二项式定理
二项式定理
二项式定理二项式定理是高中数学中与排列组合、多项式的概念性质联系比较紧密的内容。
在高考中,二项式定理的命题主要以选择、填空题的形式考查二项展开式的项、系数及其相关问题。
因此,复时要正确理解二项式定理、二项展开式的概念和性质,牢牢掌握二项展开式的通项公式是解答有关问题的关键。
同时,注意把握二项式与定积分及其它知识的联系。
其中,非标准二项式定理求解特殊项的问题是难点问题。
二项式定理的公式为(a+b)^n=C(n,0)*a^n+C(n,1)*a^(n-1)*b+。
+C(n,k)*a^(n-k)*b^k+。
+C(n,n)*b^n,其中n∈N*。
展开式的第k+1项为C(n,k)*a^(n-k)*b^k。
在求二项展开式的特定项问题时,实质上是考查通项T(k+1)=C(n,k)*b的特点。
一般需要建立方程求k,再将k的值代回通项求解。
注意k的取值范围为k=0,1,2,…,n。
特定项的系数问题及相关参数值的求解等都可依据上述方法求解。
二项式系数是二项展开式中各项的系数,记为C(n,k)。
项的系数是该项中非字母因数部分,包括符号等。
二项式系数具有对称性,在二项展开式中与首末两端等距离的两个二项式系数相等,即C(n,k)=C(n,n-k)。
二项式系数的增减性与最大值是:当k(n+1)/2时,二项式系数逐渐减小。
当n是偶数时,中间一项的二项式系数最大;当n是奇数时,中间两项的二项式系数最大。
各二项式系数的和等于2,即C(n,0)+C(n,1)+…+C(n,n)=2.奇数项的二项式系数之和等于偶数项的二项式系数之和,即C(n,0)+C(n,2)+…=C(n,1)+C(n,3)+…=2^(n-1)。
在高考中,常涉及多项式和二项式问题,主要考查学生的化简能力。
常见的命题角度有:(1)几个多项式和的展开式中的特定项(系数)问题;(2)几个多项式积的展开式中的特定项(系数)问题;(3)三项展开式中的特定项(系数)问题。
赋值法是一种重要的方法,适用于恒等式,用于求形如(ax+b)、(ax+bx+c)(a,b∈R)的式子展开式的各项系数之和。
二项式定理
在展开式C中 15x(x只 3)有 24才存x的 在项 , 其系数 C15为 324 240
方法3 (x2+3x+2)5=[x2+(3x+2)]5
在展开式C 中50(3只 x有 2)5才存x的 在项 , 其系数 C15为 324 240
( x1)6(2x1)5 的通项是
CC(1)2 x s r 56
s
5s
16r2s 2
5、 的系数.
求 ( x1)6(2x1)5的展开式中 x 6 项
解:( x 1)6 的通项是 C 6 r( x)6rC 6 rx6 2r
(2 x 1)5 的通项是
C 5 s ( 2 x ) 5 s ( 1 ) s C 5 s ( 1 ) s 2 5 s x 5 s
( x1 )6(2x1 )5 的通项是
CC(1)2 x s r 56
s
5s
16r2s 2
课堂小结:
1、二项式定理、通项公式及二项式系数的性 质。
2、要区分二项式系数与展开式项的系数的异 同。
3、熟练求算二项展开式的Tr+1项、常数项、x 的r次方项等题型。
二项式定理的复习
1.二项展开式:
a bn
c n 0 a n c 1 n a n 1 b c n ra n rb r c n n b n
这个公式叫做二项式定理,等号后面的 式子叫做(a+b)n的二项展开式,其中 Cnk(k=0,1,2,…,n)叫做二项式系数。
二项展开式中的第k+1项为Cnkan-kbk
用(1-x)3 展开式中的一次项乘以(1+x)10 展开式中 的x4项可得到(-3x)(C104x4)=-3C104x5;
二项式定理
二项式定理一、基础知识1.二项式定理(1)二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *)❶;(2)通项公式:T k +1=C k n an -k b k ,它表示第k +1项; (3)二项式系数:二项展开式中各项的系数为C 0n ,C 1n ,…,C n n ❷.2.二项式系数的性质(1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .二项式系数与项的系数的区别二项式系数是指C 0n ,C 1n ,…,C n n ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.如(a +bx )n 的二项展开式中,第k +1项的二项式系数是C k n ,而该项的系数是C k n an -k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.考点一 二项展开式中特定项或系数问题考法(一) 求解形如(a +b )n (n ∈N *)的展开式中与特定项相关的量 [例1] (1)(2018·全国卷Ⅲ)⎝⎛⎭⎫x 2+2x 5的展开式中x 4的系数为( ) A.10 B.20 C.40D.80(2)(2019·合肥调研)若(2x -a )5的二项展开式中x 3的系数为720,则a =________. (3)(2019·甘肃检测)已知⎝⎛⎭⎫x -a x 5的展开式中x 5的系数为A ,x 2的系数为B ,若A +B =11,则a =________.[解析] (1)⎝⎛⎭⎫x 2+2x 5的展开式的通项公式为T r +1=C r 5·(x 2)5-r ·⎝⎛⎭⎫2x r =C r 5·2r ·x 10-3r ,令10-3r =4,得r =2.故展开式中x 4的系数为C 25·22=40. (2)(2x -a )5的展开式的通项公式为T r +1=(-1)r ·C r 5·(2x )5-r ·a r =(-1)r ·C r 5·25-r ·a r ·x 5-r ,令5-r =3,解得r =2,由(-1)2·C 25·25-2·a 2=720,解得a =±3.(3)⎝⎛⎭⎫x -a x 5的展开式的通项公式为T r +1=C r 5x 5-r ·⎝⎛⎭⎫-a x r =C r 5(-a )rx 5-32r .由5-32r =5,得r =0,由5-32r =2,得r =2,所以A =C 05×(-a )0=1,B =C 25×(-a )2=10a 2,则由1+10a 2=11,解得a =±1.[答案] (1)C (2)±3 (3)±1 [解题技法]求形如(a +b )n (n ∈N *)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r +1=C r n an -r b r,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r ;第三步,把r 代入通项公式中,即可求出T r +1,有时还需要先求n ,再求r ,才能求出T r +1或者其他量.考法(二) 求解形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量 [例2] (1)(1-x )6(1+x )4的展开式中x 的系数是( ) A.-4 B.-3 C.3D.4(2)(2019·南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.[解析] (1)法一:(1-x )6的展开式的通项为C m 6·(-x )m =C m 6(-1)m x m 2,(1+x )4的展开式的通项为C n 4·(x )n =C n 4x n 2,其中m =0,1,2,…,6,n =0,1,2,3,4. 令m 2+n2=1,得m +n =2, 于是(1-x )6(1+x )4的展开式中x 的系数等于C 06·(-1)0·C 24+C 16·(-1)1·C 14+C 26·(-1)2·C 04=-3.法二:(1-x )6(1+x )4=[(1-x )(1+x )]4(1-x )2=(1-x )4(1-2x +x ).于是(1-x )6(1+x )4的展开式中x 的系数为C 04·1+C 14·(-1)1·1=-3. (2)(ax +1)6的展开式中含x 2项的系数为C 46a 2,含x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25. [答案] (1)B (2)25[解题技法]求形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量的步骤 第一步,根据二项式定理把(a +b )m 与(c +d )n 分别展开,并写出其通项公式; 第二步,根据特定项的次数,分析特定项可由(a +b )m 与(c +d )n 的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量. 考法(三) 求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量 [例3] (1)(x 2+x +y )5的展开式中x 5y 2的系数为( ) A.10 B.20 C.30D.60(2)将⎝⎛⎭⎫x +4x -43展开后,常数项是________. [解析] (1)(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x2+x )3y 2,又(x 2+x )3的展开式的通项为T k +1=C k 3(x 2)3-k ·x k =C k 3x6-k,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30.(2)⎝⎛⎭⎫x +4x -43=⎝⎛⎭⎫x -2x 6展开式的通项是C k 6(x )6-k ·⎝⎛⎭⎫-2x k =(-2)k ·C k 6x 3-k. 令3-k =0,得k =3.所以常数项是C 36(-2)3=-160.[解析] (1)C (2)-160 [解题技法]求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量的步骤 第一步,把三项的和a +b +c 看成是(a +b )与c 两项的和; 第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项; 第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n-r的展开式中的哪些项和c r 相乘得到的;第四步,把相乘后的项合并即可得到所求特定项或相关量.[题组训练]1.(2018·洛阳第一次统考)若a =∫π0 sin x d x ,则二项式⎝⎛⎭⎫a x -1x 6的展开式中的常数项为( )A.-15B.15C.-240D.240解析:选D 由a =∫π0 sin x d x =(-cos x )|π0=(-cos π)-(-cos 0)=1-(-1)=2,得⎝⎛⎭⎫2x -1x 6的展开式的通项公式为T r +1=C r6(2x )6-r ⎝⎛⎭⎫-1x r =(-1)r C r 6·26-r ·x 3-32r ,令3-32r =0,得r =2,故常数项为C 26·24=240. 2.(2019·福州四校联考)在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)解析:二项展开式中,含x 5的项是C 562x 5-x 3C 2624x 2=-228x 5,所以x 5的系数是-228.答案:-2283.⎝⎛⎭⎫x 2+1x +25(x >0)的展开式中的常数项为________. 解析:⎝⎛⎭⎫x 2+1x +25(x >0)可化为⎝ ⎛⎭⎪⎫x 2+1x 10,因而T r +1=C r 10⎝⎛⎭⎫1210-r (x )10-2r ,令10-2r =0,得r =5,故展开式中的常数项为C 510·⎝⎛⎭⎫125=6322.答案:6322考点二 二项式系数的性质及各项系数和[典例精析](1)若⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( )A.63x B.4x C.4x 6xD.4x或4x 6x (2)若⎝⎛⎭⎫x 2-1x n 的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解析] (1)令x =1,可得⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和为2n ,即8<2n<32,解得n =4,故第3项的系数最大,所以展开式中系数最大的项是C 24(x )2⎝ ⎛⎭⎪⎫13x 2=63x . (2)⎝⎛⎭⎫x 2-1x n 的展开式的通项公式为T r +1=C r n (x 2)n -r ·⎝⎛⎭⎫-1x r =C r n (-1)r x 2n -3r , 因为含x 的项为第6项,所以r =5,2n -3r =1,解得n =8, 在(1-3x )n 中,令x =1,得a 0+a 1+…+a 8=(1-3)8=28, 又a 0=1,所以a 1+…+a 8=28-1=255.(3)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5,② ①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂项的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3.[答案] (1)A (2)255 (3)3[解题技法]1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中 (1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.[题组训练]1.(2019·包头模拟)已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( )A.1B.243C.121D.122解析:选B 令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,①令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.2.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =0,则(2+m )9=a 0+a 1+a 2+…+a 9, 令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9, 又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39, ∴(2+m )9·m 9=39,∴m (2+m )=3, ∴m =-3或m =1. 