?2、表示函数的方法有哪几种?二、探究新知1、函数的图像(1)用图象表示的函数关系举例:摩天轮上一点的高度h与旋转时间t之间函数关系的图像。
(2)函数的图像定义把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象。
(3)举例正比例函数y=2x当自变量x=1时,相应的函数值y=2,我们把1作为点的横坐标,相应y 的值2作为纵坐标,从而得到一个点(1,2)再取一组,当自变量x=2时,相应的函数值y=4,我们把2作为点的横坐标,相应y的值4作为纵坐标,从而得到另一个点(2,4)……这样我们能得到很多的点,所有这些点组成的图形就叫做该函数的图象。
北师大版八年级数学上册课件 4.4 一次函数的应用(共28张PPT)
5. 某地长途汽车客运公司规定旅客可随身携带一定质 量的行李,如果超过规定,则需要购买行李票,行李 票费用y元与行李质量的关系如图:
(1)旅客最多可免费携带多少 千克行李?
30千克
⑵超过30千克ห้องสมุดไป่ตู้,每千克需 付多少元?
0。2元
课堂小结
1、确定正比例函数 y kx的表达式: 只需要正比例函数 y kx的一组变量对应值
新知探究
Ⅱ、在弹性限度内,弹簧的长度y(厘米)是所挂物 体质量x(千克)的一次函数。一根弹簧不挂物体时 长14.5厘米;当所挂物体的质量为3千克时,弹簧 长16厘米。写出y与x之间的关系式,并求当所挂 物体的质量为4千克时弹簧的长度。
解:设一次函数的表达式为:ykxb
x=0时,y=14.5;x=3时,y=16
4.4 一次函数的应用〔1〕
新知探究 Ⅰ、某物体沿一个斜坡下滑,它的速度v(米/秒)与 其下滑时间t(秒)的关系如下图。 (1)写出v与t之间的关系式;
解:正比例函数的表达式为:vkt
当t=2时,v=5
5t2
(2, 5)
k5 2
v 5t 2
确定正比例函数的表达式需要几个条件?
要求出k值,只需要一个点的坐标。
引例、由于持续高温和连日无雨,某水库的蓄水量随时间的增 加而减少。干旱持续时间t(天)与蓄水量v(万米3)的关系如下图, 答复以下问题: (2)蓄水量小于400万米3时,将发出严重干旱警报,干旱多少 天后将发出严重干旱警报? (3)按照这个规律,预计持续 多少天水库将干涸?
解〔1〕因为一次函数解析式为y=-20x+1200 蓄水量小于400万米3,即y=400时, -20x+1200=400 得
解:设干旱持续时间t与蓄水量v的关系式为y=kx+b 由图上可知:当x=0时,y=1200;当x=60时,y=0;
4.4 一次函数的应用 北师大版八年级数学上册教案
4 一次函数的应用第1课时 一次函数的应用(1)教学目标【知识与技能】会用待定系数法求一次函数的表达式,并能运用一次函数知识解决简单的实际问题.【过程与方法】通过运用一次函数知识解决实际问题,进一步加深理解并掌握所学知识.【情感、态度与价值观】体会数形结合的思想,了解数学来源于生活,又服务于生活,培养学生的数学应用意识.教学重难点【重点】用待定系数法求一次函数的表达式,并能解决简单的实际问题.【难点】灵活运用所学知识解决实际问题.教学过程一、复习引入1.提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数的相关性质.2.做一做.(1)直线y=3x+1经过点(1, ),与y轴的交点是( , ),与x轴的交点是( , ).(2)点(-2,7)是否在直线y=-5x-3上?3.引入.在前面学习一次函数时,我们根据函数关系式知道它的图象,知道图象上相应的点的坐标满足关系式,那么反过来,我们是否能根据图象、点的坐标等信息确定函数关系式呢?这就是我们今天要学习的内容——待定系数法求函数关系式.二、讲授新课师:下面我们来看几个例题.【例1】在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.某弹簧不挂物体时长14.5 cm,当所挂物体的质量为3 kg时,弹簧长16 cm.写出y与x之间的关系式,并求当所挂物体的质量为4 kg时弹簧的长度.【解】设y=kx+b,根据题意,得14.5=b,①16=3k+b.②将①代入②,得k=0.5,所以在弹性限度内,y=0.5x+14.5.当x=4时,y=0.5×4+14.5=16.5(cm).即物体的质量为4 kg时,弹簧长度为16.5 cm.师:在这个例题中,我们首先根据题意设出一次函数的表达式,再利用待定系数法将已知数据代入表达式中,求得了一次函数的表达式,从而进一步解决了实际问题.【例2】某种摩托车的油箱加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100 km消耗多少升汽油?(4)油箱中的剩余油量小于1 L时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?【解】观察图象,得(1)当x=0时,y=10.因此,油箱最多可储油10 L.(2)当y=0时,x=500.因此,一箱汽油可供摩托车行驶500 km.(3)x从0增加到100时,y从10减少到8,减少了2,因此摩托车每行驶100 km消耗2 L汽油.(4)当y=1时,x=450.因此,行驶450 km后,摩托车将自动报警.师:请同学们思考教材P92的“做一做”.学生观察并思考.生:(1)从图象中可以看出,当y=0时,x=-2;(2)这个函数的表达式为y=x+2.师:很好!那么你们知道方程0.5x+1=0与一次函数y=0.5x+1之间有什么联系吗?学生思考并讨论.教师总结:一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程kx+b=0的解.