高中数学导数归纳题的10种解法

合集下载

高考导数大题解题方法

高考导数大题解题方法

高考导数大题解题方法高考导数大题解题方法高考导数大题解题方法一、学生存在的问题:1、切线问题,没有设切点的意识,带入解析式不全面还纠缠不清。

2、求导后不变形,导致难以判断导数的正负,或者不会判断导数的正负,产生思维中断现象。

3、忽略定义域,导致失分。

4、不能发现参数引起的分歧,不会对参数引起的分歧进行讨论。

5、没有进行逆向思维的习惯,或者逆向思维经验不足,无法破解题意。

二、导数的基本问题1.题型:1).切线问题。

2).单调性,极值,值域,最值问题。

3).函数零点(方程的根)的个数和分布问题。

4).不等式恒成立、存在性、不等式证明问题。

5).与数列、不等式、解析几何的综合问题。

2.常规步骤:1)求导数并变形,写出定义域。

变形的方法:①.整式:因式分解或配方。

②.分式:通分母,并因式分解。

③.指数式:提取公因式。

④根式:分子有理化2)解方程 , 判断导数的正负判断导数正负的方法:①.检验法。

②.图像法。

③.单调性法。

④.求导数的导数。

3)列表由导函数的正负确认原函数的单调性和极值、最值4)画函数草图解决问题。

三、难点分布及突破难点的方法1.难点分布:1).无切点的切线问题;2).含参讨论,分段讨论;3).不等式证明、恒成立、存在性问题;4).与数列、不等式、解析几何的综合问题。

2.突破难点的方法:1)切线问题,函数y=f(x):①设切点为(x0,y0)②求导, y'=f'(x),③三代入:2).参数影响到导数的正负,就根据分歧分类讨论,绝对值函数变为分段函数,分两部分讨论研究。

一般的`分歧有:①参数对整体正负的影响。

②参数对有根无根、根的大小的影响,不能自认为有根。

③参数对根在区间内外的影响,不能自认为根在区间内。

3).构造函数解决不等式证明、恒成立和存在性问题。

有两种构造函数的方法:①主变量法,在那个变量的区间上恒成立,就以这个变量为主变量构造函数。

②分离法,把两个变量分离到不等式两边,构造函数。

高考导数题型分析及解题方法

高考导数题型分析及解题方法

高考导数题型分析及解题方法本知识单元考查题型与方法:※※与切线相关问题(一设切点,二求导数=斜率=2121y y x x --,三代切点入切线、曲线联立方程求解);※※其它问题(一求导数,二解)('x f =0的根—若含字母分类讨论,三列3行n 列的表判单调区间和极值。

结合以上所得解题。

)特别强调:恒成立问题转化为求新函数的最值。

导函数中证明数列型不等式注意与原函数联系构造,一对多涉及到求和转化。

关注几点:恒成立:(1)定义域任意x 有()f x >k,则min ()f x >常数k ;(2)定义域任意x 有()f x <k,则max ()f x <常数k恰成立:(1)对定义域内任意x 有()()f x g x >恒成立,则min ()-()0,f x g x >【】 (2)若对定义域内任意x 有()()f x g x <:恒成立,则max ()-()0f x g x <【】能成立:(1)分别定义在[a,b]和[c,d]上的函数()()f x g x 和,对任意的1[,],x a b ∈存在2[,],x c d ∈使得12()()f x g x <,则max max ()()f x g x <(2)分别定义在[a,b]和[c,d]上的函数()()f x g x 和,对任意的1[,],x a b ∈存在2[,],x c d ∈使得12()()f x g x >,则min min ()()f x g x >一、考纲解读考查知识题型:导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值;证明不等式、求参数范围等二、热点题型分析题型一:利用导数研究函数的极值、最值。