答案:-3或13.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n -2n +C n -1n +C n n =121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项为T 8=C 715(3x )7和T 9=C 815(3x )8.答案:C 715(3x )7和C 815(3x )8考点三 二项展开式的应用[典例精析]设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( ) A.0 B.1 C.11D.12[解析] 由于51=52-1,512 018=(52-1)2 018=C 02 018522 018-C 12 018522 017+…-C 2 0172 018521+1,又13整除52, 所以只需13整除1+a , 又0≤a <13,a ∈Z , 所以a =12. [答案] D[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a =cr +b ,其中余数b ∈[0,r ),r 是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.[题组训练]1.使得多项式81x 4+108x 3+54x 2+12x +1能被5整除的最小自然数x 为( ) A.1 B.2 C.3D.4解析:选C ∵81x 4+108x 3+54x 2+12x +1=(3x +1)4,∴上式能被5整除的最小自然数为3.2.1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数为________. 解析:∵1-90C 110+902C 210+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910, ∴8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数为1. 答案:1[课时跟踪检测]A 级1.(2019·河北“五个一名校联盟”模拟)⎝⎛⎭⎫2x2-x 43的展开式中的常数项为( )A.-32B.3 2C.6D.-6解析:选D 通项T r +1=C r 3⎝⎛⎭⎫2x 23-r·(-x 4)r =C r 3(2)3-r·(-1)r x -6+6r,当-6+6r =0,即r=1时为常数项,T 2=-6,故选D.2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( )A.-6160B.-122121C.-34D.-90121解析:选C 由二项式定理,得a 1=-C 1524=-80,a 2=C 2523=80,a 3=-C 3522=-40,a 4=C 452=10,所以a 2+a 4a 1+a 3=-34. 3.若二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为-1,则含x 2项的系数为( ) A.560 B.-560 C.280D.-280解析:选A 取x =1,得二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为(1+a )7,即(1+a )7=-1,1+a =-1,a =-2.二项式⎝⎛⎭⎫x 2-2x 7的展开式的通项T r +1=C r 7·(x 2)7-r ·⎝⎛⎭⎫-2x r =C r 7·(-2)r ·x 14-3r.令14-3r =2,得r =4.因此,二项式⎝⎛⎭⎫x 2-2x 7的展开式中含x 2项的系数为C 47·(-2)4=560.4.(2018·山西八校第一次联考)已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( )A.29B.210C.211D.212解析:选A 由题意得C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式系数和为2n -1=29.5.二项式⎝⎛⎭⎫1x -2x 29的展开式中,除常数项外,各项系数的和为( ) A.-671 B.671 C.672D.673解析:选B 令x =1,可得该二项式各项系数之和为-1.因为该二项展开式的通项公式为T r +1=C r 9⎝⎛⎭⎫1x 9-r ·(-2x 2)r =C r 9(-2)r ·x 3r -9,令3r -9=0,得r =3,所以该二项展开式中的常数项为C 39(-2)3=-672,所以除常数项外,各项系数的和为-1-(-672)=671.6.(2018·石家庄二模)在(1-x )5(2x +1)的展开式中,含x 4项的系数为( ) A.-5 B.-15 C.-25D.25解析:选B 由题意含x 4项的系数为-2C 35+C 45=-15.7.(2018·枣庄二模)若(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为30,则a 等于( ) A.13 B.12 C.1D.2解析:选D ⎝⎛⎭⎫x +1x 10的展开式的通项公式为T r +1=C r 10·x 10-r ·⎝⎛⎭⎫1x r =C r 10·x 10-2r ,令10-2r =4,解得r =3,所以x 4项的系数为C 310.令10-2r =6,解得r =2,所以x 6项的系数为C 210.所以(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为C 310-a C 210=30,解得a =2. 8.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( ) A.1或3 B.-3 C.1D.1或-3解析:选D 令x =0,得a 0=(1+0)6=1.令x =1,得(1+m )6=a 0+a 1+a 2+…+a 6.∵a 1+a 2+a 3+…+a 6=63,∴(1+m )6=64=26,∴m =1或m =-3.9.(2019·唐山模拟)(2x -1)6的展开式中,二项式系数最大的项的系数是________.(用数字作答)解析:(2x -1)6的展开式中,二项式系数最大的项是第四项,系数是C 3623(-1)3=-160.答案:-16010.(2019·贵阳模拟)⎝⎛⎭⎫x +ax 9的展开式中x 3的系数为-84,则展开式的各项系数之和为________.解析:二项展开式的通项T r +1=C r 9x 9-r ⎝⎛⎭⎫a x r =a r C r 9x 9-2r ,令9-2r =3,得r =3,所以a 3C 39=-84,解得a =-1,所以二项式为⎝⎛⎭⎫x -1x 9,令x =1,则(1-1)9=0,所以展开式的各项系数之和为0.答案:011.⎝⎛⎭⎫x +1x +15展开式中的常数项为________. 解析:⎝⎛⎭⎫x +1x +15展开式的通项公式为T r +1=C r 5·⎝⎛⎭⎫x +1x 5-r .令r =5,得常数项为C 55=1,令r =3,得常数项为C 35·2=20,令r =1,得常数项为C 15·C 24=30,所以展开式中的常数项为1+20+30=51.答案:5112.已知⎝⎛⎭⎪⎫x +124x n的展开式中,前三项的系数成等差数列.(1)求n ;(2)求展开式中的有理项; (3)求展开式中系数最大的项.解:(1)由二项展开式知,前三项的系数分别为C 0n ,12C 1n ,14C 2n ,由已知得2×12C 1n =C 0n +14C 2n ,解得n =8(n =1舍去). (2)⎝ ⎛⎭⎪⎫x +124x 8的展开式的通项T r +1=C r 8(x )8-r ·⎝ ⎛⎭⎪⎫124x r =2-r C r 8x 4-3r 4(r =0,1,…,8), 要求有理项,则4-3r 4必为整数,即r =0,4,8,共3项,这3项分别是T 1=x 4,T 5=358x ,T 9=1256x 2.(3)设第r +1项的系数a r +1最大,则a r +1=2-r C r 8,则a r +1a r =2-r C r82-(r -1)C r -18=9-r 2r ≥1, a r +1a r +2=2-r C r 82-(r +1)C r +18=2(r +1)8-r≥1, 解得2≤r ≤3.当r =2时,a 3=2-2C 28=7,当r =3时,a 4=2-3C 38=7,因此,第3项和第4项的系数最大,B 级1.在二项式⎝⎛⎭⎫x -1x n 的展开式中恰好第五项的二项式系数最大,则展开式中含有x 2项的系数是( )A.35B.-35C.-56D.56解析:选C 由于第五项的二项式系数最大,所以n =8.所以二项式⎝⎛⎭⎫x -1x 8展开式的通项公式为T r +1=C r 8x 8-r (-x -1)r =(-1)r C r 8x8-2r,令8-2r =2,得r =3,故展开式中含有x 2项的系数是(-1)3C 38=-56.2.已知C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,则C 1n +C 2n +…+C nn 的值等于( )A.64B.32C.63D.31解析:选C 因为C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,所以(1-4)n =36,所以n =6,因此C 1n +C 2n +…+C n n =2n -1=26-1=63.3.(2019·济南模拟)⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中含x 4项的系数为________.解析:令x =1,可得⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为1-a =2,得a =-1,则⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5展开式中含x 4项的系数即是⎝⎛⎭⎫2x -1x 5展开式中的含x 3项与含x 5项系数的和.又⎝⎛⎭⎫2x -1x 5展开式的通项为T r +1=C r 5(-1)r ·25-r ·x 5-2r ,令5-2r =3,得r =1,令5-2r =5,得r =0,将r =1与r =0分别代入通项,可得含x 3项与含x 5项的系数分别为-80与32,故原展开式中含x 4项的系数为-80+32=-48.答案:-484.设复数x =2i 1-i(i 是虚数单位),则C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019=( ) A.iB.-iC.-1+iD.-i -1解析:选D 因为x =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,所以C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019=(1+x )2 019-1=(1-1+i)2 019-1=i 2 019-1=-i -1.5.已知(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9,则(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2的值为( )A.39B.310C.311D.312解析:选D 对(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9两边同时求导,得9(x +2)8=a 1+2a 2x +3a 3x 2+…+8a 8x 7+9a 9x 8,令x =1,得a 1+2a 2+3a 3+…+8a 8+9a 9=310,令x =-1,得a 1-2a 2+3a 3-…-8a 8+9a 9=32.所以(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2=(a 1+2a 2+3a 3+…+8a 8+9a 9)(a 1-2a 2+3a 3-…-8a 8+9a 9)=312.6.设a =⎠⎛012x d x ,则二项式⎝⎛⎭⎫ax 2-1x 6展开式中的常数项为________. 解析:a =⎠⎛01 2x d x =x 2⎪⎪⎪10=1,则二项式⎝⎛⎭⎫ax 2-1x 6=⎝⎛⎭⎫x 2-1x 6,其展开式的通项公式为T r +1=C r 6(x 2)6-r ·⎝⎛⎭⎫-1x r =(-1)r C r 6x 12-3r ,令12-3r =0,解得r =4.所以常数项为(-1)4C 46=15. 答案:15。
二项式定理