三、课堂小结师:通过本节课的学习,同学们有什么收获?与同伴交流一下.学生发言,教师予以点评.第2课时 一次函数的应用(2)教学目标【知识与技能】会应用一次函数表达式与图象之间的相互关系,处理一些较为复杂的问题,领会数形结合的思想.【过程与方法】经历对实际问题建立数学模型的过程,体验数形结合的作用和一次函数模型的价值.【情感、态度与价值观】1.通过让学生经历用一次函数知识来建立实际问题的函数模型、解决实际问题的过程,使它们感受到数学的用途和数学与生活的紧密联系.2.让学生参与到教学活动中来,提高学习数学、应用数学的积极性.教学重难点【重点】用一次函数知识解决实际问题.【难点】获取一次函数图象中的信息,领会数形结合的思想.教学过程一、共同探究,获取新知问题1:某公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.(注:销售提成是销售每件商品得到的销售额中提取一定数量的费用).设销售商品的数量x(件),销售人员的月工资y(元),如图所示,y1为方案一的函数图象,y2为方案二的函数图象.从图中信息解答如下问题:(1)求y1的函数关系式;(2)求点A的坐标,并说出A点的实际意义;(3)请问方案二中每月付给销售人员的底薪是多少元?分析:(1)因为该函数图象过点(0,0),(30,720),所以该函数是正比例函数,利用待定系数法即可求解.(2)利用(1)中表达式,即可得出A 点坐标.(3)把图象上点的坐标代入,即可求出b 的值,从而求出答案.【解】(1)设y 1的函数表达式为y =kx(x≥0).∵y 1经过点(30,720),∴30k =720.∴k =24.∴y 1的函数表达式为y 1=24x(x≥0).(2)根据图象可知x =50,把x =50代入y 1=24x 得:y 1=24×50=1 200,∴A(50,1 200)当销售量为50件时两种方案工资相同,都是1 200元.(3)设y 2的函数表达式为y 2=ax +b(x≥0),经过点(30,960),(50,1 200)∴{960=30a +b 1 200=50a +b ,解得:{a =12b =600,∴b =600,即方案二中每月付给销售人员的底薪为600元.问题2:一家公司招聘销售员,给出以下两种薪金方案供求职人员选择,方案甲:每月的底薪为1500元,再加每月销售额的10%;方案乙:每月的底薪为750元,再加每月销售额的20%,如果你是应聘人员,你认为应该选择怎样的薪金方案?【解】设月薪y(元),月销售额为x(元).方案甲:y =1 500+110x(x≥0)方案乙:y =750+15x(x≥0)当y 甲=y 乙时,1 500+110x =750+15x ,解得x =7 500.求得y 甲=y 乙=2 250即销售额为7 500元时,这两种方案所定的月薪相同.在同一坐标系中画出两种方案中y 关于x 的函数图象.由图象可知:当0≤x<7 500,y甲>y乙,x>7 500时,y甲<y乙.提问:说一说用图象的方法解决问题有哪些优点?二、例题讲解【例】 我边防局接到情报,近海外有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(图①).图②中l1,l2分别表示两船相对于海岸的距离s(n mile)与追赶时间t(min)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A,B哪个速度快?(3)15 min内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸12n mile的公海时,B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?(6)l1与l2对应的两个一次函数y=k1x+b1与y=k2x+b2中,k1,k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?【解】(1)当t=0时,B距海岸0 n mile,即s=0,故l1表示B到海岸的距离与追赶时间之间的关系.(2)t从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10 min,A行驶了2n mile,B行驶了5n mile,所以B的速度快.(3)延长l1,l2(图③),可以看出,当t=15时,l1上的对应点在l2上对应点的下方,这表明,15 min时B尚未追上A.(4)如图③,l1,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)图③中,l1与l2交点P的纵坐标小于12,这说明,在A逃入公海前,B能够追上A.(6)k1表示快艇B的速度,k2表示可疑船只A的速度.可疑船只A的速度是0.2nmile/min,快艇B的速度是0.5n mile/min.三、练习新知教师多媒体出示课件:小明步行离开家去上学,开始的速度是0.6 m/s,10分钟后发现快迟到了,加快了速度,以1.2m/s的速度用5分钟走完了剩余的路程到达学校.1.求小明家离学校的大致距离和小明走路的平均速度.2.请用函数图象描述小明走路的过程.教师引导学生思考交流,然后找一生板演,其余同学在下面做,订正得到:距离应为0.6×10×60+1.2×5×60=360+360=720(m),平均速度为720÷[(10+5)×60]=720÷900=0.8(m/s).教师多媒体出示图象:其中x表示小明离开家的时间,y表示小明离开家的距离.四、课堂小结师:本节我们学习了什么内容?生:对于实际问题,初步了解如何根据函数表达式和图象描出它的现实意义.。
