第4章 数值积分与微分
数值微分与数值积分
数值微分与数值积分数值微分与数值积分是现代计算机科学中非常重要的数学工具。
它们可以用来处理各种研究。
在本文中,我们将讨论这两种方法的基础原理,以及它们在不同领域中的应用。
什么是数值微分?数值微分是指对给定函数进行求导的一种数值方法。
在实际应用中,函数的导数通常很难求得解析解,这时需要使用数值微分的方法来进行近似计算。
数值微分通常是通过在函数的某个点进行差分计算来完成的。
考虑一个函数$f(x)$在某个点$x_0$进行微分的情况。
我们可以计算$f(x_0+h)$和$f(x_0-h)$,其中$h$是一个小的正数。
然后,我们可以计算$[f(x_0+h) - f(x_0-h)]/2h$来得到$f'(x_0)$的近似值。
数值微分的应用非常广泛。
在科学和工程领域中,它通常用于计算物理量相关的导数。
例如,流体力学中的速度梯度、量子力学中的波函数导数,都可以使用数值微分进行近似计算。
此外,在金融领域中,数值微分也可用于计算期权价格等任意变量导数的近似解。
什么是数值积分?数值积分是指对给定函数进行积分的一种数值方法。
与数值微分类似,函数的积分通常很难求得解析解,而不得不使用数值积分的方法来近似计算。
在数值积分中,我们通常使用数值积分公式来计算定义在一个区间$[a,b]$上的函数(如果积分问题是无限积分,我们需要进行变形,将其转化为有限积分问题)。
数值积分公式通常基于插值方法,即将函数转化为一个多项式,并对多项式进行积分。
数值积分也应用广泛。
在科学和工程领域中,它通常用于计算面积、物质质量,以及探测信号的峰值等。
在金融领域中,数值积分也可用于计算期权定价公式的近似解。
数值微分和数值积分的误差分析在应用数值微分和数值积分时,误差是一个重要的考虑因素。
误差源可以来自于采样、采样噪声、近似方法等。
通常,我们使用误差分析来评估误差大小。
数值微分的误差通常归因于选取的$h$值。
当$h$太大时,我们会失去一些重要的信息,如函数的局部斜率。
数值分析-第4章 数值积分和数值微分
A0+A1=2 A0x0+A1x1=0 A0x02+A1x12=2/3 A0x03+A1x13=0
A0 A1 1 解得: 1 x 0 x1 3
求积公式为
1 1 1 f ( x)dx f ( ) f ( ) 3 3
x f(x)
数值分析
1 4
2 4.5
3 6
4 8
5 8.5
1
一、数值积分的基本概念 求积节点 数值积分定义如下:是离散点上的函数值的线性组合
I [ f ] f ( x)dx I n [ f ] Ai f ( xi )
b a i 0 n
称为数值积分公式
称为求积系数,与f (x)无关,与积分区间和求积节点有关
b a
Rn ( x) dx
定理:形如 Ak f ( xk ) 的求积公式至少有 n 次代数精度
A 该公式为插值型(即: k a l k ( x)dx )
数值分析
b
5
例1 试确定参数A0,A1,A2,使求积公式
1 f ( x)dx A0 f (1) A1 f (0) A2 f (1)
证明 因为Simpson公式对不高于三次的多项式精确成立。即
b
a
p 2 ( x)dx
ba ab [ p 2 (a) 4 p 2 ( ) p 2 (b)] 6 2
构造三次多项式H3(x),使满足 H3(a)=(a) ,H3(b)=(b),
H 3 (( a b) / 2) f (( a b) / 2), H 3 (( a b) / 2) f (( a b) / 2), 这时插值误差为
1
数值分析(李庆杨第四版)Cht4 数值积分和数值微分
1in
设f (xk )有误差k , 即f (xk ) ~fk k (k 0,1,,n), 则有
| In ( f ) In ( ~f ) |
n
wk
[
f
(
xk
)
~fk
].
定义3
若
0,
k 0
0,只要
f (xk )
~fk
(k
0,,n), 就有
| In ( f ) In ( ~f ) |
n
其中系数l (l 1,2,)与h无关.