1.32()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c = 6 ;3.函数331x x y -+=有极小值 -1 ,极大值 3题型二:利用导数几何意义求切线方程1.曲线34y x x =-在点()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0)3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --=4.求下列直线的方程:(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2x y =过点P(3,5)的切线;解:(1)123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,在曲线点-x x y x x y P所以切线方程为0211=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则200x y =①又函数的导数为x y 2/=,所以过),(00y x A 点的切线的斜率为/2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有352000--=x y x ②,由①②联立方程组得,⎩⎨⎧⎩⎨⎧====255 110000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,或 题型三:利用导数研究函数的单调性,极值、最值1.已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式;(Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围解:(1)由.23)(,)(223b ax x x f c bx ax x x f ++='+++=求导数得 过))1(,1()(f P x f y 上点=的切线方程为: ).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上故⎩⎨⎧-=-=+⎩⎨⎧-=-=++3023323c a b a c a b a 即∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③由①②③得 a=2,b=-4,c=5 ∴.542)(23+-+=x x x x f (2)).2)(23(443)(2+-=-+='x x x x x f当;0)(,322;0)(,23<'<≤->'-<≤-x f x x f x 时当时13)2()(.0)(,132=-=∴>'≤<f x f x f x 极大时当 又)(,4)1(x f f ∴=在[-3,1]上最大值是13。

导数题的十大解题技巧

导数题的十大解题技巧

导数题的十大解题技巧一、导数概念1、先了解基本的导数概念,掌握常用的求导法则,如链式规则、技术分解法之类的解题方法。

二、根据定义式求导数2、若检验某函数的连续性,则可以用极限的方法求出导数,考虑函数的不同取值求导数的变化。

三、图像的理解运用3、利用函数图像求取导数,判断函数的性质,进而探究关于函数的性质,例如凸凹形态等。

四、反比例函数求导4、利用反比例函数求导,了解反比例函数的导数特征,能快速求得反比例函数的导数的函数,有效提高解题效率。

五、指数函数求导5、利用指数函数求导,弄清楚指数函数的导数特点,掌握求取指数函数导数的方法,做到心中有数,有助于提高解题效率。

六、复合函数求导6、利用复合函数求导,它的求导需要利用到链式规则和技术分解法等方法,能够准确求取复合函数的导数,配合其他解题方式,可以准确解出复杂的复合函数的导数。

七、导数的几何意义7、根据函数的解析式对曲线进行分析,用导数的几何意义可以很好的分析函数的凹凸性,分别解决凸函数和凹函数的情况,利用几何图形可以直观的确定曲线的凹凸性。

八、极值点8、从求导的角度出发,考虑一元函数的极值点,掌握求极值点的基本方法,主要是求解一阶导数的极限即可,结合函数的定义域可以判断函数的极值点分布情况。

九、积分函数求导9、由于积分函数可以形成函数,而函数求导可以利用积分函数求导,根据求积分的原则可以对积分函数进行求导,如分部积分法、积分反演法等,考虑函数在定义域的变化,可以熟练掌握积分函数的求导方法。

十、椭圆函数求导10、考虑函数的特点,可以把椭圆函数拆分为有限多个单独的函数,再利用求导法则求取导数,合并求得得出椭圆函数的导数,熟练掌握椭圆函数的求导方法,可以有效提高解题的效率。