北师大版数学八年级上册7《用二元一次方程组确定一次函数表达式》说课稿2
北师大版数学八年级上册7《用二元一次方程组确定一次函数表达式》说课稿2一. 教材分析北师大版数学八年级上册7《用二元一次方程组确定一次函数表达式》这一节的内容是在学生已经掌握了二元一次方程组和一次函数的基础上进行学习的。
通过这一节的内容,学生需要能够理解用二元一次方程组来确定一次函数表达式的方法,并能够运用这种方法来解决实际问题。
在教材中,首先是通过一个具体的问题引出用二元一次方程组确定一次函数表达式的概念,然后通过例题和练习题来让学生理解和掌握这种方法。
教材还配备了一些相关的阅读材料,让学生能够了解一次函数在实际生活中的应用。
二. 学情分析在教学这一节的内容时,我考虑到我的学生已经掌握了二元一次方程组和一次函数的基本知识,所以他们对于用二元一次方程组确定一次函数表达式的概念和方法应该能够理解。
但是在实际操作中,他们可能会遇到一些困难,比如如何正确地列出二元一次方程组,如何解这个方程组等等。
三. 说教学目标通过这一节的学习,我希望学生能够达到以下目标:1.理解用二元一次方程组确定一次函数表达式的概念和方法。
2.能够正确地列出和解二元一次方程组,从而确定一次函数的表达式。
3.能够将一次函数应用到实际问题中,解决实际问题。
四. 说教学重难点在这一节的内容中,重点是让学生理解用二元一次方程组确定一次函数表达式的概念和方法,难点是让学生能够正确地列出和解二元一次方程组。
五. 说教学方法与手段在教学这一节的内容时,我会采用讲解法、示例法和练习法相结合的方法。
首先,我会通过讲解来让学生理解用二元一次方程组确定一次函数表达式的概念和方法。
然后,我会通过示例来让学生了解如何正确地列出和解二元一次方程组。
最后,我会通过练习来让学生巩固所学的知识。
六. 说教学过程1.引入:通过一个具体的问题引出用二元一次方程组确定一次函数表达式的概念。
2.讲解:讲解用二元一次方程组确定一次函数表达式的方法和步骤。
3.示例:通过一个示例来让学生了解如何正确地列出和解二元一次方程组。
北师大版八年级数学上册:4.4《一次函数的应用》教学设计
北师大版八年级数学上册:4.4《一次函数的应用》教学设计一. 教材分析《一次函数的应用》这一节的内容,主要让学生了解一次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
北师大版八年级数学上册的教材,通过生动的实例,引导学生理解一次函数的定义,掌握一次函数的性质,并能够运用一次函数解决实际问题。
二. 学情分析八年级的学生已经学习了初中数学的前期内容,对数学知识的接受能力较强。
但是对于一次函数的应用,部分学生可能会觉得抽象难懂,因此,在教学过程中,需要教师通过生动的实例,让学生感受一次函数的实际意义,从而提高学生的学习兴趣和理解能力。
三. 教学目标1.理解一次函数的定义,掌握一次函数的性质。
2.能够运用一次函数解决实际问题,提高学生的应用能力。
3.通过实例,让学生感受数学与生活的紧密联系,提高学生的学习兴趣。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数在实际生活中的应用。
五. 教学方法采用问题驱动的教学方法,通过实例引导学生理解一次函数的定义和性质,通过实际问题的解决,让学生掌握一次函数的应用。
同时,采用小组合作的学习方式,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的实例,如购物、出行等问题。
2.准备一次函数的图片或模型,帮助学生直观理解一次函数。
3.准备练习题,巩固学生对一次函数的应用。
七. 教学过程1.导入(5分钟)通过一个购物实例,引导学生思考如何用数学知识解决实际问题。
例如,一件商品原价80元,降价20%,求降价后的价格。
让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(10分钟)呈现一次函数的定义和性质,通过图片或模型,让学生直观理解一次函数。
同时,引导学生发现生活中的线性关系,如速度、时间、路程的关系,加深学生对一次函数的理解。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用一次函数的知识解决问题。
例如,一组选择出行问题,一组选择购物问题。
4.4+一次函数的应用++知识考点梳理+课件+2024-2025学年北师大版数学八年级上册
4.4 一次函数的应用
返回目录
考
典例3 如图,直线 y =ax +b(a≠0)过点A(0,1),
点
清 B(2,0),则关于 x的方程 ax+b=0 的解为 _______.
单
解
读
[答案] x=2
4.4 一次函数的应用
返回ቤተ መጻሕፍቲ ባይዱ录
重 ■题型一 借助两个一次函数图象解决问题
将(1,40)代入,得 m=40,所以 L2 的表达式为
s=40t;
4.4 一次函数的应用
(2)根据题意,得-60t+300=40t,解得 t=3.
重
难
答:两辆火车行驶 3 h 时相遇;
题
型
(3)由题意,得相遇前相距 100 km:-60t+300突
破 40t=100,解得 t=2;
相遇后相距 100 km:40t-(-60t+300)=100,解得
返回目录
归纳总结
考
点
从图象上获取信息可以从两个方面去分析:(1)根据函
清
单 数图象可判断函数类型;(2)从横轴、纵轴的实际意义去
解
读 理解函数图象上点的坐标的实际意义,进而结合所学知识解
决实际问题.
4.4 一次函数的应用
返回目录
对点典例剖析
考
点
典例2 如图所示的是某种蜡烛在燃烧过程中高度与时间
清
单 之间关系的图象,此蜡烛经过 ____ h 燃烧完毕.