T
( h) 2
I
1
h2 4
2
h4 16
l
h 2l
2
.
T1(h)
4T (h) T (h)
2
3
I
1h4 2h6 .
T1( h2)
I
1
h4 16
2
h6 64
.
T2 (h)
16T1(
h) 2
T1(h)
15
I
1h6
2h8
.
( 4.7) ( 4.8) ( 4.9)
1 8
2
1 3
0.000434 .
RS
I
S4
1 2880
1 4
4
1 5
0.27110-6.
作业 P159, 6.
§4 龙贝格求积算法
一、梯形公式的递推化(变步长求积法)
把区间[a,b]作n等分得n个小区间[xi , xi1],
h ba,则 n
复合梯形公式
Tn
n1h [
i02
f
(xi )
具有相应的收敛性和稳 定性.
复合柯特斯求积公式
1_数值分析4-数值积分与微分
回忆定积分的定义
b
I f (x)dx lim In,
a
n
n
In
f
(k
)
b
n
a
k 1
n充分大时In就是I的数值积分
各种数值积分方法研究的是
k 如何取值,区间 (a,b)如何划分, 使得既能保证一定精度,计算量又小。
(计算功效:算得准,算得快)
5
数值积分
y
1.梯形公式
h
Tn
h
k 1
fk
2 ( f0
fn )
b
f (x)dx
a
b
R( f ,Tn ) I Tn f (x)dx Tn
a
梯形公式在每小段上是用线性插值函数T(x)代替 f(x)
f (x) T(x)
f
(k
2
)
(
x
xk
)(x
xk
1
),
k (xk , xk1)
(
f0
fn)
(3)
k 1
非等距分割梯形公式
Tn
n1 k 0
fk
fk 1 2
(xk 1
xk
)
(4)
8
数值积分 2.辛普森(Simpson)公式
(抛物线公式)
梯形公式相当于用分段线性插值函数代替 f (x)
提高精度
分段二次插值函数
抛物线 公式
y
y=f(x)
每段要用相邻两小区间
数值积分
数值 积分
为什么要作数值积分
• 积分是重要的数学工具,是微分方程、概率 论等的基础;在实际问题中有直接应用。
数值分析(清华大学第五版) 第四章数值积分和微分
b
a
l j ( x)dx ( x x j -1 )( x x j 1 ) ( x x j 1 )( x x j 1 ) ( x xn ) ( x j xn )
dx
作变量代换, x a th ,则
n t (t 1) h (t j 1)(t j 1) (t n) 上式 dt b a 0 j ( j 1) 1(1) ( j n) 1 n t (t 1) (t j 1)(t j 1) (t n) dt n 0 j ( j 1) 1 (1) ( j n)
该积分仅与 n 有关,与 a, b, f ( x) 无关.
③ 设 n 1 个线性无关的次数 n 的多项式为 e0 ( x), 等距结点 x0 ,
过同样 , en ( x) ,
, xn , 对每一个 ei ( x) 利用 Newton Cotes 公式求积,且积分
余项均为零.即有
n b 1 b a a e0 ( x) dx c j e0 ( x j ) j 0 n 1 b e1 ( x)dx c j e( x j ) a (1) b a j 0 n b 1 b a a en ( x)dx c j en ( x j ) j 0
, n) ,
又设过该结点的次数 n 的 Lagrange插值多项式
P( x) f ( x j )l j ( x) ,
j 0
n
余项
f ( ) R( x) ( x) . (n 1)!
( n 1)
代数精确度
b n
定义 设求积公式 f ( x)dx A j f ( x j ) R(a, b, f ) .