第3讲二项式定理[必备知识]考点1二项式定理1.二项式定理(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)叫做二项式定理.2.二项展开式的通项T k+1=C k n a n-k b k为展开式的第k+1项.3.二项式系数二项展开式中各项的系数C k n(k∈{0,1,…,n})叫做二项式系数.考点2二项式系数的性质[必会结论]二项展开式形式上的特点: (1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,…一直到C n -1n ,C nn .二、小题快练1.[2014·湖南高考]⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 2y 3的系数是( ) A .-20 B .-5 C .5 D .20 2.[课本改编]若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( )A .9B .8C .7D .6 3.[课本改编]若⎝ ⎛⎭⎪⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .1204.[2015·广东高考]在(x -1)4的展开式中,x 的系数为______. 5.[2015·天津高考]在⎝ ⎛⎭⎪⎫x -14x 6的展开式中,x 2的系数为______ 考向二项展开式中特定项或系数问题例1(1)[2015·陕西高考]二项式(x +1)n (n ∈N +)的展开式中x 2的系数为15,则n =( )A .7B .6C .5D .4(2)[2015·重庆高考]⎝ ⎛⎭⎪⎫x 3+12x 5的展开式中x 8的系数是______(用数字作答).52考向 二项式系数的和或各项系数的和例2 (1)[2015·湖北高考]已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .212B .211C .210D .29(2)若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=____.364二项式定理中赋值法的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2, 偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.考向项的系数的最值问题例3 已知⎝ ⎛⎭⎪⎪⎫x +124x n的展开式中前三项x 的系数为等差数列.(1)求二项式系数最大项; (2)求展开式中系数最大的项.1.求二项式系数最大项(1)如果n 是偶数,那么中间一项(第⎝ ⎛⎭⎪⎫n 2+1项)的二项式系数最大; (2)如果n 是奇数,那么中间两项(第n +12项与第⎝ ⎛⎭⎪⎪⎫n +12+1项)的二项式系数相等并最大.2.求展开式系数最大项如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎨⎧A k ≥A k -1A k ≥A k +1从而解出k 来,即得.【变式训练3】 [2016·宜昌高三测试]已知(x 23+3x 2)n 的展开式中,各项系数和与它的二项式系数和的比为32.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.命题角度1 几个多项式积的展开式问题例4 [2015·课标全国卷Ⅱ](a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.3命题角度2 与整除有关的问题例5 [2016·潍坊模拟]设a ∈Z ,且0≤a <13,若512012+a 能被13整除,则a =( )A .0B .1C .11D .12命题角度3 求近似值的问题例6 求1.028的近似值.(精确到小数点后三位) [解] 1.028=(1+0.02)8≈C 08+C 18·0.02+C28·0.022+C 38·0.023≈1.172. 命题角度4 二项式定理与函数的交汇问题 例7 [2013·陕西高考]设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x ,x ≥0,则当x >0时,f [f (x )]表达式的展开式中常数项为( )A .-20B .20C .-15D .15【变式训练4】[2016·昆明调研]⎝ ⎛⎭⎪⎫2x +x (1-x )4的展开式中x 的系数是________.3核心规律1.二项展开式的通项T k +1=C k n a n -k b k是展开式的第k +1项,这是解决二项式定理有关问题的基础.在利用通项公式求指定项或指定项的系数时,要根据通项公式讨论对k 的限制.2.因为二项式定理中的字母可取任意数或式,所以,在解题时,根据题意,给字母赋值,是求解二项展开式各项系数和的重要方法.题型技法系列24——拆分法破解三项展开式中特定项(系数)问题 [2015·课标全国卷Ⅰ](x 2+x +y )5的展开式中,x 5y 2的系数为( )A .10B .20C .30D .60(1)[2016·皖南八校联考](x 2-4x +4)5的展开式中x 的系数是_____.-5120(2)[2016·河北名校联考](x 2-x +2)5的展开式中x 3的系数为_______.-2001.[2016·沈阳模拟]⎝ ⎛⎭⎪⎫x -1x 7的展开式的第4项等于5.则x 等于( )A.17 B .-17C .7D .-72.[2015·大连模拟](2-x )8展开式中不含x 4项的系数的和为( )A .-1B .0C .1D .23.[2016·唐山模拟]⎝⎛⎭⎪⎫3x -2x 8二项展开式中的常数项为( )A .56B .-56C .112D .-1124.[2014·四川高考]在x (1+x )6的展开式中,含x 3项的系数为( )A .30B .20C .15D .105.若对于任意的实数x ,有x 3=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3,则a 2的值为( )A .3B .6C .9D .12[A 级 基础达标](时间:40分钟)1.[2014·湖北高考]若二项式⎝⎛⎭⎪⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( )A .2 B.34 C .1 D.242.[2016·唐山模拟]⎝ ⎛⎭⎪⎫x 2+1x 2-23展开式中的常数项为( )A .-8B .-12C .-20D .203.设(1+x )n =a 0+a 1x +a 2x 2+a 3x 3+…+a n x n ,若a 1+a 2+a 3+…+a n =63,则展开式中系数最大的项是( )A .15x 2B .20x 3C .21x 3D .35x 3 4.[2016·洛阳二测](x +1)(x -2)6的展开式中x 4的系数为( )A .-100B .-15C .35D .220 5.在⎝ ⎛⎭⎪⎪⎫x2-13x n 的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( )A .-7B .7C .-28D .286.设二项式⎝⎛⎭⎪⎫3x +3x n的展开式各项系数的和为a ,所有二项式系数的和为b .若a +2b =80,则n 的值为( )A .8B .4C .3D .27.[2015·四川高考]在(2x -1)5的展开式中,含x 2的项的系数是________(用数字填写答案).40-8.[2016·安徽江南十校联考]二项式⎝ ⎛⎭⎪⎫x -1ax 6(a >0)展开式中x 2项的系数为15,则实数a =________.19.[2014·山东高考]若⎝⎛⎭⎪⎫ax 2+b x 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.211.已知⎝ ⎛⎭⎪⎫x -2x 2n (n ∈N *)的展开式中第五项的系数与第三项的系数的比是10∶1.(1)求展开式中各项系数的和; (2)求展开式中含x 23的项.12.已知在⎝⎛⎭⎪⎫12x 2-1x n 的展开式中,第9项为常数项,求:(1)n 的值;(2)展开式中x 5的系数; (3)含x 的整数次幂的项的个数.[B 级 知能提升](时间:20分钟)1.[2016·洛阳统考]设n 为正整数,⎝ ⎛⎭⎪⎫x -1x x 2n 展开式中存在常数项,则n 的一个可能取值为( )A .16B .10C .4D .2 2.若⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式的常数项为( )A .-40B .-20C .20D .40 3.[2016·江西八校联考]若(1+x )(1-2x )7=a 0+a 1x +a 2x 2+…+a8x8,则a1+a2+…+a7的值是________.125。
二项式定理知识点总结
二项式定理知识点总结二项式定理是数学中的一个基本定理,它描述了一个二次方的展开式中的每一项的系数。
二项式定理的公式如下:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n)b^n其中,C(n,k)表示从n个元素中选取k个的组合数,也可以记作为“n选择k”。
二项式定理的核心思想是展开一个二次方的多项式,并找到每一项的系数。
该定理在概率论、组合数学、统计学等领域具有广泛的应用。
二项式定理的重要性二项式定理在数学中具有重要的地位,而且在很多高级数学的分支中都起到了关键的作用。
以下是二项式定理的重要性:1. 展开多项式:二项式定理可以用来展开一个多项式,从而求得每一项的系数。
这对于解决复杂的数学问题非常有帮助。
2. 概率计算:二项式定理在概率论中应用广泛。
例如,在进行多次独立试验时,计算某些事件发生的概率可以通过二项式定理来实现。
3. 组合数学:组合数学是二项式定理的一个重要分支。
二项式系数被称为“组合数”,用于计算对象之间的排列组合情况。
4. 统计学应用:二项式分布是概率论中一种重要的离散概率分布,它在统计学中有广泛的应用。
二项式定理可以用来计算二项式分布的概率。
二项式定理的发展历程二项式定理最早是由17世纪的法国数学家Pascal在他的著作《论算术三角形》(Traité du triangle arithmétique)中首次提出的。
后来,德国数学家Newton将其进一步发展,并给出了二项式的系数计算公式。
随着数学研究的深入,二项式定理逐渐被推广到更一般的形式。
例如,当指数n为实数,而非整数时,也可以使用二项式定理展开。
这被称为泰勒展开,是微积分中的一种重要工具。
应用举例1. 计算多项式的展开式:利用二项式定理,我们可以展开一个二次方、三次方或更高次方的多项式,从而求得每一项的系数。
例如,利用二项式定理展开(x + y)^3:(x + y)^3 = C(3,0)x^3 + C(3,1)x^2y + C(3,2)xy^2 + C(3,3)y^3= x^3 + 3x^2y + 3xy^2 + y^32. 计算概率:二项式定理在概率论中有广泛的应用。
二项式定理(讲解部分)
考法二 求二项式系数和与展开式中各项系数和的问题
例2 (1)(2019陕西师大附中模拟)在二项式(1-2x)n的展开式中,偶数项的二 项式系数之和为128,则展开式的中间项的系数为 ( )
A.-960 B.960
C.1 120 D.1 680
(2)若
x2
-
1 x
n
的展开式中含x的项为第6项,设(1-3x)n=a0+a1x+a2x2+…+anxn,则
的展开式的常
数项是60,则a的值为 ( )
A.4 B.±4 C.2 D.±2
(2)(2018山东枣庄二模,8)若(x2-a)
x
+
1 x
10
的展开式中x6的系数为30,则a等
于( )
A. 1 B. 1 C.1 D.2
3
2
解题导引 (1)常数项是指x0项的系数,展开式的通项是什么?化简通项时
用到什么运算,指数幂的运算性质有哪些?根式如何化成指数幂形式?结合
令10-2r=6,解得r=2, 所以x6项的系数为C120,
所以(x2-a)·
x
+
1 x
10
的展开式中x6的系数为C130
-a
C120=30,
解得a=2.故选D.
答案 (1)D (2)D
方法总结 求二项展开式中的特定项,一般是利用通项公式进行,化简通项 后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数 等),解出r,代回通项即可.
指数幂运算化通项为最简形式再求解.
(2)的展开式中x6项的来源有几个?结合多项式乘法法则,可分析出来有2个
来源,分别是哪两个?写出
二项式定理百科
二项式定理百科二项式定理(Binomial theorem)是数学中的一个重要定理,它描述了如何展开一个二项式的幂。
这个定理在代数、组合数学、概率论等领域都有广泛应用。
本文将详细介绍二项式定理及其应用。
一、二项式定理的定义二项式定理是指对于任意实数a和b以及非负整数n,都有以下等式成立:$$(a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$$其中,$\binom{n}{k}$表示组合数,计算公式为$$\binom{n}{k}=\frac{n!}{k!(n-k)!}$$式中的$\binom{n}{k}$可以读作n选择k,它表示从n个元素中选择k个元素的组合数。
二项式系数$\binom{n}{k}$决定了二项式展开后各项的系数。
二、二项式定理的展开式通过二项式定理,可以将一个二项式的幂展开成多个项的和。
例如,对于$(a+b)^3$,应用二项式定理,展开式为:$$(a+b)^3=\binom{3}{0}a^3b^0+\binom{3}{1}a^2b^1+\binom{3}{2}a ^1b^2+\binom{3}{3}a^0b^3$$化简得:$$a^3+3a^2b+3ab^2+b^3$$可以看出,展开后的每一项的指数和为3,且系数由组合数$\binom{3}{k}$确定。
三、二项式定理的应用1. 代数应用二项式定理常用于代数运算中,特别是求解多项式的展开式和系数。
通过二项式定理,可以快速计算高次幂的二项式展开式,简化复杂计算过程。
同时,二项式定理也可用于证明其他代数恒等式。
2. 组合数学组合数学研究的是离散结构和计数问题。
二项式定理的组合数$\binom{n}{k}$用于计算从n个元素中选择k个元素的方法数。
这对于排列组合、概率计算等问题都具有重要意义。
3. 概率论在概率论中,二项分布是一种重要的离散概率分布,它描述了一系列独立重复实验中成功次数的概率分布。
二项式定理可以用于计算二项分布的概率,判断在一定概率下,事件发生k次的概率。
二项式定理(binomialtheorem)
例子
例如,(a+b)^2 = a^2 + 2ab + b^2 是一个二 项式的展开式。
小常识
二项式來源于对“二”的组合数。
二项式定理的公式表述
1
公式1
(a+b)^2 = a^2 + 2ab a^3 + 3a^2b + 3ab^2 + b^3
3
公式3
(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
二项式定理的性质
对称性
(a+b)^ n = (b+a)^ n
二项式系数的对称性
在二项式定理中,第k(k为整数) 个系数等于第(n-k)个系数。
常数的系数
二项式定理中,每一项系数的 和为2的n次方。
二项式定理的证明方法
数学归纳法
适用于证明二项式定理的基本形式。
杨辉三角形
通过观察杨辉三角形的性质,可以推导出二项式定理。
二项式系数与对称性质
二项式系数具有对称性,即第k个系数等于第n-k个系数。通过对称性质的使用,可以简化二项式定理中 的系数。
二项式定理的推广与应用:多项式定理
在二项式定理的基础上,我们可以进一步推广并建立多项式定理。多项式定理适用于(x+y+z)^n的展开, 同样具有广泛的应用于组合数学等领域。
利用二项式定理求逆元
在计算机科学中,在模m下,a的逆元定义为b等于a乘以b模m余1。利用二项 式定理,可以推导出求逆元的通用公式。
投掷硬币问题与二项式定理
二项式定理可应用于投掷硬币的问题。例如,考虑抛掷硬币n次,期望得到k个正面的概率,可以使用二 项式系数计算。
第二节 二项式定理