函数;
(2)画图象:画出一次函数的图象;
(3)找交点:找出一次函数的图象与 x
轴交点的横坐标,即为一元一次方程的解
北师大版初中八年级数学上册第四章一次函数4一次函数的应用第1课时确定一次函数表达式课件
2.(2022四川广安中考)在平面直角坐标系中,将函数y=3x+2 的图象向下平移3个单位长度,所得的函数图象的解析式是
( D) A.y=3x+5 B.y=3x-5 C.y=3x+1 D.y=3x-1 解析 将函数y=3x+2的图象向下平移3个单位长度后,所得 图象的函数解析式为y=3x+2-3=3x-1, 故选D.
把(0,1)代入y=kx+b,得b=1,
把
1 2
,代0 入y=kx+1,得
1k+1=0,解得k=-2.
2
∴一次函数y=kx+b的表达式为y=-2x+1.
6.(2023广东汕头期末,9,★★☆)如图,一次函数y= 4 x-4的图
3
象与x轴、y轴分别交于点A、点B,若过点A作直线l将△ABO
分成周长相等的两部分,则直线l的函数表达式为 ( C )
第四章 一次函数
4 一次函数的应用
第1课时 确定一次函数表达式
基础过关全练
知识点1 确定一次函数的表达式 1.直线y=kx-4(k≠0)经过点(-2,2),则该直线的表达式是 ( A) A.y=-3x-4 B.y=-x-4 C.y=x-4 D.y=3x-4
解析 将点(-2,2)代入y=kx-4中,得-2k-4=2,解得k=-3,所以该 直线的表达式为y=-3x-4.故选A.
∴△MON的面积是 2=22.
2
能力提升全练
5.(2024陕西西安铁一中学期中,7,★★☆)一次函数y=kx+b(k, b为常数,且k≠0)与一次函数y=2x+1的图象关于y轴对称,则 一次函数y=kx+b的表达式为 ( B )
A.y= 1 x+1
北师大版数学八年级上册 4.4 一次函数的应用
t(s)
典例精析
例1 求正比例函数 y (m 4)xm215 的表达式.
解:由正比例函数的定义知 m2-15=1 且 m-4≠0, ∴ m=-4. ∴ y=-8x.
方法总结:利用正比例函数的定义确定表达式: 自变量的指数为 1,系数不为 0,常数项为 0.
想一想:确定正比例函数的表达式需要几个条件? 一个
北师大版数学八年级上册
第四章 一次函数
4.4 一次函数的应用
第3课时 两个一次函数图象的应用
观察与思考
y
观察下图,你能发现它们三条函数直 线之间的差别吗?
O
x
两个一次函数的应用
引例:l1 反映了某公司产品的销售收入与销售量的关系,
根据图意填空:当销售量为 2 吨时,销售收入=2000元,
y/元
∴在弹性限度内,y = 0.5x + 14.5. 当 x = 4 时,y = 0.5×4+14.5 = 16.5(厘米). 故当所挂物体的质量为 4 千克时弹簧的长度为 16.5 厘米.
归纳总结
解此类题要根据所给的条件建立数学模 型,得出变化关系,并求出函数的表达式, 根据函数的表达式作答.
正比例函数 y = kx(k≠0)
典例精析 例1 某种摩托车加满油后,油箱中的剩余 油量 y (升)与摩托车行驶路程 x (千米)之间的关系如 图所示: y/升
10 8 6 4 2
0 100 200 300 400 500 x/千米
根据图象回答下列问题:
y/升 (1)油箱最多可储油多少升?
10
8 6
解:当 x = 0 时,y = 10.
应用与延伸
试问: (2)加油前每 100 千米耗油多 少升? 加油后每 100 千米耗油多少升?
北师大版数学八年级上册7《用二元一次方程组确定一次函数表达式》教案2
北师大版数学八年级上册7《用二元一次方程组确定一次函数表达式》教案2一. 教材分析《用二元一次方程组确定一次函数表达式》是人教版初中数学八年级上册第7章的内容,本节课的主要任务是让学生掌握如何利用二元一次方程组来确定一次函数的表达式。
学生在之前的学习中已经掌握了二元一次方程组的解法和一次函数的性质,本节课将这两个知识点结合起来,进一步深化学生对函数的理解。
二. 学情分析八年级的学生已经具备了一定的数学基础,对二元一次方程组和一次函数的知识点有一定的了解。
但学生在实际操作中,可能对如何将实际问题转化为二元一次方程组,并进一步确定一次函数表达式还存在一定的困难。
因此,在教学过程中,教师需要引导学生将实际问题与数学知识相结合,提高学生的动手能力和解决问题的能力。
三. 教学目标1.理解用二元一次方程组确定一次函数表达式的原理。
2.能够将实际问题转化为二元一次方程组,并确定一次函数表达式。
3.提高学生的动手能力和解决问题的能力。
四. 教学重难点1.教学重点:如何利用二元一次方程组确定一次函数表达式。
2.教学难点:如何将实际问题转化为二元一次方程组,并进一步确定一次函数表达式。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,提高学生的动手能力和解决问题的能力。
六. 教学准备1.准备相关案例,用于引导学生分析实际问题。
2.准备多媒体教学设备,用于展示案例和讲解。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题,例如:某商店同时销售电脑和打印机,电脑每台售价5000元,打印机每台售价1200元。
商店进行一次促销活动,购买电脑和打印机的顾客可以获得一定的优惠。
如果顾客购买了一台电脑和一台打印机,需要支付4800元;如果购买了两台打印机,需要支付3000元。