高中导数题解题技巧

高中导数题解题技巧

导数题的解题技巧【命题趋向】导数命题趋势:导数应用:导数-函数单调性-函数极值-函数最值-导数的实际应用. 【考点透视】1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】考点1 导数的概念对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2006年辽宁卷)与方程221(0)x x y e e x =-+≥的曲线关于直线y x =对称的曲线的方程为A.ln(1y =B.ln(1y =C. ln(1y =-D. ln(1y =-[考查目的]本题考查了方程和函数的关系以及反函数的求解.同时还考查了转化能力 [解答过程]2221(0)(1)x x x y e e x e y =-+≥⇒-=,0,1x x e ≥∴≥,即:1ln(1x e x ==,所以1()ln(1f x -=. 故选A.例2. ( 2006年湖南卷)设函数()1x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实数a 的取值范围是 ( )A.(-∞,1)B.(0,1)C.(1,+∞)D. [1,+∞)[考查目的]本题主要考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1.1x a x a a x x -<∴<<<<-当a>1时当a<1时()()()//2211,0.11111.x x a x a x a a y y x x x x a ------⎛⎫=∴===> ⎪--⎝⎭--∴> 综上可得M P 时, 1.a ∴>考点2 曲线的切线(1)关于曲线在某一点的切线求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率. (2)关于两曲线的公切线若一直线同时与两曲线相切,则称该直线为两曲线的公切线. 典型例题例3.(2004年重庆卷)已知曲线y =31x 3+34,则过点P (2,4)的切线方程是_____________.思路启迪:求导来求得切线斜率.解答过程:y ′=x 2,当x =2时,y ′=4.∴切线的斜率为4.∴切线的方程为y -4=4(x -2),即y =4x -4. 答案:4x -y -4=0.例4.(2006年安徽卷)若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++= [考查目的]本题主要考查函数的导数和直线方程等基础知识的应用能力.[解答过程]与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=. 故选A.例5. ( 2006年重庆卷)过坐标原点且与x 2+y 2 -4x +2y +25=0相切的直线的方程为 ( )A.y =-3x 或y =31x B. y =-3x 或y =-31x C.y =-3x 或y =-31x D. y =3x 或y =31x[考查目的]本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力. [解答过程]解法1:设切线的方程为,0.y kx kx y =∴-= 又()()()22521,2,1.2x y -++=∴-圆心为213830., 3.3k k k k =+-=∴==- 1,3.3y x y x ∴==-或故选A.解法2:由解法1知切点坐标为1331(,),,,2222⎛⎫- ⎪⎝⎭由 ()()//22////113231(,)(,)22225(2)1,22(2)210,2.113,.313,.3x xx x x x x y x y y x y y k y k y y x y x -⎛⎫⎡⎤-++= ⎪⎣⎦⎝⎭∴-++=-∴=-+∴==-==∴=-=故选A.例6.已知两抛物线a x y C x x y C +-=+=2221:,2:, a 取何值时1C ,2C 有且只有一条公切线,求出此时公切线的方程. 思路启迪:先对a x y C x x y C +-=+=2221:,2:求导数.解答过程:函数x x y 22+=的导数为22'+=x y ,曲线1C 在点P(12112,x x x +)处的切线方程为))(2(2)2(11121x x x x x y -+=+-,即 211)1(2x x x y -+= ①曲线1C 在点Q ),(222a x x +-的切线方程是)(2)(222x x x a x y --=+--即a x x x y ++-=2222 ② 若直线l 是过点P 点和Q 点的公切线,则①式和②式都是l 的方程,故得1,1222121+=--=+x x x x ,消去2x 得方程,0122121=+++a x x若△=0)1(244=+⨯-a ,即21-=a 时,解得211-=x ,此时点P 、Q 重合.∴当时21-=a ,1C 和2C 有且只有一条公切线,由①式得公切线方程为14y x =- .考点3 导数的应用中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题:1.. 求函数的解析式;2. 求函数的值域;3.解决单调性问题;4.求函数的极值(最值);5.构造函数证明不等式.典型例题例7.(2006年天津卷)函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A .1个B .2个C .3个D . 4个[考查目的]本题主要考查函数的导数和函数图象性质等基础知识的应用能力. [解答过程]由图象可见,在区间(,0)a 内的图象上有一个极小值点. 故选A.例8. 设y f x =()为三次函数,且图象关于原点对称,当x =12时,f x ()的极小值为-1,求出函数f x ()的解析式.思路启迪:先设f x ax bx cx d a ()()=+++≠320,再利用图象关于原点对称确定系数. 解答过程:设f x ax bx cx d a ()()=+++≠320,因为其图象关于原点对称,即f x ()-=-f x (),得ax bx cx d ax bx cx d b d f x ax cx3232300+++=-+-∴===+,,,即() 由f x ax c '()=+32,依题意,f a c '()12340=+=,f a c()121821=+=-, 解之,得a c ==-43,.故所求函数的解析式为f x x x ()=-433.例9.函数y x x =+-+243的值域是_____________.思路启迪:求函数的值域,是中学数学中的难点,一般可以通过图象观察或利用不等式性质求解,也可以利用函数的单调性求出最大、最小值。

导数大题方法总结

导数大题方法总结

导数大题方法总结导数大题方法总结总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它可以促使我们思考,让我们一起认真地写一份总结吧。

那么总结要注意有什么内容呢?以下是小编整理的导数大题方法总结,欢迎大家分享。

一、总论一般来说,导数的大题有两到三问。

每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。

二、主流题型及其方法(1)求函数中某参数的值或给定参数的值求导数或切线一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。

虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。

这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x=k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。