第二节二项式定理考试要求1.理解二项式定理,二项式系数的性质.2.会用二项式定理解决与二项展开式有关的简单问题.[知识排查·微点淘金]知识点1二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k·b k+…+C n n b n(n∈N*);上述公式叫做二项式定理.[微思考](a+b)n与(b+a)n的展开式有何区别与联系?提示:(a+b)n的展开式与(b+a)n的展开式的项完全相同,但对应的项不相同而且两个展开式的通项不同.(2)通项公式:T k+1=C k n a n-k b k叫做二项展开式的通项,它表示展开式的第k+1项;(3)二项式系数:二项展开式中各项的系数C0n,C1n,…,C n n叫做二项式系数.知识点2二项式系数的性质[微提醒]易混淆二项式中的“项”“项的系数”“项的二项式系数”等概念,注意项的系数是指非字母因数所有部分,包含符号,二项式系数仅指C k n(k=0,1,…,n).[小试牛刀·自我诊断]1.思考辨析(在括号内打“√”或“×”)(1)C k n a n-k b k是(a+b)n的展开式中的第k项.(×)(2)二项展开式中,系数最大的项为中间一项或中间两项.(×)(3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.(√)(4)通项公式T k +1=C k n an -k b k中的a 和b 不能互换.(√) (5)(a +b )n 的展示式中某项的系数是该项中非字母因数部分,包括符号等,与该项的二项式系数不同.(√)2.(链接教材选修2-3 P 37A 组T 5)二项式⎝⎛⎭⎪⎫3x +12x 8的展开式的常数项是 .答案:73.(链接教材选修2-3 P 37A 组T 8)在二项式⎝⎛⎭⎫x -1x n 的展开式中只有第5项的二项式系数最大,则展开式中含x 2项的系数是 .答案:-564.(链接教材选修2-3 P 40A 组T 8)若⎝⎛⎭⎫x 3+1x n的展开式的所有二项式系数的和为128,则n = .答案:75.(混淆项的系数与二项式系数)在二项式⎝⎛⎭⎫x 2-2x n 的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为 .答案:-1一、基础探究点——求展开式中的特定项或特定项的系数(题组练透)1.(2020·北京卷)在(x -2)5的展开式中,x 2的系数为( ) A .-5 B .5 C .-10D .10解析:选C 由二项式定理得(x -2)5的展开式的通项T r +1=C r 5(x )5-r (-2)r =C r 5(-2)rx5-r2,令5-r2=2,得r =1,所以T 2=C 15(-2)x 2=-10x 2,所以x 2的系数为-10,故选C . 2.(2020·全国卷Ⅰ)⎝⎛⎭⎫x +y2x (x +y )5的展开式中x 3y 3的系数为( ) A .5 B .10 C .15D .20解析:选C 解法一:∵⎝⎛⎭⎫x +y 2x (x +y )5=⎝⎛⎭⎫x +y2x (x 5+5x 4y +10x 3y 2+10x 2y 3+5xy 4+y 5),∴x 3y 3的系数为10+5=15.解法二:当x +y 2x 中取x 时,x 3y 3的系数为C 35, 当x +y 2x 中取y 2x时,x 3y 3的系数为C 15, ∴x 3y 3的系数为C 35+C 15=10+5=15.故选C .3.(2021·北京卷)⎝⎛⎭⎫x 3-1x 4的展开式中常数项是 . 解析:由二项式的展开式可得C 34·(x 3)1·⎝⎛⎭⎫-1x 3=-4. 答案:-44.(2021·江西南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a = .解析:(ax +1)6的展开式中含x 2项的系数为C 46a 2,含x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25.答案:255. (x 2+x +y )5的展开式中,x 5y 2项的系数为( ) A .10 B .20 C .30D .60解析:选C 解法一:(x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3y 2.其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5.所以x 5y 2的系数为C 25×C 13=30. 解法二:(x 2+x +y )5表示5个x 2+x +y 之积,所以x 5y 2可从其中5个因式中,2个取因式中的x 2,剩余的3个因式中1个取x, 2个因式取y ,因此x 5y 2的系数为C 25C 13C 22=30.1.求二项展开式中的特定项问题,实质是考查通项T k +1=C k n an -k b k 的特点,一般需要先建立方 程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n ).2.求三项展开式中某些特定项的系数的方法:(1)通过变形先把三项式转化为二项式,再用二项式定理求解;(2)两次利用二项式定理的通项公式求解;(3)由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量.二、综合探究点——二项式系数与各项系数和问题(思维拓展)[典例剖析][例](1)在二项式(1-2x)n的展开式中,偶数项的二项式系数之和为128,则展开式的中间项的系数为()A.-960B.960C.1120 D.1680解析:根据题意,奇数项的二项式系数之和也应为128,所以在(1-2x)n的展开式中,二项式系数之和为256,即2n=256,解得n=8,则(1-2x)8的展开式的中间项为第5项,且T5=C48(-2)4x4=1120x4,即展开式的中间项的系数为1120.故选C.答案:C(2)若(1-2x)8=a0+a1x+a2x2+…+a8x8,则|a0|+|a1|+|a2|+|a3|+…+|a8|=()A.28-1 B.28C.38-1 D.38解析:由题可知,x的奇数次幂的系数均为负数,所以|a0|+|a1|+|a2|+|a3|+…+|a8|=a0-a1+a2-a3+…+a8.因为(1-2x)8=a0+a1x+a2x2+…+a8x8,令x=-1得a0-a1+a2-a3+…+a8=38,则|a0|+|a1|+|a2|+|a3|+…+|a8|=38.故选D.答案:D(3)(2021·浙江卷)已知多项式(x-1)3+(x+1)4=x4+a1x3+a2x2+a3x+a4,则a1=,a2+a3+a4=.解析:(x-1)3的展开式的通项为T r+1=C r3x3-r·(-1)r,(x+1)4的展开式的通项为T r+1=C r4x4-r1r,则a1x3=C03x3·(-1)0+C14x311=5x3,所以a1=5.同理,a2x2=C13x2(-1)1+C24x212=-3x2+6x2=3x2,a3x=C23x1(-1)2+C34x113=3x+4x=7x,a4=C33x0(-1)3+C44x014=0,所以a2=3,a3=7,a4=0,所以a2+a3+a4=10.答案:5101.赋值法的应用二项式定理给出的是一个恒等式,对于x,y的一切值都成立.因此,可将x,y设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式系数最大项的求法如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1,求解出正整数k 即可.[学会用活]1.(2021·安徽宣城调研)若(2-x )7=a 0+a 1(1+x )+a 2(1+x )2+…+a 7(1+x )7,则a 0+a 1+a 2+…+a 6的值为( )A .1B .2C .129D .2188解析:选C 令x =0得a 0+a 1+a 2+…+a 7=27=128,又(2-x )7=[3-(x +1)]7,则a 7(1+x )7=C 77·30·[-(x +1)]7,解得a 7=-1.故a 0+a 1+a 2+…+a 6=128-a 7=128+1=129. 2.(2021·广西高三5月联考)若(a +x 2)(1+x )n 的展开式中各项系数之和为192,且常数项为2,则该展开式中x 4的系数为( )A .30B .45C .60D .81解析:选B 令x =0,得a =2,所以(a +x 2)(1+x )n =(2+x 2)(1+x )n .令x =1,得3×2n=192,所以n =6.故该展开式中x 4的系数为2C 46+C 26=45.故选B .3.已知m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m+1展开式的二项式系数的最大值为b .若13a =7b ,则m 等于( )A .5B .6C .7D .8解析:选B 由题意可知,a =C m 2m ,b =C m2m +1,∵13a =7b ,∴13·2m !m !m !=7·2m +1!m !m +1!,即137=2m +1m +1,解得m =6.限时规范训练 基础夯实练1.(2021·河北唐山二模)在⎝⎛⎭⎫x -2x 6的展开式中,常数项为( ) A .20 B .-20 C .160D .-160解析:选D ⎝⎛⎭⎫x -2x 6展开式的通项T k +1=C k 6x 6-k ⎝⎛⎭⎫-2x k =(-1)k 2k C k 6x 6-2k ,令6-2k =0,得k =3,所常数项T 3+1=(-1)323C 36=-160,故选D .2.(2021·北京东城区二模)已知(2x +a )5的展开式中x 2的系数为-40,那么a =( ) A .-2 B .-1 C .1D .2解析:选B (2x +a )5的展开式通项为T r +1=C r 5·(2x )5-r ·a r =C r 5·25-r a r x 5-r ,令5-r =2,可得r =3,所以,C 35·22a 3=40a 3=-40,解得a =-1.故选B . 3.(2021·四川乐至中学月考)(1+2x )5的展开式中,各项二项式系数的和是( ) A .1 B .-1 C .25D .35解析:选C 由题得各项二项式系数和为C 05+C 15+C 25+C 35+C 45+C 55=25.故选C .4.(2021·陕西西安模拟)若(2-x )10展开式中二项式系数和为A ,所有项系数和为B ,一次项系数为C ,则A +B +C =( )A .4095B .4097C .-4095D .-4097解析:选C 由(2-x )10展开式的通项公式为T r +1=C r 10·210-r ·(-x )r =(-1)r ·210-r C r 10·x r ,所以一次项系数C =(-1)1·29·C 110=-5120,二项式系数和A =210=1024,令x =1,则所有项的系数和B =(2-1)10=1,所以A +B +C =-4095.故选C .5.⎝⎛⎭⎫x -x2y (x +2y )5的展开式中x 2y 4的系数为( )A .24B .36C .48D .72解析:选C 因为⎝⎛⎭⎫x -x 2y (x +2y )5=x (x +2y )5-x2y(x +2y )5,可得(x +2y )5的展开式通项为T r +1=C r 5x 5-r (2y )r =2r C r 5x5-r y r, 令r =4可得x 2y 4的系数为24C 45=80,令r =5,可得x 2y 4的系数为-25C 55=-32,故展开式中x 2y 4的系数为80-32=48.故选C .6.(2021·福建福州二模)在(x +y +z )6的展开式中,xyz 4的系数是( ) A .15 B .30 C .36D .60解析:选B 因为(x +y +z )6=[(x +y )+z ]6,所以[(x +y )+z ]6的通项公式为C r 6·(x +y )6-r·z r ,令r =4,所以C 46·(x +y )2·z 4=15(x 2+2xy +y 2)z 4,因此xyz 4的系数是15×2=30,故选B . 7.(2021·广东韶关一模)已知(1+x )10=a 0+a 1(2+x )+a 2(2+x )2+…+a 10(2+x )10,则a 9=( )A .-10B .10C .-45D .45解析:选A (1+x )10=[1-(2+x )]10=a 0+a 1(2+x )+a 2(2+x )2+…+a 10(2+x )10,T r +1=C r 10[-(2+x )]r ,a 9=C 910(-1)9=-10.故选A .8.(2021·山东潍坊二模)已知正整数n ≥7,若⎝⎛⎭⎫x -1x (1-x )n 的展开式中不含x 5的项,则n 的值为( )A .7B .8C .9D .10解析:选D (1-x )n 的二项展开式中第k +1项为T k +1=C k n (-1)k x k,又因为⎝⎛⎭⎫x -1x (1-x )n =x (1-x )n -1x (1-x )n 的展开式不含x 5的项,所以x C 4n (-1)4x 4-1x C 6n(-1)6x 6=0,C 4n x 5-C 6n x 5=0,即C 4n =C 6n,所以n =10,故选D . 9.(2021·湖南岳阳二模)若(1+x )(1-2x )7=a 0+a 1x +a 2x 2+…+a 8x 8,则a 1+a 2+…+a 7+a 8的值为 .解析:令x =1,得a 0+a 1+a 2+…+a 7+a 8=-2,令x =0,得a 0=1,则a 1+a 2+…+a 7+a 8=-2-1=-3.答案:-3综合提升练10.“杨辉三角”是我国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是一个三角形数阵,记a n 为图中第n 行各数之和,则a 5+a 11的值为( )1 1 1 12 1 13 3 1 14 6 4 1 15 10 10 5 1……A .528B .1020C .1038D .1040解析:选D a 5=C 04+C 14+C 24+C 34+C 44=24=16,a 11=C 010+C 110+C 210+…+C 1010=210=1024,所以a 5+a 11=1040.故选D .11.(2021·河北饶阳中学模拟)(x +x +1)⎝⎛⎭⎫x -2x 6的展开式中x 2的系数为( )A .72B .60C .48D .36解析:选C ⎝⎛⎭⎫x -2x 6的展开式的通项公式为T r +1=C r 6(x )6-r ·⎝⎛⎭⎫-2x r =(-2)r ·C r 6·x 3-r (r =0,1,2,3,4,5,6).令3-r =1,得r =2;令3-r =32,得r =32∉Z ,舍去;令3-r =2,得r =1.故(x +x +1)·⎝⎛⎭⎫x -2x 6的展开式中x 2的系数为(-2)2·C 26+(-2)1·C 16=60-12=48.