请问,电脑和打印机的优惠价格分别是多少?2.呈现(10分钟)教师引导学生分析问题,将实际问题转化为数学问题。
八年级数学上册第四章一次函数:一次函数的图象2一次函数的图象与性质说课稿新版北师大版
八年级数学上册说课稿新版北师大版:4.3.2 一次函数的图象与性质各位评委,老师大家好,今天我要说课内容是新课标人教版八年级上册《一次函数的图象和性质》从以下五个方面来说:教材分析教法分析学法分析程序设计评价说明教材分析:地位和作用本节教材是一次函数的图象和性质的第一课时,它是紧接一次函数的概念教学内容之后学习的。
从知识的掌握来看,它是对前面所学知识的深化和运用。
从对后继内容的学习来看,它为研究二次函数等较为复杂函数提供了研究的方向和方法.再有结合近年中考命题,一次函数往往是考察的重点和热点知识。
所以本节内容有着十分重要的地位教学目标:[认知目标]:1、理解直线y=kx+b与y=kx之间的位置关系;2、会利用两个合适的点画出一次函数的图象;3、掌握一次函数的性质.[能力目标]:(1)主要是培养学生的看图、识图.动手实践能力。
(2)通过对一次函数的图象和性质的探究,培养学生数形结合数学思想方法。
[情感目标]:通过对一次函数的图象和性质的自主探究,让学生获得亲自参与研究探索的情感体验,从而增强学习数学的热情。
[ 教学重点 ]一次函数的图象和性质。
[教学难点]一次函数的图象性质的发现.[教法分析]1. 数形结合:整节课贯穿数形结合方法由数点的坐标描点得到一次函数形状,由一次函数的图象形状观察分析得出性质规律,通过典型习题的练习加深对数形结合方法的应用。
2.由特殊到一般的方法:图象和性质的学习探究都是通过此方法。
3.类比法:由于本节课是在正比例函数图象性质之后学习的,通过类比的方式,由正比例函数图象性质类比出一次函数图象性质,解决了本节课重难点,进而总结正比例函数图象性质与一次函数图象性质这两者之间的关系。
4.使用多媒体课件应用于课堂,增强知识的直观性,增大课堂容量。
[学法分析]1、应用自主探究、互助合作的学习方法。
培养学生独立思考能力,自主探究的学习习惯以及同学间的合作精神。
一次函数图象采用动手操作方式,是学生主动学习的过程,经历画图象进而感悟它的形状与正比例函数图象异同,为后面发现规律作了准备,这样学生所获更多,印象更深。
2024年北师大版八年级上册第四章 一次函数第四章 一次函数
一、单元学习主题本单元是“数与代数”领域“函数”主题中的“一次函数”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学语言表达现实世界的重要载体.《标准2022》对一次函数的学习要求是:结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式;会运用待定系数法确定一次函数的表达式;能画出一次函数的图象,根据图象和表达式y=kx+b(k≠0)探索并理解k>0和k<0时图象的变化情况;理解正比例函数;体会一次函数与二元一次方程的关系,进一步发展建模意识;能用一次函数解决简单实际问题,发展应用意识.函数的教学,要通过对现实问题中变量的分析,建立两个变量之间变化的依赖关系,让学生理解用函数表达变化关系的实际意义;要引导学生借助平面直角坐标系中的描点,理解函数图象与表达式的对应关系,理解函数与对应的方程、不等式的关系,增强几何直观;会用函数表达现实世界事物的简单规律;注重学生对必要的数学语言和符号的理解与准确应用.运用数学语言和符号去理解、描述现实世界中问题的变化规律,是本章学习的主要目的之一.要在现实情境中鼓励学生运用自己的语言进行描述和交流,进而逐步学习和掌握规范的数学语言,增强符号感.经历用数学的语言表达现实世界的过程,提升学生学习数学的兴趣,进一步发展应用意识.2.本单元教学内容分析北师大版教材八年级上册第四章“一次函数”,本章包括四个小节:4.1函数;4.2一次函数与正比例函数;4.3一次函数的图象;4.4一次函数的应用.函数学习在中学数学中占据重要地位,既是教学的重点,也是教学的难点.本章是学生第一次接触函数,是后续学习反比例函数、二次函数的基础.函数的概念和函数的图象贯穿整个函数的教学,是学习函数的重点,同时函数概念中体现出的变化与对应的思想、数形结合思想是决定函数学习是否顺利的关键.一次函数是学生接触的第一类函数,在教学中, 一般利用函数图象归纳函数性质,利用函数性质和图象来解决问题,这种从特殊到一般再回到特殊的研究方法是研究函数的基本方法.函数是数学中重要的基本概念之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型.本章是学习函数的入门,也是进一步学习的基础.教材通过具体的实例引入一次函数的概念,并通过练习巩固对一次函数意义的认识;通过让学生动手操作,让学生认识到一次函数的图象是一条直线,从而得出两点法作一次函数图象;通过具体的取值结合函数的图象,让学生逐步得出一次函数的性质,体会一次函数在实际生活中的应用.教材注重让学生参与知识的形成过程,自始至终都采用让学生动手尝试、交流、归纳的方式,鼓励学生通过观察、猜想、验证,主动获取知识,真正体会到函数是反映现实世界的有效数学模型.一次函数是初中学生将要学习的各类函数中最简单的一种函数,它反映了函数的特点及函数的思维方式、研究方法和应用模式,因此学好一次函数是学好其他函数的基础.研究一次函数离不开对图象特征的研究.数形结合是学习一次函数时必须体现的一种重要思想.要通过设置较多实际问题的一次函数图象,让学生观察、自己描点画图、研究变量的变化规律,探讨函数中的数与形的对应关系,逐步掌握解决一次函数问题的技能.