注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。

保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。

②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。

所以做两个字来概括这一类型题的方法就是:淡定。

别人送分,就不要客气。

③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。

切线要写成一般式。

(2)求函数的单调性或单调区间以及极值点和最值一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。

这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。

高中数学导数极值解题技巧

高中数学导数极值解题技巧

高中数学导数极值解题技巧在高中数学中,导数是一个非常重要的概念,它在解决函数的极值问题中起着关键作用。

导数可以帮助我们找到函数的最大值和最小值,从而解决各种实际问题。

本文将介绍一些常见的导数极值解题技巧,并通过具体的例题进行说明。

一、寻找极值点在寻找函数的极值点时,我们需要先求出函数的导数,并令导数等于零。

这是因为在极值点处,函数的斜率为零。

我们可以通过求导的方法得到一个方程,然后解这个方程,找到函数的极值点。

例如,考虑函数f(x)=x^3-3x^2+2x。

我们首先求出它的导数f'(x)=3x^2-6x+2。

然后,令导数等于零,得到方程3x^2-6x+2=0。

通过求解这个方程,我们可以得到函数的极值点。

二、判断极值类型在找到函数的极值点后,我们需要判断这些极值点的类型,即是极大值还是极小值。

这可以通过导数的符号来判断。

如果导数在极值点的左侧为正,在右侧为负,则该极值点为极大值;反之,如果导数在极值点的左侧为负,在右侧为正,则该极值点为极小值。

举个例子,考虑函数f(x)=x^3-3x^2+2x。

我们已经求出了它的导数f'(x)=3x^2-6x+2。

现在,我们将极值点代入导数的表达式中,来判断它们的类型。

对于方程3x^2-6x+2=0,我们求得它的解为x=1和x=2。

将这两个解代入导数的表达式中,我们可以得到f'(1)=3-6+2=-1和f'(2)=12-12+2=2。

由于f'(1)为负,f'(2)为正,所以x=1是函数的极小值点,x=2是函数的极大值点。

三、举一反三通过上述例题的解析,我们可以看出,解决导数极值问题的关键在于求导和解方程。

因此,在解题过程中,我们需要熟练掌握导数的求法和方程的解法。

除了上述的求导和解方程的方法外,还有一些其他的技巧可以帮助我们解决导数极值问题。

例如,可以通过二次函数的性质来判断函数的极值类型;可以利用函数图像的形状来预测函数的极值点等等。

导数压轴题题型归纳及处理技巧

导数压轴题题型归纳及处理技巧

导数压轴题题型归纳及处理技巧以下是 8 条关于导数压轴题题型归纳及处理技巧的内容:1. 哎呀,导数压轴题里有一种常见的题型就是求最值问题呀!就像在登山的时候,要找到那最高的山峰!比如函数y=x³-3x²+5,你能快速找到它的最值吗?2. 嘿,还有判断函数单调性的题型呢!这就像开汽车,要清楚什么时候加速什么时候减速。

像函数 f(x)=xlnx,你能判断它的单调性吗?3. 哇塞,导数里那种恒成立问题也很让人头疼啊!就好比要让一个球一直保持在一个固定的位置。

比如f(x)≥a 在某个区间恒成立,这可得好好琢磨琢磨怎么处理哦!像函数 f(x)=e^x+x,若f(x)≥kx 恒成立,你能搞定吗?4. 哦哟,导数压轴题里的不等式证明可不好惹呢!就像是要跨过一条很难跨的沟。

比如要证明某个不等式成立,怎么把导数的知识用上呀?比如 x>0 时,证明 e^x>1+x,你知道怎么下手吗?5. 嘿呀,有一种题型是利用导数求曲线的切线方程呢!这就像在给一条曲线画上漂亮的切线。

比如给定曲线y=x²,在某点处的切线怎么求呢,你会吗?6. 哇哦,那些与极值点有关的题型也挺有趣的嘛!就如同在一群小朋友里找到那个最特别的。

比如给定一个函数,怎么去找它的极值点呢?像函数g(x)=x³-3x,它的极值点在哪儿呀?7. 哈哈,还有根据导数信息画函数图象的题型呢!这可像是根据描述去画一幅神秘的画。

比如知道了导数的一些情况,那函数图象大概长啥样呢?你能想象出来吗?8. 哎呀呀,最后还有一类是把导数和其他知识综合起来的题型呢!这就像把不同的拼图块拼成一幅完整的画。

比如和数列结合起来,那可真是够有挑战性呢!像这样的综合题,你能勇敢挑战吗?我觉得导数压轴题虽然难,但只要掌握了这些题型和处理技巧,多练习多总结,就一定能攻克它!。