故选C .12.1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数是( )A .-1B .1C .-87D .87解析:选B 1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数是1.13.(2021·广东梅州模拟)记(1-x )6=a 0+a 1(1+x )+a 2(1+x )2+a 3(1+x )3+a 4(1+x )4+a 5(1+x )5+a 6(1+x )6,则a 4= .解析:(1-x )6=(-1+x )6=[-2+(1+x )]6,展开式的通项公式为T r +1=C r 6(-2)6-r(1+x )r ,令r =4 即可,a 4=C 46(-2)2=4C 26=60.答案:6014.(2021·黑龙江哈尔滨三模)在⎝⎛⎭⎫x +ax n 的展开式中,只有第六项的二项式系数最大,且所有项的系数和为0,则含x 6项的系数为 .解析:∵⎝⎛⎭⎫x +ax n 的展开式中,只有第六项的二项式系数C 5n 最大,∴n =10,再令x =1,可得所有项的系数和为(1+a )10=0,∴a =-1.故二项展开式的通项公式为T r +1=C r 10·(-1)r ·x 10-2r ,令10-2r =6,求得r =2,可得含x 6项的系数为C 210=45.答案:4515.(2021·浙江绍兴模拟)二项展开式(2x +4)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 1= ;a 0+a 2+a 4= (可采用指数的形式或数字的方式作答).解析:因为(2x +4)5的展开式的通项为C r 5(2x )5-r 4r =C r 5·25-r ·4r ·x 5-r , 令r =4,则a 1=C 45×21×44=2560,令r =5,则a 0=C 55×20×45=1024,令r =3,则a 2=C 35×22×43=2560,令r =1,则a 4=C 15×24×41=320,故a 0+a 2+a 4=1024+2560+320=3904.答案:2560 390416.已知⎝⎛⎭⎫mx 2-4+x 25的展开式中所有项的系数和为1,则x 4的系数为 . 解析:令x =1,则(m -3)5=1,解得m =4,∴⎝⎛⎭⎫m x 2-4+x 25=⎝⎛⎭⎫4x 2-4+x 25,⎝⎛⎭⎫4x 2-4+x 25展开式的通项公式为C r 5⎝⎛⎭⎫4x 2-45-r (x 2)r ;∵⎝⎛⎭⎫4x 2-45-r 展开式通项公式为C k 5-r ⎝⎛⎭⎫4x 25-r -k (-4)k ,∴当k =1,r =3时,展开式中的项为 -320x 4;当k =3,r =2时,展开式中的项为-640x 4;∴x 4的系数为-320-640=-960.答案:-960创新应用练17.(2021·湖北黄冈月考)若(x +2)8=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6+a 7x 7+a 8x 8,则a 1-2a 2-4a 4+5a 5-6a 6+7a 7-8a 8= (用数字作答).解析:∵(x +2)8=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6+a 7x 7+a 8x 8,∴等式两边求导得8(x+2)7=a1+2a2x+3a3x2+4a4x3+5a5x4+6a6x5+7a7x6+8a8x7.令x=-1,有8×(-1+2)7=a1-2a2+3a3-4a4+5a5-6a6+7a7-8a8,即a1-2a2+3a3-4a4+5a5-6a6+7a7-8a8=8.又a3=C5825=1792,故所求值为8-1792×3=-5368.答案:-5368。
二项式定理的基本概念和应用
二项式定理的基本概念和应用二项式定理,又称为“二项式展开定理”,是数学中的一个重要定理,它描述了一个二项式的幂的展开式。
本文将对二项式定理的基本概念和应用进行探讨,希望能够对读者理解和应用该定理起到一定的帮助。
1. 二项式定理的基本概念二项式定理是指将一个二项式的幂展开成一系列项的规律。
表达式的形式如下:$(a + b)^n = \sum_{k=0}^{n}C_n^k \cdot a^{n-k} \cdot b^k$其中,$(a + b)^n$表示一个二项式的幂,$C_n^k$表示组合数,即从n个元素中选取k个元素的组合数。
2. 二项式定理的证明二项式定理的证明可以通过多种方法进行,其中较为常见的有以下两种方法:数学归纳法和组合数学方法。
这里简要介绍一下数学归纳法的证明思路。
首先,在n=1的情况下,二项式定理成立:$(a + b)^1 = a^1 + b^1$接下来,假设当n=m时,二项式定理也成立,即$(a + b)^m = \sum_{k=0}^{m}C_m^k \cdot a^{m-k} \cdot b^k$我们需要证明当n=m+1时,定理也成立。
通过展开$(a + b)^{m+1}$,我们可以得到:$(a + b)^{m+1} = (a + b)^m \cdot (a + b)$根据假设得到的等式,我们将其代入上述公式:$(a + b)^{m+1} = \left(\sum_{k=0}^{m}C_m^k \cdot a^{m-k} \cdotb^k\right) \cdot (a + b)$我们可以对上述公式进行分配律的展开:$(a + b)^{m+1} = \left(\sum_{k=0}^{m}C_m^k \cdot a^{m-k+1} \cdot b^k\right) + \left(\sum_{k=0}^{m}C_m^k \cdot a^{m-k} \cdotb^{k+1}\right)$我们可以对上述等式进行一些变换和合并得到:$(a + b)^{m+1} = \sum_{k=0}^{m}\left(C_m^k \cdot a^{m-k+1} \cdot b^k + C_m^k \cdot a^{m-k} \cdot b^{k+1}\right)$进一步化简,我们得到:$(a + b)^{m+1} = \sum_{k=0}^{m}\left((C_m^k + C_m^{k-1}) \cdota^{m-k+1} \cdot b^k\right)$我们可以观察到$(C_m^k + C_m^{k-1})$的表达式,它可以化简成组合数的形式:$C_{m+1}^k$,于是上述等式可以再次化简为:$(a + b)^{m+1} = \sum_{k=0}^{m+1}\left(C_{m+1}^k \cdot a^{m+1-k} \cdot b^k\right)$因此,根据数学归纳法,我们可以得出结论:对于任意的非负整数n,二项式定理都成立。
二项式定理
二项式定理二项式定理是高中数学中的重要内容。
它表示了一个二元多项式的n次幂的展开式。
其中,二项式系数是展开式中每一项的系数,可以用组合数来表示。
具体来说,二项式定理可以表示为:$(a+b)^n=\sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$。
其中,$\binom{n}{k}$表示从n个元素中选取k个元素的组合数。
二项式定理有很多应用,例如近似计算和估计,证明不等式等。
在使用二项式定理时,我们可以利用它的性质来简化计算。
其中,二项式系数具有对称性、增减性和最大值等性质。
此外,所有二项式系数的和等于$2^n$,奇数项的二项式系数和与偶数项的二项式系数和相等。
需要注意的是,展开式共有n+1项,而二项式系数$\binom{n}{r}$是展开式中第r+1项的系数。
此外,展开式中的通项$T_{r+1}=\binom{n}{r}a^{n-r}b^r$。
在使用二项式定理时,我们可以将一般情况转化为特殊情况,或者使用赋值法等思维方式来简化计算。
1.问题讨论1.1 例1求解C(n)等于(1/n) * [C(n,1) + 3*C(n,2) + 9*C(n,3) +。
+ 3^(n-1)*C(n,n)],以及当n为奇数时,7+C(n,7)+C(n,14)+。
+C(n,7+(n-1)/2)的余数。
解。
1.1.1 求解C(n)设S(n) = C(n)。
则有:S(n) + 3S(n) = 3*C(n,1) + 3*C(n,2) +。
+ 3^n-1*C(n,n)将上式两边相减,得:S(n) = (1/4) * [C(n,1) + 3*C(n,2) + 9*C(n,3) +。
+ 3^(n-1)*C(n,n)]所以,C(n)等于(1/n) * [C(n,1) + 3*C(n,2) + 9*C(n,3) +。
+ 3^(n-1)*C(n,n)]。
1.1.2 求解余数XXX(n,7)+C(n,14)+。
+C(n,7+(n-1)/2)的余数等于8^(n-1)的余数,因为:XXX(n,7)+C(n,14)+。
二项式定理的定义和基本性质是什么
二项式定理的定义和基本性质是什么二项式定理是代数中一个重要的定理,描述了一个二项式的幂展开式。
它的定义和基本性质如下。
定义:
二项式定理是指对于任意实数a和b以及任意非负整数n,二项式展开式的公式为:
(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + C(n,2) * a^(n-
2) * b^2 + ... + C(n,n) * a^0 * b^n
其中C(n,k)表示n个元素中取k个元素的组合数。
基本性质:
1. 幂次关系:对于二项式展开式中的任意一项,其对应的幂次关系为a^n-k * b^k。
其中n为二项式展开的幂次,k为该项中b的幂次。
2. 系数关系:二项式展开式中每一项的系数可以用组合数表示。
具体地,第k项的系数为C(n,k)。
3. 对称性:二项式展开式中的对称性表现为,对应的k项和n-k项的系数相等。
4. 性质1:二项式展开式中的一切项数为n+1。
5. 性质2:二项式展开式中的一切系数之和等于2^n。
二项式定理的应用广泛,特别是在代数和组合数学中。
它在代数运算和多项式求解中起到了重要的作用。
同时,通过二项式定理可以得到一些重要的数学恒等式,例如二项式系数恒等式和牛顿二项式系数恒等式。
总结:
二项式定理的定义描述了一个二项式的幂展开式,利用组合数的概念表示了每一项的系数。
二项式定理具有幂次关系、系数关系、对称性等基本性质。
它在数学中应用广泛,为代数运算和多项式求解提供了重要的工具和方法。
第六章二项式定理
跟踪训练 2
在2
x-
1
6
x
的展开式中,求:
(1)第3项的二项式系数及系数;
解 第 3 项的二项式系数为 C26=15,
又 T3=C26(2
x)4-
1x2=240x,
所以第3项的系数为240.
(2)含x2的项.
解
Tk+1=Ck6(2
x)6-k-
1xk=(-1)k26-kCk6x3-k,
令3-k=2,解得k=1,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
7.如果
3
x2+1xn
的展开式中,x2
项为第
3
项,则自然数
n=__8__,其
x2
项
的系数为_2_8__.
解析
Tk+1=Ckn( 3
x2)n-k1xk=Ckn
4 课时对点练
PART FOUR
基础巩固
1.1-2C1n+4C2n-8C3n+…+(-2)nCnn等于
A.1
B.-1
√C.(-1)n
D.3n
解析 原式=(1-2)n=(-1)n.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.
x-2x6 的展开式中的常数项为
√A.60
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 6.若(x+a)10的展开式中,x7的系数为15,则a=_2__.(用数字填写答案) 解析 二项展开式的通项为 Tk+1=Ck10x10-kak,当 10-k=7 时,k=3,T4 =C310a3x7, 则 C310a3=15,故 a=12.
二项式定理知识点总结
二项式定理知识点总结二项式定理专题一、二项式定理:二项式定理是一个重要的恒等式,它表示了任意实数a,b 和正整数n之间的关系。
具体地,对于任意正整数n和实数a,b,有以下恒等式成立:a+b)^n = C(n,0)*a^n + C(n,1)*a^(n-1)*b +。
+ C(n,n-1)*a*b^(n-1) + C(n,n)*b^n其中,C(n,k)表示从n个元素中选取k个元素的组合数,也就是n个元素中取k个元素的方案数。
右边的多项式叫做(a+b)的二项式展开式,其中各项的系数C(n,k)叫做二项式系数。
二项式定理的理解:1)二项展开式有n+1项。
2)字母a按降幂排列,从第一项开始,次数由n逐项减1到0;字母b按升幂排列,从第一项开始,次数由0逐项加1到n。
3)二项式定理表示一个恒等式,对于任意的实数a,b,等式都成立。
通过对a,b取不同的特殊值,可为某些问题的解决带来方便。
例如,当a=1,b=x时,有以下恒等式成立:1+x)^n = C(n,0) + C(n,1)*x +。
+ C(n,n-1)*x^(n-1) +C(n,n)*x^n4)要注意二项式定理的双向功能:一方面可将二项式(a+b)展开,得到一个多项式;另一方面,也可将展开式合并成二项式(a+b)^n。
二、二项展开式的通项公式:二项展开式的通项公式是指,二项式展开式中第k+1项的系数C(n,k)的公式。
具体地,对于任意正整数n和实数a,b,有以下通项公式成立:T(k+1) = C(n,k)*a^(n-k)*b^k其中,T(k+1)表示二项式展开式中第k+1项的系数。
通项公式体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心。
它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用。
三、二项展开式系数的性质:在二项式展开式中,二项式系数具有以下性质:①对称性:与首末两端“等距离”的两项的二项式系数相等,即C(n,0) = C(n,n)。
3 第3讲 二项式定理