李庆扬数值分析第五版习题答案解析清华大学出版社
又
即计算值比准确值大。
故 在 内至少有三个互异零点,
依此类推, 在 内至少有一个零点。
记为 使
又
其中 依赖于
分段三次埃尔米特插值时,若节点为 ,设步长为 ,即
在小区间 上
16.求一个次数不高于4次的多项式P(x),使它满足
解:利用埃米尔特插值可得到次数不高于4的多项式
设
其中,A为待定常数
从而
17.设 ,在 上取 ,按等距节点求分段线性插值函数 ,计算各节点间中点处的 与 值,并估计误差。
19。观测物体的直线运动,得出以下数据:
时间t(s)
0
0.9
1.9
3.0
3.9
5.0
距离s(m)
0
10
30
50
80
110
求运动方程。
解:
被观测物体的运动距离与运动时间大体为线性函数关系,从而选择线性方程
令
则
则法方程组为
从而解得
故物体运动方程为
20。已知实验数据如下:
19
25
31
38
44
19.0
32.3
将 代入得
由此得矩阵开工的方程组为
求解此方程组,得
又 三次样条表达式为
将 代入得
21.若 是三次样条函数,证明:
若 ,式中 为插值节点,且 ,则
证明:
从而有
第三章 函数逼近与曲线拟合
1. ,给出 上的伯恩斯坦多项式 及 。
解:
伯恩斯坦多项式为
其中
当 时,
当 时,
2.当 时,求证
证明:
若 ,则
3.证明函数 线性无关
解:
采用复化梯形公式时,余项为
《数值分析-李庆杨》第4章 数值积分与数值微分-文档资料
(a
b).得到的求积公式就是中矩形公式。再令
数
f (x) x2, 代入(1.4)式的第三式有
值
分 析 》
A0 x02
(b
a)( a
b)2 2
b
a 4
(a2
b2)
b x2dx 1 (b3 a3 ),
a
3
说明中矩形公式对f (x) x2不精确成立,故它的代数精确度为1.
当f(x)=x2时(1.4)式的第三个式子不成立,因为
b a (a2 b2 ) b x2dx 1 (b3 a3).
2
a
3
故梯形公式(1.1)的代数精确度为1.
第4章 数值积分与数值微分
在方程组(1.4)中如果节点xi及系数Ai都不确定,那么方 程组(1.4)是关于xi及Ai(i=0,1,…,n)的2n+2个参数的非线性方 程组。此方程组当n>1时求解是很困难的,但当n=0及n=1的 情形还可通过求解方程组(1.4)得到相应的求积公式。
练习 设有求积公式
1
1 f (x)dx A0 f (1) A1 f (0) A2 f (1)
试确定系数A0, A1, A2, 使上述求积公式的代数精度尽量高.
三、插值型求积公式
第4章 数值积分与数值微分
在n 1个互异节点a x0 x1 xn b上已知函数值f0,
A1
1(b a).于是得 2
数 值
I ( f ) b f ( x)dx b a [ f (a) f (b)]
a
2
分
析 这就是梯形公式(1.1),它表明利用线性方程组(1.4)推出的求积公式,
数值微分与数值积分
数值微分与数值积分数值微分和数值积分是数值分析中两个重要的概念和技术。
它们在数学与工程领域中都有着广泛的应用。
本文将介绍数值微分和数值积分的概念、原理和应用。
1. 数值微分数值微分是指通过数值计算方法来逼近函数的导数。
在实际计算中,我们常常需要求解某一函数在特定点的导数值,这时数值微分就能派上用场了。
一种常用的数值微分方法是有限差分法。
它基于函数在离给定点很近的两个点上的函数值来逼近导数。
我们可以通过选取合适的差分间距h来求得函数在该点的导数值。
有限差分法的一般形式可以表示为:f'(x) ≈ (f(x+h) - f(x))/h其中,f'(x)是函数f(x)在点x处的导数值,h是差分间距。
数值微分方法有很多种,比如前向差分、后向差分和中心差分等。
根据实际需求和计算精度的要求,我们可以选择合适的数值微分方法来进行计算。
2. 数值积分数值积分是指通过数值计算方法来近似计算函数的定积分。
在实际问题中,我们经常需要求解函数在某一区间上的积分值,而数值积分可以提供一个快速而准确的近似。
一种常见的数值积分方法是复合梯形法。
它将积分区间分割成若干个小区间,然后在每个小区间上应用梯形面积的计算公式。
最后将所有小区间上的梯形面积相加,即可得到整个积分区间上的积分值。
复合梯形法的一般形式可以表示为:∫[a, b] f(x)dx ≈ h/2 * [f(a) + 2∑(i=1 to n-1)f(x_i) + f(b)]其中,[a, b]是积分区间,h是分割的小区间宽度,n是划分的小区间个数,x_i表示第i个小区间的起始点。
除了复合梯形法,还有其他常用的数值积分方法,比如复合辛普森法、龙贝格积分法等。