由于一次函数在现实生活中有着广泛的应用,因此,在具体的教学过程中,可以利用生活中的素材加深学生对函数现实意义的理解,促进其函数建模、数形结合等重要数学思想方法的形成,加强对知识之间内在联系的认识,体会函数观点的统领作用,也可以利用所学的函数知识解决现实生活中的一些问题.三、单元学情分析本单元内容是北师大版教材数学八年级上册第四章一次函数,本单元是在学习了实数、平面直角坐标系的基础上学习的,学生对数形结合思想有了一定的认识,它为本章的学习作了铺垫,一次函数的学习又为后续函数的学习作了铺垫,因此本章内容起着承上启下的作用.本单元让学生进一步认识用图象法表示函数关系,并开始学习一类最基本的函数——一次函数.学习一次函数,意味着从常量数学进入变量数学的学习.学生的思维要随之改变,这是对学生思维能力的考验,也是对数学认识的一次飞跃.学生在学习一次函数的过程中,对简单问题往往能根据课堂所学的概念知识,画出相应的函数图象解决,看不出学生对一次函数的理解程度.但随着时间的推移,随着问题情境复杂化,他们就会表现出对一次函数知识理解深度不够,停留在感性认识多些,理性认识少些,对一次函数表达式的直接应用多些,对表达式与图象间的内在联系运用薄弱些,需要多练、多探、多问、多总结经验.学生在学习过程中遇到困难主要有:复杂问题情景化转移到一次函数图象;结合题意理解一次函数所表达的信息;结合题意将图象信息转换为数量关系.因此,本单元教学应注意数形结合,需要多练、多问、多总结.四、单元学习目标1.经历函数、一次函数等概念的抽象概括过程,体会函数的模型思想,进一步发展符号意识.2.经历一次函数的图象及其性质的探索过程,在合作与交流活动中发展合作交流的意识和能力.3.初步理解函数的概念,在实际背景中感受自变量取值范围的意义.4.能画一次函数的图象,经历利用一次函数及其图象解决实际问题的过程,发展应用意识,体会数形结合的思想.六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.自主性原则:学生可以根据自己的学习能力自主选择,每课时留下拓展性练习或自主编写自己的易错题类型.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
北师大版八年级数学上册:4.4《一次函数的应用》说课稿
北师大版八年级数学上册:4.4《一次函数的应用》说课稿一. 教材分析北师大版八年级数学上册4.4《一次函数的应用》这一节的内容,是在学生已经掌握了函数的基本概念、一次函数的定义、图像和性质等知识的基础上进行教学的。
本节课的主要内容是一次函数在实际生活中的应用,通过具体的实例让学生了解一次函数在实际生活中的重要性,提高学生解决实际问题的能力。
教材中给出了几个实际问题,让学生通过列一次函数的关系式来解决问题,从而加深对一次函数的理解和应用。
二. 学情分析八年级的学生已经具备了一定的函数知识,对于一次函数的基本概念和性质有一定的了解。
但是,对于如何将一次函数应用于实际问题中,可能还存在一定的困难。
因此,在教学过程中,我将会注重引导学生将理论知识与实际问题相结合,提高他们解决实际问题的能力。
三. 说教学目标1.让学生了解一次函数在实际生活中的应用,提高解决实际问题的能力。
2.通过对实际问题的分析,让学生加深对一次函数的理解。
3.培养学生的数学思维能力和团队协作能力。
四. 说教学重难点1.教学重点:一次函数在实际生活中的应用。
2.教学难点:如何将实际问题转化为一次函数问题,并找出合适的解题方法。
五. 说教学方法与手段在教学过程中,我将采用问题驱动的教学方法,引导学生通过小组合作、讨论交流的方式进行学习。
同时,我会利用多媒体教学手段,如PPT、视频等,来帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过一个简单的实际问题,引导学生思考如何用数学知识来解决问题。
2.新课讲解:通过PPT展示教材中的实例,引导学生了解一次函数在实际生活中的应用。
3.小组讨论:让学生分组讨论,如何将实际问题转化为一次函数问题,并找出合适的解题方法。
4.总结讲解:对学生的讨论结果进行点评,讲解一次函数在实际问题中的应用方法和技巧。
5.练习巩固:布置一些相关的练习题,让学生巩固所学知识。
6.课堂小结:让学生总结本节课所学的内容,加深对一次函数应用的理解。
北师大版八年级数学上册《一次函数的图象》第1课时示范课教学设计
第四章一次函数3 一次函数的图象第1课时一、教学目标1.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线,能熟练画出正比例函数的图象.2.能根据正比例函数的图象和表达式y=kx(k≠0)理解k>0和k<0时,函数的图象特征与增减性,培养学生数形结合的意识和能力.3.理解正比例函数的代数表达式与图象之间的一一对应关系.4.掌握正比例函数的性质,并能灵活运用解答有关问题.二、教学重难点重点:能熟练画出正比例函数的图象.难点:理解函数的图象特征与增减性,掌握正比例函数的性质.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计(4)y=8x; (5)y=5x2-4x+1. (6)y=(x+1)2预设答案:(1)(2)(4)是一次函数.(1)(4)是正比例函数.问题3:若函数y=(6-3m)x+4n-4是一次函数,则m,n满足什么条件?