第3讲 二项式定理1.二项式定理 (1)定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *).(2)通项:第k +1项为T k +1=C k n an -k b k . (3)二项式系数:二项展开式中各项的二项式系数为:C k n (k =0,1,2,…,n ). 2.二项式系数的性质判断正误(正确的打“√”,错误的打“×”)(1)(a +b )n 的展开式中的第r 项是C r n an -r b r .( ) (2)在二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)在(a +b )n 的展开式中,每一项的二项式系数与a ,b 无关.( )(4)通项T r +1=C r n an -r b r 中的a 和b 不能互换.( ) (5)(a +b )n 展开式中某项的系数与该项的二项式系数相同.( ) 答案:(1)× (2)× (3)√ (4)√ (5)×(教材习题改编)二项式⎝⎛⎭⎫2x +1x 26的展开式中,常数项的值是( ) A .240 B .60 C .192D .180解析:选A.二项式⎝⎛⎭⎫2x +1x 26展开式的通项为T r +1=C r 6(2x )6-r ⎝⎛⎭⎫1x 2r=26-r C r 6x 6-3r,令6-3r =0,得r =2,所以常数项为26-2C 26=16×6×52×1=240.(2017·高考全国卷Ⅲ)(x +y )(2x -y )5的展开式中x 3y 3的系数为( )A .-80B .-40C .40D .80解析:选C.当第一个括号内取x 时,第二个括号内要取含x 2y 3的项,即C 35(2x )2(-y )3,当第一个括号内取y 时,第二个括号内要取含x 3y 2的项,即C 25(2x )3(-y )2,所以x 3y 3的系数为C 25×23-C 35×22=10×(8-4)=40.⎝⎛⎭⎫1x +x n的展开式中,第3项与第7项的二项式系数相等,则展开式中的第4项为________.解析:由题意得C 2n =C 6n ,所以n =8.所以⎝⎛⎭⎫1x +x 8展开式的第4项为T 4=C 38⎝⎛⎭⎫1x 3x 5=56x 2. 答案:56x 2在二项式⎝⎛⎭⎫x 2-ax 5的展开式中,x 的系数是-10,则实数a 的值为________. 解析:T r +1=C r 5(x 2)5-r⎝⎛⎭⎫-a x r=(-a )r C r5x 10-3r . 当10-3r =1时,r =3,于是x 的系数为(-a )3C 35=-10a 3=-10,a =1.答案:1二项展开式中的特定项或特定项的系数(高频考点)二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择题、填空题的形式呈现,试题多为容易题或中档题.高考对二项式定理的考查主要有以下三个命题角度:(1)求展开式中的某一项;(2)求展开式中的项的系数或二项式系数; (3)由已知条件求n 的值或参数的值.[典例引领]角度一 求展开式中的某一项⎝⎛⎭⎫x 3-2x 4+⎝⎛⎭⎫x +1x 8的展开式中的常数项为( ) A .32 B .34 C .36D .38【解析】 ⎝⎛⎭⎫x 3-2x 4的展开式的通项为T k +1=C k 4(x 3)4-k·⎝⎛⎭⎫-2x k=C k4(-2)k x 12-4k , 令12-4k =0,解得k =3,⎝⎛⎭⎫x +1x 8的展开式的通项为 T r +1=C r 8·x8-r·⎝⎛⎭⎫1x r=C r8·x 8-2r , 令8-2r =0,得r =4,所以所求常数项为C 34(-2)3+C 48=38.【答案】 D角度二 求展开式中的项的系数或二项式系数(2017·高考全国卷Ⅰ)⎝⎛⎭⎫1+1x 2(1+x )6展开式中x 2的系数为( ) A .15 B .20 C .30D .35【解析】 (1+x )6展开式的通项T r +1=C r 6x r ,所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为1×C 26+1×C 46=30,故选C.【答案】 C角度三 由已知条件求n 的值或参数的值(2016·高考山东卷)若(ax 2+1x)5的展开式中x 5的系数是-80,则实数a =________.【解析】 (ax 2+1x)5的展开式的通项T r +1=C r 5(ax 2)5-r ·x -r 2=C r 5a 5-r·x 10-5r 2,令10-52r =5,得r =2,所以C 25a 3=-80,解得a =-2. 【答案】 -2与二项展开式有关问题的解题策略(1)求展开式中的第n 项,可依据二项式的通项直接求出第n 项.(2)求展开式中的特定项,可依据条件写出第r +1项,再由特定项的特点求出r 值即可. (3)已知展开式的某项,求特定项的系数,可由某项得出参数项,再由通项写出第r +1项,由特定项得出r 值,最后求出其参数.[通关练习]1.若⎝⎛⎭⎫x 6+1x x n的展开式中含有常数项,则正整数n 的最小值等于( )A .3B .4C .5D .6解析:选C.T r +1=C r n (x 6)n -r⎝⎛⎭⎫1x x r=C r n x 6n -152r ,当T r +1是常数项时,6n -152r =0,即n=54r ,又n ∈N *,故n 的最小值为5,故选C. 2.(x 2-x +1)10的展开式中x 3项的系数为( ) A .-210 B .210 C .30D .-30解析:选A.(x 2-x +1)10=[x 2-(x -1)]10=C 010(x 2)10-C 110(x 2)9(x -1)+…-C 910x 2(x -1)9+C 1010(x -1)10,所以含x 3项的系数为:-C 910C 89+C 1010(-C 710)=-210.3.(2018·贵州省适应性考试)(x +1)(x +a )4的展开式中含x 4项的系数为9,则实数a 的值为________.解析:(x +1)(x +a )4=x (x +a )4+(x +a )4,对于x (x +a )4,T 2=x ×C 14x 3a ,对于(x +a )4,T 0=C 04x 4a 0,所以4a +1=9,解得a =2.答案:2二项式系数的性质或各项系数和[典例引领](1)在二项式⎝⎛⎭⎫x 2-1x 11的展开式中,系数最大的项为第________项. (2)(2018·安徽省“江南十校”联考)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.【解析】 (1)依题意可知T r +1=C r 11(-1)r x22-3r,0≤r ≤11,r ∈Z ,二项式系数最大的是C 511与C 611.当r =6时,T 7=C 611x 4,故系数最大的项是第七项.(2)令x =0,得到a 0+a 1+a 2+…+a 9=(2+m )9,令x =-2,得到a 0-a 1+a 2-a 3+…-a 9=m 9,所以有(2+m )9m 9=39,即m 2+2m =3,解得m =1或-3.【答案】 (1)七 (2)1或-3本例(2)变为:若(x +2+m )9=a 0+a 1(x -1)+a 2(x -1)2+…+a 9(x -1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =2,得到a 0+a 1+a 2+…+a 9=(4+m )9,令x =0,得到a 0-a 1+a 2-a 3+…-a 9=(m +2)9,所以有(4+m )9(m +2)9=39,即m 2+6m +5=0,解得m =-1或-5.答案:-1或-5赋值法的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.[通关练习]1.在⎝⎛⎭⎫x 2+1x n的展开式中,只有第4项的二项式系数最大,则展开式中常数项是( ) A .15 B .20 C .30D .120解析:选A.因为二项展开式中中间项的二项式系数最大,又二项式系数最大的项只有第4项,所以展开式中共有7项, 所以n =6, 展开式的通项为T r +1=C r 6(x 2)6-r⎝⎛⎭⎫1x r=C r6x 12-3r , 令12-3r =0,则r =4,故展开式中的常数项为T 5=C 46=15.2.(2017·高考浙江卷)已知多项式(x +1)3(x +2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则a 4=________,a 5=________.解析:由题意知a 4为含x 的项的系数,根据二项式定理得a 4=C 23×12×C 22×22+C 33×13×C 12×2=16,a 5是常数项,所以a 5=C 33×13×C 22×22=4.答案:16 4二项式定理的应用[典例引领]设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( ) A .0 B .1 C .11D .12【解析】 512 018+a =(52-1)2 018+a =C 02 018522 018-C 12 018522 017+…+C 2 0172 018×52×(-1)2 017+C 2 0182 018×(-1)2 018+a .因为52能被13整除,所以只需C 2 0182 018×(-1)2 018+a 能被13整除,即a +1能被13整除,所以a =12.【答案】 D(1)利用二项式定理解决整除问题时,关键是进行合理地变形构造二项式,应注意:要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.(2)求余数问题时,应明确被除式f (x )与除式g (x )(g (x )≠0),商式q (x )与余式的关系及余式的范围.求证:3n >(n +2)·2n -1(n ∈N *,n >2).证明:因为n ∈N *,且n >2, 所以3n =(2+1)n 展开后至少有4项.(2+1)n =2n +C 1n ·2n -1+…+C n -1n ·2+1≥2n+n ·2n -1+2n +1>2n +n ·2n -1=(n +2)·2n -1, 故3n >(n +2)·2n -1(n ∈N *,n >2).二项展开式中系数最大项的求法如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1,从而解出k 来,即得.易错防范(1)通项T k +1=C k n an -k b k是展开式的第k +1项,不是第k 项. (2)(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不相同的,所以公式中的第一个量a 与第二个量b 的位置不能颠倒.(3)易混淆二项式中的“项”“项的系数”“项的二项式系数”等概念,注意项的系数是指非字母因数所有部分,包含符号,二项式系数仅指C k n (k =0,1,…,n ).1.(2018·广东测试)⎝⎛⎭⎫x 2-12x 6的展开式中,常数项是( ) A .-54B.54 C .-1516D.1516解析:选D.T r +1=C r 6(x 2)6-r⎝⎛⎭⎫-12x r =⎝⎛⎭⎫-12rC r6x 12-3r ,令12-3r =0,解得r =4.所以常数项为⎝⎛⎭⎫-124C 46=1516.故选D.2.(1+x )5+(1+x )6+(1+x )7的展开式中x 4的系数为( ) A .50 B .55 C .45D .60解析:选B.(1+x )5+(1+x )6+(1+x )7的展开式中x 4的系数是C 45+C 46+C 47=55.故选B.3.设复数x =2i 1-i (i 是虚数单位),则C 12 017x +C 22 017x 2+C 32 017x 3+…+C 2 0172 017x 2 017=( ) A .i B .-i C .-1+iD .-1-i解析:选C.x =2i 1-i =-1+i ,C 12 107x +C 22 017x 2+C 32 017x 3+…+C 2 0172 017x 2 017=(1+x )2 017-1=i 2 017-1=-1+i.4.(2018·昆明市教学质量检测)(1+2x )3(2-x )4的展开式中x 的系数是( ) A .96 B .64 C .32D .16解析:选B.(1+2x )3的展开式的通项公式为T r +1=C r 3(2x )r =2r C r 3x r ,(2-x )4的展开式的通项公式为T k +1=C k 424-k (-x )k =(-1)k 24-k C k 4x k ,所以(1+2x )3(2-x )4的展开式中x 的系数为20C 03·(-1)·23C 14+2C 13·(-1)0·24C 04=64,故选B.5.设n 为正整数,⎝⎛⎭⎫x -1x x 2n展开式中存在常数项,则n 的一个可能取值为( )A .16B .10C .4D .2解析:选B.⎝⎛⎭⎫x -1x x 2n展开式的通项公式为T k +1=C k 2n x 2n -k ⎝⎛⎭⎫-1x x k=C k 2n (-1)kx 4n -5k 2.令4n -5k 2=0,得k =4n5,又k 为正整数,所以n 可取10. 6.⎝⎛⎭⎫x +2x n的展开式的二项式系数之和为8,则展开式的常数项等于( ) A .4 B .6 C .8D .10解析:选B.因为⎝⎛⎭⎫x +2x n的展开式的各个二项式系数之和为8,所以2n =8,解得n =3, 所以展开式的通项为T r +1=C r 3(x )3-r⎝⎛⎭⎫2x r=2r C r3x 3-3r2,令3-3r 2=0,则r =1,所以常数项为6.7.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m+1展开式的二项式系数的最大值为b .若13a =7b ,则m =( )A .5B .6C .7D .8解析:选B.(x +y )2m 展开式中二项式系数的最大值为C m 2m ,所以a =C m2m . 同理,b =C m +12m +1.因为13a =7b ,所以13·C m 2m =7·C m +12m +1.所以13·(2m )!m !m !=7·(2m +1)!(m +1)!m !.所以m =6.8.若(1+x +x 2)n =a 0+a 1x +a 2x 2+…+a 2n x 2n ,则a 0+a 2+a 4+…+a 2n 等于( ) A .2nB.3n -12C .2n +1D.3n +12解析:选D.设f (x )=(1+x +x 2)n , 则f (1)=3n =a 0+a 1+a 2+…+a 2n ,① f (-1)=1=a 0-a 1+a 2-a 3+…+a 2n ,②由①+②得2(a 0+a 2+a 4+…+a 2n )=f (1)+f (-1), 所以a 0+a 2+a 4+…+a 2n =f (1)+f (-1)2=3n +12.9.C 22n +C 42n +…+C 2k 2n +…+C 2n 2n (n ∈N *)的值为( )A .2nB .22n -1C .2n -1D .22n -1-1解析:选D.