根据被积函数的性质和计算精度要求,我们可以选择合适的数值积分方法来进行计算。
3. 数值微分和数值积分的应用数值微分和数值积分在科学研究和工程实践中具有广泛的应用。
以下是一些常见的应用领域:3.1 物理学在物理学中,我们经常需要对物体的位置、速度和加速度进行计算。
数值分析中的数值微分与数值积分
数值分析中的数值微分与数值积分数值微分和数值积分是数值分析领域中两个重要的概念。
它们在计算机科学、工程学和物理学等领域中有广泛的应用。
本文将介绍数值微分和数值积分的概念、原理以及一些常用的方法和技巧。
一、数值微分数值微分是通过数值方法来计算函数的导数。
导数是描述函数变化率的工具,它在物理学、经济学和生物学等领域中具有重要的作用。
1. 前向差分法(Forward Difference)前向差分法是一种简单而常用的计算导数的方法。
它利用函数在某一点上的值与函数在该点附近的一个点上的值之间的差异来估计导数。
具体公式如下:f'(x) ≈ (f(x+h) - f(x))/h其中,h为步长,为了提高精度,需要选择足够小的步长。
2. 后向差分法(Backward Difference)后向差分法与前向差分法类似,不同之处在于它利用函数在某一点上的值与函数在该点附近的一个点上的值之间的差异来估计导数。
具体公式如下:f'(x) ≈ (f(x) - f(x-h))/h同样地,步长h需要选择足够小。
3. 中心差分法(Central Difference)中心差分法是一种更加准确的数值微分方法,它利用函数在某一点上的前后两个点的值来估计导数。
具体公式如下:f'(x) ≈ (f(x+h) - f(x-h))/(2h)中心差分法相对于前向差分法和后向差分法而言,具有更高的精度。
二、数值积分数值积分是通过数值方法来计算函数的积分。
积分在物理学、经济学和统计学等领域中起着重要的作用,它可以用来计算面积、体积以及概率等。
1. 矩形法(Rectangle Method)矩形法是一种简单的数值积分方法,它利用多个矩形来逼近曲线下的面积。
具体来说,将积分区间等分为若干子区间,然后在每个子区间上选择一个点作为高度,从而构造出多个矩形。
最后,将各个矩形的面积相加,即可得到近似的积分值。
2. 梯形法(Trapezoidal Method)梯形法是一种更加准确的数值积分方法,它利用多个梯形来逼近曲线下的面积。
数值分析中的数值微分与数值积分
数值分析中的数值微分与数值积分数值分析是一门重要的数学分支,用于研究如何使用计算机来求解各种数学问题。
数值微分和数值积分是数值分析中的两个基本概念,它们在科学计算和工程应用中具有广泛的应用。
一、数值微分数值微分是通过数值方法来近似计算函数的导数。
在实际计算中,往往很难直接求得函数的导数表达式,这时候数值微分方法就派上用场了。
1. 前向差分公式前向差分公式是最简单的数值微分方法之一,它基于导数的定义,用函数值的差商来近似计算导数。
假设函数f(x)在点x0处可导,则其导数f'(x0)可以近似表示为:f'(x0) ≈ (f(x0 + h) - f(x0)) / h其中h是一个足够小的正数,通常称为步长。
通过取不同的步长h,可以得到不同精度的数值微分结果。
2. 中心差分公式中心差分公式是数值微分中较为常用的方法,它利用了函数值的前向和后向差商来近似计算导数。
假设函数f(x)在点x0处可导,则其导数f'(x0)可以近似表示为:f'(x0) ≈ (f(x0 + h) - f(x0 - h)) / (2h)与前向差分公式相比,中心差分公式的精度更高,但计算量稍大一些。
二、数值积分数值积分是通过数值方法来近似计算函数在某个区间上的定积分值。
定积分在数学、物理等领域中具有广泛的应用,尤其是对于无法用解析方法求解的积分问题,数值积分提供了可行的解决办法。
1. 矩形法则矩形法则是最简单的数值积分方法之一,它将函数在积分区间上分成若干个小矩形,然后计算这些小矩形的面积之和。
假设函数f(x)在区间[a, b]上积分,则其定积分值可以近似表示为:∫[a,b] f(x)dx ≈ (b - a) * f(x)其中x是[a, b]上的随机点。
2. 梯形法则梯形法则是数值积分中较常用的方法,它将函数在积分区间上分成若干个小梯形,然后计算这些小梯形的面积之和。
假设函数f(x)在区间[a, b]上积分,则其定积分值可以近似表示为:∫[a,b] f(x)dx ≈ (b - a) * (f(a) + f(b)) / 2梯形法则的精度要比矩形法则要高一些。
第四章-4-Gauss公式
f (x ) n1
i 0 i
n
R[ f ]
( 2 n 2) 2 f ( ) 2 n 2 2 (2n 2)!