若是正比例函数,则m,n应满足什么条件?预设答案:解:根据y=(6-3m)x+4n-4是一次函数得:6-3m≠0,则m≠2,n取任何实数;若是正比例函数,得6-3m≠0且4n-4=0,则m≠2,n=1.【思考】把摩天轮上一点的高度h(m)与旋转时间t (min)之间的函数关系通过下列图形表示:教师活动:如何定义这种图形?【探究】把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象.教师活动:这是摩天轮上一点的高度h与旋转时间t之间函数关系的图象.【例1】画出正比例函数y=2x的图象.解:列表:描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连接起来,得到y=2x的图象,它是一条直线.画函数图象的步骤可以概况为三步:教师活动:这种画函数图象的方法叫做描点法.【做一做】画出正比例函数y=-3x的图象.列表:描点:连线:在所画的图象上任意取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=-3x.教师活动:通过两个点(-1.5,4.5),(0.5,-1.5)得出结论:它们都满足关系y=-3x.正比例函数的表达式与图象是一一对应的.【议一议】(1) 满足关系式y=-3x的x,y所对应的点(x,y)都在正比例函数y=-3x的图象上吗?预设答案:都在正比例函数y=-3x的图象上.(2) 正比例函数y=-3x的图象上的点(x,y)都满足关系式y=-3x吗?预设答案:都满足.(3) 正比例函数y=kx的图象有何特点?你是怎样理解的?预设答案:都经过原点.【探究】观察上述两组正比例函数图象,说一说正比例函数y=kx的图象有何特征?特征:正比例函数y=kx的图象是一条经过原点(0,0)的直线.因此,画正比例函数图象时,只要再确定一个点,过这点与原点画直线就可以了.不同点:函数y=2x的比例系数k>0,图象经过第一、三象限;函数y=-3x的比例系数k<0,图象经过第二、四象限.【归纳】教师活动:由于两点确定一条直线,画正比例函数图象时我们只需描点(0,0)和点(1,k),连线即可.【做一做】在同一直角坐标系内画出正比例函数y=x,y=3x,12y x=-和y=-4x的图象.教师活动:这四个函数中,随着x的增大,y 的值分别如何变化?相应图象上的点的变化趋势如何?当k>0时,x增大时,y的值也增大;y随x的增大而增大.当k<0时,x增大时,y的值反而减小;y随x的增大而减小.【归纳】在正比例函数y=kx中:1. 当k>0时,y的值随着x值的增大而增大,相应图象上的点从左往右呈上升趋势;2. 当k<0时,y的值随着x值的增大而减小,相应图象上的点从左往右呈下降趋势.【想一想】正比例函数y=x和y=3x中,随着x值的增【典型例题】教师活动:教师提出问题,学生先独立思考,然后再小组交流探讨.教师板书一道例题书写过程,其余题目可由学生代表板书完成,最终教师展示答题过程.【例2】 在同一直角坐标系内画出正比例函数12y x =与13y x =-的图象,并指出随着x 值的增大,y 的值分别如何变化?解:画图:对于函数12y x =,y 的值随着x 值的增大而 增大;对于函数13y x =-,y 的值随着x 值的增大而减小.所以-6=4k,解得32k=-,所以32y x=-.当x=-4时,y=6,所以点(-4,6)在此正比例函数图象上.故选B.4.在正比例函数y=-3mx中,y随x的增大而增大,则点P(m,5)在()A.第一象限B.第二象限C.第三象限D.第四象限答案:B.解析:因为y随x的增大而增大,所以-3m>0,所以m<0,所以点P(m,5)在第二象限.故选B.5.画出函数y=-2x的图象.解:列表,描点、连线,得到y=-2x的图象如图所示:6.已知正比例函数y=mx的图象经过点(m,9),且y的值随着x值的增大而减小,求m的值.解:因为正比例函数y=mx的图象经过点(m,9)所以9=m∙m,解得m=±3.又因为y的值随着x值的增大而减小,所以m<0,故m=-3.。
2017-2018学年北师大版八年级数学上册教师用书(pdf版):4.4一次函数的应用
ꎬ解得
㊀ 八年级( 上) 册
������������
������������������������������������������������������������������
( 3) 将 C( -2ꎬm)ꎬD( nꎬ -6) 代入 y = -x +4 得: ʑ
{
m=6
n = 10
ꎬ 1 1 ˑ4ˑ6+ ˑ4ˑ6 = 24. 2 2
ʑ S әOCD = S әOAC +S әOAD =
一次函数与几何 ʌ 例 3ɔ 如图ꎬ一次函数 y = - 2 x+2 的 3
㊀ ( 0ꎬb) ㊀ ꎬS әAOB =
A. B. C. D. 2. (2015 陕西) 在平面直角坐标系中ꎬ 将直线 l 1 : y = - 2x - 2 平移后ꎬ 得到直线 l 2 : y = - 2x + 4ꎬ 则下列平移作法正 确的是 A. 将 l 1 向右平移 3 个单位长度 B. 将 l 1 向右平移 6 个单位长度 C. 将 l 1 向上平移 2 个单位长度 函数解析式是㊀ y = -x +3㊀ . D. 将 l 1 向上平移 4 个单位长度 ( ㊀ A㊀ )
令 x = 0 得 :y = 2 ꎻ 令 y = 0ꎬ解得 x = 3. 则点 B 的坐标是(0ꎬ2)ꎬ点 A 的坐标是(3ꎬ0) . 作 CDʅx 轴于点 D. ʑ øACD = øBAOꎬ ȵ øBAC = 90ʎ ꎬʑ øOAB +øCAD = 90ʎ ꎬ 又ȵ øCAD +øACD = 90ʎ ꎬ 2 x +2 中ꎬ 3