(1+x )2n =C 02n +C 12n x +C 22n x 2+C 32n x 3+…+C 2n 2n x 2n . 令x =1,得C 02n +C 12n +C 22n +…+C 2n -12n +C 2n 2n =22n ;再令x =-1,得C 02n -C 12n +C 22n -…+(-1)r C r 2n +…-C 2n -12n +C 2n 2n =0.两式相加,可得C 22n +C 42n +…+C 2n 2n =22n2-1=22n -1-1.10.(2018·湖北枣阳第一中学模拟)(x 2+x +y )5的展开式中x 5y 2的系数为( ) A .10 B .20 C .30D .60解析:选C.(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x 2+x )3y 2,又(x 2+x )3的展开式的通项为C k 3(x 2)3-k ·x k =C k 3x6-k,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30,故选C.11.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,那么a 0+a 2+a 4a 1+a 3+a 5的值为( )A .-122121B .-6160C .-244241D .-1解析:选A.令x =1,可得a 0+a 1+a 2+a 3+a 4+a 5=1,① 再令x =-1,可得a 0-a 1+a 2-a 3+a 4-a 5=35.②①+②2,得a 0+a 2+a 4=122,①-②2,可得a 1+a 3+a 5=-121, 故a 0+a 2+a 4a 1+a 3+a 5=-122121.12.(2018·石家庄教学质量检测(二))若a =2⎠⎛-33(x +|x |)d x ,则在⎝⎛⎭⎪⎫x -13x a的展开式中,x 的幂指数不是整数的项共有( )A .13项B .14项C .15项D .16项解析:选C.因为a =2⎠⎛-33(x +|x |)d x =2[⎠⎛03(x +x )d x +⎠⎛-30(x -x )d x ]=2x 2|30=18,所以该二项展开式的通项T r +1=C r 18(x )18-r⎝⎛⎭⎪⎫-13x r=(-1)r C r 18x 9-5r 6(0≤r ≤18,且r ∈N ),当r =0,6,12,18时,展开式中x 的幂指数为整数,所以该二项展开式中x 的幂指数不是整数的项有19-4=15项,故选C.13.(2018·广东省五校协作体联考)⎝⎛⎭⎫xy -1x 6展开式中不含x 的项的系数为________. 解析:⎝⎛⎭⎫xy -1x 6展开式中不含x 的项为C 36(xy )3·⎝⎛⎭⎫-1x 3=-20y 3,故不含x 的项的系数为-20.答案:-2014.已知⎝⎛⎭⎫1-1x (1+x )5的展开式中x r (r ∈Z 且-1≤r ≤5)的系数为0,则r =________. 解析:依题意,(1+x )5的展开式的通项公式为T r +1=C r 5x r ,故展开式为⎝⎛⎭⎫1-1x (x 5+5x 4+10x 3+10x 2+5x +1),故可知展开式中x 2的系数为0,故r =2.答案:215.(2018·江西赣州十四县联考)若⎝⎛⎭⎫x +13x n的展开式中前三项的系数分别为A ,B ,C ,且满足4A =9(C -B ),则展开式为x 2的系数为________.解析:易得A =1,B =n 3,C =C 2n 9=n (n -1)18,所以有4=9⎝⎛⎭⎫n 2-n 18-n 3,即n 2-7n -8=0,解得n =8或n =-1(舍).在⎝⎛⎭⎫x +13x 8中,因为通项T r +1=C r 8x 8-r ⎝⎛⎭⎫13x r=C r83r ·x 8-2r ,令8-2r =2,得r =3,所以展开式中x 2的系数为5627.答案:562716.(2018·安徽“江南十校”联考)若(x +y -1)3(2x -y +a )5的展开式中各项系数的和为32,则该展开式中只含字母x 且x 的次数为1的项的系数为________.解析:令x =y =1⇒(a +1)5=32⇒a =1,故原式=(x +y -1)3(2x -y +1)5=[x +(y -1)]3[2x+(1-y )]5,可知展开式中x 的系数为C 13+C 33(-1)3C 15·2=-7.答案:-71.487被7除的余数为a (0≤a <7),则⎝⎛⎭⎫x -ax 26展开式中x -3的系数为( ) A .4 320 B .-4 320 C .20D .-20解析:选B.487=(49-1)7=C 07·497-C 17·496+…+C 67·49-1,因为487被7除的余数为a (0≤a <7), 所以a =6,所以⎝⎛⎭⎫x -6x 26展开式的通项为T r +1=C r 6·(-6)r ·x 6-3r, 令6-3r =-3,可得r =3,所以⎝⎛⎭⎫x -6x 26展开式中x -3的系数为C 36·(-6)3=-4 320. 2.(x +2y )7的展开式中,系数最大的项是( ) A .68y 7 B .112x 3y 4 C .672x 2y 5 D .1 344x 2y 5解析:选C.设第r +1项系数最大,则有⎩⎪⎨⎪⎧C r 7·2r ≥C r -17·2r -1,C r 7·2r ≥C r +17·2r +1, 即⎩⎪⎨⎪⎧7!r !(7-r )!·2r ≥7!(r -1)!(7-r +1)!·2r -1,7!r !(7-r )!·2r≥7!(r +1)!(7-r -1)!·2r +1,即⎩⎨⎧2r ≥18-r ,17-r ≥2r +1解得⎩⎨⎧r ≤163,r ≥133.又因为r ∈Z ,所以r =5.所以系数最大的项为T 6=C 57x 2·25y 5=672x 2y 5.故选C.3.(2018·张掖市第一次诊断考试)设f (x )是⎝⎛⎭⎫x 2+12x 6展开式中的中间项,若f (x )≤mx 在区间⎣⎡⎦⎤22,2上恒成立,则实数m 的取值范围是________.解析:⎝⎛⎭⎫x 2+12x 6的展开式中的中间项为第四项,即f (x )=C 36(x 2)3⎝⎛⎭⎫12x 3=52x 3,因为f (x )≤mx 在区间⎣⎡⎦⎤22,2上恒成立,所以m ≥52x 2在⎣⎡⎦⎤22,2上恒成立,所以m ≥⎝⎛⎭⎫52x 2max =5,所以实数m 的取值范围是[5,+∞).答案:[5,+∞)4.(2018·山西太原模拟)⎝⎛⎭⎫2x +1x -15的展开式中常数项是________. 解析:⎝⎛⎭⎫2x +1x -15表示五个⎝⎛⎭⎫2x +1x -1相乘,则展开式中的常数项由三种情况产生,第一种是从五个⎝⎛⎭⎫2x +1x -1中分别抽取2x ,2x ,1x ,1x,-1,则此时的常数项为C 25·C 23·22·(-1)=-120;第二种情况是从五个⎝⎛⎭⎫2x +1x -1中都抽取-1,则此时的常数项为(-1)5=-1;第三种情况是从五个⎝⎛⎭⎫2x +1x -1中分别抽取2x ,1x,-1,-1,-1,则此时的常数项为C 15·C 14·21·(-1)3=-40,则展开式中常数项为-120-1-40=-161. 答案:-1615.已知在⎝ ⎛⎭⎪⎪⎫3x -123x n 的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数;(3)求展开式中所有的有理项.解:(1)通项公式为T k +1=C k n x n -k3⎝⎛⎭⎫-12k x -k 3=C k n ⎝⎛⎭⎫-12k x n -2k 3.因为第6项为常数项,所以k =5时,n -2×53=0, 即n =10.(2)令10-2k 3=2,得k =2, 故含x 2的项的系数是C 210⎝⎛⎭⎫-122=454. (3)根据通项公式,由题意得⎩⎪⎨⎪⎧10-2k 3∈Z ,0≤k ≤10,k ∈N ,令10-2k 3=r (r ∈Z ), 则10-2k =3r ,k =5-32r , 因为k ∈N ,所以r 应为偶数,所以r 可取2,0,-2,即k 可取2,5,8, 所以第3项,第6项与第9项为有理项, 它们分别为C 210⎝⎛⎭⎫-122x 2,C 510⎝⎛⎭⎫-125,C 810⎝⎛⎭⎫-128x -2. 6.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,求:(1)a 1+a 2+…+a 7;(2)a 1+a 3+a 5+a 7;(3)|a 0|+|a 1|+|a 2|+…+|a 7|.解:令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1.① 令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.②(1)因为a 0=C 07=1,所以a 1+a 2+a 3+…+a 7=-2.(2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1 094. (3)因为(1-2x )7展开式中a 0,a 2,a 4,a 6大于零,而a 1,a 3,a 5,a 7小于零, 所以|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7)=1 093-(-1 094)=2 187.。
二项式定理知识点总结
二项式定理知识点总结一、二项式的定义:二项式是指两个数的和或差,可以用如下形式表示:(a+b)^n或(a-b)^n其中,a和b是常数,n是正整数,n称为指数。
二、二项式的展开:1.二项式定理(加法形式):(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+C(n,2)a^(n-2)b^2+...+C(n,n-2)a^2b^(n-2)+C(n,n-1)a^1b^(n-1)+C(n,n)a^0b^n其中,C(n,k)表示从n个不同元素中取出k个元素的组合数,也称为二项系数。
2.二项式定理(减法形式):(a-b)^n=C(n,0)a^nb^0-C(n,1)a^(n-1)b^1+C(n,2)a^(n-2)b^2-...+(-1)^(n-2)C(n,n-2)a^2b^(n-2)-(-1)^(n-1)C(n,n-1)a^1b^(n-1)+(-1)^nC(n,n)a^0b^n注意,在减法形式的展开中,减号和负号交替出现。
三、二项式的性质:1.二项式展开的项数为n+1个;2.二项式展开的项之和为2^n;3.二项式展开式中各项的指数和为n;4.二项式展开式中各项的系数为C(n,k)。
四、二项式系数的计算:使用组合数的性质可以计算二项系数:C(n,k)=n!/(k!*(n-k)!)其中,!表示阶乘。
五、二项式定理的应用:另外,二项式展开还可以用于解决数学中的各种问题,如排列组合、概率论、代数等等。
在组合数学中,二项式系数有很多应用,例如计算排列数、二项式系数的性质等。
六、帕斯卡三角形与二项式系数:帕斯卡三角形是由二项式系数构成的一种数列,其性质如下:1.三角形的第n行有n+1个数;2.三角形的边界数都是1;3.三角形的每个数等于它上方两个数之和;4.三角形的第n行第k个数等于C(n,k)。
通过帕斯卡三角形可以方便地计算二项系数,也可以获得二项式展开的各项系数。
综上所述,二项式定理是数学中的重要概念,它描述了二项式的展开形式,可以方便地计算逐项系数和整个展开式。
二项式定理
2
4
10-2r ∈Z, 3 (3)根据通项公式,由题意 0≤r≤10, r∈N. 10-2r 3 令 =k(k∈Z),则 10-2r=3k,即 r=5- k, 3 2 ∵r∈N,∴k 应为偶数. ∴k 可取 2,0,-2,即 r 可能取 2,5,8. 所以第 3 项,第 6 项与第 9 项为有理项,它们分别为 15 1 12 2 2 5 8 ,C10- 8x-2. C10(- ) x ,C10 - 2
nr
[自主解答] (1)通项为
1 n 2 r r =Cn-2r x 3 ,
Tr+1=Cr x n
3
1 - r x 2
r 3
n-2r 因为第 6 项为常数项,所以 r=5 时,有 =0, 3 即 n=10. n-2r 1 1 (2)令 =2,得 r= (n-6)= ×(10-6)=2, 3 2 2 ∴所求的系数为 1 2 45 2 C10 - = .
⇒5≤r≤6.∴r=5 或 r=6.
∵r∈{0,1,2,…,8}. ∴系数最大的项为 T6=1792x5,T7=1792x6.
6. C n 2 C n 4 C n 2 C n 等于(
0 1 2 n n
A)
3 1
n
(A) 3
n
(B) 2 3
2 2
n
(C)
3 3
2
n
1
n n
0 4 Cn+C2 +Cn+… n =
2n-1 .
[思考探究2] 二项式系数与项的系数有什么区别? 提示:二项式系数与项的系数是完全不同的两个概念.二项 式系数是指 ,它只与各项的项数有关,而与a,
b的值无关;而项的系数是指该项中除变量外的部分,它不 仅与各项的二项式系数有关,而且也与a,b的值有关.
二项式定理
课堂互动讲练
(2)通项公式 Tr+1=C8r· ( 2 x)
8- r
2 r · (- 2) x
r r 8- r = C8 · (- 2) · x -2r,
8- r 3 令 - 2r= ,则 r=1, 2 2 3 3 故展开式中含 x 的项为 T2=-16x . 2 2 (3)由 n= 8 知第 5 项二项式系数最大, 此时 T5=1120x .
课堂互动讲练
2 2 3 T3= C5 x (3x2)2= 90x6, 3 22 3 2 2 2 3 T4= C5 x (3x ) = 270x . 3 3
2 (2)展开式的通项公式为 Tr+1= C5 3 · x 3 (5+2r).
r r
假 设 Tr +
2
课堂互动讲练
【误区警示】 这类带有减号的 二项展开式最容易出现的问题就是忽 视了(-1)r这个因素,导致最后结果产 生符号的差异,出现错误.
课堂互动讲练
互动探究
1. ( x+ 1 4 x )n 展开式中各项系数的和
为 256. 求(1)n 的值; (2)展开式中所有有理项.
课堂互动讲练
解: (1)由题意 2n= 256,∴n=8. 1 r r 8- r (2)通项公式 Tr+ 1= C8 ( x ) 4 = x r 16- 3r C8 x , 4 16- 3r 3r 又 = 4- ,其中 0≤r≤8, 4 4
第3课时
二项式定理
基础知识梳理
1.二项式定理 n 1 n- 1 r 公式 (a+ b)n= C0 a + C a b +…+ C n n n n- r r n n a b +…+Cn b (n∈N+),所表示的定理叫 做二项式定理.