导数常见题型方法总结

导数常见题型方法总结

导数题型总结例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,假设在区间D上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数〞,实数m 是常数,4323()1262x mx x f x =-- 〔1〕假设()y f x =在区间[]0,3上为“凸函数〞,求m 的取值围;〔2〕假设对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数〞,求b a -的最大值.解:由函数4323()1262x mx x f x =-- 得32()332x mx f x x '=--2()3g x x mx ∴=-- 〔1〕()y f x =在区间[]0,3上为“凸函数〞,则 2()30g x x mx ∴=--<在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:别离变量法:∵当0x =时, 2()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2()30g x x mx =--<恒成立等价于233x m x x x ->=-的最大值〔03x <≤〕恒成立, 而3()h x x x=-〔03x <≤〕是增函数,则max ()(3)2h x h ==2m ∴>(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数〞则等价于当2m ≤时2()30g x x mx =--< 恒成立变更主元法再等价于2()30F m mx x =-+>在2m ≤恒成立〔视为关于m 的一次函数最值问题〕30110x >⇒-<<> 例2),10(32R b a b x a ∈<<+-],2+a 不等式()f x a '≤恒成立,求a 的取值围. 解:〔Ⅰ〕()()22()433f x x ax a x a x a '=-+-=---令,0)(>'x f 得)(x f 的单调递增区间为〔a ,3a 〕令,0)(<'x f 得)(x f 的单调递减区间为〔-∞,a 〕和〔3a ,+∞〕∴当*=a 时,)(x f 极小值=;433b a +- 当*=3a 时,)(x f 极大值=b.〔Ⅱ〕由|)(x f '|≤a ,得:对任意的],2,1[++∈a a x 2243a x ax a a -≤-+≤恒成立① 则等价于()g x 这个二次函数max min ()()g x ag x a≤⎧⎨≥-⎩22()43g x x ax a =-+的对称轴2x a=01,a <<12a a a a +>+=〔放缩法〕即定义域在对称轴的右边,()g x 这个二次函数的最值问题:单调增函数的最值问题。

导数常见题型与解题方法总结

导数常见题型与解题方法总结

导数常见题型与解题方法总结导数题型总结:1.分离变量:在使用分离变量时,需要特别注意是否需要分类讨论(大于0,等于0,小于0)。

2.变更主元:已知谁的范围就把谁作为主元。

3.根分布。

4.判别式法:结合图像分析。

5.二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系;(2)端点处和顶点是最值所在。

基础题型:此类问题提倡按以下三个步骤进行解决:1.令f'(x)=0,得到两个根。

2.画两图或列表。

3.由图表可知。

另外,变更主元(即关于某字母的一次函数)时,已知谁的范围就把谁作为主元。

例1:设函数y=f(x)在区间D上的导数为f'(x),f'(x)在区间D上的导数为g(x),若在区间D上,g(x)<___成立,则称函数y=f(x)在区间D上为“凸函数”。

已知实数m是常数,f(x)=(-x^4+mx^3+3x^2)/62.1.若y=f(x)在区间[0,3]上为“凸函数”,求m的取值范围。

解法一:从二次函数的区间最值入手,等价于g(x)<0在[0,3]上恒成立,即g(0)<0且g(3)<0.因此,得到不等式组-3<m<2.解法二:分离变量法。

当x=0或x=3时,g(x)=-3<0.因此,对于0≤x≤3,g(x)<___成立。

根据分离变量法,得到不等式组-3<m<2.2.若对满足m≤2的任何一个实数m,函数f(x)在区间(a,b)上都为“凸函数”,求b-a的最大值。

由f(x)=(-x^4+mx^3+3x^2)/62得到f'(x)=(-4x^3+3mx^2+6x)/62,f''(x)=(-12x^2+6mx+6)/62.因为f(x)在区间(a,b)上为“凸函数”,所以f''(x)>0在(a,b)___成立。