(-1, 1)
简单 G-C 公式
n=0
1
1
(1 x 2 )1/ 2 f ( x ) dx f (0)
n=1
n=2
1
2 1/ 2 f 2 2 f (1 x ) f ( x ) d x 1 2 1
关键点!
与 1, x, x2, ..., xn 带权正交
设 p0(x), p1(x), , pn(x) , 是 [a, b] 上带权 (x) 正交 的多项式族,则 Gauss 点即为 pn+1(x) 的零点 Gauss 系数的计算
将 f (x) = 1, x, x2, …, xn 代入,解线性方程组 或利用 Lagrange 基函数
G-L 公式
一般区间上的 G-L 求积公式
I [ f ] f ( x)dx
a b
ab ba t 令 x 2 2 ab ba t) 则 g (t ) f ( 2 2 从而 b ba 1 ba n I [ f ] f ( x)dx g (t )dt Ai g (ti ) a 2 1 2 i 0 在标准区间上采用G-L求积公式!
I [ f ] f ( x)dx
b a i 0
m 1
xi1
xi
f ( x)dx
xi xi 1 hi t , hi xi 1 xi 在每个区间上令 x 2 2 m 1 hi 1 hi I [ f ] f ( xi 1/ 2 t )dt 1 2 i 0 2
计算物理学(刘金远)第4章-数值微分与积分(课后习题及答案)
4.1数值第4章数值微分与积分微分【4.1.1】已知x 2.5 2.6 2.7 2.8 2.9y12.182513.463714.879716.444618.1741(1)用前差、后差和中心差求 2.7x =的一阶导数值(2)用中心差求 2.7x =的二阶导数值【4.1.2】用泰勒展开()()()()()()()2312!3!i i i i i f x f x f x f x f x x x x +¢¢¢¢¢¢=+D +D +D +K\*MERGEFORMAT (1.1)()()()()()()()2312!3!i i i i i f x f x f x f x f x x x x -¢¢¢¢¢¢=-D +D -D +K\*MERGEFORMAT (1.2)(1)推导微分公式()()()()1i i i f x f x f x O x x+-¢=+D D ()()()()1i i i f x f x f x O x x--¢=+D D ()()()()2112i i i f x f x f x O x x+--¢=+D D ()()()()()()1122i i i i f x f x f x f x O x x +--+¢¢@+D D 另外:()()()()()()()()()()111112''2i i i i i i i i i i f x f x f x f x f x f x h h f x h h f x f x f x h +-++-----¢¢»=-+=【4.1.3】采用泰勒展开方法确定下列数值微分公式0000(,)()()(2)x h af x bf x h cf x h f =++++提示:取00(,)'()x h f x f =,00(,)''()x h f x f =【解】2300001()()'()''()()2f x h f x hf x h f x O h +=+++230000(2)()2'()2''()()f x h f x hf x h f x O h +=+++00023000()()(2)1()()(2)'()(2)''()max(,,)()2af x bf x h cf x h a b c f x b c hf x b c h f x a b c O h ++++=+++++++如果:(1)取00(,)'()x h f x f =,则有关系:210; (2)1; (2)02a b c b c h b c h ++=+=+=得到:123,,c b a =-==-(2)取00(,)''()x h f x f =,则有关系:210; (2)0; (2)12a b c b c h b c h ++=+=+=得到:222121,,c b a ==-=【4.1.4】(1)二阶微分写为:11/2211/21/22()2()()''()(/2)()2()()''()(/2)j j j j j j j j f x f x f x f x h f x f x f x f x h +++++-+=-+=\*MERGEFORMAT (1.3)有什么区别(2)1/2111/2211/2()()'(()()/)'()/2''(2)()2()()/2j j j j j j j j j j f x f x f x f x h f f x f x x h hf x f x f x h h ++++++---==-=-+\*MERGEFORMAT (1.4)结果对否,为什么?