二项式定理(通项公式)
二项式定理二项式知识回顾1. 二项式定理0111()n n n k n k k n nn n n n a b C a C a b C a b C b --+=+++++L L ,以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k kk n T C a b -+=叫做二项展开式的通项.(请同学完成下列二项展开式)0111()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-++-L L ,1(1)k k n k kk n T C a b -+=- 01(1)n k k n n n n n n x C C x C x C x +=+++++L L ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++L L1110n n n k n n n k a x a x a x a x a ----=+++++L L ②① 式中分别令x=1和x=-1,则可以得到 012n n n n n C C C +++=L ,即二项式系数和等于2n ; 偶数项二项式系数和等于奇数项二项式系数和,即021312n n n n n C C C C -++=++=L L② 式中令x=1则可以得到二项展开式的各项系数和.2. 二项式系数的性质(1)对称性:与首末两端等距离的两个二项式系数相等,即m n mn n C C -=.(2)二项式系数kn C 增减性与最大值: 当12n k +<时,二项式系数是递增的;当12n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2nnC 取得最大值.当n 是奇数时,中间两项12n nC -和12n nC+相等,且同时取得最大值.3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n⑴ a 0+a 1+a 2+a 3……+a n =f(1)⑵ a 0-a 1+a 2-a 3……+(-1)na n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2)1()1(-+f f⑷ a 1+a 3+a 5+a 7……=2)1()1(--f f经典例题1、“n b a )(+展开式:例1.求4)13(xx +的展开式;【练习1】求4)13(xx -的展开式2.求展开式中的项例2.已知在n 的展开式中,第6项为常数项.(1) 求n ; (2)求含2x 的项的系数;(3)求展开式中所有的有理项.【练习2】若n 展开式中前三项系数成等差数列.求:(1)展开式中含x 的一次幂的项;(2)展开式中所有x 的有理项.3.二项展开式中的系数例3.已知22)n x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992,求21(2)nx x-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项[练习3]已知*22)()n n N x∈的展开式中的第五项的系数与第三项的系数之比是10:1.(1)求展开式中含32x 的项;(2)求展开式中系数最大的项和二项式系数最大的项.4、求两个二项式乘积的展开式指定幂的系数例4.72)2)(1-+x x (的展开式中,3x 项的系数是 ;5、求可化为二项式的三项展开式中指定幂的系数例5(04安徽改编)3)21(-+xx 的展开式中,常数项是 ;6、求中间项例6求(103)1xx -的展开式的中间项;例7 103)1(xx -的展开式中有理项共有 项;8、求系数最大或最小项(1) 特殊的系数最大或最小问题例8(00上海)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ;(2) 一般的系数最大或最小问题 例9求84)21(xx +展开式中系数最大的项;(3) 系数绝对值最大的项例10在(7)y x -的展开式中,系数绝对值最大项是 ;9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和例11.若443322104)32(x a x a x a x a a x ++++=+, 则2312420)()(a a a a a +-++的值为 ;【练习1】若2004221020042004...)21(x x a x a a x ++++=-, 则=++++++)(...)()(200402010a a a a a a ;【练习2】设0155666...)12(a x a x a x a x ++++=-, 则=++++6210...a a a a ;【练习3】92)21(xx -展开式中9x 的系数是 ;。
3.二项式定理
例讲三:多项式的展开式问题
1.在(1+x)+(1+x)2+(1+x)3+…+(1+x)11 的展开式中,x2 项的系数是 2.(1+2x2)(1+x)4 的展开式中 x3 的系数为 3.已知(x-1)(ax+1)6 的展开式中含 x2 项的系数为 0,则正实数 a=________. 4.(x2-x+1)10 的展开式中 x3 项的系数为 5.(x2+x+y)5 的展开式中 x5y2 的系数为
二项式定理
一.二项式定理及性质
1.定理:(a+b)n=C 0n an+C 1nan -1b+…+C knan-k bk+…+C nn bn(n ∈N*).
2.通项:第 k+1 项为 Tk+1=Cknan-kbk. 3.二项式系数:二项展开式中各项的二项式系数为:Ckn (k=0,1,2,…,n).
64∶1,则
x3
的系数为
2.若(1-x)9=a0+a1x+a2x2+…+a9x9,则|a1|+|a2|+|a3|+…+|a9|=
【解析】 (1)由题意知42nn=64,得 n=6,展开式的通项为 Tr+1=Cr6x6-r 3xr=3rCr6x6-32r, 令 6-32r=3,得 r=2,则 x3 的系数为 32C26=135.故选 C. (2)令 x=0,得 a0=1,令 x=-1,得|a1|+|a2|+|a3|+…+|a9|=[1-(-1)]9-1=29-1= 511.
2.若
x+1 x
n展开式的二项式系数之和为
64,则展开式的常数项为_系数为 C25-122=52.
(2)ax2+
1x5的展开式的通项
Tr+1=C5r (ax2)5-r×
1xr=Cr5a5-rx10-52r,令
10-52r=0,得
r=4,所以 C45a5-4=-10,解得 a=-2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第16页
返回目录
结束放映
课堂小结
易错防范
1.区别“项的系数”与“二项式系数”,审题时要仔细.项 的系数与 a,b 有关,可正可负,二项式系数只与 n 有关,恒为正. 2. 切实理解“常数项”“有理项”(字母指数为整数)“系数最 大的项”等概念. 3.赋值法求展开式中的系数和或部分系数和,常赋的值为 0, ±1.
(2)法一 (x2+x+y)5=[(x2+x)+y]5,
2 3 2 含 y2 的项为 T3=C2 y. 5(x +x) ·
4 5 其中(x2+x)3 中含 x5 的项为 C1 x=C1 3x · 3x . 1 所以 x5y2 的系数为 C2 5C3=30. 法二 (x2+x+y)5 表示 5 个 x2+x+y 之积. ∴x5y2 可从其中 5 个因式中选两个因式取 y, 两个 x2,一个取 x. 2 1 因此 x5y2 的系数为 C2 5C3C1=30.
第9页
返回目录
结束放映
考点突破 考点二 二项式系数的和与各项的系数和问题
(2)令 x=y=1,各项系数和为(2-3)10=(-1)10=1. 2 10 9 (3)奇数项的二项式系数和为 C0 10+C10+„+C10=2 , 3 9 9 偶数项的二项式系数和为 C1 10+C10+„+C10=2 . (4)令 x=y=1,得到 a0+a1+a2+„+a10=1,① 令 x=1,y=-1(或 x=-1,y=1), 得 a0-a1+a2-a3+„+a10=510,② 10 1 + 5 ①+②得 2(a0+a2+„+a10)=1+510, ∴奇数项系数和为 2 ; 10 1 - 5 ∴偶数项系数和为 . ①-②得 2(a1+a3+„+a9)=1-510, 2 1-510 (5)x 的奇次项系数和为 a1+a3+a5+„+a9= ; 2 1+510 x 的偶次项系数和为 a0+a2+a4+„+a10= . 2
第5页
返回目录
结束放映
考点突破 考点一 求展开式中的特定项或特定项的系数
【训练
1 n 6 的展开式中含有常 1】(1)(2016· 山西四校联考)若x + x x
数项,则正整数 n 的最小值等于( A.3 B.4 C.5 D.6
)
解 (1)二项展开式的通项
15r r =Cnx6n- ,
10-2k∈Z, 3 (3)根据通项公式,由题意 0≤k≤10, k∈N, 10-2k 3 令 =r (r∈Z),则 10-2k=3r,k=5- r 3 2 ∵k∈N,∴r 应为偶数. ∴r 可取 2,0,-2,即 k 可取 2,5,8
∴第 3 项,第 6 项与第 9 项为有理项, 45 2 63 45 -2 它们分别为 x , , x . 4 8 256
简答
2 6 y(x+y)8 中含 x2y7 的项为 y· C6 8x y . 故(x-y)(x+y)8 的展开式中 x2y7 的系数为
6 1 2 C7 8-C8=C8-C8=-20.
答案
(1)C (2)C
(3)-20
第8页
返回目录
结束放映
考点突破 考点二 二项式系数的和与各项的系数和问题
【例 2】在(2x-3y)10 的展开式中,求: (1)二项式系数的和; (2)各项系数的和; (3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与 x 的偶次项系数和
因为第 6 项为常数项,
n-2×5 所以 k=5 时, =0,即 n=10. 3 10-2k (2)令 =2,得 k=2, 3 12 45 2 2 故含 x 的项的系数是 C10 -2 = . 4
第3页
返回目录
结束放映
考点突破 考点一 求展开式中的特定项或特定项的系数
3 1 例 1 已知在 x- 3 n的展开式中,第 6 项为常数项. 2 x (1)求 n;(2)求含 x2 的项的系数;(3)求展开式中所有的有理项.
第13页返回目录Fra bibliotek结束放映
考点突破 考点三 二项式定理的应用
规律方法
(1)整除问题和求近似值是二项式定理中两类常见的应用问 题, 整除问题中要关注展开式的最后几项, 而求近似值则应关注 展开式的前几项. (2)二项式定理的应用基本思路是正用或逆用二项式定理, 注意选择合适的形式. (3)由于(a+b)n 的展开式共有 n+1 项,故可通过对某些项 的取舍来放缩,从而达到证明不等式的目的.
-
1 n- 1 n- 2 n- 1 显然 C0 × 31 + C × 31 +„+ C n n n 为整数, ∴原式能被 31 整除. (2) 当 n≥3,n∈N*. 1 n- 1 n 2n=(1+1)n=C0 n+Cn+„+Cn +Cn 1 n- 1 n ≥C0 n+Cn+Cn +Cn = 2n + 2>2n + 1 , ∴不等式成立.
简答
第7页
返回目录
结束放映
考点突破 考点一 求展开式中的特定项或特定项的系数
【训练 1】 (3)(2014· 新课标全国Ⅰ卷)(x-y)(x+y)8 的展开式 中 x2y7 的系数为________(用数字作答).
(3)(x-y)(x+y)8=x(x+y)8-y(x+y)8,
7 ∵x(x+y)8 中含 x2y7 的项为 x· C7 8xy ,
r 6 n-r Tr+1=Cn (x )
1 r x x
简答
2 15r 5 若 Tr+1 是常数项, 则 6n- =0,即 n= r, 2 4
又 n∈N*,故 n 的最小值为 5.
第6页
返回目录
结束放映
考点突破 考点一 求展开式中的特定项或特定项的系数
【训练 1】(2)(2015· 全国Ⅰ卷)(x2+x+y)5 的展开式中,x5y2 的系数为( )A.10 B.20 C.30 D.60
6 令 x = 1 ,则 a + a + a + … + a = 3 , 0 1 2 12 解析(1) 简答 令 x=-1,则 a0-a1+a2-…+a12=1, 36+1 ∴a0+a2+a4+…+a12= . 令 x=0,则 a0=1, 2 36+1 ∴a2+a4+…+a12= -1=364. 2 (2) 令 x=0,得 a0=(1-0)2 016=1. 1 a1 a2 a2 016 令 x= ,则 a0+ + 2+…+ 2 016=0, 2 2 2 2 a1 a2 a2 016 ∴ + 2+…+ 2 016=-1. 答案 (1)364 (2)-1 2 2 2
第12页
返回目录
结束放映
考点突破 考点三 二项式定理的应用
例 3 (1)求证:1+2+22+„+25n 1(n∈N*)能被 31 整除; (2)用二项式定理证明 2n>2n+1(n≥3,n∈N*).
5n 2 -1 2 = 证明 (1)∵1+2+2 +„+2 2-1 =25n-1=32n-1=(31+1)n-1 1 n n- 1 n-1 n =C0 × 31 + C × 31 +„+ C n n n ×31+Cn-1 -1 n- 1 n- 2 =31(C0 +C1 +„+Cn n×31 n×31 n ), 5n-1
第10页
返回目录
结束放映
考点突破 考点二 二项式系数的和与各项的系数和问题
规律方法
“赋值法”普遍适用于恒等式, 是一种重要的方法, 对形如(ax +b)n、(ax2+bx+c)m (a、b∈R)的式子求其展开式的各项系数之 和,常用赋值法,只需令 x=1 即可;对形如(ax+by)n (a,b∈ R)的式子求其展开式各项系数之和,只需令 x=y=1 即可.
第17页
返回目录
结束放映
(见教辅)
第18页
返回目录
结束放映
第3讲 二项式定理
基础诊断
夯基释疑 考点一:求展开式中的特定项或特定项的系数
概 要
考点突破
考点二:二项式系数的和与各项的系数和问题
考点三:二项式定理的应用
课堂小结
思想方法 易错防范
夯基释疑
1.判断正误(在括号内打“√”或“×”) n- k k (1)Ck b 是二项展开式的第 k 项.( ) na (2)二项展开式中,系数最大的项为中间一项或中间两项.(a +b)2n 中系数最大的项是第 n 项.( ) (3)(a+b)n 的展开式中某一项的二项式系数与 a,b 无关.( ) (4)(a+b)n 某项的系数是该项中非字母因数部分,包括符号等, 与该项的二项式系数不同.( )
第11页
返回目录
结束放映
考点突破 考点二 二项式系数的和与各项的系数和问题
【训练 2】(1)(2016· 青岛质检)若(1+x+x2)6=a0+a1x+a2x2 +„+a12x12,则 a2+a4+„+a12=________. (2)(2016· 郑州模拟 ) 若 (1 - 2x)2 016 = a0 + a1x + a2x2 +„+ a2 a1 a2 a2 016 2 016 (x∈R),则 + 2+„+ 2 016的值为________. 016x 2 2 2
第14页
返回目录
结束放映
考点突破 考点三 二项式定理的应用
训练 3 (1)求 1.028 的近似值;(精确到小数点后三位) 2 27 (2)求 S=C1 27+C27+„+C27除以 9 的余数.
解析 (1)1.028=(1+0.02)8 1 2 2 3 3 ≈C0 8+C8·0.02+C8·0.02 +C8·0.02 ≈1.172.
第2页
返回目录
结束放映
考点突破 考点一 求展开式中的特定项或特定项的系数
3 1 例 1 已知在 x- 3 n的展开式中,第 6 项为常数项. 2 x (1)求 n;(2)求含 x2 的项的系数;(3)求展开式中所有的有理项.