因此,得到不等式组a≤x≤b和-12a^2+6ma+6>0,即a≤x≤b且m≤2或a≤x≤b且m≥1/2.由于m≤2,所以a≤x≤b且m≤2.根据变更主元法,将F(m)=mx-x^2+3视为关于m的一次函数最值问题,得到不等式组F(-2)>0和F(2)>0,即-2x-x^2+3>0且2x-x^2+3>0.解得-1<x<1.因此,b-a=2.Ⅲ)由题意可得,对任意x∈[1,4],有f(x)≤g(x)代入g(x)得:x3+(t-6)x2-(t+1)x+3≥x3+(t-6)x2/2化___:x2(t-7/2)-x(t+1/2)+3≥0由于对于任意x∈[1,4],不等式都成立,所以判别式≤0:t+1/2)2-4×3×(t-7/2)≤0化___:t2-10t+19≤0解得:1≤___≤9综上所述,a=-3,b=1/2,f(x)的值域为[-4,16],t的取值范围为1≤t≤9.单调增区间为:$(-\infty,-1),(a-1,+\infty)$和$(-1,a-1)$。

(完整版)高中数学导数经典题型解题技巧(运用方法)

(完整版)高中数学导数经典题型解题技巧(运用方法)

高中数学导数经典题型解题技巧(运用方法)高中数学导数及其应用是高中数学考试的必考内容,而且是这几年考试的热点跟增长点,无论是期中·期末还是会考·高考,都是高中数学的必考内容之一。

因此,针对这两各部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们有更多·更好·更快的方法解决高中数学问题。

好了,下面就来讲解常用逻辑用语的经典解题技巧。

第一·认识导数概念和几何意义1.导数概念及其几何意义(1)了解导数概念的实际背景。

(2)理解导数的几何意义。

2.导数的运算(1)能根据导数定义求函数的导数。

(2)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。

(3)能求简单的复合函数(仅限于形如的复合函数)的导数。

3.导数在研究函数中的应用(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。

(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间了函数的最大值、最小值(其中多项式函数一般不超过三次)。

4.生活中的优化问题会利用导数解决某些实际问题5.定积分与微积分基本定理(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念。

(2)了解微积分基本定理的含义。

总结:先搞清楚导数概念以及几何意义,才能更好地运用其解题技巧!231(),,,,,y C C y x y x y x y y x======为常数()f ax b +第二·导数运用和解题方法一、利用导数研究曲线的切线考情聚焦:1.利用导数研究曲线的切线是导数的重要应用,为近几年各省市高考命题的热点。

2.常与函数的图象、性质及解析几何知识交汇命题,多以选择、填空题或以解答题中关键一步的形式出现,属容易题。

解题技巧:1.导数的几何意义函数在处的导数的几何意义是:曲线在点处的切线的斜率(瞬时速度就是位移函数对时间的导数)。

高考导数题型归纳

高考导数题型归纳

导数题型及解题方法一.切线问题题型1 求曲线)(x f y =在0x x =处的切线方程。

方法:)(0x f '为在0x x =处的切线的斜率。

题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。

方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。

例 已知函数f (x )=x 3﹣3x .(1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x )(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。

将问题转化为关于m x ,0的方程有三个不同实数根问题。

(答案:m 的范围是()2,3--)练习 1. 已知曲线x x y 33-=(1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。

答案:(03=+y x 或027415=--y x )(2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。

2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1)题型3 求两个曲线)(x f y =、)(x g y =的公切线。

方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。

()(,22x f x );建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

高中数学导数难题怎么解题

高中数学导数难题怎么解题

高中数学导数难题怎么解题1高中数学导数难题解题技巧1.导数在判断函数的单调性、最值中的应用利用导数来求函数的最值的一般步骤是:(1)先根据求导公式对函数求出函数的导数;(2)解出令函数的导数等于0的自变量;(3)从导数性质得出函数的单调区间;(4)通过定义域从单调区间中求出函数最值。

2.导数在函数极值中的应用利用导数的知识来求函数极值是高中数学问题比较常见的类型。

利用导数求函数极值的一般步骤是:(1)首先根据求导法则求出函数的导数;(2)令函数的导数等于0,从而解出导函数的零点;(3)从导函数的零点个数来分区间讨论,得到函数的单调区间;(4)根据极值点的定义来判断函数的极值点,最后再求出函数的极值。

3.导数在求参数的取值范围时的应用利用导数求函数中的某些参数的取值范围,成为近年来高考的热点。

在一般函数含参数的题中,通过运用导数来化简函数,可以更快速地求出参数的取值范围。

2高中数学解题中导数的妙用导数知识在函数解题中的妙用函数知识是高中数学的重点内容,其中包括极值、图像、奇偶性、单调性等方面的分析,具有代表性的题型就是极值的计算和单调性的分析,按照普通的解题过程是通过图像来分析,可是对于较难的函数来说,制作图像不仅浪费时间,而且极容易出错,而在函数解题中应用导数简直就是手到擒来。