【解】对于(1.3)式23111()()'()''()'''()26j j j j j f x f x hf x h f x h f x +=++++L \*MERGEFORMAT (1.5)231/2111()()'()(/2)''()(/2)'''()226j j j j j f x f x hf x h f x h f x +=++++L \*MERGEFORMAT (1.6)将2(1.6)(1.5)´-,得,(非对称,一阶精度),对称,二阶精度)对于(1.4)式应该是1/2111/221()()()()'()'()/2''()()2()()/4j j j j j j j j j j f x f x f x f x h f f x f x x hhx f hf f x x h +++++--=--==-+\*MERGEFORMAT (1.7)11'()()()j j j f x f x f x h++=-,即差分定义要围绕j x 点,而(1.4)式中1'()j f x +的下一步定义111/2()('())/2j j j f x f x f x h +++-=与j x 点无关,结果是错的。
数值积分与数值微分
数值积分与数值微分数值积分和数值微分是数值计算中重要的概念和方法,它们在科学、工程和统计等领域有广泛的应用。
本文将介绍数值积分和数值微分的基本概念、原理和方法,并对其在实际问题中的应用进行讨论。
一、数值积分数值积分是求解定积分的数值近似值的方法。
定积分是函数在给定区间内的面积,表示为∫f(x)dx。
在实际计算中,由于很多函数的原函数求解十分困难或不可求得,因此需要借助数值积分方法来进行求解。
1.1 矩形法矩形法是最基本的数值积分方法之一。
它将积分区间等分为若干小区间,并在每个小区间上取一点,然后用这些小区间上的函数值的平均值来近似积分值。
具体而言,对于等分为n个小区间的积分,矩形法可以表示为:∫f(x)dx ≈ Δx * (f(x0) + f(x1) + ... + f(xn-1))其中,Δx为每个小区间的长度,xi为每个小区间上的取点。
矩形法的计算简单,但精度较低。
1.2 梯形法梯形法是另一种常用的数值积分方法,它通过用梯形面积来逼近积分值。
类似于矩形法,梯形法将积分区间等分为若干小区间,并在每个小区间上取两个点,然后用这些小区间上的梯形面积之和来逼近积分值。
具体而言,梯形法可以表示为:∫f(x)dx ≈ Δx/2 * (f(x0) + 2f(x1) + 2f(x2) + ... + 2f(xn-1) + f(xn))其中,Δx为每个小区间的长度,xi为每个小区间上的取点。
梯形法相对于矩形法有更高的精度,但计算复杂度也相应提高。
1.3 辛普森法则辛普森法则是一种更加精确的数值积分方法,它利用三次多项式来逼近积分值。
辛普森法则将积分区间等分为若干小区间,并在每个小区间上取三个点,然后通过构造一个三次多项式,利用多项式的积分近似面积来逼近积分值。
具体而言,辛普森法则可以表示为:∫f(x)dx ≈ Δx/3 * (f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + ... + 2f(xn-2) +4f(xn-1) + f(xn))其中,Δx为每个小区间的长度,xi为每个小区间上的取点。
第四章 数值微积分_Zu2
(4) 0
7 90
, C
(4) 1
, C
(4) 2
,C
(4) 3
32 7 (4) 柯特斯(Cotes)公式 ,C 90
4
90
a
b
f ( x ) dx C
ba 90
[ 7 f ( x 0 ) 32 f ( x 1 ) 12 f ( x 2 ) 32 f ( x 3 ) 7 f ( x 4 )]
j0 j k
得求积公式
In
k 0
n
Ak f ( x k ) (b a ) C k
k 0
n
(n)
f ( xk )
( Cotes系数 C k n )
上式称为n阶Newton-Cotes(牛顿-柯特斯)公式. 注:(1)Cotes 系数仅取决于 n 和 k , 与 f (x) 及 区间[a, b]均无关 . (n) (2) C k( n ) C n k ( 对 称 性 ). (3)
积分的精确值 I
1 0 .6
1 1 x
2
d x= arctgx
1 0 .6
0 .2 4 4 9 7 8 6 6 .