第 5 课㊀ 一次函数的应用( 一) 确定一次函数与正比例函数函数表达式
2019年秋北师大版八年级上册数学教案:4.4一次函数的应用
一、教学内容
本节课选自2019年秋北师大版八年级上册数学教材第四章第四节“一次函数的应用”。教学内容主要包括以下方面:
1.理解一次函数在实际问题中的应用,如温度变化、速度与时间的关系等。
2.学会利用一次函数解决实际问题,包括求斜率、截距以及函数表达式的确定。
3.重点难点解析:在讲授过程中,我会特别强调一次函数表达式的建立和斜率、截距的理解这两个重点。对于难点部分,我会通过具体实例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如购物打折、出租车计费等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量物体在斜面上的运动速度。这个操作将演示一次函数在实际中的应用。
同学们,今天我们将要学习的是《一次函数的应用》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体运动速度随时间变化的情况?”(如骑自行车加速)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数在描述物体运动中的应用。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数的基本概念。一次函数是形如y=kx+b的表达式,其中k、b是常数,表示函数的斜率和y轴截距。它在描述线性关系方面有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例,如物体匀速直线运动。这个案例展示了如何利用一次函数来描述速度与时间的关系,以及它如何帮助我们解决问题。
-斜率和截距的求解:在实际问题中,如何从数据中准确求解斜率和截距,对于学生来说是难点,需要通过具体例子进行讲解和练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大初中数学
八年级
重点知识精选
掌握知识点,多做练习题,基础知识很重要!北师大初中数学和你一起共同进步学业有成!
4.4 一次函数的应用
第1课时确定一次函数的表达式
课题用二元一次方程组确定一次函数
的表达式
课型新授授课日期主备人审核人授课人
学习目标1.进一步理解二元一次方程与一次函数之间的联系,体会知识之间的普遍联系和知识间的相互转化。
2、了解待定系数法,会用二元一次方程组确定一次函数的表达式。
学习重点:会用二元一次方程组确定一次函数的表达式。
教学重点会用二元一次方程组确定一次函数的表达式。
教学难点在探究中培养学生的观察能力、识图能力以及语言表达能力.
教具及实验设计课件
教学活动知识与方法
自主学习
1,二元一次方程组与一次函数有何联系? 二元一次方程组的 是它们对应的两个一次函数图象 ;反之,两个一次函数图象 也是它们所对应的二元一次方程组 .
2.二元一次方程组有哪些解法? 合作交流:
A ,
B 两地相距100千米,甲、乙两人骑车同时分别从A ,B 两地相向而行.假设他们都保持匀速行驶,则他们各自到A 地的距离S (千米)都是骑车时间t (时)的一次函数.1小时后乙距离A 地80千米;2小时后甲距离A 地30千米.问经过多长时间两人将相遇?
例1 某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y (元)是行李质量x (千克)的一次函数.现知李明带了60千克的行李,交了行李费5元;
张华带了90千克的行李,交了行李费10元.
(1)写出y 与x 之间的函数表达式; (2)旅客最多可免费携带多少千克的行李?
做一做:已知函数y=2x+b 的图象经过点(a,7)和(-2,a),求这个函数的表达式。
知识清单:
代入消元法,加减消元法,图象法
知识清单: 1待定系数法:先设出函数表达式,再根据所给条件确定表达式中
未知系数,从而得到函数表达式的方法,叫待定系数法 2用待定系数法确
2一次函数y =7-4x 和y =1-x 的图象的交点坐标为_____,则方程组的解为____. ⎩⎨
⎧=+=+1
74y x y x
3. 在弹性限度内,弹簧的长度y (厘米)是所挂物体质量x (千克)的一次函数.当所挂物体的质量为1千克时,弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出 y 与 x 之间的关系式,并求出所挂物体的质量为4千克时弹簧的长度.
学生课外作业
班级: 姓名:
1,生物学家研究表明,某种蛇的长度y(cm)是其尾长x(cm)的一次函数,当蛇尾长为6cm 时,蛇长45.5 cm;当尾长为14 cm 时,蛇长为10.5cm. (1) 求y 与x 之间的函数关系式.
(2)当一条蛇的尾长为10 cm 时,这条蛇长是多少
2.为了倡导节能约用水,某城市规定:每户居民每月的用水标准为8,超过标准部分加价收费。
已知某居民某两个月的用水量和水费分别是11,28元和15,44元。
标准内水价和超过标准部分的水价分别是多少?你是怎么做的?与同伴交流。
相信自己,就能走向成功的第一步
教师不光要传授知识,还要告诉学生学会生活。
数学思维
可以让他们更理性地看待人生。