例如:函数f(x)=x3+3x2+9x+a,分析f(x)的单调性。

这是高中数学中常见的三次函数,在对这道题目进行单调性分析时,很多学生根据思维定式会采用常规的手法画图去分析单调区间,但由于未知数a的存在而遇到困难。

如果考虑用导数的相关知识解决这一问题,解:f’(x)=-3x2+6x+9,令f’(x)>0,那么解得x<-1或者x>3,也就是说函数在(-∞,-1),(3,+∞)这个单调区间上单调递减,这样就能非常容易的判断函数的单调性。

导数知识在方程求根解题中的妙用导数知识在方程求根中的应用属于一项重点内容,在平时的数学练习中以及高考的考察中均曾以不同的难度形式出现过。

导数大题方法总结

导数大题方法总结

导数大题方法总结总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它可以促使我们思考,让我们一起认真地写一份总结吧。

那么总结要注意有什么内容呢?以下是小编整理的导数大题方法总结,欢迎大家分享。

一、总论一般来说,导数的大题有两到三问。

每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。

二、主流题型及其方法(1)求函数中某参数的值或给定参数的值求导数或切线一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。

虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。

这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x=k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。

注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。

保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。

②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。

所以做两个字来概括这一类型题的方法就是:淡定。

别人送分,就不要客气。

③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。

切线要写成一般式。

(2)求函数的单调性或单调区间以及极值点和最值一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。

这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。

导数题的十大解题技巧

导数题的十大解题技巧

导数题的十大解题技巧导数题的十大解题技巧一、熟练掌握导数的定义1、函数的导数:函数y=f(x)的导数,记作f′(x),表示函数y=f(x)在点x处的切线斜率。

2、数列的导数:数列y的极限导数,记作y′,表示数列y中趋势的变化率。

二、准确掌握导数的计算1、用法则:将函数代入法则(如指数函数法则,三角函数法则等)所给表达式中,可得出函数的导数;2、变量分离:将函数用变量分离法(如商式分解法,多项式分解法等)分解,再用法则进行求导;3、链式法则:将函数中的连续函数拆分,用累加法或链式法则进行求导;4、转换关系:将函数中的变量用等价关系(如t=sax,x=a/t)进行转换,使变量适合法则,再求导;5、隐函数法:将函数中的变量用隐函数(如x=f(t))进行表达,再求导;6、偏导法:将函数中的变量用偏导数(如y/t)表达,再求导。

三、理解利用导数性质1、函数的导数是函数表示的变化率;2、导数的正负性有助于判断函数的单调性;3、函数的极值点可判断导数的符号;4、函数尖峰和凹处的判断;5、导数判断函数的模式;6、可以用导数的特性求函数的拐点;7、用导数可以求函数的泰勒级数;8、可以用导数的递推来求函数的定义域;9、可以用导数求一些曲线的面积。

四、利用科学计算器快速完成计算1、熟悉科学计算器的使用功能,即可完成导数的运算;2、可按法则准确求函数的导数;3、可以快速判断函数的极值、拐点等;4、对于复杂函数,可以简化计算,提高效率。

五、熟悉求导方程的解法1、建立方程,移项,量化,变形,以达到最简形状;2、变换为通解方程,求其特解;3、使用科学计算器计算求得函数的解。

高中数学导数题型总结

高中数学导数题型总结

导数经典例题剖析考点一:求导公式。

例1. ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。

考点二:导数的几何意义。

例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 。

例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。

考点三:导数的几何意义的应用。

例 4.已知曲线C :x x x y 2323+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。

考点四:函数的单调性。

例5.已知()1323+-+=x x ax x f 在R 上是减函数,求a 的取值范围。

例6. 设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值。

(1)求a 、b 的值;(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围。

点评:本题考查利用导数求函数的极值。

求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()()()a x x x f --=42。

求导数()x f ';(2)若()01'=-f ,求()x f 在区间[]2,2-上的最大值和最小值。

解析:(1)()a x ax x x f 4423+--=,∴ ()423'2--=ax x x f 。

(2)()04231'=-+=-a f ,21=∴a 。

()()()14343'2+-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或34=x , 则()x f 和()x f '在区间[]2,2-()291=-f ,275034-=⎪⎭⎫ ⎝⎛f 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档