上一页 下一页 返回
例2
分别用梯形公式、辛普生公式计算 I
T b a 2
π 4
sin x d x .
0
解:由梯形公式
I T
π 4
f
( a ) f ( b ) 得
由柯特斯公式
I C
C
ba 90
7
f ( x 0 ) 32 f ( x 1 ) 12 f ( x 2 ) 32 f ( x 3 ) 7 f ( x 4 ) 得
数值分析-李庆杨-第4章 数值积分与数值微分
即得求积公式
b
n
f(x)dx
a
A kfk,
其A k中 a blk(x)dx.
k0
称为插值型求积公式.
(1.
第4章 数值积分与数值微分
它的余项为
b
R[f] a
f(x)Ln(x)dxa bf((n n 1)1 ())!j n0(xxj)dx.
(1.7
《
数
定理求 1 积公 bf(x式 )dxn a
为了构造出形如(1.3)式的求积公式,原则上是一个 确定参数xk和Ak的代数问题。
例如n=1时,取x0=a,x1=b,求积公式为
b
I(f) af(x )d x A 0 f(a ) A 1 f(b ).
第4章 数值积分与数值微分
在线性方程组(1.4)中令m 1,则得
A0 A1 b a,
A 0a
n
n
记 In(f)= A kf(xk),In(f% )= A kf% k
k0
k0
n
则 有 |In(f)In(f% )| A k[f(xk)f% k]. k0
第4章 数值积分与数值微分
定 义 若 30,0只 , 要 f(xk)~ fk (k0,,n),就有
|In(f)In(~ f)| n Ak[f(xk)~ f(xk)], k0
第4章 数值积分与数值微分
第4章 数值积分和数值微分
§4.1 引 言
在一元函数的积分学中,我们已经熟知,若函数f(x)
《
数 在区间[a, b] 上连续且其原函数为F(x) ,则可用牛顿
值 分
―莱布尼兹公式
析
》
b
a f(x)dxF(b)F(a)
第4章 数值积分与数值微分
数值分析第五版全答案chap4
第四章 数值积分与数值微分1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:10121012112120(1)()()(0)();(2)()()(0)();(3)()[(1)2()3()]/3;(4)()[(0)()]/2[(0)()];hhhh hf x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-⎰⎰⎰⎰解:求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。
(1)若101(1)()()(0)()hhf x dx A f h A f A f h --≈-++⎰令()1f x =,则1012h A A A -=++令()f x x =,则110A h A h -=-+令2()f x x =,则3221123h h A h A -=+ 从而解得011431313A h A h A h -⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩令3()f x x =,则3()0hhhhf x dx x dx --==⎰⎰101()(0)()0A f h A f A f h --++=故101()()(0)()hhf x dx A f h A f A f h --=-++⎰成立。
令4()f x x =,则4551012()52()(0)()3hhhhf x dx x dx h A f h A f A f h h ---==-++=⎰⎰故此时,101()()(0)()hhf x dx A f h A f A f h --≠-++⎰故101()()(0)()h hf x dx A f h A f A f h --≈-++⎰具有3次代数精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。